
Almost Tight Bounds for Reordering Buffer Management *

Anna Adamaszek
A.M.Adamaszek@warwick.ac.uk

Artur Czumaj
A.Czumaj@warwick.ac.uk

Matthias Englert
M.Englert@warwick.ac.uk

Harald Räcke
H.Raecke@warwick.ac.uk

Department of Computer Science and
Centre for Discrete Mathematics and its Applications (DIMAP)

University of Warwick, Coventry, UK

ABSTRACT
We give almost tight bounds for the online reordering buffer
management problem on the uniform metric. Specifically,
we present the first non-trivial lower bounds for this prob-
lem by showing that deterministic online algorithms have
a competitive ratio of at least Ω(

√
log k/ log log k) and ran-

domized online algorithms have a competitive ratio of at
least Ω(log log k), where k denotes the size of the buffer.

We complement this by presenting a deterministic online
algorithm for the reordering buffer management problem
that obtains a competitive ratio of O(

√
log k), almost match-

ing the lower bound. This improves upon an algorithm by
Avigdor-Elgrabli and Rabani (SODA 2010) that achieves a
competitive ratio of O(log k/ log log k).

Categories and Subject Descriptors
F.2.2 [Analysis of Algorithms and Problem Complex-
ity]: Nonnumerical Algorithms and Problems—Sequencing
and scheduling

General Terms
Theory, Algorithms

Keywords
Online Algorithms, Reordering Buffer, Sorting Buffer

1. INTRODUCTION
In the reordering buffer management problem a stream of
colored items arrives at a service station and has to be pro-
cessed. The cost for servicing the items heavily depends on

∗Research supported by the Centre for Discrete Mathe-
matics and its Applications (DIMAP), University of War-
wick, EPSRC award EP/D063191/1, and EPSRC grant
EP/F043333/1.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
STOC’11, June 6–8, 2011, San Jose, California, USA.
Copyright 2011 ACM 978-1-4503-0691-1/11/06 ...$10.00.

the processing order: servicing an item with color c, when
the most recently serviced item had color c′ 6= c, incurs a
context switching cost wc.

In order to reduce the total processing cost, the servicing
station is equipped with a reordering buffer able to store k
items. This buffer can be used to reorder the input sequence
in a restricted fashion to construct an output sequence with
lower processing cost. At each point in time, the buffer
contains the first k items of the input sequence that have not
yet been processed. A scheduling strategy has to decide which
item to service next. Upon its decision, the corresponding
item is removed from the buffer and serviced, while the next
item from the input sequence takes its place in the buffer.

This simple and versatile framework has many important
applications in areas like production engineering, computer
graphics, storage systems, and information retrieval, among
others [3, 5, 10, 13, 14]. We give two examples.

In the paint shop of a car manufacturing plant, switching
colors between two consecutive cars induces non-neglible
cleaning and set-up costs. Therefore, paint shops are preceded
by a reordering buffer (see [10]) to reorder the stream of
incoming cars into a stream with a lower number of color-
changes.

In a 3D graphic rendering engine [13], a change in attributes
between two consecutively rendered polygons slows down
the GPU, as, for instance, the shader program needs to
be replaced. A reordering buffer can be included between
application and graphics hardware in order to reduce such
state changes.

In this paper we focus on the online version of the re-
ordering buffer problem, in which when the buffer becomes
full, one has to decide which item to service next, without
knowing the rest of the input sequence. The cost of an online
algorithm is compared to the cost of an optimal offline strat-
egy that knows all items in the input sequence in advance
and may use the buffer of size k to reorder these items. The
worst case ratio between the cost of the online algorithm
and the cost of an optimal offline algorithm is called the
competitive ratio.

1.1 Related work
The reordering buffer problem was introduced by Räcke
et al. [14], who developed an O(log2 k)-competitive online
algorithm for the version with uniform costs where wc = 1
for all colors c. Englert and Westermann [8] improved the
competitive ratio to O(log k), and their algorithm is also able
to handle non-uniform costs with the same bound. Their

607

proof works in two steps. First, it is shown that an online
algorithm with a buffer of size k is constant competitive w.r.t.
an optimal offline algorithm with a buffer of size k/4. Then,
it is shown that an optimum algorithm with a buffer of size
k/4 only looses a logarithmic factor compared to an optimum
algorithm with a buffer of size k.

It was shown in [1] that with this proof technique it is
not possible to derive online algorithms with a competitive
ratio o(log k), by presenting an input sequence where the
gap between an optimum algorithm with a buffer of size k/4
and an optimum algorithm with buffer size k is Ω(log k).
Nevertheless, Avigdor-Elgrabli and Rabani [3] were able to
go beyond the logarithmic threshold by presenting an online
algorithm with competitive ratio O(log k/ log log k) using
linear programming based techniques. This is currently the
best known algorithm.

For the offline problem it was recently shown by Chan
et al. [6] and independently by Asahiro, Kawahara, and
Miyano [2] that the problem is NP-hard even for uniform costs.
To the best of our knowledge, no approximation algorithms
that achieve better bounds than the best online algorithm
are known.

There also exists a more general version of the problem.
Instead of letting the context switching cost for switching
from an item with color c′ to an item with color c only depend
on c, it is sometimes desirable to let it depend on c′ and
c. Khandekar and Pandit [11], and Gamzu and Segev [9]
study the problem where the colors correspond to points in a
line-metric. Colors c′ and c are integer points on the line and
the cost for switching from c′ to c is |c′ − c|. This version of
the problem is motivated by disc scheduling. Khandekar and
Pandit [11] give a randomized O(log2 n)-competitive online
algorithm for n uniformly spaced points on a line, and a con-
stant factor offline approximation in quasi-polynomial time.
Gamzu and Segev [9] improve the first result to O(logn).
They also shows a lower bound of 2.1547 on the competitive
ratio of deterministic online algorithms on the line. This is
the only non-trivial lower bound that exists for any variant
(i.e. metric) of the problem.

Englert et al. [7] consider the more general version where
colors correspond to arbitrary points in a metric space (C, d)
and the cost for switching from color c′ to color c is the dis-
tance d(c′, c) between the corresponding points in the metric
space. They obtain a competitive ratio of O(log2 k log |C|).

Research has also been done on the maximization version
of the problem, where the cost-measure is the number of color-
changes that the output sequence saved over the unordered
input sequence. For this version there exist constant factor
approximation algorithms due to Kohrt and Pruhs [12] and
Bar-Yehuda and Laserson [4].

1.2 Our results
In this work, we improve the best known upper bound, as
well as the best known lower bounds. We start by presenting
the first non-trivial lower bound on the competitive ratio of
online algorithms for the problem. We show in Theorem 2.6
that any deterministic online algorithm for the reordering
buffer management problem has a competitive ratio of at
least Ω(

√
log k/ log log k) even in the uniform case. For ran-

domized algorithms we are able to construct a lower bound
of Ω(log log k) (Theorem 2.9). Before this work, no lower
bounds were known.

We complement the lower bounds with a deterministic

online algorithm whose competitive ratio nearly matches it.
We present a deterministic online algorithm that obtains a
competitive ratio of O(

√
log k) for the non-uniform case in

which the ratio between the smallest and the largest weight
of a color is polynomially bounded in k. This improves upon
the result of Avigdor-Elgrabli and Rabani [3] who obtained
a competitive ratio of O(log k/ log log k).

All previous results [3, 8, 14] for the reordering buffer
management problem used very similar algorithms with only
subtle differences between them. The differences between
the results were mostly based on the analysis. In contrast,
our new result relies on an important modification in the
algorithm. In addition to techniques similar to those used
in [3, 8, 14], our algorithm also relies on classifying colors
according to the number of items of the color in the buffer.
Then, the algorithm tries to evict items of a color class
that currently occupy a large fraction of the buffer. This
algorithmic ingredient plays a crucial role in reducing the
competitive ratio to O(

√
log k) in our analysis.

Finally, it is worth mentioning that we are not aware of
any candidate for even a randomized algorithm that possibly
could give a competitive ratio better than O(

√
log k). It is

possible to use the techniques developed in this paper to
show better lower bounds for specific algorithms as, e.g., for
the algorithm proposed in [13], which, in the case when a
color-change is required, chooses a random item in the buffer
and switches to the corresponding color. This shows that,
e.g., this algorithm does not have a competitive ratio better
than Ω(

√
log k).

2. LOWER BOUNDS
In this section we give lower bounds on the competitive ratio
of online algorithms for the reordering buffer problem. We do
this by carefully constructing an input sequence σ for which
any online algorithm ONL exhibits a large cost while the
optimum algorithm OPT can process σ with a significantly
lower number of color-changes.

2.1 Preliminaries
We first describe the general scheme for constructing σ. For
this we introduce quite a few parameters whose precise values
will be fixed later. For simplicity of notation we assume that
k is sufficiently large, and chosen in such a way that no
rounding issues occur.

2.1.1 The general scheme for constructing σ

The input sequence σ that we construct has the property that
an optimum algorithm OPT′ with a buffer of size (1 + α)k
can process σ in such a way that the number of color-changes
is equal to the total number of different colors contained in
σ. This means OPT′ is truly optimal for the sequence, and
even increasing the size of the buffer further cannot reduce
the cost for processing σ.

To specify σ further, we will view the buffer of OPT′ as
partitioned into d classes C1, . . . , Cd. Each class can store
(1 + α)k/d elements (a 1/d-fraction of the total buffer size
of OPT′). We further partition the buffer of a class Ci into

Ni slots, where each slot can store si = (1+α)k
dNi

elements (a

1/Ni-fraction of the buffer space of class Ci). The number
of slots in a class will be decreasing with the number of the
class, i.e., for i < j we have Ni > Nj .

The main property of the input sequence σ will be as
follows:

608

Whenever OPT′ has to make a color-change while
processing σ, the elements in its buffer that share
a particular color fill one complete slot.

This means, e.g., that if nc denotes the number of elements
with color c at a certain time (i.e., right before a color-change
by OPT′), then nc = si for some i ∈ {1, . . . , d}. Because of
this property it makes sense to refer to the color of a slot as
the color that every element in the slot has (at a specified
time).

We obtain the above property by constructing σ as follows:
The initial (1 + α)k elements of σ fill up the buffer of OPT′.
They are chosen such that the invariant is satisfied right be-
fore OPT′ outputs its first element. The exact order in which
these first (1 + α)k elements appear in σ is not important
but we assume that elements among them that share the
same color appear consecutively.

Further elements in σ are chosen in rounds in the following
way. For a round we choose a slot zi, i ∈ {1, . . . , d} from
every class.

Then we first add k + 1 elements of the color of zd to σ,
which will force any algorithm to switch to this color at this
point. Then, for every i, starting from d− 1 down to 1, we
add si+1− si elements of the color of slot zi to σ. Finally, we
add s1 elements of a completely new color to σ. This finishes
the round.

The algorithm OPT′ works as follows. In the beginning
of a round it switches to the color of slot zd. This frees
up space sd in the buffer, and, hence, OPT′ can hold all
further elements appearing in the round without requiring
any further color-changes.

In order to maintain the main property, we do the following.
For i ≤ d − 1, all si elements in slot zi plus the si+1 − si
elements with the same color arriving in the round are moved
to slot zi+1 (and completely fill this slot).1 We say that we
promote slot zi in class Ci. Finally, slot z1 holds the s1
elements of the new color.

This finishes the description of the construction of σ up
to the selection of the d slots for each round. Note that
regardless of how we choose these slots it follows from the
above discussion that the cost of OPT′ for processing σ is
equal to the number of different colors in the sequence.

2.1.2 A sketch of the analysis
From the above description it is clear that the cost of OPT′

for processing σ is equal to the number of different colors in
the sequence.

However, the online algorithm ONL and the optimum algo-
rithm OPT only have a buffer of size k. Hence, at any time,
these algorithms have already removed at least αk elements
that are still held by OPT′. Suppose for the time being that
these algorithms only remove whole slots (remember that we
can simply view a slot as a set of elements that share the
same color).

Clearly, if e.g. ONL removed all elements of a slot zi, and
this slot is promoted, then ONL will have an additional
color-change that OPT′ doesn’t have. Now, if our aim is to

1Observe that the notion of a slot has only been introduced
for illustration. Since, it is irrelevant where in the buffer
something is stored it is also possible to simply view a slot
as a set of elements (all with the same color and currently
stored by OPT’).

maximize the ratio between the cost of ONL and the cost of
OPT′ it turns into a caching problem, where in each round
the adversary has to pick a slot from every class in such a
way that she “hits” many slots that ONL has removed.

For making this idea work we need to show

• that it is more or less optimal for ONL to remove whole
slots,

• that an adversary always can promote a large number
of slots that have been removed by ONL, and

• that OPT can handle the resulting input sequence fairly
well (as we are not interested in the ratio between OPT′

and ONL but in the ratio between OPT and ONL).

2.1.3 The caching framework
In this section we make a formal connection of our problem
to the caching-related problem hinted at in the above sketch.

We say that an algorithm ALG cleared slot z before round
r if right before the time ALG reads the first element of round
r, there are no elements from slot z in ALG’s buffer. This
implies that ALG does not hold any elements of the color
of slot z. Define the cost costrALG of an algorithm ALG in
round r as the number of slots promoted in round r that are
cleared by ALG (i.e. costrALG corresponds to the number of
“cache misses” in round r).

A lower bound for ONL
The following lemma gives a lower bound on the cost of the
online algorithm in terms of costrONL.

Lemma 2.1. The total cost of ONL on the generated
input sequence σ is at least

∑d
i=1Ni +

∑
r costrONL.

Proof. First observe that we can compute the cost of
an algorithm by increasing its cost by 1 whenever an element
of a color arrives whose color is different from the last color
that was appended to the output sequence (the active output
color) and also different from all colors present in the buffer.

Initially, the first (1 + α)k elements of the input sequence

consist of
∑d
i=1Ni different colors, each of them contributing

1 to the cost of any algorithm.
Then, consider a slot z in class Ci for i ≤ d − 1 that is

cleared by ONL and promoted in round r. Since ONL cleared
z before round r, ONL does not store any elements of the
color of slot z in its buffer at the beginning of the round. On
the other hand, z is promoted, which means that elements
of the color of z appear in σ in round r.

The first k + 1 elements of round r belong to the color c
of a slot in class Cd. After they arrived, ONL’s active output
color is c. Since ONL cannot switch to a color not currently
stored in the buffer and z was cleared by ONL before round r,
ONL’s active output color has to be different from the color
of z at the time the first element of the color of z appears in
σ in round r.

Therefore, each such slot z contributes 1 to the total cost
of ONL and there are at least costrONL−1 such slots, where
the −1 accounts for the slot in class Cd. The cost of ONL
is further increased by one in every round r, because of the
single element of a completely new color appearing in σ.

By summing over all rounds and taking the first (1 + α)k
elements into account, it follows that the total cost of ONL
is bounded from below by

∑d
i=1Ni +

∑
r costrONL.

609

A lower bound for OPT
In order to give an analogous upper bound on the cost of
OPT, we will present specific (offline) algorithms and analyze
their cost. In order to do this analysis in a round-based
manner, we further restrict these offline algorithms in the
following way. We require that right before a new round, the
algorithm has at most k − sd elements stored in the buffer.
To be more specific, we consider algorithms that process a
round as follows.

1. Right before the first element of the round appears
in σ, the number of elements stored in the buffer is
reduced to less than k − sd. This is done by selecting
αNi + 1 slots from each class Ci and removing all of
the elements in these slots from the buffer.

2. Let z1, . . . , zd denote the slots that are promoted during
the round. The algorithm outputs every element of the
color of slot zd. This includes the first k + 1 elements
arriving in the round and also elements of the same
color that may be stored in the buffer.

3. Finally, the algorithm stores all other elements arriving
during the round in the buffer. This is possible since
the number of these elements is sd.

In order to satisfy the buffer constraint for the first (1 + α)k
elements of the input sequence, we assume that the algorithm
immediately outputs elements from slots that get cleared
from the buffer before the first round.

Lemma 2.2. Given any offline algorithm OFF with the
property above, the total cost of OPT on the generated input
sequence σ is at most

∑d
i=1Ni +

∑
r(costrOFF +1).

Proof. The proof is similar to the proof of Lemma 2.1.
Again, we observe that we can compute the cost of an algo-
rithm by increasing its cost by 1 whenever an element of a
color arrives whose color is different from the last color that
was appended to the output sequence and also different from
all colors present in the buffer.

Initially, the first (1 + α)k elements of the input sequence

consist of
∑d
i=1Ni different colors, each of them contributing

1 to the cost of any algorithm. OFF’s cost also increases by 1
in each round due to the single element of a completely new
color that appears in every round. The sum of all these cost
is
∑d
i=1Ni +

∑
r 1.

All further increases of OFF’s cost are caused by a sequence
of elements arriving in some round r that have a color that is
not currently present in OFF’s buffer but present in the buffer
of OPT′. Such a sequence of elements corresponds to the
promotion of a slot zi, where at the time of the promotion
OFF does not store any elements of the slot in the buffer.
This implies that OFF does not store any elements of the
slot at the time the first element of the round is read from
the input. To see this for a slot in class Ci, with i < d,
observe that OFF does not remove any elements from class
Ci from the buffer until the end of a round. Therefore, all
the elements that are not in the buffer at some point in time,
were already missing from the buffer when the round started.
For a slot from class Cd, the statement is also true, since this
slot is the first one to be promoted in the round.

In other words, each such increase of OFF’s cost is caused
by a promotion of a cleared slot in some round r and therefore
also contributes 1 to costrOFF. Hence,

∑
r costrOFF is an upper

bound on these increases to the cost of OFF. Summing up
everything and observing that the cost of OPT is bounded
by the cost of OFF completes the proof.

2.1.4 Choosing parameters
For the remainder we fix the number of classes as d :=
log k/(2 log log k) and the size of a slot in class Ci as si :=
logi−1 k. The parameter α will be chosen differently depend-
ing on whether we want to derive lower bounds for determin-
istic or for randomized online algorithms. If we deal with
deterministic algorithms we choose α :=

√
log log k/ log k,

otherwise we set α := (log log k)2/ log k.

2.1.5 An important lemma
We now prove a lemma that shows that in the beginning of a
round the online algorithm has many cleared slots and that
these lie in different classes (so that the adversary can choose
many of them). This lemma forms the basis of our analysis.

We first require a technical claim that essentially states
that for our specific choice of si’s the online algorithm either
has a slot cleared or has stored nearly all elements of the
slot.

Claim 2.3. For a round r and a slot z in class Ci at
least one of the following is true:

(a) ONL cleared slot z before round r, or

(b) The color of slot z is equal to the color of the element
that ONL appended to the output sequence, right before
reading the first element of round r,

(c) ONL holds at least logi−1 k − logi−2 k of the logi−1 k
elements OPT′ stores in slot z, right before ONL reads
the first element of round r.

Proof. Consider a slot z in class i. There are only two
possible reasons that z is not cleared (i.e., we are not in
Case a), but ONL does not store all logi−1 k elements of z.
Either z is the active output color, which means that ONL
is in the process of removing elements from z (Case b), or
some elements of z have been previously removed by ONL.

In the latter case some elements have arrived after the
removal, as otherwise z would be cleared. However, the last
sequence of elements with the color of slot z was the sequence
of length logi−1 k− logi−2 k that filled the slot z in the buffer
of OPT′. All these elements must still be in ONL’s buffer.
This means we are in Case c. This proves the claim.

Using the claim, we can now prove the desired bounds on
the number of slots cleared by ONL.

Lemma 2.4. Let `i be the number of slots from class Ci
cleared by ONL before round r. The following holds:

(a)
∑d
i=1 `i logi−1 k ≥ αk

2
.

(b) At least αd/4 of the `i’s are not 0. In other words, at
least αd/4 different classes contain at least one cleared
slot.

Proof. At the beginning of a round there must exist at
least αk elements that ONL has already removed from its
buffer while they are still held by OPT′.

Due to Claim 2.3, every slot of class Ci that is not cleared
by ONL before round r and whose color is not ONL’s active

610

output color, contains at least logi−1 k − logi−2 k elements.
Hence, the number of elements that are held by OPT′ but
not by ONL is at most logd−1 k +

∑d
i=1(Ni − `i) logi−2 k +∑d

i=1 `i logi−1 k, where the first term accounts for the active
output color of ONL and the second term accounts for the
possible excess elements of OPT′ in slots that are not cleared.
This, however, has to be at least αk. We get

αk ≤ logd−1 k +

d∑
i=1

(Ni − `i) logi−2 k +

d∑
i=1

`i logi−1 k

≤ k

log k
+

(1 + α)k

log k
+

d∑
i=1

`i logi−1 k

≤ αk

2
+

d∑
i=1

`i logi−1 k ,

where the last step follows since (2 + α)k/ log k ≤ αk/2 for
sufficiently large k. This implies the first claim.

For the second claim assume that less than αd/4 of the

`i’s are greater than 0. Then we obtain
∑d
i=1 `i logi−1 k <

(1 + α)k/d · αd/4 = α(1 + α)k/4 ≤ αk/2, which is a contra-
diction to the first claim.

In the following sections we describe how to choose the slots
to be promoted in a round in such a way that for ONL many
cleared slots are promoted while for OPT this happens very
rarely. This choice depends on whether we want to derive
lower bounds for deterministic or for randomized algorithms.

2.2 Lower bound for deterministic algorithms
In this section we present a lower bound of Ω(

√
log k/log log k)

on the competitive ratio of any deterministic online algorithm
for the reordering buffer problem. For this section, we define
α to be

√
log log k/ log k.

For every class Ci, we choose a slot for promotion as follows:

If in class Ci there exists a slot cleared by ONL,
we choose an arbitrary such slot to be promoted.
Otherwise, we promote the first slot of class Ci.

We present a randomized algorithm RND that processes σ
with a buffer of size k and has small expected cost compared
to ONL. As in the general outline for our offline algorithms
in the previous section, the algorithm ensures that at the
beginning of a round at least αNi + 1 slots from class Ci
are cleared. More precisely, for each class Ci, RND chooses
αNi + 1 slots uniformly at random from all but the first slot
in the class. At the beginning of each round, RND removes
all elements belonging to the selected slots from the buffer.

Lemma 2.5. The expected cost of RND in round r is
O(
√

log log k/log k) · costrONL − 1.

Proof. Since RND never chooses to evict the first slot of
a class, this slot is never cleared by RND. The probability that
a specific other slot of a class is cleared is (αNi+1)/(Ni−1) <
2α. Therefore, the expected cost of RND in round r is at
most 2α costrONL. This is because, due to the way the slots
are chosen for promotion, at most costrONL slots are promoted
that are not the first slot of a class.

From Lemma 2.4b we know that costrONL ≥ αd/4. Now

since α = 1/
√

2d =
√

log log k/ log k, we get that the ex-
pected cost of RND is at most 2α · costrONL ≤ 10α · costrONL−1,
where the inequality holds since 8α costrONL ≥ 2α2d = 1.

The lemma implies the following theorem.

Theorem 2.6. Any deterministic algorithm for the re-
ordering buffer management problem has a competitive ratio
of Ω(

√
log k/ log log k).

Proof. Clearly, the cost of OPT is at most the expected
cost of RND which is, due to Lemma 2.2 and Lemma 2.5,
at most

∑d
i=1Ni +O(

√
log log k/ log k)

∑
r costrONL. Due to

Lemma 2.1, the cost of ONL is at least
∑
r costrONL. Therefore,

the competitive ratio tends to Ω(
√

log k/ log log k) as the
number of rounds tends to infinity.

2.3 Lower bound for randomized algorithms
In this section we provide a lower bound of Ω(log log k) on
the competitive ratio of any randomized online algorithm for
the reordering buffer problem. For this section, we define α
to be (log log k)2/ log k.

For the analysis in this section, for every class Ci, we
choose a slot for promotion in the following way:

For class Ci choose a slot z in the class uniformly
at random. Promote z.

We start by giving a bound on the expected cost of any
online algorithm on the resulting input sequence.

Lemma 2.7. For a randomized online algorithm ONL, for
an input sequence consisting of R rounds, and for sufficiently
large k it holds that E[

∑
r costrONL] ≥ R · log log k/8.

Proof. Let ONL be an arbitrary online algorithm using
a buffer of size k. We fix a round r and analyze E[costrONL].
For class Ci, let `i denote the number of slots cleared by ONL
before round r. Note that the `i’s are (dependent) random
variables but the following holds for any valid fixed choice of
values.

According to Lemma 2.4a we have
∑d
i=1 `i · logi−1 k ≥

αk/2. If during the round we promote one of the `i cleared
slots in Ci, costrONL increases by one. This happens with prob-
ability `i/Ni = `i · logi−1 k · d/(k+ kα) ≥ `i · logi−1 k · d/(2k).
Summing this over all classes we obtain E[costrONL] ≥ αd/4 =
log log k/8. Taking the sum over all R rounds completes the
proof.

Next we need to show that the expected optimal cost on the
input sequence is significantly smaller.

Lemma 2.8. There is an offline algorithm OFF using a
buffer of size k such that for an input sequence consisting
of R rounds, and for sufficiently large k, E[

∑
r costrOFF] ≤

2α
∑d
i=1Ni +O(R).

Proof. We present an offline algorithm OFF using a
buffer of size k that has the desired upper bound on the
expected cost. The algorithm ensures that in the beginning
of a round at least αNi + 1 slots are cleared from every
class Ci. This means that the algorithm has more than
αk + logd−1 k elements removed that are held by OPT′.

For a class Ci, one slot is promoted in each round. Consider
the sequence of slots that are promoted over all rounds. We
partition this sequence into phases such that each phase
contains Ni − αNi − 1 pairwise different slots. Then, in the
beginning of each phase, i.e., in the beginning of the round in

611

which the first promotion of the new phase takes place, OFF
clears all slots that are not contained in the phase. Note that
due to the definition of a phase, exactly αNi+ 1 slots in class
Ci are cleared. Also note that these slots remain cleared
during the whole phase, since none of them is promoted.

Let costrOFF(i) denote the contribution of class Ci to costrOFF,
i.e., costrOFF(i) is 1 if a cleared slot in class Ci is promoted

in round r, and 0 otherwise. Clearly
∑d
i=1

∑
r costrOFF(i) =∑

r costrOFF. In the following we analyze E[
∑
r costrOFF(i)] for

i ∈ {1, . . . , d}.
Observe that the contribution of one phase to

∑
r costrOFF(i)

is at most αNi + 1. Let pi be the total number of phases
of class Ci, then we get E[

∑
r costrOFF(i)] ≤ E[pi](αNi + 1).

Let X be the length of a single phase (except the last phase
which may be incomplete and, therefore, shorter). Clearly,

E[pi] ≤ 1 +
1

Pr[X ≥ Ni ln(1/α)/4]
· 4R

Ni ln(1/α)
,

where R denotes the total number of rounds. If we can show
that Pr[X ≥ Ni ln(1/α)/4] ≥ 1/2, the lemma follows since

E[
∑
r costrOFF] =

d∑
i=1

E[
∑
r costrOFF(i)] ≤

d∑
i=1

E[pi](αNi + 1)

≤
d∑
i=1

2E[pi]αNi ≤
d∑
i=1

(
2αNi +

16Rα

ln(1/α)

)
≤ 2α

d∑
i=1

Ni +
16dRα

ln(1/α)
= 2α

d∑
i=1

Ni +O(R) .

Here, the second inequality uses the fact that αNi ≥ 1,
which follows from the integrality of αNi. The proof of the
remaining fact that Pr[X ≥ Ni ln(1/α)/4] ≥ 1/2 is deferred
to Section B in the appendix.

Theorem 2.9. Any online algorithm for the reordering
buffer management problem has competitive ratio at least
Ω(log log k).

Proof. Combining Lemma 2.7 with Lemma 2.1 shows
that the expected cost of an online algorithm ONL on the
input sequence consisting of R rounds is at least

∑d
i=1Ni +

R · log log k/8. Combining Lemma 2.8 with Lemma 2.2 shows
that the expected cost of OPT on the input sequence con-
sisting of R rounds is at most (2α + 1)

∑d
i=1Ni + O(R).

Therefore, the competitive ratio is at least∑d
i=1Ni +R · log log k/8

(2α+ 1)
∑d
i=1Ni +O(R)

.

Letting R tend to infinity gives the theorem.

3. THE DETERMINISTIC UPPER BOUND
In this section we present a deterministic, O(

√
log k)-compet-

itive online algorithm for the reordering buffer management
problem. The cost for switching to a color c can be described
by a weight wc for this color. We assume that for all colors c
it holds that 1 ≤ wc ≤ W , where W is polynomially bounded
in k.

Without loss of generality we can assume that an algo-
rithm for the reordering buffer management problem works
according to the following general scheme. In each step the
algorithm has an active output color, which is equal to the

color of the last element that was appended to the output se-
quence. If there is at least one element with this active color
in the buffer, the earliest among these elements is removed,
appended to the output sequence, and the next element from
the input sequence takes its place in the buffer. Otherwise, if
there are no more elements of the active output color in the
buffer, the algorithm performs a color-change and chooses a
new color (among the colors present in the buffer) to output
next.

Note that the algorithm only has to make a decision if
a color-change is performed. Therefore, we describe our
algorithm LCC (Largest Color Class) by specifying how the
new output color is chosen when a color-change is required.
But first, we introduce some further notation. The i-th step of
an algorithm is the step in which the algorithm appends the i-
th element to the output sequence. The buffer content at step
i for an algorithm ALG is the set of elements in ALG’s buffer
right before the i-th element is moved to the output. For
the analysis we will assume that the buffer always contains
k elements. This may not be true at the end of the input
sequence as the algorithm runs out of elements to fill the
buffer. However, this part of the sequence does not influence
our asymptotic bounds.

Let for a given color c at a given time t, φtc = wc/n
t
c denote

the cost-effectiveness of color c at time t, where ntc denotes
the number of elements of color c that are in LCC’s buffer at
time t. In the following we drop the superscript, as the time
step t will be clear from the context.

For each time step, we partition the colors into classes ac-
cording to cost effectiveness. For i ∈ {−dlog ke, . . . , dlogW e},
the class Ci consists of colors with cost-effectiveness between
2i and 2i+1. Let d = O(log k) denote the number of different
classes.

The general idea behind the algorithm is that it aims to
remove colors from classes that occupy a large fraction of
the space in the buffer. To this end the algorithm selects the
class that currently occupies the largest space in the buffer
and marks all colors in this class for eviction (Line 12 in
Algorithm 1). Whenever a color-change is required, one of
these marked colors is chosen as the new output color (and
unmarked). If there are no marked colors left, the new class
that occupies the largest space is selected and the process is
repeated.

This algorithmic idea is combined with a mechanism that
penalizes colors for using up space in the buffer at the time
a color-change occurs. This is similar to techniques used e.g.
in [14, 8, 3], and ensures that colors (in particular colors with
a low weight) do not stay in the buffer for too long, thereby
blocking valuable resources.

To realize all this, our algorithm LCC maintains a counter
P and additional penalty counters Pc for every color c. LCC
also maintains a flag for every color that indicates if the
color is marked. Whenever a color is not in the buffer its
penalty counter is zero. In particular, in the beginning of the
algorithm all penalty counters (including the counter P) are
zero. The formal description of our algorithm for selecting a
new output color is given as Algorithm 1.

Before the algorithm selects a marked color cm as the new
output color, it assigns a value of wcm to a penalty counter
P (Line 15). In a post-processing phase (after outputting all
elements of color cm) this penalty is distributed to penalty
counters of individual colors, as follows. The penalty counter
P is continuously decreased at rate 1, while the penalty-

612

Algorithm 1 Largest Color Class (LCC)

1: Output: a new output color
2: // let nc denote the number of elements
3: // with color c in the buffer
4: ∀ colors c : tc ← wc−Pc

nc/k
; t← min({tc | color c}∪{P});

5: P ← P − t; ∀ colors c : Pc ← Pc + nc
k
· t

6: // the above ensures that t is small enough such that
7: // P ≥ 0 and Pc ≤ wc for all c
8: if P = 0 then
9: if no marked color exists then

10: // let Cmax denote the class that occupies
11: // the largest space in the buffer
12: mark all colors in Cmax

13: end if
14: // let cm denote an arbitrary marked color
15: P ← wcm
16: Pcm ← 0
17: unmark color cm
18: return color cm as the new output color
19: else
20: ca ← arg minc tc // pick color ca such that Pca = wca
21: Pca ← 0
22: unmark color ca if it was marked
23: return color ca as the new output color
24: end if

counters of colors in the buffer are increased at rate nc/k
where nc denotes the number of elements of color c that are
in the buffer (Lines 4 and 5). Note, that we assume that the
buffer is full, hence, the rate of decrease of the P -counter
equals the total rate of increase of Pc-counters.

When a counter Pc reaches wc the penalty distribution
is interrupted; the Pc-counter is reset to 0; and the corre-
sponding color c returned as the new output color (Lines
20–23). The penalty distribution resumes when all elements
with color c have been removed and the next color-change
takes place. The penalty distribution and the post-processing
phase ends once the P -counter reaches 0.

We note that the algorithm can be significantly simplified
if all colors c have weight wc = 1.

3.1 The analysis
Let for a reordering algorithm ALG and an input sequence
σ, ALG(σ) denote the output sequence generated by ALG on
input σ. A color-block of an output sequence is a maximal
subsequence of consecutive elements with the same color.
The cost of a color-block of color c is equal to the weight
wc of c. The cost |ALG(σ)| of algorithm ALG on input σ is
defined as the sum of the costs taken over all color-blocks in
the output sequence ALG(σ).

For a color-block b we use sstart(b) and send(b) to denote
the start index of b and end index of b, respectively, in the
output sequence. This is the same as the time-step when
the first and the last element of b is appended to the output
sequence.

3.1.1 A few simple cases
In this section we first identify different types of color-blocks
for which we can fairly easily derive a bound on their respec-
tive contribution to the cost |LCC(σ)| of our online algorithm.
In Section 3.1.2 we will then introduce a technique that
enables us to handle the remaining color-blocks, as well.

We call a color-block of LCC that is not generated in a
post-processing phase a normal color-block (these are the
color-blocks produced when the algorithm switches to the
respective color in Line 18). Other color-blocks are called
forced color-blocks (the ones caused by Line 23). The follow-
ing lemma shows that we can focus our analysis on normal
color-blocks.

Lemma 3.1. The sum of the cost of forced color-blocks
is at most the sum of the cost of normal color-blocks.

Proof. The total cost for forced color-blocks does not
exceed the total penalty that is distributed to colors during
the post-processing phase of normal color-blocks. The penalty
that is distributed during the post-processing phase of a
(normal) color-block b with color c is equal to wc, i.e., the
cost for b. Summing over all normal color-blocks gives the
lemma.

In the following we use OPT to denote an optimum offline
algorithm. We say that an element is online-exclusive in
step i, if in this step the element is in LCC’s buffer but has
already been removed from OPT’s buffer. Similarly we call
an element opt-exclusive in step i, if it is in OPT’s buffer but
not in LCC’s buffer at this time. Note that by this definition
in every step the number of online-exclusive elements equals
the number of opt-exclusive elements, since the size of LCC’s
and OPT’s buffer is the same.

We extend the first definition to colors: We say that a
color is online-exclusive in step i, if there exists an element
of this color that is online-exclusive. Finally, we say that a
color-block b is online-exclusive if its color is online-exclusive
in step sstart(b). The following lemma derives a bound on
the cost of online-exclusive color-blocks.

Lemma 3.2. The cost of LCC for online-exclusive color-
blocks is at most |OPT(σ)|.

Proof. Let b denote an online-exclusive color-block in
LCC(σ), let e denote its first element, and let c be the color of
b. Let b′ denote the color-block of color c that precedes b (in
case b is the first color-block of color c we define send(b′) = −1
for the following argument). Note that element e is not yet
in the buffer at step send(b′) + 1 as in this case it would be
appended to the output sequence in step send(b′) + 1.

Let bopt denote the color-block of OPT that contains ele-
ment e. Clearly, this block ends after step send(b′) + 1 as e
only arrives after this step. Since b is online-exclusive, its
first element (i.e. e) is removed from the OPT-buffer before
step sstart(b).

Altogether, we have shown that there exists a color-block
bopt in OPT(σ) (with color c) that ends in the interval
]send(b′) + 1, send(b)[. We match the online-exclusive block
b to bopt. In this way we can match every online-exclusive
block to a unique block in OPT(σ) with the same color. This
gives the claim.

Another class of color-blocks for which we can easily derive
a bound on the contribution to the cost |LCC(σ)| is given by
so-called opt-far color-blocks defined as follows. A normal
color-block b from the sequence LCC(σ) is called opt-far,
if during its post-processing phase the number of online-
exclusive elements never drops below k/

√
log k. This means

that throughout the whole post-processing phase for b the
buffers of LCC and OPT are fairly different. The following
lemma derives an upper bound on the cost of opt-far blocks
in an output sequence generated by LCC.

613

Lemma 3.3. The cost of LCC for opt-far color-blocks is
at most O(

√
log k · |OPT(σ)|).

Proof. Fix an opt-far color-block b, and let c denote the
color of b. During the post-processing phase for b the number
of online-exclusive elements is always above k/

√
log k. There-

fore, at least a 1/
√

log k-fraction of the penalty distributed
during the post-processing phase goes to online-exclusive
colors. The total cost for online-exclusive color-blocks is at
least as large as the penalty that these colors receive, since
the penalty of a color c cannot increase beyond its cost wc.

Hence, the total penalty distributed during the post pro-
cessing phases of opt-far color-blocks is at most

√
log k times

the cost for online-exclusive color-changes. This in turn is at
most as large as |OPT(σ)| due to Lemma 3.2. The lemma
follows by observing that the total penalty distributed during
post-processing phases of opt-far color-blocks is equal to the
cost of these blocks.

3.1.2 The potential
A crucial ingredient for the proof of the upper bound in
Section 3.1.3 is the way how we handle normal color-blocks
that are neither online-exclusive nor opt-far. For this we
introduce the notion of potential. The idea is that, on the
one hand, the total potential is bounded by some function in
terms of the optimum cost |OPT(σ)| (see Claim 3.4a). On the
other hand, we will show that normal color-blocks that are
neither opt-exclusive nor opt-far generate a large potential.
This allows us to derive a bound on the contribution of these
color-blocks to the cost |LCC(σ)|.

The definition of potential is based on the differences in
the buffer between LCC and OPT. In the following we use τj
to denote the start index of the j-th color-block of OPT.

For an element eτ that is appended to the output sequence
LCC(σ) at time τ we define for τj > τ

ϕ(τ, τj) =

{
0 if OPT processed eτ before step τj ,

1 otherwise.

ϕ(τ, τj) simply measures whether the element eτ occupies
a slot in OPT’s buffer at time τj . We say that element eτ
generates potential wcj · ϕ(τ, τj) for time step τj , where cj
denotes the color of the j-th color-block in OPT(σ).

For technical reasons we also introduce a capped potential
as follows. We define

ϕ̂(τ, τj) =

 0
if OPT processed eτ before step τj or at
least k/

√
log k elements eτ ′ with τ ′ < τ

have ϕ(τ ′, τj) = 1,

1 otherwise.

ϕ̂(τ, τj) measures whether the element eτ is one of the first
k/
√
log k elements to occupy a slot in OPT’s buffer at time τj ,

where elements are ordered according to their appearance in
LCC(σ). We say that element eτ generates capped potential
wcj · ϕ̂(τ, τj) for time step τj , where cj denotes the color that
is processed by OPT at time τj .

We use ϕ̂(τ) :=
∑
j:τj>τ

wcj ϕ̂(τ, τj) to denote the total

capped potential generated by the element at position τ in
LCC(σ). We define the total capped potential ϕ̂ by ϕ̂ :=∑
τ ϕ̂(τ).

Claim 3.4. The capped potential fulfills the following
properties:

(a) ϕ̂ ≤ k/
√

log k · |OPT(σ)| .

(b) Let τ < t < τj , and assume that the number of online-
exclusive items in step t is at most k/

√
log k. Then

ϕ̂(τ, τj) = ϕ(τ, τj), and, hence, the capped potential
wcj · ϕ̂(τ, τj) generated by eτ for position τj is equal to
the potential. In other words the contribution of eτ is
not capped.

Proof. The first statement follows from the fact that
the capped potential generated for a time-step τj cannot
exceed k/

√
log k · wcj , where wcj is the cost of OPT in the

step. This holds because of the cap. Since the potential is
generated for time-steps τj that correspond to color-changes
by OPT the statement follows.

Now, assume for contradiction that the second statement
does not hold. Since, obviously ϕ̂(τ, τj) ≤ ϕ(τ, τj) it must
hold that ϕ̂(τ, τj) = 0 and ϕ(τ, τj) = 1. This means that
element eτ occupies a place in OPT’s buffer at time τj but
there are at least k/

√
log k elements eτ ′ , τ

′ < τ < t that
also occupy a place in OPT’s buffer at time τj , and therefore
eτ ’s contribution is “capped”. But all these elements are
opt-exclusive at time t. Since, at any time step the number
of opt-exclusive elements must be equal to the number of
online-exclusive elements, we can conclude that in step t there
are more than k/

√
log k online-exclusive elements. This is a

contradiction.

3.1.3 The main theorem

Theorem 3.5. LCC is a deterministic online algorithm
with competitive ratio O(

√
log k).

Proof. The algorithm LCC marks all colors in a class,
and then selects an arbitrary marked color whenever it has
to do a normal color-change. When no marked colors are
left, it again marks all colors in some class and continues.

We call the time between two marking operations (or after
the last marking operation) a phase. Fix some phase P
and let C denote the set of colors that get marked in the
beginning of the phase. Let for c ∈ C, sc denote the number
of elements of color c in LCC’s buffer at the time of the
marking operation that starts P . Further, let φ denote the
lower bound on the cost-effectiveness of colors in C, i.e.,
φ ≤ wc/sc ≤ 2φ holds for all colors c ∈ C. We call a color-
change normal (forced) if it starts a normal (forced) color-
block in the output sequence LCC(σ). In LCC(σ) the phase
consists of a consecutive subsequence of elements, starting
with an element of a color in C and ending with the last
element of a color-block from the post-processing phase of
the last normal color-change of the phase.

Let cost(P) denote the cost incurred by LCC during the
phase. This cost consists of color-changes to colors in C
(either normal or forced), and of color-changes to colors not
in C (these are forced). Let ncost(P) and fcost(P) denote
the cost incurred by LCC during the phase for normal and
forced color-changes, respectively. Further, let ncost :=∑

phases P ncost(P) denote the total normal cost summed
over all phases. In light of Lemma 3.1 it is sufficient to relate
ncost to the optimum cost |OPT(σ)|. In order to do this we
distinguish the following cases:

Case 1 The normal cost ncost(P) is at most 9/10 · fcost(P).
Let ncostsmall denote the normal cost summed over all phases
P that fulfill this condition and let ncostlarge denote the
normal cost summed over other phases (i.e., ncostlarge =

614

ncost−ncostsmall). Then

ncostsmall ≤
9

10

∑
P

fcost(P) ≤ 9

10
ncost

=
9

10
(ncostsmall + ncostlarge) ,

where the second inequality follows from Lemma 3.1. This
gives ncostsmall ≤ 10 ncostlarge. In the following cases we
show that ncostlarge ≤ O(

√
log k · |OPT(σ)|). With this fact

we have that the normal cost ncostsmall generated by phases
that fulfill the condition for Case 1 is at most O(

√
log k ·

|OPT(σ)|).

Case 2 The cost of OPT during the phase is at least
ncost(P)/4. The total normal cost generated by phases that
fulfill this condition is at most O(|OPT(σ)|).

Case 3 The cost of online-exclusive color-blocks gener-
ated during the phase is at least ncost(P)/4. Then, we can
amortize the normal cost of the phase against the cost of
online-exclusive color-blocks, which in turn can be amortized
against the cost of OPT by Lemma 3.2. This gives that
the total normal cost generated by phases that fulfill the
conditions for this case is at most O(|OPT(σ)|).

Case 4 The cost of opt-far color-blocks generated during
the phase is at least ncost(P)/4. Then we can amortize the
cost of the phase against the cost of opt-far color-blocks,
which in turn can be amortized against the cost of OPT by
Lemma 3.3.

Hence, the total cost for phases that fulfill the conditions
for this case is at most O(

√
log k · |OPT(σ)|).

Case 5 In the following we assume that none of the above
cases occurs. This means there must exist a subset C′ ⊂ C
of colors such that for each color c ∈ C′ its first color block
in the phase is

(a) not online-exclusive,

(b) not opt-far, and

(c) not forced.

Further, we have that

(d) elements of colors in C′ are not appended to the output
sequence by OPT during the phase;

(e) and cost(C′) ≥ cost(C)/10,

where we use cost(S) :=
∑
c∈S wc for a set S of colors.

To see this we generate C′ as follows. First take all colors
from C (colors initially marked in the phase) and remove
colors among them for which the first color-change is forced
(this ensures Property c). The cost of the remaining set of
colors is exactly ncost(P). Then remove colors for which the
first block of the phase is onl-exclusive or opt-far, and colors
that are requested by OPT during the phase. Since, we are
not in Case 2, Case 3 or Case 4 this step can only remove
colors with a total cost of 3/4 ·ncost(P). After this properties
a, b and d hold. This gives the set C′.

Property e can be seen as follows. By the construction
cost(C′) ≥ ncost(P)/4. From the fact that Case 1 does
not hold we get that ncost(P) ≥ 9/10 · fcost(P), and, hence,
2 · ncost(P) ≥ 9/10 · cost(P) ≥ 9/10 · cost(C). This gives
cost(C′) ≥ 9/80 · cost(C) ≥ 1/10 · cost(C).

Let S denote the set of elements with colors in C′ that are
in LCC’s buffer in the beginning of the phase. We will show
that these elements generate a large potential after the end
of the phase. From this it follows that we can amortize the
cost of the phase against |OPT(σ)| because of the following
argument.

Assume that for some value Z the elements in S generate
a potential of at least Z · cost(C′) after time t, where t is
the index of the last time-step of the phase. Observe that,
according to Property b above, the (first) color-blocks of
colors in C′ that are generated during the phase are not
opt-far. This means that during the post-processing phase
of each of these blocks, the number of online-exclusive items
falls below k/

√
log k at some point. This means that we

can apply Claim 3.4b to all elements in S, which gives that
elements in S also generate Z ·cost(C′) capped potential after
time t, as their contribution to the potential is not capped.

Claim 3.4a tells us that the total capped potential is at
most O(k/

√
log k) · |OPT(σ)|. Therefore, the total normal

cost generated by phases that fulfill the conditions for Case 5
is at most

O
(
k/
√

log k
)
· |OPT(σ)|

Z · cost(C′)
cost(C) = O

(k

Z
√

log k
|OPT(σ)|

)
.

By showing that elements in S generate at least potential
Z ·cost(C′) = Ω(k/ log k) ·cost(C′) we get that this generated
cost is at most O(

√
log k · |OPT(σ)|).

For completing the analysis of Case 5 it remains to show
the above bound on the potential generated by elements of
S. For this, we first show that the cardinality of the set S is
large. We have

|S| =
∑
c∈C′

sc ≥
∑
c∈C′

wc/2φ ≥
1

20φ

∑
c∈C

wc ≥
1

20

∑
c∈C

sc

≥ k

20d
= Ω(k/ log k) ,

where the first and third inequality follows since φ ≤ wc/sc ≤
2φ; the second inequality holds since

∑
c∈C′ wc = cost(C′) ≥

cost(C)/10 ≥
∑
c∈C wc/10. The last inequality follows since

the algorithm LCC selects a class that occupies the largest
space in the buffer, and, hence, occupies at least space k/d,
where d denotes the number of classes.

With this lower bound on |S| the statement follows directly
from the following claim that is proved in Section A in the
appendix.

Claim 3.6. Let S denote a set of elements that are opt-
exclusive at time t, and let sc denote the number of elements
of color c in S. Let cost(S) =

∑
c:sc>0 wc, and assume that

there is a value φ such that φ ≤ wc/sc ≤ 2φ holds for all
colors with elements in S. Then the contribution to the
potential by elements from S generated after time t is at least
|S| · cost(S)/8.

Applying the claim with t being the last step of the phase,
gives that the elements from S generate potential at least
Ω(k/ log k) · cost(C′) after the end of the phase. This finishes
the analysis of Case 5.

The above cases show that the contribution of all phases
to the cost of LCC is at most O(

√
log k · |OPT(σ)|). This

gives the theorem.

615

4. REFERENCES
[1] Amjad Aboud. Correlation clustering with penalties

and approximating the reordering buffer management
problem. Master’s thesis, Computer Science Depart-
ment, The Technion — Israel Institute of Technology,
2008.

[2] Yuichi Asahiro, Kenichi Kawahara, and Eiji Miyano.
NP-hardness of the sorting buffer problem on the uni-
form metric. Unpublished manuscript, 2010.

[3] Noa Avigdor-Elgrabli and Yuval Rabani. An improved
competitive algorithm for reordering buffer management.
In Proceedings of the 21st ACM-SIAM Symposium on
Discrete Algorithms (SODA), pages 13–21, 2010.

[4] Reuven Bar-Yehuda and Jonathan Laserson. Exploiting
locality: Approximating sorting buffers. In Proceed-
ings of the 3rd Workshop on Approximation and Online
Algorithms (WAOA), pages 69–81, 2005.

[5] Dan Blandford and Guy Blelloch. Index compression
through document reordering. In Proceedings of the
Data Compression Conference (DCC), pages 342–351,
2002.

[6] Ho-Leung Chan, Nicole Megow, Rob van Stee, and René
Sitters. The sorting buffer problem is NP-hard. CoRR,
abs/1009.4355, 2010.

[7] Matthias Englert, Harald Räcke, and Matthias Wester-
mann. Reordering buffers for general metric spaces. In
Proceedings of the 39th ACM Symposium on Theory of
Computing (STOC), pages 556–564, 2007.

[8] Matthias Englert and Matthias Westermann. Reorder-
ing buffer management for non-uniform cost models. In
Proceedings of the 32nd International Colloquium on Au-
tomata, Languages and Programming (ICALP), pages
627–638, 2005.

[9] Iftah Gamzu and Danny Segev. Improved online algo-
rithms for the sorting buffer problem. In Proceedings of
the 24th Symposium on Theoretical Aspects of Computer
Science (STACS), pages 658–669, 2007.

[10] Kai Gutenschwager, Sven Spiekermann, and Stefan
Voß. A sequential ordering problem in automotive paint
shops. International Journal of Production Research,
42(9):1865–1878, 2004.

[11] Rohit Khandekar and Vinayaka Pandit. Online and
offline algorithms for the sorting buffers problem on the
line metric. Journal of Discrete Algorithms, 8(1):24 –35,
2010.

[12] Jens S. Kohrt and Kirk Pruhs. A constant factor approx-
imation algorithm for sorting buffers. In Proceedings
of the 6th Latin American Symposium on Theoretical
Informatics (LATIN), pages 193–202, 2004.

[13] Jens Krokowski, Harald Räcke, Christian Sohler, and
Matthias Westermann. Reducing state changes with
a pipeline buffer. In Proceedings of the 9th Interna-
tional Fall Workshop Vision, Modeling, and Visualiza-
tion (VMV), pages 217–224, 2004.

[14] Harald Räcke, Christian Sohler, and Matthias Wester-
mann. Online scheduling for sorting buffers. In Pro-
ceedings of the 10th European Symposium on Algorithms
(ESA), pages 820–832, 2002.

APPENDIX
A. PROOF OF CLAIM 3.6

Proof. Let c1, . . . , c` denote the colors in S, ordered
according to the times τ1 < · · · < τ` at which the first element
of a color is evicted by OPT. Let i denote the smallest number
such that

∑i
j=1 wcj ≥ cost(S)/2.

We show that the number of elements with colors ci, . . . , c`
is large. For any j we have φ ≤ wcj/scj ≤ 2φ, and, hence,

also cost(S) ≥ φ|S|. Therefore
∑`
j=i scj ≥

1
2φ

∑`
j=i wcj ≥

1
4φ

cost(S) ≥ 1
4
|S|.

Let eτ denote an element from S that is appended to
LCC(σ) at time τ , and let c be its color. For any color cj that
is removed by OPT before color c, eτ generates potential (not
necessarily capped potential) wcj ·ϕ(τ, τj) = wcj at time-step
τj . If c is evicted by OPT after ci we get that eτ generates
potential

∑i
j=1 wcj ≥ cost(S)/2. As the number of elements

with colors evicted after ci is at least |S|/4, the potential
generated by them is at least |S| · cost(S)/8.

B. PROOF OF CLAIM B.1
The analysis of the random variable X is based on a straight-
forward coupon collector type argument and included for
completeness.

Claim B.1. Pr[X ≥ Ni ln(1/α)/4] ≥ 1/2.

Proof. Consider a phase and let Xj be the number
of rounds between the promotion of the (j − 1)-th distinct
slot and the j-th distinct slot. Then X = X1 +X2 + · · ·+
XNi−αNi − 1. We have E[Xj] = Ni

Ni−j+1
and we get

E[X] =
Ni
Ni

+
Ni

Ni − 1
+ · · ·+ Ni

αNi + 1
− 1

= Ni(HNi −HαNi)− 1

≥ Ni · lnNi −Ni · (ln(αNi) + 1)− 1

= Ni ln(1/α)− (Ni + 1) ≥ Ni ln(1/α)/2 ,

where the last step follows for sufficiently small α (i.e., for
sufficiently large k).

From Chebyshev’s inequality we get

Pr
[
X ≤ Ni ln(1/α)/4

]
≤ Pr

[
|X −E[X]| ≥ Ni ln(1/α)/4

]
≤ 16

N2
i ln2(1/α)

·Var[X]

=
16

N2
i ln2(1/α)

·
(1−α)Ni∑
j=1

Var[Xj]

≤ 16

N2
i ln2(1/α)

·
(1−α)Ni∑
j=1

E[Xj]
2

≤ 16

ln2(1/α)
·
∞∑
j=1

1

j2
≤ 32

ln2(1/α)
≤ 1

2
,

where the third step follows since the Xj ’s are independent
and the last step follows for sufficiently small α.

616

