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Abstract—The stochastic network calculus is an analytical tool the stochastic network calculus yields significantly teght
which was mainly developed to compute tail bounds on backlogs performance bounds than its deterministic counterpart [2]
and delays. From these, bounds on average backlogs and delaysy;qregver, in M/M/1 and M/D/1 queuing scenarios where exact

are derived in the literature by integration. This paper improves . .
such bounds on average backlogs by using Jensen’s inequality; results are available, the stochastic network calculusmwé®u

furthermore, improved bounds on average delays follow imme- are reasonably accurate [5].

diately from Little’s Law. The gain factor can be substantial The fundamental difference between the bounds obtained
especially at high utilizations, e.g., of orderQ %p when with the deterministic and stochastic formulations of the
p — 1. This gain is further numerically illustrated for Markov- ~ network calculus is that the latter are expressed as priaiabi
modulated On-Off arrival processes. Moreover, the paper shos  tajl bounds, i.e., they can be violated with some probaddit

how to improve standard standard stochastic network calculus For instance, probabilistic bounds on the steady-statkldgc
performance bounds by suitably using FIFO service curves. '
B take the form for allo > 0

I. INTRODUCTION p,,,(B > a) <e(o), D)

In the early 1990s, Cruz proposed an alternative approach t . . _ L
: . . wheree(o) > 0 is an error function describing the violation
the classical queueing networks theory for analyzing twarkl Ny . o
: ) : . robabilities. Note that in the deterministic network céirs,
and delays in networks, which evolved in what is currentl

known as the deterministic network calculus [4], [3]. The (Um‘“”.). = 0 for some posﬂwe;mw €., B < omaa With
. ; ) ; robability one. Moreoverg,,... is a bound on the average
novelty of this approach is that arrivals and service age

. ; acklog, i.e.,E [B] < omaz; however, as mentioned earlier,
characterized in terms of worst-case bounds, upper and‘,|OV\{ﬁiS bound can be rather conservative

respectively [8], [9]. Although backlogs and delays are-con In turn, in the stochastic network calculus, bounds on the

sequently derived in terms of worst-case bounds as well, the . : .
o o . average backlogs and delays can be obtained in a straightfor
deterministic network calculus is in essence an exact sinaly

tool for worst-case analysis; this means that the derivedtvo ward manner by integrating the corresponding tail bounds [1

case backlogs and delays can be actually attained on sc#ﬂé For mstlance, a bound on the average steady-statedgackl
can be derived from Eq. (1) as
sample paths [3].

A valid concern, however, is whether the worst-case behav- >
: ; . X E[B] < g(o)do . (2)
ior of arrivals and service, leading to worst-case perfarcea 0

bo‘ﬂ”ds' can simultaneogsly happen In scenarios with mafy, problem with this integration is that the resulting ager
arrival flows. In fact, by increasing the number of flows anfy,nd accumulates the errors of all the tail bounds, and
assuming statistical independence among these, it becor@@ﬁsequently can be conservative.

less and less unlikely for the joint worst-case sample pathsi,, ihis paper we carry out an improved method to derive av-

to be realized. Moreover, even in single-flow scenarios, the,ge packlog bounds by using Jensen's inequality for conve
derived bounds can be too conservative estimates for G tiond. Average delay bounds follow then directly from
average backlogs and delays because statistical inf@matjq | jitje’s |Law. This method yields bounds on averages whic
about moments higher than one, for instance, is usually ngk qyalitatively tighter than those obtained by integgathe
captured. Therefore, the deterministic network calcule® Ci4i| hounds as in Eq. (2). We present the relative gain factor
lead to conservative_ bounds because many of the statistiggl o general and FIFO scheduling in a scenario with two
properties of the arrivals are not accounted for. aggregates of arrival flows having bounded moment generatin

In order to improve these bounds, the deterministic netwogKnctions (MGF). In the case of general scheduling the gain

calculus has been extended in a probabilistic framewori ‘lower bounded by 1T1p whenp — 1, i.e., the gain can

An immediate benefit of the emerged stochastic netWOBe substantial at high utilizations. This suggests thatt#ile

calculus [4], [13] is that, in addition to worst-case arts/a ) . . )
. ; . : : bounds in such extreme scenarios are not tight, as pointed ou
it can be applied to many typical arrivals in network anaysi

(_e-g-' MarkOV'demated_ processes, fraCt'(_)nal Brownla).} M 1For the exponential function and the steady-state backoglensen’s
tion, or heavy-tailed traffic). In scenarios with the samguity inequality states thak[B] < 1 log E €5 , for all 6 > 0.



in [5] for some compound Poisson arrival processes. In tuffior convenience we introduce the bivariate procéés t) =

in the case of FIFO, the gain factor is smaller and depends dfit) — A(s). The corresponding backlog and delay processes

the fraction of traffic carried by the flow for which the boundst some time > 0 are denoted by3(t) = A(t) — D(¢t) and

are computed. W (t) =inf {d: A(t — d) < D(t)}, respectively. Furthermore,
Apart from [1], [6], which use integration, a recent stochaghe steady-state backlog and delay, assuming their eristen

tic network calculus formulation introduced a novel idea tare denoted byB = lim;_,o, B(t) and W = lim; o W (2),

compute bounds on averages [12]. The key idea thereinréspectively.

to use a statistical envelope model involving bounds on theTo describe arrival processes we adopt the representation

average of the arrivals. A drawback of such statistical emith exponential bounds on their moment generating func-

velopes is that, alike deterministic envelopes, they doetain tions [4], [11]. Concretely, we say that an arrival procelgs)

information about the higher moments of the arrivals, arid bounded by an MGF envelope, with ratéor some choices

consequently the derived bounds may be too conservative of a parametet > 0, if for all 0 < s <t

turn, in this paper we use a more general statistical eneelop 7 [£46D] < Jor(t—s)

model based on bounds on the MGF of the arrivals [4], [11], [e } <e : 3)

and which intrinsically retains information about higheo-m The definition appears sometime more generally with an

ments. Therefore, this paper provides in essence an estensiqditional pre-factor of the exponential; for the purpose o

of the stochastic calculus formulations with MGFs from [4knis paper it suffices to take this factor one.

[11] in order to compute improved bounds on average backlogsrhe rater in Eq. (3) depends on the parametewhose
and delays. optimal value in the expressions of performance bounds can
In addition to carrying out the method of using Jensenise numerically determined. The upper limit of the range of

inequality to improve the bounds on averages obtained frQ@\generally inversely proportional to the data unit scalehs
tail bounds, this paper presents a rather counterintuiéselt that numerical optimizations can be done over a relatively
in the area of the stochastic network calculus. Concretedy, small space. On the other hand we restrict the arrivals to
show that in a single flow scenario with bounded MGF on iige case when is invariant to time parameters. As such, the
arrivals and traversing a constant rate server, repladi®g frival model includes for instance many Markov-modulated
commonly used constant rate service curve with a smaligyjtiplexed-regulated processes, but excludes selfiaimpio-
FIFO service curve yields tighter results. An explanatién @esses (e.g., fractional Brownian motion wheriso depends
this finding is closely related to the application of Boole'gn time). The model also excludes heavy-tailed processes
inequality to evaluate sample path bounds in the stochasfjfich have infinite MGFs.
network calculus (for further details see Section Ill). Our as for traffic representation, the network calculus alsosuse
finding suggests that many results from the stochastic m&tw@ounds for service representation. The key idea is the @nce
calculus literature (e.g., related to backlog and delaynbe} of a service curve which relates the arrival and departure
and which are consistently obtained with a constant raigocesses of a traffic flow through a lower bound. Concretely,
service curve, can be improved by using a FIFO service curygrvice curve specifies a lower bound on the amount of service
instead. received by a flow either at a network node or across an entire
The rest of this paper is structured as follows. Section Hetwork path.
introduces the arrival and service models used in this paper|n this paper we adopt a service curve model from [4]. A
Section Ill proceeds with the derivation of bounds on averagoubly-indexed random procesgs, ¢) is a statistical service

backlogs and delays using two methods, and discusses c@ve for an arrival proces4(t) if the corresponding departure
their relative tightness. Numerical illustrations of taémunds processD(t) satisfies for allt > 0

are shown in Section IV. Brief conclusions are presented in
Section V. D(t) > A*S(t) , 4

where %’ denotes thgmin, +) convolution ofA(t) andS(t),
defined asA x S(t) = info<s<¢ {A(s) + S(s,t)}. For each

The time model is continuous. We consider a single netwoggmple path the random proceSss, ¢) is decreasing irs,
node with constant service rate and infinite-sized buffed ajncreasing ir¢, and satisfiesS(s, t) = S(s, u) + S(u, t) for all

which serves the arrivals in a work-conserving manner agdc ¢ < ,, < ¢.

locally FIFO. The arrivals and departures at the node are

modelled with non-decreasing, left-continuous procesges IIl. BOUNDS ONAVERAGE BACKLOGS AND DELAYS

an arrival processA(t) (also referred to as a flow) and the In this section we derive bounds on the average backlogs

corresponding departure proceB$t), we assume the initial and delays in the single-node scenario from Figure 1, and dis

condition A(0) = 0 and the causal conditio®(t) < A(t). cuss some quantitative aspects. The node is work-consgervin
and serves two aggregate of flows at constant ateThe

2We point out that the bounds derived in Theorems 5, 6, and 7 ficdh arrival processes are denoted wt) and A (t) and the
are flawed. The reason is that the proofs apply Definition 5 wireplaced VA

by a random variable which, however, depends.ft) (a more elaborate corresponding_ departure processes are denotef(#y and
discussion on this pitfall is given in [14]). D.(t), respectively.

Il. ARRIVAL AND SERVICE MODELS



Ac DC processes). Then we have the following bound on the MGF

of the backlog proces8(t)
0B(t)| — 0(A(t)—D(t))
H—» . J‘ Blen] —p e ]

e ——
A 5 — »D <E [69(A(t)—A*S(t))}
Fig. 1. A network node with cross traffic. < E [ sup ee(A(svt)_[C(t_s)_AC(Sst_z)]+l{ts>z}):|
- 0<s<t
. <E [eQA(t—;v,t):| n E[sup pIAt—2—j70,t)

The next theorem provides average backlog bounds cor- §>1
responding toA(t), for both general scheduling and FIFO. e_g(c(er(j_l)To)_Aa(t_x_m,t_x))}
General scheduling means that there are no assumptions on th
scheduling between the two flows; this implies that the gerve < el 4 /CToem0CmIE N " = 0(C(rrre))io
may implement a static priority scheduling scheme, wherein i>1
A(t) receives the lowest priority.

( ) p Y < e@rz + Ce 670(6'77‘)95 ) (7)

Theorem 1:(AVERAGE BACKLOG BOUNDS) Consider the C—(r+re)
node from Figure 1. The arrivald(t) and A.(t) are statis- In the second line we applied the definition of the statistica
tically independent and are bounded by MGF envelopes wiggrvice curve. In the fourth line we restricted the supremum
ratesr andr., respectively, both depending on soie- 0. to 0 < s < ¢t —x and appliedsup(a,b) < a + b for positivea
Assume for stability that- + r. < C. Then we have the andb. In the sixth line we used Boole’s inequality. Then we
following bounds on the average backlog according to th&timated the sum With o, e” < [ e de = L for

scheduling at the node a > 0, and optimizedry, = %
1) GENERAL SCHEDULING: To continue the derivation we use the infimum
E[B]<-log—F— 5 P el — (22 —
[B] < OgC—(r+7'C) ®) ;I;%{ae te } <7> 8
2) FIFOSCHEDULING: which can shown by convex optimizations. We then get
1 c r C(C—r)e c C(C—re \©
E[B] < - |log + —log ] E BB <«
[B] 0 cC—r C (C—=(r+r))r ©) [e } - C—=r\(C=(r+4r))r

Using Jensen’s inequality and letting— oo completes the
proof of Eq. (6).

In turn, in the case of general scheduling, we know
Erom [11] that the process

If r4 denotes the long term rate ol(¢) (i.e., ra =
limy—, 00 @), then Little’s Law states thal[IWW] = E[B]/ra
Therefore, bounds on the average steady-state dE[&y]
follow immediately from the theorem by using the bound
from Eds. (5) and (6). _— | S(s.1) = [C(t = 5) = Acls. D),

Let us also point out that, as hinted in the Introduction, the
proof of the theorem essentially applies Jensen’s inetyualis a statistical service curve fot(¢). Note that this is a special
to the MGF of the backlog process. Bounds on such MGFase of theS(s,t) obtained for FIFO scheduling with = 0.
appeared also in the stochastic network calculus litezatuk bound on the average backlog follows then directly from
for discrete-time models [4], [13]; our proof uses the saneq. (7). The proof is thus complete. |

network calculus arguments adapted to the continuous-time ) )
model. Next we discuss on the improvement of the bounds from

the theorem relative to the corresponding bounds obtaiged b
PrROOF Fix t > 0, § > 0 such thatr + r. < C, and a integrating tail bounds (such bounds appeared in [6]). A&su
parameterr > 0. For 0 < s < ¢t — z let a discretization the general case when a statistical service cus\g for
parameterry, and denotej = Lt%)‘sj the integer part of the flow A(¢) is known. Then, following network calculus

t_:io_" arguments, we can write for the tail bound on the backlog
First we prove the FIFO case. We know from [10], [3] thafor all & > 0 and some > 0

the process

Pr(B(t)>o) < Pr ( sup (A(s,t) — S(s,t)) > O')

S(s,t) = [C(t —s) = Ac(s,t —2)] Loy 0<s<t
. 6 su s<t(A(s,t)=S(s,t 6o

is a statistical service curve fot(t) (this follows by extending s br (e Posrs (D780 > 0 )
the proof of Theorem 6.2.1 from [3] to bivariate random < Ke 9%,



where K = E Le"S”p0<s<t(A(Svt)‘s(svt))l', for somed > 0. The intuition behind this rather counterintuitive restdsl
The last line follows from the Chernoff bound. Note that in the application of Boole's inequality in Eq. (7), adapted

is a bound on the MGF oB(t) (see Eq. (7)). for A.(t) = 0. Although the FIFO service curvé’(t) =
Therefore, we get from Eq. (2) a bound on the averagétl{;~.}, for somez > 0, is smaller than the commonly used
backlog by integration, i.e., S(t) = Ct, and hence appears to lead to larger bounds, the
o0 application of Boole’s inequality with the FIFO service eer
E[B] < Ke % do prevents the summation of the largest terms, more exactly
10 at the time scales less than Overall, by optimizingz, the
= 5[( : service curveS’(t) yields tighter bounds thaf(¢).
In turn, Theorem 1 gives the improved bound IV. NUMERICAL EVALUATIONS
1 This section illustrates numerically the improvement af th
E[B] < 9 log K, bounds on average backlogs derived with Theorem 1 relative
such that the achieved gain factor by using the method frotfﬁthe corresponding bounds derived by integrating taikioisu

ith Eq. (2).
We consider Markov-modulated On-Off (MMOO) pro-
sses. One such process is defined by first considering a

Theorem 1 is; 2 (the latter bound is smaller than the formetV
bound by this much).
In particular, in the case of general scheduling, we haﬁg

from the proof of the theorem thdt = 70_06 . Denoting omogenous and cont‘inuc,)us-tir‘ne !\/Iarkov _Chamt) With.
e (rtre)” . two states denoted by ‘On’ and ‘Off’, and with the transition
p = “&=, which depends o as well, we obtain the gain matrix
factor - W
e Q= .
: A=A

1\
L=plog (1—P) Here, the parameterg and A represent the transition rates
Letting the actual utilization at the node go to one impliekom the ‘On’ state to the ‘Off’ state, and vice-versa, raspe
that p goes to one as well, becaus@andr. are upper bounds tively. In the steady-state, the average dwell time of ttoeess
on the average rates of(t) and A.(t), respectively. Using X () in the ‘On’ state is%, and the average dwell time in the
further thatlim, ., (1)* = 1, it follows that the gain factor ‘Off state is 1.
above is of order

: 1 M
Gairyen. sched= {2 <1> - 8 @.@
—P
In turn, in the case of FIFO scheduling, the gain factor is
r A
o ()" p
loga (%) &’ Fig. 2. A Markov-modulated On-Off traffic voice model.
-p

A continuous-time arrival processi(t) is a Markov-

_ _C ([ (C=r)e o] : P
wherea = 5= T o FoIIowmg a similar argument as modulated On-Off process driven by the Markov prockgs)
for general scheduling yields a gain factor of a smaller orde jis instantaneous arrival rate is eith&ror zero, depending
€., whetherX (¢) is in the ‘On’ or ‘Off’ states, respectively (see
Gaingro = 0 1 ~ (9) Figure 2). This MMOO process has an MGF envelope with
(1-p) rate [7]
where¢ = ‘2 is the percentage of how much the flow(t) 1 o _ 2
uses out of the total rat€'. Y PO—p=A+ \/(PQ pEATF )

Let us also point out that in the case whdiit) is alone Assuming further thatd(¢) and A.(¢) from Figure 1 consist
in the system (i.e.A.(t) = 0), then the bound from Eq. (6) of N and V., respectively, homogeneous and statistically
is tighter than the bound from Eq. (5). This can be shown bigdependent MMOO processes with rate it follows that
replacingr. = 0 and using the inequality (1 + log %) <1 the rates of the corresponding MGF envelopesate Nr’
which holds for all0 < a < 1. This result indicates that andr. = N.r’.
at least in scenarios with a single flow traversing a serverFor numerical illustrations we choose the following values
with constant rate”, using a FIFO statistical service curvedor the parameters of an MMOO flow, typically used to model
yields tighter bounds than by using the statistical sereigwe voice flows [15]:% =04 s, + = 0.6 s, peak rateP =
S(t) = Ct which has a purely deterministic form; note thaé4 Kb/s, and average ratg5.6 Kb/s. Fig. 3 illustrates the
when A.(¢t) = 0 then the bound from Eq. (5) is obtained withbounds on the average backlog for an aggregat&’ cfuch
such a service curve. flows, at a server with rat€’ = 100 Mbps and also serving
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Fig. 3. Bounds on the average backlog computed with Theoremd1Eq. (2) (integrating tail bounds), for both general sctied and FIFO, as a function
of node utilization (constant rat€ = 100 Mbps, MMOO flows Wlth L —04s, l = 0.6 s, average rat@5.6 Kb/s, and peak ratéd®> = 64 Kb/s, different

percentagesN— of the aggregate of flows for which the bounds are shown)

an aggregate aW,. other flows, as a function of the utilization.
Fig. 3.(a) considers a fractlo% = 50% of the aggregate
of flows for which the bounds are computed. Remarkably, for
both general and FIFO scheduling, the gain factor of using
Theorem 1 relative to using the integration of tail bounds ap

in EQ. (2), is substantial at all utilizations. Moreover,iagas

analytically shown in Egs. (8) and (9), the gain factor blows
up at very high utilizations. The figure also indicates thet t
choice of scheduling makes a significant difference whemgusi
Eq. (2), and a lesser difference when using Theorem 1, mainig

because the fractior;(,N— is quite large.

In turn, in the case of a very small frach@— = 1%, as
considered in Fig. 3.(b), the choice of the schedulmg dtlgor

makes a significant difference when using either Eq. (2) or
Theorem 1. Moreover, in the case of FIFO scheduling, th&]
figure shows that the gain factor of using Theorem 1 relative
to using Eq. (2) is much smaller than illustrated in Fig. B.(a[s]
at very high utilizations (see the order of actual growth of

the gain from Eq. (9) which decays with-'— when the

utilization p — 1).

V. CONCLUSIONS

In this paper we have carried out the derivation of bounds 6]
average backlogs and delays, in a stochastic network calcul
framework based on moment generating functions, by using]
Jensen’s inequality. We compared the obtained results witt!
corresponding bounds which have been derived in the litera-
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