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Abstract—The stochastic network calculus is an analytical tool
which was mainly developed to compute tail bounds on backlogs
and delays. From these, bounds on average backlogs and delays
are derived in the literature by integration. This paper improves
such bounds on average backlogs by using Jensen’s inequality;
furthermore, improved bounds on average delays follow imme-
diately from Little’s Law. The gain factor can be substantial
especially at high utilizations, e.g., of order Ω

�
1

1−ρ

�
when

ρ→ 1. This gain is further numerically illustrated for Markov-
modulated On-Off arrival processes. Moreover, the paper shows
how to improve standard standard stochastic network calculus
performance bounds by suitably using FIFO service curves.

I. I NTRODUCTION

In the early 1990s, Cruz proposed an alternative approach to
the classical queueing networks theory for analyzing backlog
and delays in networks, which evolved in what is currently
known as the deterministic network calculus [4], [3]. The
novelty of this approach is that arrivals and service are
characterized in terms of worst-case bounds, upper and lower,
respectively [8], [9]. Although backlogs and delays are con-
sequently derived in terms of worst-case bounds as well, the
deterministic network calculus is in essence an exact analytical
tool for worst-case analysis; this means that the derived worst-
case backlogs and delays can be actually attained on some
sample paths [3].

A valid concern, however, is whether the worst-case behav-
ior of arrivals and service, leading to worst-case performance
bounds, can simultaneously happen in scenarios with many
arrival flows. In fact, by increasing the number of flows and
assuming statistical independence among these, it becomes
less and less unlikely for the joint worst-case sample paths
to be realized. Moreover, even in single-flow scenarios, the
derived bounds can be too conservative estimates for the
average backlogs and delays because statistical information
about moments higher than one, for instance, is usually not
captured. Therefore, the deterministic network calculus can
lead to conservative bounds because many of the statistical
properties of the arrivals are not accounted for.

In order to improve these bounds, the deterministic network
calculus has been extended in a probabilistic framework.
An immediate benefit of the emerged stochastic network
calculus [4], [13] is that, in addition to worst-case arrivals,
it can be applied to many typical arrivals in network analysis
(e.g., Markov-modulated processes, fractional Brownian mo-
tion, or heavy-tailed traffic). In scenarios with the same input,

the stochastic network calculus yields significantly tighter
performance bounds than its deterministic counterpart [2].
Moreover, in M/M/1 and M/D/1 queuing scenarios where exact
results are available, the stochastic network calculus bounds
are reasonably accurate [5].

The fundamental difference between the bounds obtained
with the deterministic and stochastic formulations of the
network calculus is that the latter are expressed as probabilistic
tail bounds, i.e., they can be violated with some probabilities.
For instance, probabilistic bounds on the steady-state backlog
B take the form for allσ ≥ 0

Pr
(

B > σ
)

≤ ε(σ) , (1)

whereε(σ) ≥ 0 is an error function describing the violation
probabilities. Note that in the deterministic network calculus,
ε (σmax) = 0 for some positiveσmax, i.e., B < σmax with
probability one. Moreover,σmax is a bound on the average
backlog, i.e.,E [B] ≤ σmax; however, as mentioned earlier,
this bound can be rather conservative.

In turn, in the stochastic network calculus, bounds on the
average backlogs and delays can be obtained in a straightfor-
ward manner by integrating the corresponding tail bounds [1],
[6]. For instance, a bound on the average steady-state backlog
can be derived from Eq. (1) as

E [B] ≤

∫ ∞

0

ε(σ)dσ . (2)

The problem with this integration is that the resulting average
bound accumulates the errors of all the tail bounds, and
consequently can be conservative.

In this paper we carry out an improved method to derive av-
erage backlog bounds by using Jensen’s inequality for convex
functions1. Average delay bounds follow then directly from
the Little’s Law. This method yields bounds on averages which
are qualitatively tighter than those obtained by integrating the
tail bounds as in Eq. (2). We present the relative gain factor
for both general and FIFO scheduling in a scenario with two
aggregates of arrival flows having bounded moment generating
functions (MGF). In the case of general scheduling the gain
is lower bounded byΩ

(

1
1−ρ

)

whenρ → 1, i.e., the gain can
be substantial at high utilizations. This suggests that thetail
bounds in such extreme scenarios are not tight, as pointed out

1For the exponential function and the steady-state backlogB, Jensen’s
inequality states thatE[B] ≤ 1

θ
log E

�
eθB

�
, for all θ > 0.



in [5] for some compound Poisson arrival processes. In turn,
in the case of FIFO, the gain factor is smaller and depends on
the fraction of traffic carried by the flow for which the bounds
are computed.

Apart from [1], [6], which use integration, a recent stochas-
tic network calculus formulation introduced a novel idea to
compute bounds on averages [12]. The key idea therein is
to use a statistical envelope model involving bounds on the
average of the arrivals. A drawback of such statistical en-
velopes is that, alike deterministic envelopes, they do notretain
information about the higher moments of the arrivals, and
consequently the derived bounds may be too conservative2. In
turn, in this paper we use a more general statistical envelope
model based on bounds on the MGF of the arrivals [4], [11],
and which intrinsically retains information about higher mo-
ments. Therefore, this paper provides in essence an extension
of the stochastic calculus formulations with MGFs from [4],
[11] in order to compute improved bounds on average backlogs
and delays.

In addition to carrying out the method of using Jensen’s
inequality to improve the bounds on averages obtained from
tail bounds, this paper presents a rather counterintuitiveresult
in the area of the stochastic network calculus. Concretely,we
show that in a single flow scenario with bounded MGF on its
arrivals and traversing a constant rate server, replacing the
commonly used constant rate service curve with a smaller
FIFO service curve yields tighter results. An explanation of
this finding is closely related to the application of Boole’s
inequality to evaluate sample path bounds in the stochastic
network calculus (for further details see Section III). Our
finding suggests that many results from the stochastic network
calculus literature (e.g., related to backlog and delay bounds),
and which are consistently obtained with a constant rate
service curve, can be improved by using a FIFO service curve
instead.

The rest of this paper is structured as follows. Section II
introduces the arrival and service models used in this paper.
Section III proceeds with the derivation of bounds on average
backlogs and delays using two methods, and discusses on
their relative tightness. Numerical illustrations of these bounds
are shown in Section IV. Brief conclusions are presented in
Section V.

II. A RRIVAL AND SERVICE MODELS

The time model is continuous. We consider a single network
node with constant service rate and infinite-sized buffer, and
which serves the arrivals in a work-conserving manner and
locally FIFO. The arrivals and departures at the node are
modelled with non-decreasing, left-continuous processes. For
an arrival processA(t) (also referred to as a flow) and the
corresponding departure processD(t), we assume the initial
condition A(0) = 0 and the causal conditionD(t) ≤ A(t).

2We point out that the bounds derived in Theorems 5, 6, and 7 from[12]
are flawed. The reason is that the proofs apply Definition 5 with τ replaced
by a random variable which, however, depends onA(t) (a more elaborate
discussion on this pitfall is given in [14]).

For convenience we introduce the bivariate processA(s, t) =
A(t)−A(s). The corresponding backlog and delay processes
at some timet ≥ 0 are denoted byB(t) = A(t) − D(t) and
W (t) = inf {d : A(t − d) ≤ D(t)}, respectively. Furthermore,
the steady-state backlog and delay, assuming their existence,
are denoted byB = limt→∞ B(t) and W = limt→∞ W (t),
respectively.

To describe arrival processes we adopt the representation
with exponential bounds on their moment generating func-
tions [4], [11]. Concretely, we say that an arrival processA(t)
is bounded by an MGF envelope, with rater for some choices
of a parameterθ > 0, if for all 0 ≤ s ≤ t

E
[

eθA(s,t)
]

≤ eθr(t−s) . (3)

The definition appears sometime more generally with an
additional pre-factor of the exponential; for the purpose of
this paper it suffices to take this factor one.

The rater in Eq. (3) depends on the parameterθ whose
optimal value in the expressions of performance bounds can
be numerically determined. The upper limit of the range ofθ
is generally inversely proportional to the data unit scale such
that numerical optimizations can be done over a relatively
small space. On the other hand we restrict the arrivals to
the case whenr is invariant to time parameters. As such, the
arrival model includes for instance many Markov-modulatedor
multiplexed-regulated processes, but excludes self-similar pro-
cesses (e.g., fractional Brownian motion wherer also depends
on time). The model also excludes heavy-tailed processes
which have infinite MGFs.

As for traffic representation, the network calculus also uses
bounds for service representation. The key idea is the concept
of a service curve which relates the arrival and departure
processes of a traffic flow through a lower bound. Concretely,a
service curve specifies a lower bound on the amount of service
received by a flow either at a network node or across an entire
network path.

In this paper we adopt a service curve model from [4]. A
doubly-indexed random processS(s, t) is a statistical service
curve for an arrival processA(t) if the corresponding departure
processD(t) satisfies for allt ≥ 0

D(t) ≥ A ∗ S(t) , (4)

where ‘∗’ denotes the(min,+) convolution ofA(t) andS(t),
defined asA ∗ S(t) = inf0≤s≤t {A(s) + S(s, t)}. For each
sample path the random processS(s, t) is decreasing ins,
increasing int, and satisfiesS(s, t) = S(s, u)+S(u, t) for all
0 ≤ s ≤ u ≤ t.

III. B OUNDS ONAVERAGE BACKLOGS AND DELAYS

In this section we derive bounds on the average backlogs
and delays in the single-node scenario from Figure 1, and dis-
cuss some quantitative aspects. The node is work-conserving
and serves two aggregate of flows at constant rateC. The
arrival processes are denoted byA(t) and Ac(t), and the
corresponding departure processes are denoted byD(t) and
Dc(t), respectively.



Fig. 1. A network node with cross traffic.

The next theorem provides average backlog bounds cor-
responding toA(t), for both general scheduling and FIFO.
General scheduling means that there are no assumptions on the
scheduling between the two flows; this implies that the server
may implement a static priority scheduling scheme, wherein
A(t) receives the lowest priority.

Theorem 1:(AVERAGE BACKLOG BOUNDS) Consider the
node from Figure 1. The arrivalsA(t) and Ac(t) are statis-
tically independent and are bounded by MGF envelopes with
ratesr and rc, respectively, both depending on someθ > 0.
Assume for stability thatr + rc < C. Then we have the
following bounds on the average backlog according to the
scheduling at the node

1) GENERAL SCHEDULING:

E [B] ≤
1

θ
log

Ce

C − (r + rc)
(5)

2) FIFO SCHEDULING:

E [B] ≤
1

θ

[

log
C

C − r
+

r

C
log

C(C − r)e

(C − (r + rc)) r

]

(6)

If rA denotes the long term rate ofA(t) (i.e., rA =

limt→∞
A(t)

t
), then Little’s Law states thatE[W ] = E[B]/rA.

Therefore, bounds on the average steady-state delayE[W ]
follow immediately from the theorem by using the bounds
from Eqs. (5) and (6).

Let us also point out that, as hinted in the Introduction, the
proof of the theorem essentially applies Jensen’s inequality
to the MGF of the backlog process. Bounds on such MGF’s
appeared also in the stochastic network calculus literature
for discrete-time models [4], [13]; our proof uses the same
network calculus arguments adapted to the continuous-time
model.

PROOF. Fix t ≥ 0, θ > 0 such thatr + rc < C, and a
parameterx > 0. For 0 < s < t − x let a discretization
parameterτ0, and denotej = ⌊ t−x−s

τ0
⌋ the integer part of

t−x−s
τ0

.
First we prove the FIFO case. We know from [10], [3] that

the process

S(s, t) = [C(t − s) − Ac(s, t − x)]+ 1{t−s>x}

is a statistical service curve forA(t) (this follows by extending
the proof of Theorem 6.2.1 from [3] to bivariate random

processes). Then we have the following bound on the MGF
of the backlog processB(t)

E
[

eθB(t)
]

= E
[

eθ(A(t)−D(t))
]

≤ E
[

eθ(A(t)−A∗S(t))
]

≤ E

[

sup
0≤s≤t

eθ(A(s,t)−[C(t−s)−Ac(s,t−x)]
+

1{t−s>x})
]

≤ E
[

eθA(t−x,t)
]

+ E
[

sup
j≥1

eθA(t−x−jτ0,t)

e−θ(C(x+(j−1)τ0)−Ac(t−x−jτ0,t−x))
]

≤ eθrx + eθCτ0e−θ(C−r)x
∑

j≥1

e−θ(C−(r+rc))jτ0

≤ eθrx +
Ce

C − (r + rc)
e−θ(C−r)x . (7)

In the second line we applied the definition of the statistical
service curve. In the fourth line we restricted the supremum
to 0 ≤ s < t− x and appliedsup(a, b) ≤ a + b for positivea
and b. In the sixth line we used Boole’s inequality. Then we
estimated the sum with

∑

j≥1 e−aj ≤
∫∞

0
e−axdx = 1

a
for

a > 0, and optimizedτ0 = 1
θC

.
To continue the derivation we use the infimum

inf
x>0

{

αe−βx + eγx
}

=

(

αβ

γ

)

γ
β+γ β + γ

β
,

which can shown by convex optimizations. We then get

E
[

eθB(t)
]

≤
C

C − r

(

C(C − r)e

(C − (r + rc)) r

)
r
C

Using Jensen’s inequality and lettingt → ∞ completes the
proof of Eq. (6).

In turn, in the case of general scheduling, we know
from [11] that the process

S(s, t) = [C(t − s) − Ac(s, t)]+

is a statistical service curve forA(t). Note that this is a special
case of theS(s, t) obtained for FIFO scheduling withx = 0.
A bound on the average backlog follows then directly from
Eq. (7). The proof is thus complete. �

Next we discuss on the improvement of the bounds from
the theorem relative to the corresponding bounds obtained by
integrating tail bounds (such bounds appeared in [6]). Assume
the general case when a statistical service curveS(t) for
the flow A(t) is known. Then, following network calculus
arguments, we can write for the tail bound on the backlog
for all σ ≥ 0 and somet ≥ 0

Pr (B(t) > σ) ≤ Pr

(

sup
0≤s≤t

(A(s, t) − S(s, t)) > σ

)

≤ Pr
(

eθ sup0≤s≤t(A(s,t)−S(s,t)) > eθσ
)

≤ Ke−θσ ,



where K = E
[

eθ sup0≤s≤t(A(s,t)−S(s,t))
]

, for someθ > 0.
The last line follows from the Chernoff bound. Note thatK
is a bound on the MGF ofB(t) (see Eq. (7)).

Therefore, we get from Eq. (2) a bound on the average
backlog by integration, i.e.,

E [B] ≤

∫ ∞

0

Ke−θσdσ

=
1

θ
K .

In turn, Theorem 1 gives the improved bound

E [B] ≤
1

θ
log K ,

such that the achieved gain factor by using the method from
Theorem 1 is K

log K
(the latter bound is smaller than the former

bound by this much).
In particular, in the case of general scheduling, we have

from the proof of the theorem thatK = Ce
C−(r+rc)

. Denoting
ρ = r+rc

C
, which depends onθ as well, we obtain the gain

factor
e

1 − ρ + log
(

1
1−ρ

)1−ρ
.

Letting the actual utilization at the node go to one implies
thatρ goes to one as well, becauser andrc are upper bounds
on the average rates ofA(t) and Ac(t), respectively. Using
further thatlimx→0

(

1
x

)x
= 1, it follows that the gain factor

above is of order

Gaingen. sched.= Ω

(

1

1 − ρ

)

. (8)

In turn, in the case of FIFO scheduling, the gain factor is

a
(

1
1−ρ

)
r
C

log a
(

1
1−ρ

)
r
C

,

wherea = C
C−r

(

(C−r)e
r

)
r
C

. Following a similar argument as
for general scheduling yields a gain factor of a smaller order,
i.e.,

GainFIFO = Ω

(

1

(1 − ρ)
φ

)

, (9)

whereφ = rA

C
is the percentage of how much the flowA(t)

uses out of the total rateC.

Let us also point out that in the case whenA(t) is alone
in the system (i.e.,Ac(t) = 0), then the bound from Eq. (6)
is tighter than the bound from Eq. (5). This can be shown by
replacingrc = 0 and using the inequalitya

(

1 + log 1
a

)

≤ 1
which holds for all 0 < a < 1. This result indicates that
at least in scenarios with a single flow traversing a server
with constant rateC, using a FIFO statistical service curves
yields tighter bounds than by using the statistical servicecurve
S(t) = Ct which has a purely deterministic form; note that
whenAc(t) = 0 then the bound from Eq. (5) is obtained with
such a service curve.

The intuition behind this rather counterintuitive result lies
in the application of Boole’s inequality in Eq. (7), adapted
for Ac(t) = 0. Although the FIFO service curveS′(t) =
Ct1{t>x}, for somex > 0, is smaller than the commonly used
S(t) = Ct, and hence appears to lead to larger bounds, the
application of Boole’s inequality with the FIFO service curve
prevents the summation of the largest terms, more exactly
at the time scales less thanx. Overall, by optimizingx, the
service curveS′(t) yields tighter bounds thanS(t).

IV. N UMERICAL EVALUATIONS

This section illustrates numerically the improvement of the
bounds on average backlogs derived with Theorem 1 relative
to the corresponding bounds derived by integrating tail bounds
with Eq. (2).

We consider Markov-modulated On-Off (MMOO) pro-
cesses. One such process is defined by first considering a
homogenous and continuous-time Markov chainX(t) with
two states denoted by ‘On’ and ‘Off’, and with the transition
matrix

Q =

(

−µ µ
λ −λ

)

.

Here, the parametersµ and λ represent the transition rates
from the ‘On’ state to the ‘Off’ state, and vice-versa, respec-
tively. In the steady-state, the average dwell time of the process
X(t) in the ‘On’ state is1

µ
, and the average dwell time in the

‘Off’ state is 1
λ

.

Fig. 2. A Markov-modulated On-Off traffic voice model.

A continuous-time arrival processA(t) is a Markov-
modulated On-Off process driven by the Markov processX(t)
if its instantaneous arrival rate is eitherP or zero, depending
whetherX(t) is in the ‘On’ or ‘Off’ states, respectively (see
Figure 2). This MMOO process has an MGF envelope with
rate [7]

r′ =
1

2θ

(

Pθ − µ − λ +

√

(Pθ − µ + λ)
2

+ 4λµ

)

.

Assuming further thatA(t) and Ac(t) from Figure 1 consist
of N and Nc, respectively, homogeneous and statistically
independent MMOO processes with rater′, it follows that
the rates of the corresponding MGF envelopes arer = Nr′

andrc = Ncr
′.

For numerical illustrations we choose the following values
for the parameters of an MMOO flow, typically used to model
voice flows [15]: 1

µ
= 0.4 s, 1

λ
= 0.6 s, peak rateP =

64 Kb/s, and average rate25.6 Kb/s. Fig. 3 illustrates the
bounds on the average backlog for an aggregate ofN such
flows, at a server with rateC = 100 Mbps and also serving
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Fig. 3. Bounds on the average backlog computed with Theorem 1 and Eq. (2) (integrating tail bounds), for both general scheduling and FIFO, as a function
of node utilization (constant rateC = 100 Mbps, MMOO flows with 1

µ
= 0.4 s, 1

λ
= 0.6 s, average rate25.6 Kb/s, and peak rateP = 64 Kb/s, different

percentages N
N+Nc

of the aggregate of flows for which the bounds are shown)

an aggregate ofNc other flows, as a function of the utilization.
Fig. 3.(a) considers a fraction N

N+Nc
= 50% of the aggregate

of flows for which the bounds are computed. Remarkably, for
both general and FIFO scheduling, the gain factor of using
Theorem 1 relative to using the integration of tail bounds as
in Eq. (2), is substantial at all utilizations. Moreover, asit was
analytically shown in Eqs. (8) and (9), the gain factor blows
up at very high utilizations. The figure also indicates that the
choice of scheduling makes a significant difference when using
Eq. (2), and a lesser difference when using Theorem 1, mainly
because the fraction N

N+Nc
is quite large.

In turn, in the case of a very small fractionN
N+Nc

= 1%, as
considered in Fig. 3.(b), the choice of the scheduling algorithm
makes a significant difference when using either Eq. (2) or
Theorem 1. Moreover, in the case of FIFO scheduling, the
figure shows that the gain factor of using Theorem 1 relative
to using Eq. (2) is much smaller than illustrated in Fig. 3.(a)
at very high utilizations (see the order of actual growth of
the gain from Eq. (9) which decays with N

N+Nc
when the

utilization ρ → 1).

V. CONCLUSIONS

In this paper we have carried out the derivation of bounds on
average backlogs and delays, in a stochastic network calculus
framework based on moment generating functions, by using
Jensen’s inequality. We compared the obtained results with
corresponding bounds which have been derived in the litera-
ture by integrating a-priori tail bounds, and showed that the
gain of using the former method can be significant. Moreover,
we have found a rather counterintuitive result which leads to
the improvement of many standard bounds in the stochastic
network calculus literature.
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[12] A. Gulyás and J. B́ıró. A stochastic extension of network calculus for
workload loss examinations.IEEE Communications Letters, 10(5):399–
402, 2006.

[13] Y. Jiang and Y. Liu.Stochastic Network Calculus. Springer, 2008.
[14] C. Li, A. Burchard, and J. Liebeherr. A network calculuswith effective

bandwidth. IEEE/ACM Transactions on Networking, 15(6):1442–1453,
2007.

[15] M. Schwartz.Broadband Integrated Networks. Prentice Hall, 1996.


