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Abstract—In asymptotic regimes, both in time and space
(network size), the derivation of network capacity results is
grossly simplified by brushing aside queueing behavior in non-
Jackson networks. This simplifying double-limit model, however,
lends itself to conservative numerical results in finite regimes. To
properly account for queueing behavior beyond a simple calculus
based on average rates, we advocate a system theoretic method-
ology for the capacity problem in finite time and space regimes.
This methodology also accounts for spatial correlations arising
in networks with CSMA/CA scheduling and it delivers rigorous
closed-form capacity results in terms of probability distributions.
Unlike numerous existing asymptotic results, subject to anecdotal
practical concerns, our transient results can be used in practical
settings, e.g., to compute the time scales at which multi-hop
routing is more advantageous than single-hop routing.

I. INTRODUCTION

The fields of communication networks and information
theory have been for long evolving in isolation of each other,
in what is referred to as an unconsummated union (Ephremides
and Hajek [12]). This is partly due to the fact that unlike
communication networks which properly account for data
burstiness and delay, information theory typically assumes
saturated data sources and is practically oblivious to when data
is received, say at the receiver of a point-to-point channel.

A groundbreaking work at the intersection of the two fields
is a set of results obtained by Gupta and Kumar [15]. Under
some simplifications at the network layers (e.g., no multi-
user coding schemes, or ideal assumptions on power-control,
routing, and scheduling), the authors derived network capacity
results as asymptotic scaling laws on the maximal data rates
which can be reliably sustained in multi-hop wireless networks.
The elegance and importance of these results have been very
inspirational, especially within the networking community.

The results from [15], and of most related work, rely on
a double-limit model. The outer limit is explicitly taken in
the number of nodes n— capturing an infinite-space model—
in order to guarantee certain structural properties in random
networks with high probability. The inner limit is implicitly
taken in time—capturing an infinite-time model-—and which
enables a simple calculus based on average rates to derive
upper and lower bounds on network capacity. The double-limit
model can be regarded as being reminiscent of information
theory and relating itself to the infinite-space model employed
in the analysis of the multiaccess channel (i.e., infinitely many
sources are assumed to coexist, Gallager [14]).

The key advantage of the technical arguments from [15] is
that all nodes appear as smoothed-out at the data link layer
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and the network capacity analysis is drastically simplified;
indeed, by solely reasoning in terms of average rates (first
moments), the difficult problem of accounting for burstiness
(e.g., higher moments) in non-Jackson queueing networks is
avoided. While such a calculus is mathematically justified in
asymptotic regimes, its implications in finite regimes have been
largely evaded so far; by ‘finite regime’ we mean both finite
time and finite number of nodes.

To shed light in the direction of computing the network
capacity in finite regimes, this paper makes three contributions:

Cl1. It scrutinizes the double-limit argument from [15].
Concretely, it is shown that the direct reproduction
of asymptotic techniques in finite regimes does not
capture a non-negligible factor for both the upper
and lower capacity bounds, which (partially) justifies
the anecdotal impracticality of numerous asymptotic
results. These findings motivate the need for alter-
native analytical techniques to compute the network
capacity in finite time and space regimes, beyond the
conveniently simplistic average-based calculus.

C2. It advocates a system theoretic methodology to the
transient network capacity problem at the per-flow
level. The crucial advantage of this approach is that
it conveniently deals with inherent burstiness and
queueing behavior at downstream nodes. Moreover,
it also copes with spatial correlations arising in
networks with CSMA/CA scheduling, in the sense
that no artificial assumptions (e.g., statistical inde-
pendence) are necessary.

C3. Tt illustrates the applicability of finite time and space
capacity results to decide when multi-hop routing
is theoretically more advantageous than single-hop
routing. In particular, our results lend themselves
to the time scale at which the lower bound (on
throughput capacity) in the case of multi-hop routing
is greater than the upper bound in the case of single-
hop routing.

From a technical point of view, the main idea of the
advocated system theoretic methodology lies on a subtle
analogy between single-hop links and linear time invariant
(LTID) systems, by constructing impulse-responses to entirely
characterize successful transmissions over single-hop links.
The impulse-responses are closed under a convolution oper-
ator, which conveniently accounts for queueing behavior at
downstream nodes. These ideas have been recently explored by
Ciucu et al. [5], [4], [8] for the particular Aloha protocol. This



paper generalizes these prior works by formulating a unified
system-theoretic framework which additionally captures two
more MAC protocols: centralized scheduling and especially
the challenging CSMA/CA.

An advantage of the proposed framework is that it yields
capacity results in terms of probability distributions, and thus
all the moments, including average rates or variances, are
readily available. Moreover, the capacity results are directly
obtained at the per-flow level. Such a per-flow analysis can pro-
vide information about the fairness of routing and scheduling
algorithms and hence could be useful in protocol design. As
multiple paths are available between source-destination pair,
one can use this information to provide route optimization
and load balancing in the network. The concrete practical
application addressed in the paper was described in Item C3.

The rest of the paper is organized as follows. In Section II
we discuss the limitations of the technical arguments from [15]
based on a double-limit model in finite time and space regimes.
In Section III we introduce the advocated system theoretic
methodology to derive capacity results in finite regimes. In
Section IV we show how to fit three MAC protocols in this
methodology. Section V presents the multi-hop vs. single-hop
practical application and Section VI concludes the paper.

II. ON THE LIMITATIONS OF THE DOUBLE-LIMIT MODEL

Consider the random network model from Gupta and
Kumar [15] in which n nodes are uniformly placed on a disk of
area one. For each node in the network, a random destination is
chosen such that there are n source-destination pairs. We con-
sider the Protocol Model from [15], which defines successful
transmission in terms of Euclidean distances.

The capacity problem concerns the maximum value of
A(n), i.e., the rate of each transmission, guaranteeing network
stability in terms of bounded buffers. Computing upper and
lower bounds on A(n) is based on a simple calculus involving
the end-to-end (e2e) transmissions’ average rates at the relay
nodes, which are implicitly subject to a time limit. For an e2e
transmission i, let \; ;(n) denote the incoming average rate at
node 3, i.e.,

Ai j(n) = limsup Aiyt) ,
t—o0 t
where A; ;(t) denotes the cumulative arrival process and ¢
denotes time. In general it holds that A; ;(n) < A(n), whereas
an exact relationship depends on many factors such as routing,
scheduling, or the network stability; such factors may also lend
themselves to conceivable scenarios in which the ‘lim’ does
not exist, whence the ‘limsup’ definition above.

With the new notation, one can rephrase the network
capacity problem as finding the maximal rate A(n) such that

)\(n) = S\ZJ(TL) V’L,j .
The main result from [15] is that

A(n):@(ﬁ) . 0

Here, the underlying space limit in n guarantees useful struc-
tural properties in the considered random network with high

probability (e.g., e2e connectivity or bounds on the number of
transit transmissions at some node).

Capacity results such as the one from Eq. (1) are based
on a double-limit model, in which the outer (space) limit is
in n whereas the inner (time) limit is in ¢. En passant, it is
interesting to observe that the limits are not interchangeable;
indeed, note that by letting the outer limit in ¢, the rates at
downstream relay nodes tend to zero (e.g., when n > t).
More interestingly, a single-limit model can be considered by
suitably letting ¢ as a function of n. Depending on structural
network properties, the rate at which ¢ should increase could
be as large as

t=w (n2) .
This is necessary, for instance, in the following scenario: n
nodes numbered as {1,2,...,n} are placed around a circle,

every node ¢ transmits to the counter-clockwise neighbor
(i +n—2)%n + 1 along the clockwise path i%n + 1, (i +
1%n+1,..., (i+n—2)%n+1, and all transmissions interfere
with each other (‘% is the modulo operation). Under a perfect
scheduling, we remark that at most & delivered packets from
all n e2e transmissions could be guaranteed in kn? slots, for
any k, whence the w(n?) lower bound.

Next we discuss the numerical implications of the double-
limit model on existing bounds on A(n); in such a double-limit
setting, we assume a single limit in » and a suitable (implicit)
limit in ¢, e.g., t = w(n?).

A. A Calculus for \(n)

We revisit the key ideas from [15] to compute upper
and lower bounds on A(n). We argue in particular that both
(asymptotic) bounds do not capture a non-negligible multi-
plicative/fractional factor, which means that the bounds can be
quite loose in finite regimes; Subsection II-B provides related
numerical results.

1) Upper bounds: The underlying idea is based on the
condition
nA(n)h <z, (2)

where h is a lower bound on the number of average hops,
whereas x is an upper bound on the number of simultaneous
and successful active nodes (see p. 402, 2" column, 1%
equation from [15]). The left-hand side (LHS) is thus a
lower bound on how much information must be transmitted,
assuming a rate A\(n) for each source, whereas the right-hand
side (RHS) is an upper bound on how much information can
be transmitted (note that both LHS and RHS are asymptotic
rates, i.e., time averages of some stochastic processes). For

the random network model from [15], h = © % and
r=0 (logn ; the two asymptotic expressions are sufficient

to guarantee structural properties in the random network model
from [15] with high probability.

The upper-bound argument from Eq. (2) was extensively
used in the network capacity literature: see, e.g., Eq. (2) in
Li et al. [19] for unicast capacity in static ad hoc networks,
Egs. (18,20) in Mergen and Tong [21] for unicast capacity
in networks with regular structure, Eq. (26) in Neely and
Modiano [22] for unicast capacity in some mobile networks,



Eq. (2) in Shakkottai et al. [23] for multicast capacity, and even
in several much earlier papers by Kleinrock and Silvester (see
Eq. (18) in [18] for unicast capacity in uniform random
networks and Eqgs. (12,25,29) in [25] for unicast capacity in
Aloha networks with regular structure).

Let us now discuss the validity of the upper-bound argu-
ment in more restrictive space/time models. In a finite-space
(fixed n) infinite-time model, the argument also holds subject
to further conditions: e2e paths must exist for all source-
destination pairs and (non-asymptotic) expressions for h and
x are known. Under the same structural conditions, the upper-
bound continues to hold in a finite time/space model (fixed
n and time span T') by properly interpreting rates over finite
time intervals.

What is interesting to observe in the finite regime is that
Eq. (2) can be (approximately) tightened as

nA(n)h < g(n,T)z 3)

where ¢(n,T) denotes the average fraction of the number
of non-empty buffers. Indeed, over a finite time span 7', the
average number of simultaneous and successful transmissions
decays due to transient burstiness effects, in particular due to
the existence of empty buffers at the very nodes scheduled to
transmit.

2) Lower bounds: By explicitly constructing a routing and
scheduling scheme, the underlying idea to compute lower
bounds on A(n) is based on the condition

An)l <e, 4)

where [ is an upper bound on the number of e2e transmissions
a node needs to act as a relay, whereas c is the maximal rate
at which a node can transmit (see p. 400, oM column, 1%
equation from [15]). For the network model from [15], [ =

O (v/nlogn) and ¢ = O(1).

Alike the upper-bound, the lower-bound continues to hold
in a finite-space model under appropriate structural properties.
In a finite-space/time model, however, the lower bound ceases
to hold. For a counterexample (relative to current conditions),
consider 3 nodes numbered as 1,2,3, the (direct) source-
destination pairs (1, 2), (2, 3), (3, 1), and assume that all trans-
missions interfere with each other. Fitting Eq. (4) yields [ = 1,
c = % and thus \(3) = % Evidently, this rate can only be
sustained for specific values of T (e.g., if exogenous arrivals
occur at times 3s + 1 at all nodes, and under a round-robin
scheduling, then the lower bound only holds at times 7" = 3s
for s > 0).

In finite scenarios in which the lower-bound does hold, it
can be further tightened using the same multiplicative term as
for the upper bound, i.e.,

An)lg(n,T) <c. Q)

Note that the effective multiplicative factor for the lower
bound is in fact g%ﬂ. Alike Eq. (3), the improvement from
Eq. (5) only holds approximately (without very strong non-
asymptotic mixing conditions it is conceivably hard to exactly
keep track of the nodes with non-empty buffers and which can
successfully transmit).

In conclusion, the upper and lower bounds arguments from
Egs. (2) and (4) hold immediately in a finite-space model.
In finite-space/time models, only the former holds in general,
and both can be improved by a multiplicative and fractional,
respectively, factor g(n,T'); next we will show that this factor
can be quite small (and thus detrimental), including at large
values of n. Finally, we remark that even by considering
a tightening factor, as in Egs. (3) and (5), capacity results
remain restricted to first moments (time averages) only. These
limitations demand thus for ‘richer’ capacity results in terms
of probability distributions, which can readily render all mo-
ments, and more generally for alternative analytical techniques
beyond the convenient but simplistic averages-based calculus.

B. Simulations for g(n,T)

Here we simulate the multiplicative/fractional factor
g(n,T) identified in Egs. (3) and (5). For the clarity of the
exposition, we consider both a simple setting, consisting of
a single e2e transmission along a line network, and a more
involved random network.

(a) A line network (b) Contention graph

Fig. 1. A multi-hop network and its contention graph

1) Example 1: A Single E2E Transmission: Consider a
multi-hop network with n nodes, of which a source node A;
transmits (packets) to a destination node A, using the relay
nodes A;, i =2,3,...,n— 1. The end-to-end (e2e) transmis-
sion is denoted by [A; — A,,]. We denote by ¢, the contention
range of link ¢, i.e., link ¢ interferes with any link j satisfying
|i — j| < ¢r. An example for n = 5 is shown in Figure 1.(a).
A corresponding contention graph for ¢, = 3 is shown in
Figure 1.(b). Here, each vertex ¢ stands for the uni-directional
transmission [4; — A;;1], ¢ = 1,2,3,4, and there is a link
between nodes ¢ and j if the corresponding transmissions
interfere with each other; according to this contention graph,
links 1 and 4 can simultaneously and successfully transmit.

Next we illustrate the (time) average fraction of non-empty
buffers g(n,T) for the network setting from Figure 1 over a
time span 7', and for two MAC protocols: (slotted) Aloha and
CSMA/CA, to be described in Section IV.

Figure 2.(a) illustrates the Aloha case. The network ca-
pacity is A(n) = p(1 — p)%, where p is the transmission
probability; by optimizing, p = 0.2 and A\(n) ~ 0.08, which is
the rate injected at the first node (recall that there is a single
e2e transmission). We observe that for small number of nodes
(e.g., n = 10), the (average) fraction of empty buffers remain
significant, even when taking the limit in 7". This effect is due
to insufficient amount of spatial reuse. For larger number of
nodes, however, there is sufficient amount of spatial reuse and
the fraction of empty buffers goes to zero. This convergence,
however, is surprisingly slow (at 7 = 108 there are still ~ 5%
empty buffers).

Figure 2.(b) illustrates the CSMA/CA case with average
backoff and transmission times »~! = 10 and p~! = 10,
respectively. Because a formula for A(n) is difficult to obtain,
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Fig. 2. The average fraction of non-empty buffers g(n,T") as a function of
the time span 7" in a line network
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Fig. 3. The average fraction of non-empty buffers g(n,T") as a function of

the time span 7" in a random network

unlike in the Aloha case, we numerically searched for the
maximum value of A\(n) such that the total amount of packets
in all buffers, except destinations, at any time, is smaller
than 10% over a maximum time span T = 10%. We obtained
A(n) =~ 0.17 for n = 10,100,1000. As for Aloha, the
homogeneity is due to the dominant effect of a bottleneck;
unlike Aloha, however, CSMA/CA is subject to transmission
correlations spanning the entire network. Relative to the Aloha
case, we also remark a sharper rate of increase of g(n,T);
however, this rate slows down earlier (e.g., for n = 100 there
are still ~ 13% empty buffers in contrast to only ~ 5% for
Aloha).

2) Example 2: A Random Network: We now consider a
closer network setting to the one from [15]. We first randomly
place n nodes on a square and randomly choose a destination
for all sources 1,2,...,n, according to uniform distributions.
Then we determine the minimum transmission range such that
e2e paths exist for all source-destination pairs; these paths
are constructed using a shortest path algorithm with equal
weights for all links. Each node stores the locally generated
and incoming packets in a FIFO buffer.

As in Example 1, we illustrate g(n,T") as a function of
T for both Aloha and CSMA/CA. For Aloha we set the
nodes’ transmission probability as the inverse of the maximum
node-degree amongst all nodes. Moreover, we use the same
numerical search form Example 1 to determine the capacity
A(n) for both Aloha (A(10) ~ 0.01, A(100) =~ 0.002,
and A(1000) =~ 0.0004) and CSMA/CA (\(10) =~ 0.03,
A(100) =~ 0.007, and A(1000) = 0.0009).

From Figure 3.(a) we observe a clear convergence of
g(n,T); the perhaps surprisingly low limits are conceivably
due to the homogeneous transmission probabilities accounting
for the bottleneck region. Unlike in the line network, there

is a consistent monotonic behavior in the number of nodes n,
which is likely due to the more uniform structure of the random
network setting. In the CSMA/CA case, Figure 3.(b) illustrates
that much fewer buffers (by a factor of roughly three) are
empty than in the Aloha case, which suggests a less burstier
behavior in CSMA/CA.

Clearly, Figures 2 and 3 open several fundamental ques-
tions on network queueing behavior for Aloha and CSMA/CA,
which may help improving the two. Their main purpose,
however, is to convincingly show that the average fraction
of non-empty buffers g(n,T’) is quite small especially in
random networks, and in general at small time scales. The key
observation is the monotonic (decreasing) behavior (excepting
the special Aloha line with n = 10) in the number of nodes
n. This behavior is ‘somewhat expected’ in large networks,
by invoking laws of large numbers arguments, i.e., the overall
incoming and outgoing flows tend to stabilize and thus buffers
tend to decrease. This indicates that both the original upper
and lower bounds from Egs. (2) and (4) become conservative
in asymptotic regimes (in n).

In conclusion, the results from this section motivate the
need for an analytical approach to network capacity in finite
regimes. At this point, we ought to be rigorous in defining
capacity in finite time. Concretely, given a time ¢ and an arrival
process D(t) at the destination of an e2e path, we are interested
in bounds of the form

for some violation probability . Here, A\; is a lower bound
on the throughput (capacity) rate of the e2e transmission; a
corresponding upper bound can be defined similarly.

III. A SYSTEM THEORETIC APPROACH TO FINITE TIME
CAPACITY

We have just shown that the main challenge to derive finite-
time capacity results in terms of distributions is accounting
for queueing behavior in a conceivably non-Jackson queueing
network. In particular, it is especially hard to analytically keep
track of buffer occupancies at relay nodes.

To address this problem, we next describe a general solu-
tion to circumvent the characterization of buffer occupancies
at the relay nodes, by making an analogy with LTI systems.
The idea is to view a single-hop transmission as follows: the
data at the source and destination stands for the input and
output signals, respectively, whereas the transmission and its
characteristics, accounting for both data unavailability due to
burstiness or noise due to interference, are modelled by ‘the
system’ transforming the input signal. Although this system is
not linear, there is a subtle analogy with LTI systems which
drives its analytical tractability.

To present the main idea in an approachable manner, from
the point of view of notational complexity, we focus on the
simplified simple line network from Figure 1.

Figure 4 illustrates a system view for the e2e transmission
from Figure 1. With abuse of notation the A;’s stand for
the input/output signals, and the S;’s stand for the impulse-
responses of the systems. The key property of the impulse-
responses is to relate the input and output signals through a
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Fig. 4. A system interpretation of the multi-hop network from Figure 1

convolution operation, i.e.,
Ajp1 = A % 55 . (6)

As it will become more clear in Section IV, the convolution op-
eration denoted here by the symbol “x’ operates in a (min, +)
algebra. To be more specific, let A; stand for a stochastic
process A;(t), which counts the number of packets in the time
interval [0, ¢] at node ¢; also, let S; stand for (some) bivariate
stochastic processes S;(s,t). Then the (min,+) convolution
operation expands as

A (t) = Join, {A4;(s) + Si(s,t)} Vt>0.

The relationship from Eq. (6) has two key properties. One
is that it holds for any input signal A;, which is hard to derive
at relay nodes (when ¢ > 2). In other words, the impulse-
response S; entirely characterizes the system, i.e., the single-
hop transmission ¢, which is a key feature of LTI systems
since it enables their analytical tractability. The convolution
operation has also the useful algebraic property of associa-
tivity. The two properties circumvent keeping track of A;(t)
at the relay nodes (i.e., for ¢ = 2,3,4). Indeed, by applying
associativity, and using the physical property that the output
signal in a system is the input signal at the downstream system,
the composition of the four systems from Figure 4 yields the
reduced system from Figure 5.

Reduced System

Fig. 5. Composition of the four systems from Figure 4 into a single system

The reduced system dispenses with the intermediary signals
Ag, As, and Ay, and instead it retains the impulse-responses
in a composition (or e2e) form, i.e.,

A5:A1*(Sl*52*53*54). (7)

What has yet to be shown concerns the existence of (analyt-
ical) expressions for the impulse-responses S;’s, satisfying the
key property from Eq. (6). The other open issue is whether the
convenient reduction from Figure 5 and Eq. (7) is analytically
tractable. We will next show that impulse-responses can be
constructed for single-hop links in an analogous manner as
in LTI systems, depending on the underlying MAC protocol,
whereas analytical tractability follows the steps of large devi-
ations or stochastic network calculus theories.

IV. MARKOV MODULATED TRANSMISSION PROCESSES
(MMTPS)

Wireless networks must deal with the fundamental inter-
ference problem: two simultaneous transmissions may jointly
fail if they interfere with each other. MAC protocols partially

resolve this problem by reducing the number of collisions
and consequently increasing the network capacity. Obviously,
different MAC protocols can lead to different capacities.

To capture the influence of MAC protocols on the through-
put capacity, we introduce the concept of Markov Modulated
Transmission Process (MMTP). An MMTP is defined for each
link, and models the link’s activities (successful/unsuccessful
transmissions and idle periods) as a time process and according
to the workings of the underlying MAC protocol. The model
consists of a Markov chain/process X (¢) (depending on the
underlying discrete/continuous time model), where ¢ is a time
parameter, which modulates the transmission rate of a link
[i — j], if the source 4 has data to send at time ¢. In discrete
time, the transmission rate in a slot ¢ is

S(t—-1,t)=Cxq , (®)

where Cx () is the Markov Modulated Transmission Process
defined on the state space 7 of the Markov chain X (¢). It is
described as

Cxw = { g )

where T};_.;; € T denotes the set of favorable states of X (t)
for the link [¢ — j], which would guarantee a successful
transmission if the link has data to send at time ¢; whenever
a transmission is successful we assume a constant throughput
capacity C. The rest of the states X (¢) € T\ 7[;—,;; model the
times when the link attempts an unsuccessful transmission or
it is idle in accordance to the MAC protocol.

The MMTP process Cx () defined in Eq. (9) is modulated
by the Markov chain X (¢), and it is conceptually similar to
Markov Modulated Poisson Processes. X (t) can be defined
either for the whole network (when it modulates the transmis-
sion opportunities of all the links) or for each link separately.
In turn, Cx ;) is always separately defined for each link.

, X(t) e Tiis ]
, otherwise ,

We point out that the process S(s,t), which we loosely
introduced in Eq. (8) through its increments S(¢—1,¢), directly
corresponds to the impulse-response process introduced in
Section III to entirely characterize the behavior of a single-
hop transmission in system theoretic terms (see Figure 4 and
Eq. (6)). The impulse-response defined in Eq. (8) corresponds
to the effective capacity concept proposed by Wu and Negi
in [27] to model the instantaneous channel capacity. This
concept was used by Tang and Zhang [26] to analyze the
impact of physical layer characteristics (e.g., MIMO) on delay
at the data-link layer. The MMTP idea was also used explicitly
by Fidler [13], Mahmood et al. [20], Al-Zubaidy et al. [29],
Zheng et al. [28] and implicitly by Ciucu et al. [5], [4], [8],
for the Aloha protocol.

Relative to these previous works, our contribution is to fit
the effective capacity concept for three MAC protocols, and in
a unified manner. In the following we explicitly construct the
corresponding impulse-response processes S(s,t) and outline
the key steps to compute lower-bounds on the per-flow capacity
(for the complete results, including upper bounds, see [6]).

A. Centralized scheduling

Assuming a time-slotted model and the nodes’ perfect
synchronization, the idea of centralized scheduling is to pre-
allocate the transmission slots to the nodes in order to avoid



collisions. In unsaturated scenarios, an optimal solution (i.e.,
attaining maximal throughput) would require significant over-
head as the centralized scheduler would require keeping track
of the arrival processes at each of the nodes. Even in saturation
scenarios, the optimality problem is in fact NP-complete in
general networks (see, e.g., Sharma et al. [24]).

For the network model from Figure 1.(a-b), the optimal
scheduling allocation starting from slot 1, in terms of links, is:
{1,2,3,(1,4),2,3,(1,4),...}; for instance, link 2 is allocated
the slots 2, 5,8, ... That means that link 2 is given full trans-
mission capacity (say C) during these slots, which suggests
that the bivariate function

¢
Sa(s,t) =C Z Iy—2yz3=0 V2< s <t,  (10)
u=s+1

and 0 everywhere else, characterizes the capacity of link 2 in
terms of the (min,+) convolution from Eq. (6) (Ir denotes
the indicator function taking the values 0 and 1, depending
on whether the event F is false or true). The intuition is that
Sa(s,t) counts the number of packets transmitted over link 2
in the time interval (s, ¢], if node 2 is saturated.

This saturation condition translates into system theoretic
terms as follows: the input signal to the second system in
Figure 4 is the infinite signal A3 (t) = oo for V¢ (also called the
impulse), whereas the corresponding output, i.e., the impulse-
response, is the signal Sa(t), or S2(0,¢) in the notation from
Eq. (10). Therefore, the construction of Sx(s, t) is analogous to
the construction of impulse-response functions in LTI systems,
which are the output from an LTI system with input given
by the Kronecker signal. Although the system representing
the link’s transmission is not linear, even under the (min, +)
algebra, the constructed process Sz (s, t) entirely characterizes
link 2, i.e.,

Ag(t) = min {As(s) + Sa(s, )} E 20, (D)

for all As(t) at the input of the second system.

So far we directly constructed Sz (s, t) without resorting on
an MMTP Cx ;). The underlying MMTP, and also the mod-
ulating Markov chain X (¢), are depicted in Figure 6.(a). The
states of X (¢) denote the set of transmitting links (according to
the centralized schedule). The transition probabilities between
the states are all equal to 1, thus reflecting the deterministic
nature of centralized scheduling. The MMTP process for link
[Ag — Ag] is

_[C it X(t)={2}
CX(t)_{ 0 , otherwise .

The MMTPs for the other links are defined similarly; for
instance, for links 1 and 4, the only change is that C'x ;) = C
when X (t) = {1,4}. Note that all MMTPs share the same
Markov chain modulating the transmission opportunities at the
network level. Moreover, X (¢) and C'x (4) jointly reproduce the
expressions of the impulse responses (e.g., of Sa(s,t) from
Eq. (10)) according to the definition from Eq. (8).

Concerning analytical tractability, we remark that the re-
duced system from Figure 5 is implicitly tractable since
the constructed impulse-responses S;(s,t) are deterministic

(a) Centralized scheduling

(b) Aloha

Fig. 6. Markov Modulated Transmission Processes (MMTPs) for link [A2 —
As]

functions. The overall impulse-response of the e2e path S =
S1 % .52 % S3 % Sy from Eq. (7) can be computed directly, i.e.,

t
S(s,)=C > Tu—nms—o V1<s<t, (12)

u=s+1
and 0 everywhere else.

Although the constructions of the MMTP’s above is not
technically necessary, as the impulse-responses were directly
constructed, and the impulse-response S(s,¢) of the e2e
path could be in principle determined by other means than
computing an e2e convolution, we regard this detour to be
insightful for the construction of impulse-responses for the
more challenging cases of Aloha and CSMA/CA protocols.

B. Aloha

The (slotted) Aloha MAC protocol is an elegant solution to
circumvent centralized scheduling (see Ambramson [1]). The
key idea is that each node attempts to transmit with some
probability in each time slot and when data is available; a
transmission [¢ — j] is successful in a time slot ¢ if ¢ is the only
node in the interference range of node j attempting to transmit
in that slot. While the protocol is entirely distributed, it may
experience significant performance decay, e.g., the achieved
capacity can be as small as 36% of the theoretical limit.

To construct the impulse-response processes for the line
network from Figure 1.(a-b), we first construct the MMTP
processes. We focus again on link [A2 — Aj]. The underlying
MMTP, and also the modulating Markov chain X (t), are
depicted in Figure 6.(b). The meaning of state ‘on’ is that,
while X (t) delves in it, the relay node A successfully
transmits (if there is data to send). In turn, while X (¢) delves
in state ‘off’, Ao is either idle or it is involved in a collision.
Assume for convenience that all nodes transmit with the same
probability p. The transition probabilities are m; = p(1 — p)?
and me = 1 —m; (the power of 3 is the degree of node 2 in the
contention graph from Figure 1.(b)). For this Markov chain,
the steady-state probabilities are m,, = 71 and 7o = 72, and
X (t) has the convenient property of statistically independent
increments, e.g., Vt

P(X(t+1)=‘on’|X(t) = ‘off’) =P(X(t+1) = ‘on’) .
(13)

The definition of the associated MMTP should be intuitive
at this point, i.e.,

if X(t) = ‘on’

c
Cxw = { 0 , otherwise , 4



as also illustrated in Figure 6.(b). In other words, A, can
successfully transmit (assuming it has data) at full rate C' while
the modulating process X () delves in the favorable state ‘on’.

The construction of the other links” MMTP processes is
almost identical, except for the transmission probabilities of
the modulating process. For instance, for the links [4; — As]
and [A4 — As], the new transmission probabilities are m =
p(1—p)? and 3 = 1—7 (the power of 2 is the common degree
of nodes 1 and 4 in the contention graph from Figure 1.(b)).

These MMTP processes directly determine the impulse-
response functions S;(s,t), corresponding to the single-hop
links ¢ = 1,2,3,4, according to the definition from Eq. (8).
Furthermore, the composition property of the S;(s,t)’s in
the underlying (min,+) algebra lends itself to the entire
characterization of the throughput capacity over the e2e path
as in Eq. (7), i.e., A5 = A1 xS, where S = S7 % .S * S3 % .5y
is the impulse-response of the e2e path.

Unlike centralized scheduling which may lend itself to an
explicit expression for S (e.g., as in Eq. (12)), Aloha is more
challenging with respect to the analytical tractability of the
reduced system. One immediate issue lies in the probabilistic
structure of the local impulse-responses S;’s. A more subtle
issue lies in the fact that the S;’s are statistically correlated
random processes, even in the simplified line network.

To deal with these challenges, the key idea is to trade
analytical exactness for tractability. More concretely, instead
of exactly deriving the e2e transient capacity in closed-form
(an open problem in itself), we compute bounds by relying
on large deviation techniques (e.g., as in [5]). Let us illustrate
such computations for the first two hops only, and a saturation
assumption at node A; (the relay nodes are however not
assumed to be saturated). The probability of violating a lower
bound )\, on the transient throughput rate over the time scale
[0,t], can be computed as follows for some 6 > 0

P (As(t) < Mt) =P (Sy % S2(t) < M) (15)
=P ( sup {A\t — S1(s) — Sa(s,t)} > 0)

0<s<t

< Z O™t [67951(5)} E|:67052(s,t):| 7

0<s<t

by using Boole’s inequality and the Chernoff bound; in the
first line we also used that A; is saturated. The last step is
based on the statistical independence between the impulse-
responses Sy (u, s) and Sa(s,t) (in order to apply F[XY] =
E[X]E[Y] for some independent r.v.’s X and Y); this holds
because (u, s] and (s, t] are non-overlapping intervals, whereas
the corresponding Markov modulated processes of Sp(u, s)
and Sz (s,t) have statistically independent increments (recall
Aloha’s useful property from Eq. (13)). Therefore, although
Si(u, s) and Sz (u, s) are correlated over overlapping intervals,
the expansion of the (min,+) convolution (in terms of non-
overlapping intervals) and the independent increments property
from Eq. (13) justify the last step.

Finally, the Laplace transforms in the last equation can
be computed explicitly for the impulse-responses. Concretely,

—08i(s,t —Or(t—s _ log(ge ?“41-q) "
E [e 08i(s0)] < g=07s( ),Wherersff
and ¢ = p(1 — p)3. Evaluating the nested sums from Eq. (15)

Fig. 7.

A Markov Modulated Trans. Proc. (MMTP) for link [As — Az]

finally yields the closed-form bound

P (As(t) < Mt) < én%(t + 1) 0=t (16)
>

Next we give a general result for computing the lower bounds
on the end-to-end throughput capacity for a flow crossing k
hops (for the proof see [6]).

Theorem 1: (CAPACITY BOUNDS (LOWER BOUND) -
ALOHA) Consider a flow crossing k£ hops. Assume that the
impulse-response process S;(s,t), at each hop j, satisfies the
following bounds on the Laplace transform: [e‘gsﬁ(s’t)} <
e~ (=0)(t=9) for some r;(—0) and all § > 0. Let 7(—0) :=
min; r;(—6). Assume also that S;(s,t) are statistically inde-
pendent over non-overlapping intervals. Then, for some € > 0,
a probabilistic lower bound on the capacity rate is for all £ > 0

1 71 t+k—1
A = sup {r(@) n oge og( k—1 ) } ' (17)

0>0 ot

C. CSMA/CA

The CSMA/CA protocol was motivated by the need to
increase the (very) low capacity of Aloha, while preserving the
distributive aspect of the protocol. One key idea is to prevent
collisions from happening by enabling nodes to ‘listen to the
channel’ before transmitting. The other key idea is that once
a node perceives the channel as being busy, it enters in an
exponentially distributed backoff mode.

We use a simplified CSMA/CA protocol, developed by
Durvy et al. [10], which retains the key features of CSMA/CA.
For the network from Figure 1.(a-b), the construction of the
MMTP processes, and also of the impulse-response processes
Si(s,t), follows similarly as for centralized scheduling and
Aloha. For the link [Ay — Ags], the underlying MMTP, and
also the modulating (now continuous-time) Markov process
X (t), are depicted in Figure 7. X (¢) is constructed exactly as
in [10], where »~! and p~' denote the average backoff and
transmission times. The interpretation of the states is identical
as for centralized scheduling (see Figure 6.(a)); while X (¢)
delves in the new state {0}, all nodes are in a backoff mode.
Ignoring the details of switching from discrete to continuous
time, the MMTP is defined as for Aloha (see Eq. (14)), i.e.,

C

and the impulse-response S>(s,t) is defined as in Eq. (8).
The MMTPs for the other links are defined similarly (e.g.,
for [Ay — Ay, the only change is that Cx(;) = C when

X(t) € {{1},{1,4}}).

if X(¢t) ={2}
otherwise ,
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Fig. 8. Throughput rates as a function of the number of time slots for
the network from Figure 9.(b) (per-hop rate rpp = 1, p = % for Aloha,

1= i = 10 for CSMA/CA, and a violation probability & = 10~3).

Unlike in Aloha, deriving the e2e capacity in CSMA/CA is
more challenging. While the first two lines from Eq. (15) still
hold, the last line does not hold anymore since S (u,s) and
Sa(s,t) are not independent, even over non-overlapping inter-
vals. The reason is that the modulating process X () does not
have independent increments (as in Eq. (13)). The immediate

work-around is Holder’s bound, i.e., F [6*951(5)6*952(5’”} <
1

E [e-1051(0)] 7 B [e= 52077 for L 41 =1,

The second challenge is to compute the Laplace transforms
of the impulse-responses S;(s,t)’s. Since these processes are
Markov arrival processes (MAPs), their Laplace transforms can
be computed using standard techniques. Let us compute in
particular L := E [e~952()], for some 6 > 0. Denote the six
states of the MAP from Figure 7 by the numbers 0,1,...,5,
and the elements of the generator matrix by p; ; (e.g., pas =
v). Denote also the conditional Laplace transforms L;; :=
E [6’932“) | X(0) = i], i.e., conditioned on the initial state
of the Markov chain X (¢), which starts in steady-state. For
any initial state (e.g., © = 2) we have the backward equation

Lojiny = FE [67032(&) | X(0) = 2}
S B [t a0 | x(an) = j)
J
= e V9N (Lo uAt 4 Loy (1 — pAt) + o(At))
where hmAtﬂow = 0. In the last line we used the

t
stationarity of S3(¢). Using the Taylor’s expansion e

1 — 0CAt + o(At), rearranging terms, and taking the limit
At — 0 it follows that

OLo ¢
ot

One can proceed similarly to derive the PDE’s of the other
L; ¢’s for i # 2, and arrive at the system of PDE’s

0L,

—— = BL,, 19

ot ¢ (19)
where Ly = (Loy,--., L5,t)T and some matrix B. The
drawback of the obtained solution is that it depends on the
eigenvalues/eigenvectors of the matrix B, and is thus not easily
amenable to convex optimizations'. For a brief illustration of
the bounds’ tightness see Figure 8.

—0CAL _

= Lot — Las(pu + 6C) . (18)

"More general lower and upper bounds on the e2e capacity are given in the
technical report [6].
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Fig. 9. Which strategy should node A1 choose in order to transmit to Ay 1?
(all nodes hear each other, all are saturated, and rg, < rmp)

V. APPLICATION: SINGLE-HOP vS. MULTI-HOP

In this section we demonstrate how to use the finite time
and space key features of our capacity bounds for the following
problem. Consider the network from Figure 9 with £+ 1 nodes,
all within the interference range of each other, and all being
saturated (i.e., being the source with infinite data for some
e2e transmission) and attempting to access the channel using
either the Aloha or CSMA/CA protocols. Given that node
A; intends to transmit to node A1, the problem concerns
choosing between the following two routing strategies:

1)  Single-hop: Node A; directly transmits to node A1
at rate 7.

2)  Multi-hop: Node A; transmits using the nodes
Ay, As,..., Ay as relays; the rate for each trans-
mission [A; — Aj1] iS 7mh.

We assume that at each node ¢ the transmission [A; — Ag11]
has priority over all others. Moreover, to avoid a trivial answer,
we assume that 7y < rpp.

4
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3] 3]
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Fig. 10.  The time scale (threshold) after which the multi-hop is more

advantageous than the single-hop strategy (¢ = 1073, normalized per-hop
rate 7mp = 1, variable direct rate rg,, Aloha transmission probability p = %,
and v = p = 0.1 for CSMA/CA)

Figure 10 illustrates the threshold at which the multi-hop
strategy is more advantageous. More concretely, the values
displayed (i.e., the ‘“Threshold’) are the time scales at which the
lower-bound for the multi-hop transmission is larger than the
upper-bound for the single-hop transmission?. Both (a) and (b)
indicate the intuitive facts that the ‘Threshold’ is exponential
in the relative direct rate rg, and also increasing in the number
of hops k. In (b), for CSMA/CA, the benefits of multi-hop
routing hold only for very low relative direct rate rg, and
quickly vanish by increasing k. We point out however that
this quick blow-up may be due to the loose underlying upper
bounds on the CSMA/CA per-flow capacity (see Figure 8).

The above routing problem has been debated in different
settings such as wireless mesh and sensor networks. Experi-
mental results by De Couto et al. [9] showed that minimizing
the hop count is not always the best option as long hops may
incur a high packet error rate. Jain ef al. [17] showed that, due

2The lower and upper bounds are applications of Theorems 1 and 2 from [6].



to interference, shortest paths with long hops may not provide
the best performance. In contrast, there are several results sup-
porting long-hop routing. Haenggi and Puccinelli [16] provided
many reasons why short-hop routing is not as beneficial as it
seems to be. Moreover, in energy limited networks such as
sensor networks, long-hop routing may also be preferable (see
Ephremides [11] and Bjornemo et al. [3]).

Our contribution to this debate is to bring a new perspective
on single vs. multi-hop routing by focusing on the underlying
time scale. Concretely, we provided theoretical evidence that
multi-hop routing is more advantageous in the long-run for
Aloha. In turn, in the case of CSMA/CA, the advantage
of multi-hop vanishes in most cases. We raise however the
awareness that, for the purpose of analytical tractability, our
results are restricted to a line network and no frequency or
power management being accounted for.

VI. CONCLUSIONS

We have presented the key ingredients of a unified system-
theoretic methodology to compute the per-flow capacity in
finite time and space network scenarios, and for three MAC
protocols: centralized scheduling, Aloha, and CSMA/CA. We
have also confirmed the anecdotal practical conservative nature
of alternative asymptotic results, by scrutinizing a widely used
double-limit argument. Moreover, we have demonstrated that
our finite time/space results can lend themselves to engineering
insight, i.e., on the time scales at which multi-hop routing
becomes more advantageous than single-hop routing. Overall,
the advocated system-theoretic approach has the potential to
contribute to the development of the long desirable functional
network information theory (see Andrews et al. [2]). Imme-
diate future work concerns fitting more realistic CSMA/CA
protocols, and the improvement of the derived stochastic
bounds, especially in the case of CSMA/CA, using advanced
techniques as in [7].
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