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Abstract—This paper proposes a martingale extension of
effective-capacity, a concept which has been instrumental in
teletraffic theory to model the link-layer wireless channel and
analyze QoS metrics. Together with a recently developed concept
of an arrival-martingale, the proposed service-martingale concept
enables the queueing analysis of a bursty source sharing a MAC
channel. In particular, the paper derives the first rigorous and
accurate stochastic delay bounds for a Markovian source sharing
either an Aloha or CSMA/CA channel, and further considers
two extended scenarios accounting for 1) in-source scheduling
and 2) spatial multiplexing MIMO. By leveraging the powerful
martingale methodology, the obtained bounds are remarkably
tight and improve state-of-the-art bounds by several orders of
magnitude. Moreover, the obtained bounds indicate that MIMO
spatial multiplexing is subject to the fundamental power-of-two
phenomena.

I. INTRODUCTION

Classical works concerned with the throughput and delay

analysis of random access protocols (e.g., Aloha or CSMA)

rely on strong assumptions. One is that the point process

comprising of both newly generated and retransmitted (due

to collisions) packets is a Poisson process (Abramson [1],

Kleinrock and Tobagi [23], and more recently Yang and

Yum [32]). A related assumption is that, at each source,

packets arrive as a blocked Poisson process, in the sense that at

most one packet can be backlogged at any source (Tobagi [29]

or Beuerman and Coyle [3]); this model is related to the

infinite source model in which each source generates a single

packet during its lifetime (Lam [24]). Another related and

simplifying assumption is to discard the buffered packets at

the beginning of a transmission period for a source (Takagi

and Kleinrock [27]).

Such conceivably unnatural assumptions enable a tractable

analysis but preclude the analysis of realistic bursty sources,

i.e., non-Poisson. In particular, the obtained results only cap-

ture the access delay, and not the other component of the

actual delay, i.e., the queueing delay. For an elaborate dis-

cussion on fundamental drawbacks of ignoring data burstiness

in the context of the multiaccess channel, in connection to

information theory, see Gallager [17] and Ephremides and

Hajek [14].

More recent literature addresses the throughput or delay

analysis of the prevalent 802.11 CSMA/CA protocol. Some

influential works include Bianchi [4], Cali et al. [5], Carvalho

and Garcia-Luna-Aceves [6], which share the common as-

sumption of saturated sources (i.e., ignoring burstiness). An

approximate queueing analysis accounting for random arrivals

is undertaken in Tickoo and Sikdar [28], by approximating the

probability of non-empty queues as if the system behaved as

an M/M/1 queue. A related approximation of the probability

that a source finds itself empty upon a successful transmis-

sion is considered by Garetto and Chiasserini [18]. Another

work addressing non-saturated arrivals is Alizadeh-Shabdiz

and Subramaniam [2]; in addition to enforcing a technical

independence assumption from [4], the analysis crucially relies

on an M/G/1 approximation of the network.

While such existing results clearly provide valuable in-

sights into the behavior of the notoriously difficult CSMA/CA

protocol, the state-of-the-art literature lacks a mathematically

rigorous (and also accurate) analysis under random arrivals,

especially non-Poisson/bursty. The goal of this paper is to fill

this gap by providing the first rigorous and accurate delay anal-

ysis in single-hop Aloha and CSMA/CA networks, subject to

Markovian arrivals. A crucial feature of the proposed analysis

is that it rigorously accounts for buffering and consequently it

captures the total (i.e., access plus queueing) delay experienced

by a tagged Markovian source.

The starting point of this paper is a recent system theoretic

approach to analyze CSMA/CA networks by Ciucu et al. [9].

In that work the authors adopt a simplified CSMA/CA model

proposed by Durvy et al. [13], which was argued to retain the

key features of CSMA/CA. Unfortunately, the analysis relies

on the queueing methodology of the stochastic network calcu-

lus (see Chang [7], Fidler [15], or Jiang and Liu [20]), which

was convincingly shown to lead to very inaccurate results,

especially in the case of bursty arrivals (see Ciucu et al. [10],

[26]); using an alternative martingale queueing methodology,

it was further shown that the available inaccurate results could

be drastically improved in the case of Markovian arrivals.

In this paper we extend the martingale methodology from

Poloczek and Ciucu [26] in order to fit the delay analysis

of Aloha and CSMA/CA networks with Markovian arrivals.

The novel element of the proposed extension is the concept

of a service-martingale which models the Markovian service,

characteristic to a multiaccess channel such as CSMA/CA, in

the martingale domain. By combining service-martingales with

the arrival-martingales defined in [26] to model Markovian

arrivals, we obtain sharp stochastic bounds on the backlog

and delay distributions of a Markovian source over Aloha and

CSMA/CA multiaccess channels.

The proposed combination of arrival- and service-



martingales parallels the combination of effective bandwidth

and effective capacity, which provides an elegant methodology

to analyze the queueing behavior in wireless networks. The

effective bandwidth is an arrival model, defined in terms of mo-

ment generating functions, and which is particularly suitable

to analyze queues with Markovian and long range dependent

arrivals (see Kelly [22]). In turn, the effective capacity is an

ingenious service model defined in terms of Laplace trans-

forms, and which is particularly suitable to model the channel

capacity in wireless scenarios (see Wu and Negi [30], [31]).

Alike the conventional network calculus, the elegant queueing

methodology based on effective bandwidth/capacity suffers in

terms of the accuracy of the produced queueing results; this

drawback was convincingly illustrated through simulations by

Choudhury et al. [8] and analytically by Ciucu et al. [10],

[26] (e.g., existing bounds can be loose by several orders of

magnitude, in the case of Markovian arrivals).

A key benefit of our proposed methodology integrating

arrival- and service-martingales is its modularity: Indeed,

we provide three conceivably straightforward applications to

both simple and complex MAC scenarios. The first (simple)

scenario is standard and involves the analysis of a tagged

bursty source sharing a MAC channel. We then consider two

complex extensions by additionally accounting for 1) in-source

scheduling, i.e., the tagged source consists of multiple flows

scheduled according to a SP (Static Priority) policy before

being transmitted over the shared channel, and 2) spatial

multiplexing MIMO (multiple-input multiple-output), i.e., the

tagged source is transmitted over multiple shared MAC chan-

nels. A qualitative insight of the obtained stochastic bounds is

that MIMO reduces the delays of bursty sources exponentially

(in the number of channels), and, more interestingly, that it is

subject to a fundamental power-of-two phenomena.

The rest of the paper is organized as follows. In Section II

we introduce the concept of service-martingales, and derive

general performance metrics (backlog and delay) for a source

modelled by arrival-martingales. In Section III we apply

these results to a Markovian tagged source transmitting over

Aloha and CSMA/CA channels; numerical results illustrate

the remarkable tightness of the obtained stochastic bounds.

In Section IV we provide further applications to scenarios

with in-source SP scheduling and spatial multiplexing MIMO.

Finally, we conclude the paper in Section V.

II. THEORY

Consider the single server scenario from Figure 1. A flow

A, defined in terms of the bivariate arrival process

A(m,n) =
n
∑

k=m+1

ak ,

arrives at a server characterized by a service process S,

which is defined in bivariate form S(m,n); the corresponding

departure process D is also defined in bivariate form. We

assume S(m,n) to be driven by a stochastic process (sn)n,

i.e., S(m,n) is σ(sm+1, . . . , sn)-measurable. Further, (ak)k
and (sk)k are stationary, ergodic, reversible, and statistically

S
A D

Fig. 1. A server with an arrival process A, service process S, and departure
process D

independent. The reversibility assumption is mild, in the sense

that Markov processes (i.e., the type of bursty sources we are

interested in) can be a-priorily reversed; the concrete Markov

processes from this paper are however reversible. For brevity

we write X(n) := X(0, n) for any bivariate process X .

The key role of the service process S is to model the service

received by A in either a queueing system, or at the data

link layer corresponding to some MAC protocol (e.g., Aloha

or CSMA/CA); the second case particularly suits this paper.

Formally, S couples the arrival and departure processes A and

D, respectively, in terms of a (min,+) convolution, i.e.,

D(n) ≥ A ∗ S(n) := min
0≤m≤n

{A(m) + S(m,n)} , (1)

for all arrival processes A and n ≥ 0. In other words, the

service process plays as similar role as that of an impulse-

response in linear and time invariant (LTI) systems, except for

the use of an inequality, and not equality, in Eq. (1), due to the

lack of (min,+) linearity; for a related discussion see Ciucu

and Schmitt [11].

Next, we give the two central definitions in this paper

concerning arrival and service modelling. The first is a slight

modification of Definition 3 from [26].

Definition 1 (Arrival-Martingales). The flow A admits arrival-

martingales if for every θ > 0 there is a Ka ≥ 0 and a function

ha : rng(a) → R
+ such that the process

ha(an)e
θ(A(n)−nKa) , n ≥ 0 , (2)

is a supermartingale.

In the definition, ‘rng’ stands for the range operator. The

parameters Ka and ha implicitly depend on θ; the augmented

notation Ka(θ) and ha(θ) is omitted for brevity, when clear

from the context.

Definition 2 (Service-Martingales). The service process S
admits service-martingales if for every θ > 0 there is a Ks ≥ 0
and a function hs : rng(s) → R

+ such that the process

hs(sn)e
θ(nKs−S(n)) , n ≥ 0 , (3)

is a supermartingale.

Arrival- and service-martingales relate to each other by a

sign change of θ, and closely resemble with the concepts of

effective bandwidth and capacity, respectively. The crucial dif-

ference is that while the effective bandwidth and capacity are

defined in terms of the moment generating function (MGF) and

Laplace transform of A(n) and S(n), respectively, the arrival-

and service-martingales are defined as stochastic processes

and not as (deterministic) numbers, albeit in terms of similar



exponential transforms. We point out that retaining the random

structure of the arrivals and service is in fact instrumental to

a sharp analysis of queueing metrics, as convincingly shown

in Ciucu et al. [10], [26].

Let us now state an auxiliary definition which will become

important in the general proofs of the performance metrics

(see Theorems 9 and 10).

Definition 3 (Threshold). For ha and hs as in Definitions 2

and 3 define the threshold

H := min{ha(x)hs(y) : x− y > 0} .

Intuitively, H is the smallest value of ha(x)hs(y) such that

the instantaneous arrival (i.e., x) is larger than any value of

the stochastic process driving the service process (i.e., y).

In the following we make two technical remarks and

then give three illustrative examples of arrival- and service-

martingales.

Remark 4. If (2) is a supermartingale, then by stationarity

the “time-shifted” process

ha(an+k)e
θ(A(k,n+k)−nKa)

is also a supermartingale, for some fixed k ≥ 0.

Remark 5. If (3) is a supermartingale, then by the reversibility

assumption

hs(sm)eθ((n−m)Ks−S(m,n))

is also a supermartingale, for every n ≥ 0, now in the

“reversed” time-domain m ∈ {n, n − 1, . . . , 1, 0} (aka a

backward-supermartingale).

Example 6 (Constant Arrivals/Service). Let xn ≡ C for some

constant C > 0, and denote generically A(n) := S(n) :=
∑n

k=1 xk. Then A admits arrival-martingales and S admits

service-martingales.

Proof. For θ > 0 and θ < 0, one can choose the corresponding

K and h as K > C and K < C, respectively, and h = 1 (or

any other constant).

Although trivial, these constructions are important as

they can model a saturated node (arrival-martingales) and

a constant-rate server (service-martingales). More sophisti-

cated examples are given next for i.i.d. (identically and in-

dependently distributed) and then for more general Markov-

modulated arrivals/service.

Example 7 (i.i.d. Arrivals/Service). Let x1, x2, . . . be i.i.d.

random variables with nonnegative distribution and denote

generically A(n) := S(n) :=
∑n

k=1 xk. Then A admits

arrival-martingales (for θ > 0 such that E[eθx1 ] < ∞), and

also S admits service-martingales.

Proof. For θ > 0 let ha, hs be constant (without loss of

generality take ha = hs = 1) and Ka and Ks such that

E[eθx1 ] = eθKa and E[e−θx1 ] = e−θKs ,

respectively. In particular, we have according to the i.i.d.

assumption:

E

[

h(xn+1)e
θ((n+1)Ks−S(n+1)) | x1, . . . , xn

]

= h(xn+1)e
θ(nKs−S(n))E

[

e−θxn+1
]

eθKs

= h(xn)e
θ(nKs−S(n)) ,

and thus S(n) admits service-martingales. The proof for the

arrival-martingales proceeds similarly by a sign change.

Example 8 (Markov-modulated Arrivals/Service). Let (xn)n
be a Markov chain with finite state space S = {0, 1, . . . , Nmax}
and f : S → R

+ be a deterministic function. Then both a

Markov-modulated arrival flow and service process, denoted

generically by A(n) := S(n) :=
∑n

k=1 f(xk), admit arrival-

and service-martingales, respectively.

Proof. Let θ ∈ R \ {0} and let T denote the transition matrix

of xn, i.e.,

Ti,j = P(xn+1 = j | xn = i) .

Define the exponential column-transform of T θ by

T θ
i,j := Ti,je

θf(xj) ,

let sp(T θ) be its spectral radius, and h : S → R
+ be

a corresponding right-eigenvector (note that by the Perron-

Frobenius Theorem sp(T θ) is positive and h can be chosen

to be positive).

For arbitrary K > 0 we can write:

E

[

h(xn+1)e
θ(A(n+1)−(n+1)K) | x1, . . . , xn

]

= eθ(A(n)−nK)
E[h(xn+1)e

θxn+1 | xn]e
−θK

= eθ(A(n)−nK)
(

T θh
)

(xn) e
−θK

= h (xn) e
θ(A(n)−nK)sp(T θ)e−θK , (4)

where
(

T θh
)

(xn) denotes the xth
n component of the vector

T θh.

In the case when θ > 0 we have from the Perron-Frobenius

Theorem:

1 < min
i

∑

j

T θ
i,j ≤ sp(T θ) ≤ max

i

∑

j

T θ
i,j ≤ eθmaxi f(xi) < ∞ ,

implying that we can choose the ‘K’ (for the arrival-

martingales) as any value satisfying K ≥ log sp(T θ)
θ

, proving

thus the supermartingale property in Eq. (4) for the arrival-

martingales, i.e.,

E

[

h(xn+1)e
θ(A(n+1)−(n+1)K) | x1, . . . , xn

]

≤ h (xn) e
θ(A(n)−nK) .

In turn, when θ < 0, the Perron-Frobenius Theorem yields:

1 > max
i

∑

j

T θ
i,j ≥ sp(T θ) ≥ max

i

∑

j

T θ
i,j ≥ eθmax f(xi) > 0 .

Moreover, by continuity, we have:

lim
K→0

eθK = 1 and lim
K→∞

eθK = ∞ .



We can thus choose the ‘K’ (for the service-martingales) as

any value satisfying 0 < K ≤ log sp(T θ)
θ

, and by a sign

change in Eq. (4) the supermartingale property for the service-

martingales follows, i.e.,

E

[

h(xn+1)e
−θ((n+1)K−S(n+1)) | x1, . . . , xn

]

≤ h (xn) e
−θ(nK−S(n)) .

We note that the core argument from the proof of Ex-

ample 8, i.e., the exponential column-transform, is due to

Duffield [12]; the obtained constructions for arrival- and

service-martingales will be used in the Applications sections.

For the rest of this section we assume that the arrival

flow A and the service process S admit arrival- and service-

martingales, respectively. The corresponding parameters are

denoted by Ka and ha for the arrival-, and by Ks and hs for

the service-martingales. Recall that these parameters implicitly

depend on the value of θ.

The performance metrics of interest are the (stationary)

backlog distribution, which has the representation

Q =D sup
n≥0

{A(n)− S(n)} ,

and the virtual delay at time n, defined by

W (n) := min{k ≥ 0 | A(n− k) ≤ D(n)} .

Theorem 9 (Backlog). Assume that the statistically inde-

pendent processes A and S admit arrival- and service-

martingales, respectively. Further, as as stability condition,

assume that

θ∗ := sup{θ > 0 : Ka ≤ Ks}

and let H as in Definition 3. Then the following backlog bound

holds for any σ ≥ 0

P(Q ≥ σ) ≤
E[ha(a0)]E[hs(s0)]

H
e−θ∗σ .

Proof. Let θ∗ as defined, and the corresponding parameters

Ka, ha, Ks, and hs (all depending on θ∗). By the indepen-

dence assumption, the process

ha(an)hs(sn)e
θ∗(A(n)−nKa+nKs−S(n))

is a supermartingale. As by definition (of θ∗) Ks −Ka ≤ 0,

M(n) := ha(an)hs(sn)e
θ∗(A(n)−S(n))

is a supermartingale as well. Now define the stopping time N
as the first time when A(n)− S(n) exceeds σ, i.e.,

N := min{n : A(n)− S(n) ≥ σ} .

Note that N = ∞ is possible and P(Q ≥ σ) = P(N < ∞).
By the optional stopping theorem applied to the stopping time

N ∧ n := min{N,n} (for n ≥ 0) we have

E[ha(a0)]E[hs(s0)] = E[M(0)] = E[M(N ∧ n)]

≥ E[M(N ∧ n)1{N≤n}]

= E[ha(aN )hs(sN )eθ
∗(A(N)−S(N))1{N≤n}]

≥ Heθ
∗σ
P(N ≤ n) .

For the last step note that by the minimality of N , aN > sN
and so with Definition 3: ha(aN )hs(sN ) ≥ H . The proof

completes by letting n → ∞.

Theorem 10 (Delay). In the situation of Theorem 9, the

following stochastic bound holds for the virtual delay

P(W (n) ≥ k) ≤
E[ha(a0)]E[hs(s0)]

H
e−θ∗Ksk .

Proof. Let θ∗ as defined, and the corresponding parameters

Ka, ha, Ks, and hs (again, all depending on θ∗). Given the

service-process representation from Eq. (1) and the reversibil-

ity assumption, we can write:

P (W (n) ≥ k) = P (A(0, n− k) ≥ D(n))

≤ P

(

A(n− k) ≥ min
0≤m≤n

{A(m) + S(m,n)}

)

≤ P

(

max
n≥k

{A(k, n)− S(n)} ≥ 0

)

≤ P

(

max
n≥k

{A(k, n)− (n− k)Ka + nKs − S(n)} ≥ kKs

)

.

Using Remark 4 and the independence assumption, it fol-

lows that

ha(an)hs(sn)e
θ(A(k,n)−(n−k)Ka+nKs−S(n))

is also a supermartingale (in the time-domain {k, k+1, . . .}).

Therefore, by invoking the same arguments as in the proof of

Theorem 9, the above inequalities continue to:

P (W (n) ≥ k) ≤
E[ha(ak)]E[hs(sk)e

θ∗(kKs−S(0,k))]

H
e−θ∗Ksk

≤
E[ha(a0)]E[hs(s0)]

H
e−θ∗Ksk ,

where we lastly used the stationarity of (an)n and the property

that the expectation of supermartingales is non-increasing.

III. APPLICATIONS. BACKLOG AND DELAY

In this section we apply the previous theoretical results to

analyze the queueing performance of a bursty source, denoted

by L, and transmitting over an Aloha and CSMA/CA shared

channel together with L − 1 other (saturated) sources (see

Figure 2).

In both cases we consider a bursty source L being modelled

by a Markov-Modulated On-Off (MMOO) process as in Fig-

ure 3: (an)n is a Markov chain with state space S = {0, 1}
and associated transition probabilities pa and qa.

The transition matrix of the Markov chain is given by

Ta =

(

1− pa pa
qa 1− qa

)

,



MAC
L− 1 (other) sources

A D

Fig. 2. A tagged source L, comprising of arrival and departure processes
A and D, respectively, competing on a MAC shared channel (Aloha or
CSMA/CA) with L− 1 other sources

0 1

pa

qa
R

Fig. 3. The arrival process for source L, modelled in terms of a Markov-
Modulated On-Off (MMOO) process

whereas a’s steady state distribution is given by

πa =

(

qa
pa + qa

,
pa

pa + qa

)

.

The cumulative arrival process can be represented as

A(n) =
n
∑

k=1

f(ak) , (5)

where f(0) = 0, f(1) = R, and R > 0 is the peak rate

transmitted while the source is in state ‘1’ (i.e., the “On” state).

In the following we consider the two cases when the source

L shares an Aloha or CSMA/CA channel with L − 1 other

(saturated) sources denoted by {1, 2, . . . , L− 1}.

A. Aloha

With the (slotted) Aloha protocol, in each time slot a source

transmits with a fixed probability ptr > 0, independently from

the other sources and also from previous transmissions. Thus,

the probability of a successful transmission is given by

psuc := ptr (1− ptr)
L−1

.

During the interval of a successful transmission the link

provides an ideal capacity C > 0. In any other interval, due

to a successful transmission of another source or a collision,

no capacity is provided (for source L). The service process

for the source L is thus given by

S(m,n) :=

n
∑

k=m+1

sk ,

with the (instantaneous) service rates

sk :=

{

C P = ptr (1− ptr)
L−1

0 P = 1− ptr (1− ptr)
L−1

(see Figure 4 and also Ciucu et al. [9]).

0 1

psuc

1− psuc

1− psuc psuc

C

Fig. 4. The service process for source L, modelled in terms of a process
with independent increments correspondign to a Aloha link

To compute stochastic bounds on the backlog and delay of

source L, we observe that A and S admit arrival- and service-

martingales, according to Examples 8 and 7, respectively. We

consider the corresponding parameters, i.e., ha(·) and Ka for

the arrival-martingales, and Ks for the service martingales

(recall that hs(·) = 1 for the i.i.d. service-martingales).

We now state the main result for the Aloha scenario.

Corollary 11 (Backlog and Delay for Aloha). Assume the

stability condition E[a1] < E[s1] and let

θ∗ := sup{θ > 0 : sp(T θ
a ) = Ls(θ)

−1} ,

where sp(·) denotes the maximal positive eigenvalue, and

Ls(θ) := 1− ptr (1− ptr)
L−1

+ ptr (1− ptr)
L−1

e−θC

is the Laplace transform of sk. Let further ha be a (positive)

eigenvector of T θ∗

a . Then the following bounds hold for the

backlog and delay of source L:

P(Q ≥ σ) ≤
E[ha(a0)]

H
e−θ∗σ

P(W (n) ≥ k) ≤
E[ha(a0)]

H
e−θ∗Ksk ,

where H is defined as in Definition 3.

Proof. Note first that θ∗ is well-defined (i.e., the supremum is

taken over a non-empty set) because

d

dθ
sp(T θ

a )

∣

∣

∣

∣

θ=0

= E[a1] < E[s1] =
d

dθ
Ls(θ)

−1

∣

∣

∣

∣

θ=0

.

Note also that the more explicit definition of θ∗ follows

from Theorem 9, whereby the values Ka and Ks are from

Examples 8 and 7, respectively, i.e.,

θ∗ := sup

{

θ > 0 :
log sp(T θ

a )

θ
≤

logE
[

e−θs1
]

−θ

}

.

The replacement of the inequality by an equality is possible

due to the continuity of the eigenvalues and the Laplace

transform. The rest of the proof follows from Theorems 9 and

10 using the constructions from Examples 7 (for the service-

martingales) and 8 (for the arrival-martingales).

To illustrate the accuracy of the obtained delay bounds, we

quickly provide several numerical results in Figures 5 and 6,

by varying both the utilization and also the number of sources.

The bounds are shown as continuous lines and the simulation

results are shown as box-plots.
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Fig. 5. CCDF of the virtual delay of source L with probabilities pa = 0.1,
qa = 0.5, ptr = 0.2, L = 10 sources, and utilizations ρ = 0.5, 0.75, 0.9
(bottom to top), respectively
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Fig. 6. CCDF of the virtual delay of source L with probabilities pa = 0.1,
qa = 0.5, ptr = 0.2, ρ = 0.75, and number of sources L = 5, 10, 25
(bottom to top), respectively

B. CSMA/CA

We adopt the CSMA/CA model from Durvy et al. [13]

in terms of a Markov chain (sn)n, as depicted in Figure 7.

Due to its tree structure, the Markov chain is reversible

Kelly [21]). The source L can transmit (subject to current

buffer occupancy) at some peak rate C > 0 (i.e., ideal

channel’s capacity) while in state L, whereas all sources are

in backoff mode while in state 0.

The transition matrix is given by

Ts =











1− ps
ps

L
. . . ps

L

qs 1− qs . . . 0
...

...
. . .

...

qs 0 . . . 1− qs











,

whereas the steady-state distribution of s is given by

πs =

(

qs
ps + qs

,
ps

L(ps + qs)
, . . . ,

ps
L(ps + qs)

)

.

Using the methodology from [9], the service process

S(m,n) of link L can be represented by

S(m,n) :=

n
∑

k=m+1

C1{sk=L} , (6)

where 1{·} denotes the indicator function.

0 1 2 . . . L
ps/L
ps/L

ps/L

qs
qs

qs

C

Fig. 7. The service process for source L, modelled in terms of a Markov
process corresponding to a CSMA/CA link

To compute stochastic bounds on the backlog and delay

experienced by the source L, Example 8 implies that both

the arrival and service processes A and S from Eqs. (5)

and (6) admit arrival- and service-martingales, respectively.

Consider the corresponding parameters, i.e., ha(·) and Ka

for the arrival-martingales and hs(·) and Ks for the service

martingales; let also T θ
s be the corresponding exponential

column-transform for the service process.

We now state the main result for the CSMA/CA scenario.

Corollary 12 (Backlog and Delay for CSMA/CA). Assume

the stability condition E[a1] < E[s1] and let

θ∗ := sup{θ > 0 : sp(T θ
a ) = (sp(T−θ

s ))−1} ,

where sp(·) denotes the maximal positive eigenvalue. Let also

ha and hs be corresponding (positive) eigenvectors of T θ∗

a

and T θ∗

s , respectively. Then the following bounds hold for the

backlog and delay of source L:

P(Q ≥ σ) ≤
E[ha(a0)]E[hs(s0)]

H
e−θ∗σ

P(W (n) ≥ k) ≤
E[ha(a0)]E[hs(s0)]

H
e−θ∗Ksk ,

where H is defined as in Definition 3.

Proof. Note first that θ∗ is well-defined (i.e., the supremum is

taken over a non-empty set) because

d

dθ
sp(T θ

a )

∣

∣

∣

∣

θ=0

= E[a1] < E[s1] =
d

dθ

(

sp(T−θ
s )

)−1
∣

∣

∣

∣

θ=0

.

For the rest of the proof simply apply Theorems 9 and 10

for the constructions of arrival- and service-martingales from

Example 8. According to these constructions, the definition of

θ∗ from Theorem 9 reduces to the more explicit form

θ∗ := sup

{

θ > 0 :
log sp(T θ

a )

θ
≤

log sp(T−θ
s )

−θ

}

.

The further replacement of the inequality by an equality is due

to the same argument as in the proof of Corollary 11.

As for Aloha, we quickly provide several numerical results

in Figures 8 and 9; the figures confirm that the stochastic delay

bounds are very accurate for a broad range of scenarios (note

that at large values of the tail delay, the box plots widen due

to the availability of fewer data points in the simulations).
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Fig. 8. CCDF of the virtual delay of source L with probabilities pa = 0.1,
qa = 0.5, ps = 0.8, qs = 0.2, L = 10 sources, and utilizations ρ =

0.5, 0.75, 0.9 (bottom to top), respectively
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Fig. 9. CCDF of the virtual delay of source L with probabilities pa = 0.1,
qa = 0.5, ps = 0.8, qs = 0.2, utilization ρ = 0.75, and number of sources
L = 5, 10, 25 (bottom to top) flows, respectively

Finally, we note that for both Aloha and CSMA/CA, the arrival

and service processes are independent. That is due to the fact

that the construction of the service process is oblivious to the

arrival process, and in particular it holds for saturated arrivals;

such constructions are conservative since the network nodes

do not rely on backlog state information from neighborhood

nodes, and thus the channel may be underutilized.

IV. FURTHER APPLICATIONS. SCHEDULING AND MIMO

In this section we present more complex applications of

the general results from Section II. Concretely, we extend

the CSMA/CA scenario from Section III-B in two directions:

1) accounting for in-source scheduling and 2) accounting for

spatial multiplexing MIMO.

A. In-Source Scheduling

We generalize the basic scenario from Section III-B by

assuming that the tagged source L comprises of multiple flows,

whose transmissions are first scheduled before being sent over

the CSMA/CA channel. Without loss of generality we assume

only two flows, whose arrivals and departures are denoted by

A and D, and A′ and D′, respectively, and a Static Priority

(SP) scheduling policy (see Figure 10).

The arrival processes A and A′ of the source L are statisti-

cally independent, and are assumed for simplicity to have the

same parameters as in Section III for the arrival-martingales,

SP
Scheduler

A

A′

CSMA/CA
L− 1 (other) sources

D′

SP
Scheduler

D

Source L

Fig. 10. A tagged source L, comprising of two arrival flows A and A′,
which are scheduled according to an SP policy before being transmitted over
the channel

i.e., Ka = K ′
a and ha(·) = h′

a(·) obtained from Example 8;

let also T θ
a be the corresponding exponential column-transform

(of a single flow).

In this scheduled system, we are interested in the per-

formance metrics (i.e., backlog and delay) for the flow A.

Because the channel offers an exact service process (i.e.,

S(m,n) defined in Eq. (6)), in the sense that Eq. (1) is in

fact satisfied with equality (see [9]), it follows that the overall

service process available to the flow A is given by

SA(m,n) = S(m,n)−A′(m,n) .

This service process is known in the (stochastic) network

calculus literature as the leftover service process (see also

Chang [7] and Fidler [16]).

Concerning the service process S(n), recall from Example 8

that it admits service-martingales with parameters hs(·) and

Ks; let T θ
s be the corresponding column-transform.

Corollary 13 (Backlog and Delay for SP + CSMA/CA).

Assume the stability condition 2E[a1] < E[s1] and let

θ∗ := sup{θ > 0 :
(

sp(T θ
a )
)2

= (sp(T−θ
s ))−1} ,

where sp(·) denotes the maximal positive eigenvalue. Let also

ha and hs be corresponding (positive) eigenvectors of T θ∗

a

and T θ∗

s , respectively. Then the following bounds hold for the

backlog and delay of the (sub-)arrival flow A of source L:

P(Q ≥ σ) ≤
E[ha(a0)]

2
E[hs(s0)]

H
e−θ∗σ

P(W (n) ≥ k) ≤
E[ha(a0)]

2
E[hs(s0)]

H
e−θ∗(Ks−K′

a)k ,

where

H := min{ha(x)h
′
a(x

′)hs(y) : x+ x′ − y > 0} .

Proof. Note first that θ∗ is well-defined using the same argu-

ment from Corollary 12. Next we slightly adapt Theorems 9

and 10 for the constructions from Example 8. The key obser-

vation (in the case of the delay) is that by the independence

assumption of A, A′, and S, the product

ha(an)ha(a
′
n)hs(sn)e

θ(A(k,n)−(n−k)Ka+A′(n)−nK′

a+nKs−S(n))

is a supermartingale. Note also that A′(k, n) is shifted with

respect to both A′(n) and S(n), whence the term Ks−Ka in

the asymptotic decay rate of the delay. Finally, the definition

of θ∗ from Theorem 9 becomes

θ∗ := sup{θ > 0 : 2Ka ≤ Ks} ,
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Fig. 11. Spatial multiplexing MIMO: the tagged source L is transmitted over
J independent MAC channels

which completes the proof.

Corollary 13 generalizes the SP delay bounds from [26],

available for a constant-rate server; similar generalizations are

immediate in the case of other scheduling policies such as

FIFO and EDF. Corollary 13 reveals the modularity feature of

the proposed methodology, in the sense of jointly analyzing

interconnected systems such as in-source scheduling and MAC

protocols; a further convincing example is provided next.

B. MIMO

Here we generalize the basic scenario from Section III-B

by considering a spatial multiplexing MIMO (multiple-input

multiple-output) scenario (see, e.g., Heath and Paulraj [19]),

in which the source L is served by J CSMA/CA channels

(see Figure 11). To keep the analysis tractable, we assume the

independence of the channels and disregard fading effects.

The source L has the same arrival process as in Sec-

tion III, in particular with the parameters Ka and ha(·)
for the corresponding arrival-martingales. Furthermore, by

extending the notations from Section III-B, we assume that

the service on each channel j = 1, 2, . . . , J is modulated by

i.i.d. Markov processes (sj,n)n (with the same parameters as

in Section III-B). For the particular case of MIMO spatial

multiplexing, the overall service process Sj(m,n) of link L
can be represented by

S(m,n) :=

J
∑

j=1

Sj(m,n) :=

J
∑

j=1

n
∑

k=m+1

C1{sj,k=L} , (7)

where Sj(m,n) is the service process for channel j.

Using Example 8, each service process Sj(n) admits

service-martingales with parameters hs(·) and Ks (due to the

i.i.d. assumption across the modulated Markov processes). Let

also T θ
a and T θ

s be the corresponding exponential column-

transforms for the arrival and service processes.

Corollary 14 (Backlog and Delay for MIMO). Assume the

stability condition E[a1] < JE[s1] and let

θ∗ := sup{θ > 0 : sp(T θ
a ) = (sp(T−θ

s ))−J} ,
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Fig. 12. The tail delays from Corollary 14 as a function of the number of
channels J (pa = 0.1, qa = 0.5, ps = 0.8, qs = 0.2, utilization ρ =

0.75, and ε = 10
−5, 10−3, 10−1); the bottom horizontal lines correspond

to the tail delays under deterministic service (the corresponding bounds are
computed with Theorem 10 and Examples 6 and 8)

where sp(·) denotes the maximal positive eigenvalue. Let also

ha and hs be corresponding (positive) eigenvectors of T θ∗

a

and T θ∗

s , respectively. Then the following bounds hold for the

backlog and delay of source L:

P(Q ≥ σ) ≤
E[ha(a0)]E[hs(s0)]

J

HJ

e−θ∗σ

P(W (n) ≥ k) ≤
E[ha(a0)]E[hs(s0)]

J

HJ

e−θ∗Ksk ,

where

HJ := min{ha(x)
J
∏

j=1

hs(yj) : x−
J
∑

j=1

yj > 0} .

Proof. As in Corollary 12, θ∗ is well-defined. We make the

key observation that by the independence assumption on the

Markov processes (sj,n)n, the product

J
∏

j=1

hj(sj,n)e
θ(JKs−S(n))

is a service-martingale for the overall service process S.

Consequently, the definition of θ∗ from Theorem 9 becomes

θ∗ := sup{θ > 0 : Ka ≤ JKs} .

The rest proceeds as in Corollary 12.

Let us now analyze the impact of the number of channels J ,

in particular on the probabilistic delay of source L. Due to the

implicit definition of θ∗ from Corollary 14 in terms of eigen-

values/vectors, a quantitative result is conceivably difficult to

be obtained. We thus resort to a numerical experiment, using

the same numerical values as in Section III-B. Concretely,

in Figure 12, we illustrate the tail delay for three violation

probabilities (i.e., ε = 10−5, 10−3, 10−1) as a function of the

number of channels J , and for a normalized utilization ρ =
0.75 (for each J). The key observation is the exponential decay

of the delay, an effect which is more pronounced for smaller

(and thus more practical) values of ε.



The figure also includes the corresponding delays in a

scenario with deterministic (and normalized) service, for the

three values of ε (i.e., the three horizontal bottom lines, which

are invariant to J). As expected, for each ε, the tail delays

converge to the horizontal line corresponding to a deterministic

service; especially for small values of ε, the convergence is

however very slow and not visible in the current plot. While

we limit J to 10 for both practical considerations and the

readability of the plot, we point out that for ε = 10−5 the

convergence is still not visible at J = 100, but only around

J = 1000 (i.e., an impractical regime).

Overall, the figure convincingly indicates that MIMO spa-

tial multiplexing is subject to the power-of-two phenomena.

Concretely, for realistic small values of ε, there is a dramatic

decrease in delay when increasing the number of channels

from J = 1 to J = 2. The delays continue to decrease

by further increasing J , but at much smaller rates. See also

Mitzenmacher [25] for a related discussion of the power-of-

two phenomena in the context of randomized load balancing.

V. CONCLUSIONS

In this paper we have developed the first rigorous and accu-

rate methodology to compute queueing performance metrics

(i.e., backlog and delay) for bursty sources sharing a MAC

(bursty) channel: the sources are modelled using an existing

arrival-martingale model, whereas the available service for

the source at the shared channel is modelled using a novel

service-martingale model. By leveraging the modelling power

of the proposed martingale methodology we have shown that

the obtained stochastic bounds are remarkably tight in the

case of Markov-modulated sources, and Aloha and CSMA/CA

channels. We have also shown that our methodology offers an

attractive modularity feature, in the sense that we could extend

basic results to much more complex scenarios accounting for

in-source SP scheduling or MIMO spatial multiplexing.
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