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Abstract

This paper proposes a new characterization of queueing systems by bounding a suitable exponential trans-
form with a martingale. The constructed martingale is quite versatile in the sense that it captures queueing
systems with Markovian and autoregressive arrivals in a unified manner; the second class is particularly
relevant due to Wold’s decomposition of stationary processes. Moreover, using the framework of stochas-
tic network calculus, the martingales allow for a simple handling of typical queueing operations: 1) flows’
multiplexing translates into multiplying the corresponding martingales, and 2) scheduling translates into
time-shifting the martingales. The emerging calculus is applied to estimate the per-flow delay for FIFO, SP,
and EDF scheduling. Unlike state-of-the-art results, our bounds capture a fundamental exponential leading
constant in the number of multiplexed flows, and additionally are numerically tight.

The theory of effective bandwidth emerged in the 1990s as a unified framework to analyze the queueing
behavior of broad classes of arrivals (e.g., deterministically regulated, Markovian, long-range dependent);
for an excellent overview see Kelly [1]. The effective bandwidth is associated to an arrival flow and is
essentially a number between the flow’s average and peak rates, depending on some predefined Quality-of-
Service (QoS) constraint (e.g., margins on the buffer overflow probabilities). Effective bandwidths posses a
fundamental additive property which makes them very attractive from an engineering point of view, e.g.,
admission control under some QoS requirements can be performed by allowing flows as long as the sum of
their effective bandwidths does not exceed the available capacity.

This attractive additive property, however, was raised up as a fundamental drawback of effective band-
widths by Shroff and Schwartz [2]. Indeed, since only Poisson flows are closed under superposition, the
effective bandwidth framework is prone to very pessimistic estimates. An alternative convincing technical
explanation, on the pitfalls of effective bandwidths, was provided by Choudhury et al. [3]. Considering
in particular the delay distribution W of some multiplexed flows, the corresponding effective bandwidth
approximation states asymptotically that

P (W > d) ∼ αe−θd , (1)

where α is the asymptotic constant, θ is the asymptotic decay rate, and f(x) ∼ g(x) means that f(x)/g(x)→ 1
as x → ∞. While the asymptotic decay rate θ is exact, the asymptotic constant α can be a very loose
estimate. Indeed, for burstier than Poisson flows, it was convincingly shown by numerical results that,
non-asymptotically (in d),

P (W > d) ≈ κ#flowse−θd , (2)

where 0 < κ < 1. Sharp bounds capturing this behavior were formally obtained by Duffield [4] in the case
of Markov-Modulated On-Off processes satisfying a certain burstiness condition.

From a technical point of view, the inaccuracy (in non-asymptotic regimes) of the effective bandwidth
approximation from Eq. (1) stems from applying Boole’s inequality, i.e.,

P(sup
n
Xn ≥ σ) ≤

∑
n

P(Xn ≥ σ) . (3)

Email addresses: felix@inet.tu-berlin.de (Felix Poloczek), f.ciucu@warwick.ac.uk (Florin Ciucu)

Preprint submitted to Elsevier June 30, 2014



which is typically used in the large deviations framework to bound the supremum of a stochastic process.
It is known that this inequality is very loose, especially in non-Poisson scenarios (see Talagrand [5]). To
improve the accuracy a different approach was undertaken in [4] by extending the classical GI/GI/1 bounds
of Kingman [6]. Concretely, the key idea is to avoid Boole’s inequality and apply instead Doob’s inequality

P(sup
n
Xn ≥ σ) ≤ E[X0]σ−1 , (4)

for a suitably constructed martingale Xn in the case of Markov-Modulated On-Off (MMOO) processes.
Let us emphasize at this point that Eq. (2) holds at the aggregate level in a flows’ multiplexing scenario.

An immediate question of practical interest, which constitutes the scope of this paper, concerns whether
this fundamental result holds at the per-flow level in a scheduling scenario as well. Unfortunately, classical
state-of-the art results in scheduling systems with Markovian arrivals share the pitfall of Boole’s inequality;
see Courcoubetis and Weber [7] for FIFO, Berger and Whitt [8] and Wischik [9] for Static Priority (SP),
and Sivaraman and Chiussi [10] for Earliest-Deadline-First (EDF), and Bertsimas et al. [11] for Weighted-
Fair-Queueing (WFQ). More recently, Ciucu et al. [12] demonstrated that Eq. (2) does hold at the per-flow
level for FIFO, SP, EDF, and WFQ scheduling, in the specific case of Markov fluid processes. The central
idea consists in invoking Doob’s inequality on a suitable martingale construction by Ethier and Kurz ([13],
p. 175), after appropriately decoupling scheduling using the framework of the stochastic network calculus.

In this paper we develop a unified framework in which Eq. (2) holds in great generality, at the per-flow
level, for FIFO, SP, and EDF scheduling. To this end, we propose a novel representation of a queueing
system through a martingale-envelope. Moreover, we integrate it in the framework of the stochastic network
calculus (SNC), which is a fairly general and unified framework to compute bounds in queueing networks for a
broad class of arrivals and scheduling algorithms (see Ciucu and Schmitt [14]). Unlike existing SNC envelope
models, which set bounds on the arrival processes alone, the proposed martingale-envelope sets bounds on
a suitable exponential transformation, involving both the arrival process and the allocated capacity. The
crucial insight enabling the developed unified framework is that typical queueing operations simply translate
into martingale operations:

1. Multiplexing of flows translates into multiplying the corresponding martingales.

2. Scheduling translates into time-shifting the martingales, corresponding to the scheduled flows, at a
specific shifting time parameter depending on the scheduling algorithm itself.

The second operation in particular highlights the instrumental role of the emerged SNC martingale frame-
work to deal with the difficult problem of scheduling in a unified manner, roughly by decoupling scheduling
through a shifting parameter ; this shifting parameter can be tuned depending on scheduling, i.e., FIFO, SP,
and EDF.

We apply our unified framework to the class of discrete-time Markovian arrivals, and demonstrate the
first-time manifestation of Eq. (2) at the per-flow level, for FIFO, SP, and EDF; our results can be regarded
as per-flow level extensions of the aggregate level results by Duffield [4]. Remarkably, unlike Markov fluid
arrivals for which Eq. (2) always holds at the per-flow level (see [12]), the discrete-time counterpart bounds
only hold in certain burstiness scenarios; we will explain this idiosyncracy by an underlying embeddability
property of Markov chains.

We will also consider p-order autoregressive processes which can approximate the whole class of station-
ary processes (this property is typically referred to as Wold’s decomposition, [15], p. 187). Although the
autoregressive processes are also Markovian, their particular representation allows for a closed-form deriva-
tion of the performance bounds (the more general Markovian processes are subject to bounds in terms of
implicit eigenvalues/vectors equations). More remarkably, unlike the results from [16], p. 340, which yield
bogus (infinite) bounds when fitted for unbounded increment distributions, our results provide numerically
accurate bounds.

For the rest of the paper we first develop the theory of martingale-envelopes in Section 1. Then, in
Section 2, we apply the emerging SNC framework to several classes of processes (independent increments,
general Markovian arrivals, and p-order autoregressive processes). We finally discuss several interesting
technical issues in Section 3 and then conclude the paper.
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1. A Calculus with Martingale-Envelopes

(a) Scenario 1: single flow

C
A(n)

A'(n) D'(n)

D(n)

(b) Scenario 2: multiplexed flows

SA(n) D(n)

(c) Scheduling abstraction

Figure 1: Two scenarios: (a) consists of a single flow A, whereas (b) has an additional cross-flow A′, in (c) the cross-flow from
(b) is encoded in the dynamic service process S.

We consider two queueing scenarios as depicted in Figure 1, in a discrete-time model. In the first scenario
(Figure 1(a)) a single flow A arrives at a server with capacity c > 0, whereas in the second (Figure 1(b)),
two flows A (through-flow) and A′ (cross-flow) compete for a shared server with total capacity C = c+ c′.

The cumulative arrivals are given by stochastic processes

A(m,n) =

n∑
k=m+1

ak , A′(m,n) =

n∑
k=m+1

a′k , (5)

where (an)n and (a′n)n are the instantaneous arrival processes which are throughout assumed to be stationary.
As a consequence of Kolmogorov’s extension theorem, both processes (an)n∈N and (a′n)n∈N can be extended
to stationary processes (an)n∈Z and (a′n)n∈Z having the same finite dimensional distributions.

In the second scenario, there exists a variety of scheduling policies determining the priority of the data
from flow A and A′, respectively. In this paper we will consider static priority (SP), first in, first out (FIFO),
and earliest deadline first (EDF).

The network calculus approach to address scheduling queueing systems is to transform the system from
Figure 1(b) into the system from Figure 1(c). The transformation occurs by encoding information about
the capacity, the cross-flow, and the scheduling into a single service process S(m,n) which satisfies

D(n) ≥ (A ∗ S) (n) := inf
0≤k≤n

{A(0, k) + S(k, n)} , (6)

for any arrival flow A(n). In some sense, the service process S(m,n) is intimately related to the impulse-
response of a linear and time invariant (LTI) system (for a discussion of this analogy see, e.g., [17, 18, 14]).

The performance metrics we are interested in are 1) the stationary queue size Q, i.e., the amount of data
in the system at time n, and 2) the virtual delay

W (n) := inf{k ∈ N | A(n− k) ≤ D(n)} ,

i.e., the time a data unit would have stayed in the system had it departed at time n. By the stationarity
assumption, Q has the following representation (see [16])

Q :=D sup
n∈N
{Ar(0, n)− Cn} , (7)

where Ar stands for the reversed process, i.e.,

Ar(m,n) :=

n∑
k=m+1

a−k ,

(where by convention Ar(0, 0) := 0) and =D denotes equality in distribution.
We next introduce our characterization of a queueing system by a certain supermartingale. First we

introduce two helpful technical notations:
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Notation 1. Denote by −→an the p-dimensional vector

−→an := (an, an + an−1, . . . , an + · · ·+ an−p+1) =

(∑i

k=1
an−k+1

)
1≤i≤p

.

Notation 2. For functions h1, . . . , hp let Πh denote the product

Πh(x1, . . . , xp) :=

p∏
i=1

hi(xi) .

For brevity, we omit the parameter p in Notation 2, because its value is clear from the context. We
remark that we will consider p = 1 for the class of Markovian arrivals (see Section 2.2), and any values of p
for the class of p-order auto-regressive processes (see Section 2.3).

Definition 3 (Martingale-Envelope). For p ≥ 0 and monotonically increasing functions h1, . . . , hp :
R+ → R+, and θ > 0, we say the flow A admits a (Πh, θ, c)-martingale-envelope if for every m ≥ 0 the
process

Πh (−→an) eθ(A
r(m,n)−(n−m)c) ≤Mm(n) (8)

is almost surely bounded by a supermartingale Mm.

An intuition for this definition is the following: In order to keep a queueing system in a stable regime,
by Loynes’ condition, the average arrival rate has to be strictly less than the service rate. If one ignores
the positivity constraint on the buffer, its expected increment (drift) is negative and thus the buffer content
‘resembles’ a supermartingale. The conceptual reason for the exponential transform is that its shape directly
determines the decay rate of queueing metrics (which for Markovian arrivals are exponential). From a
technical point of view, the (convex) exponential transform assigns more weight to larger arrivals, reducing
the negative drift and consequently the gap between the constructed supermartingale and a martingale.
Moreover, since Doob’s inequality does not differentiate between a supermartingale and a martingale, one
looks to minimize the previous gap by maximizing the decay factor θ, which eventually determines the
decay rate of the queueing metrics. Finally, the function h compensates for potential correlations among
the increments; in particular, for i.i.d. increments, h is a constant.

The monotonicity of the hi is a technical condition needed for the following important Lemma:1

Lemma 4. For σ > 0, let
N := inf{n ≥ 0 | Ar(0, n)− cn ≥ σ} (9)

denote the first point in time where the supremum in Eq. (7) is attained. Then for any k ≥ 1,

k−1∑
i=0

aN−i ≥ kc .

For the special case when k = 1, the inequality in Lemma 4 can be slightly strengthened to AN ≥ τ ,
where τ is defined by

τ := inf{x > c | P(an ∈ [x,∞)) > 0} ,

i.e., the smallest possible instantaneous arrival such that the buffer content increases. Note that this is only
of importance if discrete distributions are considered. For continuous distributions τ is simply equal to c,
and the statement is contained in Lemma 4.

The next theorems and corollaries are the central results, describing how martingale-envelopes can be
used to derive bounds on the performance metricsQ andW . We start with the first scenario from Figure 1(a),
i.e., considering the case of a single flow:

1For the sake of readability, all the proofs are given in the Appendix.
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Theorem 5 (Single Flow Bound). If the flow A admits a (h, θ, c)-martingale-envelope, then we have
the following upper bound on the backlog and the virtual delay respectively:

P(Q ≥ σ) ≤ E[Πh(−→an)]

Πh(c, 2c, . . . , pc)
e−θσ , P(W (n) ≥ k) ≤ E[Πh(−→an)]

Πh(c, 2c, . . . , pc)
e−θck .

Consider now the second scenario from Figure 1(b): two single flows A and A′ with allocated capacities
c and c′, respectively, are multiplexed into one queueing system with a shared total capacity of C = c+ c′.
The resulting system can be analyzed in two different ways: Firstly, for the aggregate system both metrics
Q and W can be estimated (aggregate analysis), and secondly, the virtual delay W for a single flow in the
multiplexed system can be analyzed for several scheduling policies (per-flow analysis).

For both tasks, a technical definition is required:

Definition 6. For two monotonically increasing functions h, h′ : R+ → R+, define the (min,×)-convolution
by

(h⊗ h′)(t) := inf
0≤s≤t

h(s)h′(t− s) ,

for all t ∈ R+. As above, if h and h′ are families of functions, Π (h⊗ h′) is defined componentwise:

Πh⊗ h′ =
∏

i
hi ⊗ h′i .

It is easy to check that h1 ⊗ h2 is monotonically increasing as well, and that, by definition, for all a, b:

h⊗ h′(a+ b) ≤ h(a)h′(b) . (10)

1.1. Aggregate Analysis

The next theorem addresses the aggregate analysis for the queueing system with aggregate arrivals A+A′:

Theorem 7 (Aggregate Envelope). Assume two independent arrivals A and A′ described by martingale-
envelopes with parameters (Πh, θ, c) and (Πh′, θ, c′), respectively. Then the aggregate flow A + A′ admits a
(Πh⊗ h′, θ, C)-martingale-envelope, where C := c+ c′.

The advantage of this theorem is that an aggregate flow can be handled in the same way as a single flow,
e.g., for the constructed martingale-envelope, Theorem 5 can be evoked to derive the bounds on the backlog
Q and the virtual delay W .

Note that in Theorem 7 the flows are required to be homogeneous in the sense that they admit the same
θ in their respective envelopes. If this is not the case, the following transform of martingale-envelopes can
be used:

Lemma 8. If A admits a (Πh, θ, c)-martingale-envelope and θ′ < θ, then A admits a
(

Πh
θ′
θ , θ′, c

)
-

martingale-envelope as well.

1.2. Per-Flow Analysis

We now turn to the per-flow analysis of flow A in the multiplexed queueing system equipped with a
scheduling policy (Figure 1(b)). The key element is the following technical lemma:

Lemma 9. Assume the same situation as in Theorem 7. Then for every l ≥ 0 and σ > 0 the following
bound on the sample path holds:

P
(

sup
n≥l
{Ar(l, n) +A′r(0, n)− Cn} ≥ σ

)
≤ E[Πh(−→an)]E[Πh(

−→
a′n)]

Πh⊗ h′(c, 2c, . . . , pc)
e−θ(σ+cl) .
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The crucial parameter in Lemma 9 is the parameter l, indicating how many points in time the process A
is delayed. This parameter can be adjusted according to the scheduling policy under consideration, or more
precisely to the expression of the service process S depicted in Figure 1(c). We will next apply Lemma 9
and properly tune the parameter l for SP, FIFO, and EDF scheduling.

Let us first describe a common step. Let D denote the departure process of flow A. For every policy,
for which a service process S was constructed, the bounding procedure starts with a computation similar to
the one of the virtual delay in Theorem 5:

P(W (n) ≥ k) = P(A(0, n− k) ≥ D(n)) ≤ P (A(0, n− k) ≥ A ∗ S(n))

= P
(

sup
0≤m≤n

{A(m,n− k)− S(m,n)} ≥ 0

)
≤ P

(
sup
n≥k
{Ar(k, n)− Sr(0, n)} ≥ 0

)
, (11)

where we again used the monotonicity of A and the reversed representation.

Static Priority (SP). This scheduling policy always gives priority to the cross-flow A′. The service process
S(m,n) is given by (see [19]):

S(m,n) = [C(n−m)−A′(m,n)]+ , (12)

where [x]+ = max{0, x}.

Corollary 10 (SP Per-Flow Bound). Consider the situation as in Theorem 7, with SP as the scheduling
policy. Then for the virtual delay W (n) holds:

P(W (n) ≥ k) ≤ E[Πh(−→an)]E[Πh(
−→
a′n)]

Πh⊗ h′(c, 2c, . . . , pc)
e−θck .

First In, First Out (FIFO). For FIFO the service process S(m,n) is given by (see [20]):

S(m,n) = [C(n−m)−A′(m,n− x)]+1{n−m>x} , (13)

where x ≥ 0 is a parameter freely chosen, but fixed.

Corollary 11 (FIFO Per-Flow Bound). Consider the situation as in Theorem 7, with FIFO as the
scheduling policy. Then for the virtual delay W (n) holds:

P(W (n) ≥ k) ≤ E[Πh(−→an)]E[Πh(
−→
a′n)]

Πh⊗ h′(c, 2c, . . . , pc)
e−θCk .

Note the difference in the decay rate: Whereas for SP it is the per-flow capacity c, for FIFO we have the
total capacity C = c+ c′.

Earliest Deadline First (EDF). Now consider the case of EDF scheduling. Let d and d′ denote the relative
deadlines for the data units of flows A and A′, respectively. The service process S(m,n) is given by (see
[21]):

S(m,n) = [C(n−m)−A′(m,n− x+ min{x, y})]+1{n−m>x} , (14)

where x ≥ 0 is again a free parameter, and y := d−d′ denotes the difference between the respective deadlines.
It is convenient to distinguish between the cases y ≥ 0 and y < 0.

Let us first consider the case y ≥ 0:

Corollary 12 (EDF Per-Flow Bound, y ≥ 0). Assume EDF is used as scheduling policy, y ≥ 0, and
consider the situation as in Theorem 7. Then for the virtual delay W (n) holds:

P(W (n) ≥ k) ≤ E[Πh(−→an)]E[Πh(
−→
a′n)]

Πh⊗ h′(c, 2c, . . . , pc)
e−θ(Ck−c

′min{k,y}) .
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Consider now the case y = d− d′ < 0. This is more difficult as now min{k, y} = y < 0, so that for

n0 ∈ B := {n ≥ k | n < k − y} ,

the argument n0 − k + min{k, y} is negative as well. By definition (again from [21]), for those n0 ∈ B:

A′r(n0 − k + min{k, y}) = 0 . (15)

Corollary 13 (EDF Per-Flow Bound, y < 0). Assuming EDF scheduling with y < 0, for the virtual
delay W (n) holds:

P(W (n) ≥ k) ≤ E[Πh(−→an)]E[Πh(
−→
a′n)]

Πh⊗ h′(c, 2c, . . . , pc)
e−θ(Ck+c

′y) +
E[Πh(−→an)]

Πh(c, 2c, . . . , pc)
e−θ̃Ck ,

where θ̃ is the parameter to which the flow A admits a (Πh, θ̃, C)-martingale-envelope. Note that as C > c,
such a θ̃ exists and is greater than θ.

2. Applications

In this section we demonstrate the versatility of the proposed martingale-envelope calculus to address
several broad classes of arrival processes: with independent increments, with Markovian increments, and
p-order autoregressive.

2.1. Processes with Independent Increments

One of the simplest traffic model is given by a process with independent increments. Although not
realistic, it is included here because it provides a good intuition on how the martingale-envelope calculus
works. Let a1, a2 . . . denote nonnegative i.i.d. random variables. The arrival process is thus A(m,n) =∑n
k=m+1 ak. Let the capacity c > 0 satisfy the two stability conditions

E[a1] < c < sup a1 , (16)

to avoid the trivial scenarios of no queueing at all and infinite queue size, respectively.

Lemma 14. In the situation above there is a θ0 > 0 such that A admits a (1, θ0, c)-martingale-envelope.

Combining the martingale-envelope from Lemma 14 with the general theory from Section 1 the following
bounds hold:

Corollary 15. Consider an i.i.d. arrival flow (an)n, and a capacity c such that the condition from Eq. (16)
holds. Then for this single flow:

P(Q ≥ σ) ≤ e−θ0c , and P(W (n) ≥ k) ≤ e−θ0ck .

With an additional i.i.d. cross-flow (a′n)n and capacity c′ (satisfying the corresponding stability conditions),
for flow A holds in the multiplexed queueing system under scheduling:

FIFO: P(W (n) ≥ k) ≤ e−θCk SP: P(W (n) ≥ k) ≤ e−θck

EDF1: P(W (n) ≥ k) ≤ e−θ(Ck−c
′min{k,y}) EDF2: P(W (n) ≥ k) ≤ e−θ(Ck+c

′y) + eθ̃c
′k ,

where θ′0 is the parameter in the martingale-envelope for A′, θ = min{θ0, θ′0}, y = d− d′, C = c+ c′, and θ̃
is the parameter of flow A in the system with total capacity C.
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Figure 2: CCDF of the packet delay of 10 + 10 exponentially distributed subflows with λ = 1, utilization ρ = 0.95, and, for
EDF, y = d− d′ = 4.

EDF1 and EDF2 correspond to the cases y ≥ 0 and y < 0, respectively (see Corollaries 12 – 13).
Note that the aggregate analysis of the whole system (as in Subsection 1.1) is contained in the first part

of Lemma 15, as the resulting aggregate flow (an + a′n)n is still i.i.d.
In Figure 2 simulations of the MMOO and the corresponding bounds for SP and EDF are displayed2.

The Martingale bounds (from Corollary 15) almost match the simulations, whereas the bounds computed
with Boole’s inequality are off by several orders of magnitude. As a side remark, all comparisons between
bounds on virtual delays and packet delays account for the underlying Palm change of measure; moreover,
we restrict to SP and the first EDF scenario; FIFO is a particular case of EDF.

2.2. Processes with Markovian Increments

The previous independence assumption on the increments is now replaced by a Markovian correlation
structure, i.e., the process an is a Markov chain with state space S = {si | 1 ≤ i ≤ m}. To ensure stationarity,
we assume an to be in steady state.

Let π denote the stationary distribution and T the transition matrix of the reversed process, i.e.,

π(i) = P(an = si) and T (i, j) = P(an−1 = sj | an = si) .

In many cases the Markov chain is reversible and the matrix T coincides with the transition matrix of an
itself. Now, for any θ ≥ 0, let Tθ denote the exponentially transformed transition matrix, i.e.,

Tθ(i, j) = T (i, j)eθsj .

Clearly, T = T0. Further, let λ(θ) denote the spectral radius of Tθ and v a corresponding eigenvector. The
function λ(θ) plays a similar role as the moment generating function ϕ1 in Section 2.1. It can be shown (see
[22]) that v can be chosen to be positive and that

λ(θ) = lim
n→∞

E[eθA(n)]
1
n ,

so especially λ(θ) ≥ 1. Further, if the usual stability condition E[an] < c holds,

d

dθ
λ(θ)

∣∣∣∣
θ=0

= lim
n→∞

1

n
E[An] = E[an] < c =

d

dθ
eθc
∣∣∣∣
θ=0

,

(a more rigorous proof can be found in [4]). This means that by a similar argument as in the proof of
Lemma 14, θ can be chosen such that

λ(θ) = eθc . (17)

The following martingale construction can be found in [4]:

2For this figure (and the figures below), 100 independent simulations were run, each consisting of 109 packets. To ensure a
stationary regime, the first 108 packets in each run were discarded. The resulting (empirical) CCDFs are presented as box-plots.
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Lemma 16. In the situation above (i.e., such that Eq. (17) holds), if the function h defined by h(si) = v(i)
is monotonically increasing, then the flow A admits a (h, θ, c)-martingale-envelope.

The martingale-envelope constructed in Lemma 16 can be easily extended to Markov chains with con-
tinuous state space (see again [4]).

As an application of Lemma 16 consider the arrival model as a Markov Modulated On-Off Process
(MMOO), i.e., a Markov chain an jumping between the two states On and Off with probabilities α and β,
respectively. While in state On it transmits R data units per time unit, and while in state Off it does not
transmit any data. The stationary distribution is given by:

π0 := P(an = 0) =
β

α+ β
, π1 := P(an = R) =

α

α+ β
,

and that the process is reversible, i.e., A = Ar. Further, in [23] it was shown that the eigenfunction h (as
defined in Lemma 16) is monotonically increasing if and only if:

Cov[an, an+1] > 0⇔ α < 1− β . (18)

As an immediate consequence of Theorem 5 we now have:

Corollary 17. For the MMOO arrival model above and a (per-flow) capacity c satisfying c > Rπ1 = E[an],
it holds for the backlog Q and the virtual delay W (n):

P(Q ≥ σ) ≤κe−θσ , and P(W (n) ≥ k) ≤ κe−θkC ,

where κ := α+βh(0)/h(R)
α+β . Moreover, κ < 1.

We now consider the case of N such queueing systems (Ai, c) being multiplexed. Instead of writing down
the transition matrix for the resulting process, we simply can apply Theorem 7 and Lemmas 10 – 13 to
obtain bounds on the aggregate and per-flow analysis, respectively:

Corollary 18. Let

κ =
(π0v0 + π1v1)

N

v
N−dCR−1e
0 v

dCR−1e
1

.

Then in the multiplexed queueing system with total capacity C = Nc, it holds for the aggregate flow:

P (Q ≥ σ) ≤ κe−θσ , and P (W (n) ≥ k) ≤ κe−θCk ,

and for a single flow comprising N1 < N subflows under scheduling:

FIFO: P (W (n) ≥ k) ≤ κe−θCk SP: P (W (n) ≥ k) ≤ κe−θN1ck

EDF1: P (W (n) ≥ k) ≤ κe−θ(Ck−(N−N1)cmin{k,y}) EDF2: P (W (n) ≥ k) ≤ κe−θ(Ck+(N−N1)cy)

+ κ̃e−θ̃Nck ,

where y := d − d′, and EDF1 and EDF2 correspond to y ≥ 0 and y < 0, respectively. For EDF2, κ̃ and θ̃
denote the corresponding parameters in the queueing system which has the total capacity C = Nc but only
the N1 subflows as arrivals.

It can be shown that the leading constant is exponential in N (see [23]) and thus the fundamental
property from Eq. (2) is captured. As a side remark, the corresponding leading constant from [16], p. 340,
is greater than one.

We point out that while the bounds in Corollary 18 for the aggregate flow have already been obtained
in [23], the per-flow bounds (i.e., for SP, FIFO, and EDF) represent the contribution of this paper.

In Figure 3 simulations of the MMOO and the corresponding bounds for SP and EDF are displayed
for different link utilizations. As in the case of independent increments, the Martingale bounds (from
Corollary 18) are tight even at high utilizations (i.e., ρ = 0.95), whereas the bounds calculated with Boole’s
inequality (see Eq. (3)) are off by several orders of magnitude.

As a last remark, the martingale-envelope constructed in this section can be extended to p-order Markov
chains by considering the cartesian product Sp as the new state space.
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(b) Utilization ρ = 0.95, and d− d′ = 49.

Figure 3: CCDF of the packet delay with N1 = 1
2
N = 10, α = 0.1, β = 0.5, and R = 1.

2.3. Autoregressive Arrival Models

As a third example we consider autoregressive processes. Roughly, a p-order autoregressive process
(AR(p)) evolves by rescaling the p previous values of the process and adding Gaussian white noise, i.e.,
uncorrelated Gaussian random variables. Although implicitly contained in the theory of (p-order) Markov
processes, the different representation has the advantage of providing closed form solutions to the perfor-
mance metrics.

We start with the formal definition of AR(p). For simplicity, we assume throughout that the white noise
is not only uncorrelated but independent.

Definition 19. Let p ≥ 1, Z0, Z1, Z2, · · · ∼ N0,1 i.i.d., ϕ1, . . . , ϕp ∈ [0, 1), ϕ =
∑p
k=1 ϕk, and µ, σ > 0. If

the relation

an =

p∑
k=1

ϕkan−k + (1− ϕ)µ+ (1− ϕ)σZn (19)

holds, the process (an)n is called the p-order autoregressive process, AR(p).

It can be shown (see, e.g., [15], p. 85) that if all the (complex) roots of the characteristic polynomial

χ(z) = 1−
p∑
k=1

ϕkz
k

lie outside the unit interval, i.e., χ(z) = 0 ⇒ |z| > 1, then the process AR(p) is stationary. We assume
throughout that this is fulfilled. As above, we apply Kolmogorov’s theorem to obtain an extended process
(an)n∈Z which is still stationary and satisfying Eq. (19). Moreover, as AR(p) is clearly a Gaussian process
itself, it is also reversible (see [24]), i.e., Ar = A.

Note that although E[an] = µ for all n ∈ Z, by the correlation of AR(p) the variance V[an] is not equal
to σ, but must be derived using the Yule-Walker-Equations (see again [15], p. 239).

As in the previous examples we interpret an as the instantaneous arrival at time n, i.e.,

An :=

n∑
k=1

ak

represents the cumulative arrivals up to time n. In the next theorem a martingale-envelope for AR(p) is
constructed. As usual, c > µ denotes the flow’s allocated capacity.

Theorem 20. Let θ = 2 c−µσ2 and for 1 ≤ k ≤ p

hi(t) := e
θ

1−ϕϕkt .

Then the flow A admits a (Πh, θ, c)-martingale-envelope.

10



Note that for p = 0 we recover the case of independent increments as in Subsection 2.1.

Clearly, the product function Πh is monotonically increasing in its parameters
(∑k

i=1 ti

)
0≤k≤p

. So

Lemma 4 can be applied to obtain

Πh(−→aN ) ≥ Πh(c, . . . , pc) = e
θ

1−ϕ c
∑p
k=1 kϕk , (20)

where N denotes the stopping time from Eq. (9).
Let now

Y :=

p∑
k=1

ϕk

k∑
i=1

an−i+1

(note that in distribution this is independent of n). Y is normally distributed with E[Y ] = µ
∑p
k=1 kϕk. Let

ν2 := V[Y ] denote its variance, which again can be calculated using the Yule-Walker-Equations.
Considering the single flow scenario from Figure 1(a) and Theorem 5, the following bounds hold:

Corollary 21. For the autoregressive arrival model AR(p) with a capacity c satisfying c > µ, let

κ = e
θ(µ−c)
1−ϕ

(∑p
k=1 kϕk−

ν2

(1−ϕ)σ2

)
, and θ = 2

c− µ
σ2

.

Then for the backlog Q and virtual delay W (n) hold

P(Q ≥ σ) ≤κe−θσ , and P(W (n) ≥ k) ≤ κe−θck .

Let us consider the case of p = 1, i.e.,:

an = ϕan−1 + (1− ϕ)µ+ (1− ϕ)σZn .

This special case allows an explicit calculation of the variance ν2:

ν2 = V[ϕan] = V[ϕan+1] = ϕ2V[ϕan + σ (1− ϕ)Zn+1] = ϕ2
(
ν2 + σ2 (1− ϕ)

2
)
,

and thus ν2 = σ2 (1−ϕ)ϕ2

1+ϕ . The leading constant κ from Corollary 21 reduces to

κ =
E[h(an)]

h(c)
= e

θ(µ−c)
1−ϕ

(
ϕ− ν2

(1−ϕ)σ2

)
= e

θ(µ−c)
1−ϕ

(
ϕ− ϕ2

1+ϕ

)
= e

θϕ(µ−c)
1−ϕ2 . (21)

Note that in this case κ ∈ (0, 1]. Therefore, with regards to the queue size Q, the following bound holds:

P(Q > σ) ≤ e
θϕ(µ−c)
1−ϕ2 e−θσ .

This bound improves the known results drastically: e.g., in [16], p. 340, an additional factor occurs,
which depends on an upper bound on the increment process. As the Gaussian white noise is unbounded,
the corresponding bound from [16] is meaningless.

Now consider the second scenario as in Figure 1(b): We assume that two homogeneous and independent
autoregressive arrival flows are multiplexed.

Corollary 22. With the definitions as in Corollary 21 for the multiplexed queueing system with aggregate
capacity 2c holds:

P(Q ≥ σ) ≤ κ2e−θσ , and P(W (n) ≥ k) ≤ κ2e−θ2ck ,

and for a single flow under scheduling:

FIFO: P(W (n) ≥ k) ≤κ2e−θ2ck SP: P(W (n) ≥ k) ≤κ2e−θck

EDF1: P(W (n) ≥ k) ≤κ2e−θ(2ck−cmin{k,y}) EDF2: P(W (n) ≥ k) ≤κ2e−θ(2ck+cy) + κ̃e−θ̃2ck .

Again, y := d − d′, and EDF1 and EDF2 correspond to y ≥ 0 and y < 0, respectively; κ̃ and θ̃ denote the
constants κ and θ with c exchanged by 2c.

11
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(b) AR(2), ϕ1 = 0.4, ϕ2 = 0.2

Figure 4: CCDF of the packet delay for AR(1) ((a)) and AR(2) ((b)), with parameters µ = 0.5, σ = 1, utilization ρ = 0.75,
and, for EDF, y = d− d′ = 24.
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(b) AR(2), ϕ1 = 0.4, ϕ2 = 0.2

Figure 5: CCDF of the packet delay for AR(1) ((a)) and AR(2) ((b)), with parameters µ = 0.5, σ = 1, utilization ρ = 0.95,
and, for EDF, y = d− d′ = 99.

Note that as the sum of independent autoregressive processes is still autoregressive, the aggregate bounds
in the first part of Corollary 22 could also be obtained by applying Corollary 21 to the single flow An +A′n.
As the corresponding κ is independent of the number of flows, applying Eq. (A.2) iteratively leads to bounds
retaining the fundamental exponential decay property from Eq. (2).

In Figures 4 and 5, simulations of the AR(p) and the corresponding bounds for SP and EDF are displayed
for different link utilizations. Unlike in the two previous examples, Boole’s inequality could not be evoked to
obtain bounds, since the sum on the right hand side in Eq. (3) seems not to converge. A follow-up discussion
on tightness will be given in the next section.

3. Discussion

In this section we discuss on the tightness issues of the martingale-based method and provide some
insight into a contriving idiosyncracy between discrete vs. continuous-time results. We divide the discussion
according to the flows’ burstiness level.

3.1. Bursty Flows

Although the bounds illustrated in Figures 2-5 are seemingly accurate, the bounds degrade with the
level of correlations within the arrivals. This trend can be particularly noticed for 1-order vs. 2-order
autoregressive processes (see Figure 4(a) vs. 4(b)); the same could be observed by reducing the scale of the
x-axis in Figures 5(a) and 5(b). One explanation is that on a logarithmic y-axis the simulations throughout
are seemingly convex, i.e., the probabilities in an initial phase decay faster than asymptotically (this behavior
has been in fact convincingly shown to hold for bursty flows in [3]). In contrast, as the martingale-envelope
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Figure 6: Possible CCDF of the delay. Depending on the flows’ burstiness the martingale (exponential) bounds are inevitably
loose for small or large delays.

is based on an exponential transform, it can only render bounds of the form of the (generalized) exponential
distribution (i.e., Prob ≤ κe−θx), whence the straight lines in the plots. In other words, the longer the
“initial phase” of the true distribution is, or more generally the level of long-range correlations, the larger
the gap is between the distribution and the obtained bounds. We point out that the bounds match in fact
simulations at the starting point (although difficult to visually perceive from the printed plots) of the true
distribution. To more conveniently contrast the true distribution and the best possible exponential bounds,
see Figure 6(a).

A possible approach to reduce this inherent gap would be to use hyperexponential rather than exponential
transforms, i.e., functions of the form p1e

θ1x + p2e
θ2x, where the parameters p1, λ1 and p2, λ2 are scaled

accordingly to the initial and the tail periods, respectively.

3.2. Less Bursty Flows

We now address the case of Markovian arrivals which are ‘less bursty (i.e., better) than independent
increments’. This characterization is the analogous of ‘less bursty than Poisson’ (see [3] or [25]) in discrete
time.

Let us recall the martingale-envelope from Subsection 2.2, but now assume that the “burstiness”-
condition from Eq. (18) is not fulfilled. This condition was used to prove that the leading constant κ,
in the bounds from Corollary 17, is strictly less than 1. For multiplexed flows, the condition finally implied
that the bounds are exponentially decaying in the number of flows (see Corollary 18).

The condition fails when α ≥ 1 − β, or, equivalently when h(0) ≥ h(R). Let the stopping time N be
defined as in Eq. (9). For this specific Markov chain, we have again h(aN ) = h(R), as there are only two
states. Hence, proceeding as in the proof of Theorem 5:

P(Q ≥ σ) ≤
α+ β h(0)

h(R)

α+ β
e−θσ ,

but now with a leading constant greater or equal to 1. This indicates that the method developed in this
paper does not lead to sharp bounds, because of the now exponentially increasing leading constant in the
number of flows, for better than Poisson flows.

For such flows, the shape of the performance metrics was observed to be concave, on a logarithmic scale
of the y-axis. For a convenient illustration see Figure 6(b), and for a concrete illustration of our bounds see
Figure 7 (with a deliberately high utilization). In contrast to the case of bursty flows, whereby the bounds
are only tight at the starting point due to the convex shape of the distribution, the bounds for less bursty
flows are loose in the initial phase even for a small number of flows. Moreover, due to exponential increase
of the leading constant, the bounds eventually blow up in the number of flows, albeit they exactly capture
the decay rate θ.
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Figure 7: CCDF of the packet delay of with probabilities α = 0.7, β = 0.9, utilization ρ = 0.999 and 10 + 10 (left) and 50 + 50
(right) through- and cross-flows, respectively.

Let us finally make a connection to the parallel recent results from [12]. Therein, the authors studied
a similar queueing system, with the seemingly unimportant difference that they take place in continuous
rather than discrete time. A key finding was that any arrival flow driven by a (continuous-time) Markov
process with two states admits performance metrics which are decaying exponentially in the number of flows.
Let us next explain the roots of this contriving idiosyncracy between continuous and discrete-time models.

The elementary explanation is that while for a continuous-time Markov process (Xt)t≥0 the sub-process
(Xn)n∈N is a discrete-time Markov chain, the converse does not hold in general since not every Markov
chain is embeddable into a continuous process. To give some background, a discrete Markov chain with a
transition matrix P is said to be embeddable if there is a continuous-time Markov process with generator
Q such that

P = eQ .

The problem of embeddability was first addressed in [26], whereas in [6] it was shown that in the very
special case of two states, a chain is embeddable if and only if det(P ) > 0. Remarkably, this condition is
equivalent to the condition α < 1 − β from Eq. (18) (recall that this condition was previously established
in [4]). Unfortunately, for the general case (i.e., chains with more than two states), no explicit condition is
known to the best of our knowledge.

4. Conclusion

In this paper we have proposed a novel characterization of queueing systems by martingale-envelopes
and developed a related unified calculus dealing with flows’ multiplexing and scheduling. The crucial result
of this calculus is that the scheduling operation translates into a time shifting operation of the underlying
martingale-envelopes, enabling thus the derivation of tight per-flow performance bounds by leveraging a
variant of Doob’s inequality. We applied this calculus to Markovian and p-order autoregressive arrival
flows and derived bounds on the per-flow delay distributions for several scheduling policies (FIFO, SP, and
EDF). In certain burstiness scenarios, the obtained per-flow bounds capture for the first-time a fundamental
exponential decay factor in the number of flows. Moreover, the bounds almost match simulations, improving
over classic results (e.g., FIFO: [7, 16], SP: [8, 9], EDF: [10]) by arbitrary orders of magnitude, especially at
extreme utilizations.

However, as the martingale-envelope is based on an exponential transform, the bounds’ accuracy can
degrade in situations where the true distribution diverges from the exponential. The development of more
contrived martingale-envelopes encapturing this behavior, together with the analysis of other transformations
of queueing systems (e.g., of a queueing network), remain open issues for further research in this area.

Acknowledgement

This work was partially funded by the DFG grant Ci 195/1-1.

14



References

[1] F. P. Kelly, Notes on effective bandwidths, in: Stochastic Networks: Theory and Applications. (Editors: F.P. Kelly, S.
Zachary and I.B. Ziedins) Royal Statistical Society Lecture Notes Series, 4, Oxford University Press, 1996, pp. 141–168.

[2] N. B. Shroff, M. Schwartz, Improved loss calculations at an ATM multiplexer, IEEE/ACM Transactions on Networking
6 (4) (1998) 411–421.

[3] G. Choudhury, D. Lucantoni, W. Whitt, Squeezing the most out of ATM, IEEE Transactions on Communications 44 (2)
(1996) 203–217.

[4] N. G. Duffield, Exponential bounds for queues with Markovian arrivals, Queueing Systems 17 (3-4) (1994) 413–430.
[5] M. Talagrand, Majorizing measures: The generic chaining, Annals of Probability 24 (3) (1996) 1049–1103.

URL http://www.math.ohio-state.edu/~talagran/preprints/majmeas.dvi

[6] J. F. C. Kingman, The imbedding problem for finite markov chains, Zeitschrift für Wahrscheinlichkeitstheorie und Ver-
wandte Gebiete 1 (1) (1962) 14–24.

[7] C. Courcoubetis, R. Weber, Effective bandwidths for stationary sources, Probability in Engineering and Informational
Sciences 9 (2) (1995) 285–294.

[8] A. W. Berger, W. Whitt, Effective bandwidths with priorities, IEEE/ACM Transactions on Networking 6 (4) (1998)
447–460.

[9] D. Wischik, Sample path large deviations for queues with many inputs, Annals of Applied Probability 11 (2) (2001)
379–404.

[10] V. Sivaraman, F. M. Chiussi, Statistical analysis of delay bound violations at an earliest deadline first scheduler, Perfor-
mance Evaluation 36 (1) (1999) 457–470.

[11] D. Bertsimas, I. Paschalidis, J. Tsitsiklis, Large deviations analysis of the generalized processor sharing policy, Queueing
Systems 32 (4) (1999) 319–349. doi:10.1023/A:1019151423773.

[12] F. Ciucu, F. Poloczek, J. Schmitt, Sharp bounds in stochastic network calculus, CoRR abs/1303.4114.
[13] S. N. Ethier, T. G. Kurtz, Markov processes – characterization and convergence, John Wiley & Sons Inc., 1986.
[14] F. Ciucu, J. Schmitt, Perspectives on network calculus: no free lunch, but still good value, in: ACM Sigcomm, 2012, pp.

311–322.
[15] P. J. Brockwell, R. A. Davis, Time Series: Theory and Methods, Springer-Verlag, 1991.
[16] C.-S. Chang, Performance Guarantees in Communication Networks, Springer Verlag, 2000.
[17] R. L. Cruz, C. Okino, Service guarantees for window flow control, in: 34th Allerton Conference on Communications,

Control and Computating, 1996.
[18] J.-Y. Le Boudec, P. Thiran, Network Calculus, Springer Verlag, Lecture Notes in Computer Science, LNCS 2050, 2001.
[19] M. Fidler, An end-to-end probabilistic network calculus with moment generating functions, in: IEEE International Work-

shop on Quality of Service (IWQoS), 2006, pp. 261–270.
[20] R. L. Cruz, SCED+: Efficient management of quality of service guarantees, in: IEEE Infocom, 1998, pp. 625–634.
[21] J. Liebeherr, Y. Ghiassi-Farrokhfal, A. Burchard, On the impact of link scheduling on end-to-end delays in large networks,

IEEE Journal on Selected Areas in Communications 29 (5) (2011) 1009–1020. doi:10.1109/JSAC.2011.110511.
[22] I. Iscoe, P. Ney, E. Nummelin, Large deviations of uniformly recurrent markov additive processes, Advances in Applied

Mathematics 6 (4) (1985) 373–412. doi:10.1016/0196-8858(85)90017-X.
URL http://dx.doi.org/10.1016/0196-8858(85)90017-X

[23] E. Buffet, N. G. Duffield, Exponential upper bounds via martingales for multiplexers with Markovian arrivals, Journal of
Applied Probability 31 (4) (1994) 1049–1060.

[24] G. Weiss, Time-reversibility of linear stochastic processes, Journal of Applied Probability 12 (4) (1975) 831–836.
[25] T. Bonald, A. Proutiere, J. Roberts, Statistical performance guarantees for streaming flows using expedited forwarding,

in: IEEE Infocom, 2001, pp. 1104–1112.
[26] G. Elfving, Zur Theorie der Markoffschen Ketten, Acta Societatis Scientiarum Fennicae 2 (8).
[27] P. Billingsley, Probability and Measure (3rd Edition), Wiley, 1995.
[28] A. Cherny, Some particular problems of martingale theory, in: From Stochastic Calculus to Mathematical Finance,

Springer, 2006, pp. 109–124.

AppendixA. Proofs

Proof of Lemma 4. Assume that
∑k−1
i=0 aN−i ≤ kc for some k ≥ 1. Then

AN−k − (N − k) c = (AN −Nc)−

(
k−1∑
i=0

aN−i − kc

)
≥ σ ,

contradicting the minimal property of N .
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Proof of Theorem 5. Let the stopping time N as in Eq. (9). By definition, P(Q ≥ σ) = P(N < ∞).
Applying the optional sampling theorem (see [27]) to the supermartingale from Eq. (8) (with m = 0) yields
for every k ∈ N:

E[Πh(−→an)] = E[M0(0)] ≥ E[M0(N ∧ k)] ≥ E[M0(N ∧ k)1N<k]

= E[Πh(−→aN )eθ(A
r(0,N)−cN)1N<k]

≥ Πh(c, 2c, . . . , pc)eθσP(N < k) ,

where we used the monotonicity of Πh and Lemma 4. Now simply let k →∞.
For the virtual delay, first note that:

P(W (n) ≥ k) = P(A(0, n− k) ≥ D(n))

≤ P(A(0, n− k) ≥ (A ∗ S)(n))

= P(A(0, n− k) ≥ inf
0≤l≤n

{A(0, l)− C(n− l)})

≤ P( sup
0≤l≤n−k

{A(l, n− k)− C(n− l)} ≥ 0)

= P(sup
l≥0
{Ar(0, l)− Cl} ≥ Ck) ,

where we used the service process from Eq. (6) in the first and the monotonicity of A in the second inequality;
in the final line, by stationarity, the time was shifted to n− k.

As a final step, let N as in Eq. (9) with σ = Ck, and proceed as for the backlog.

Proof of Theorem 7. Let an and a′n denote the respective increment processes. Clearly, Eq. (10) implies for
all n:

(Πh⊗ h′)(−→an +−→an′)eθ(A(m,n)+A′(m,n)−C(n−m))

≤ Πh(−→an)eθ(A(m,n)−c(n−m))Πh′(−→an′)eθ(A
′(m,n)−c′(n−m)) ,

i.e., the product of the two martingale envelopes. By the independence assumption, this product is a
martingale as well (see [28]), and the proof is done.

Proof of Lemma 8. The function Φ(t) = t
θ′
θ is concave and monotonically increasing in t ≥ 0. Now

E
[
Πh

θ′
θ (−−→an+1) eθ

′(Ar(m,n+1)−c(n−m−1)) | Fn
]

=E
[
Φ
(

Πh (−−→an+1) eθ(A
r(m,n+1)−c(n−m−1))

)
| Fn

]
≤Φ

(
E
[
Πh (−−→an+1) eθ(A

r(m,n+1)−c(n−m−1)) | Fn
])

≤Φ
(

Πh (−→an) eθ(A
r(m,n)−c(n−m))

)
=Πh

θ′
θ (−→an) eθ

′(Ar(m,n)−c(n−m)) ,

using Jensen’s inequality for conditional expectations (see [27]) in the third line.

Proof of Lemma 9. We proceed similarly as in the proof of Theorem 7. Consider the two supermartingales

M(n) = Πh(−→an)eθ(A
r(l,n)−c(n−l)) , n ≥ l , and

M ′(n) = Πh(−→an′)eθ(A
′r(0,n)−c′n) , n ≥ 0

from the definition of the envelopes. By the independence assumption, the process

M̃(n) = M(n)M ′(n)
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is a supermartingale in the time-shifted domain {l, l + 1, l + 2, . . . }. Let N denote a stopping time similar
to the one from Eq. (9):

N := inf{n ≥ l | Ar(l, n) +Ar(0, n)− Cn ≥ cl + σ} . (A.1)

Again, the desired probability is equal to P(N < ∞). By applying the optional stopping theorem, one has
for k ≥ l:

E[M̃(l)] ≥E[M̃(N ∧ k)]

≥E[Πh(−→an)Πh′(−→an′)eθ(A
r(l,n)+A′r(0,n)−Cn+cl)1N<k]

≥Πh(c, 2c, . . . , pc)Πh′(c, 2c, . . . , pc)eθ(σ+cl)P(N < k)

≥Πh⊗ h′(c, 2c, . . . , pc)eθ(σ+cl)P(N < k) .

Now, by independence and the supermartingale property of M ′:

E[M̃(l)] =E[Πh(−→an)M ′(l)] = E[Πh(−→an)]E[M ′(l)]

≤E[Πh(−→an)]E[M ′(0)] = E[Πh(−→an)]E[Πh(
−→
a′n)] .

As above, we finally let N →∞ to complete the proof.

Proof of Corollary 10. In continuation of Eq. (11) with the service process as in Eq. (12):

P(W (n) ≥ k) ≤ P(sup
n≥k
{Ar(k, n)− Sr(0, n)} ≥ 0)

= P(sup
n≥k
{Ar(k, n)− [Cn−A′r(0, n)]+} ≥ 0)

≤ P(sup
n≥k
{Ar(k, n) +A′r(0, n)− Cn ≥ 0}) .

Now simply plug in the parameters σ = 0 and l = k into Lemma 9.

Proof of Corollary 11. For the free parameter choose x = k. Then Eq. (11), with the service process from
Eq. (13), continues to:

P(W (n) ≥ k) ≤ P(sup
n≥k
{Ar(k, n)− Sr(0, n)} ≥ 0)

= P(sup
n≥k
{Ar(k, n)− [Cn−A′r(0, n− k)]+1{n>k}} ≥ 0)

≤ P(sup
n≥0
{Ar(0, n) +A′r(0, n)− C(n+ k)} ≥ 0) .

Now apply Lemma 9 with l = 0 and σ = Ck.

Proof of Corollary 12. Again, let x := k. Eq. (11) with the service process from Eq. (14) gives:

P(W (n) ≥ k)

≤P(sup
n≥k
{Ar(k, n) +A′r(0, n− k + min{k, y})− Cn} ≥ 0)

≤P( sup
ñ≥min{k,y}

{Ar(k, ñ+ k −min{k, y}) +A′r(0, ñ)

− C(ñ+ k −min{k, y}} ≥ 0)

≤P( sup
ñ≥min{k,y}

{Ar(min{k, y}, ñ) +A′r(0, ñ)− Cñ}

≥ C(k −min{k, y})) ,
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where we used the substitution
ñ = n− k + min{k, y}

in the third, and the stationarity of Ar in the fourth line. Now apply Lemma 9 with l = min{k, y}, and
σ = C(k −min{k, y}); hereby note that l ≥ 0 and σ − cl = Ck − c′min{k, y}.

Proof of Corollary 13. By splitting up the probability in Eq. (11) using the union bound

P(W (n) ≥ k) ≤ P( sup
n≥k:n/∈B

{Ar(k, n)− Sr(0, n)} ≥ 0)

+ P( sup
n≥k:n∈B

{Ar(k, n)− Sr(0, n)} ≥ 0) ,

one has for the first probability:

P( sup
n≥k:n/∈B

{Ar(k, n)− Sr(0, n)} ≥ 0)

≤P( sup
n≥k−y

{Ar(k, n) +A′r(0, n− k + y)− Cn} ≥ 0)

≤P( sup
n≥−y

{Ar(0, ñ) +A′r(−y, ñ)− Cñ} ≥ Ck)

≤ E[Πh(−→an)]E[Πh(
−→
a′n)]

Πh⊗ h′(c, 2c, . . . , pc)
e−θ(Ck+c

′y) .

In the third line, stationarity and the substitution ñ = n+ k was used, and in the fourth line Lemma 9 was
applied with σ = Ck, l = −y, and the roles of A and A′ were interchanged.

For the second probability with Eq. (15):

P( sup
n≥k:n∈B

{Ar(k, n)− Sr(0, n)} ≥ 0)

≤P( sup
k≤n<k−y

{Ar(k, n)− Cn} ≥ 0)

=P( sup
0≤ñ<−y

{Ar(0, ñ)− C(ñ+ k)} ≥ 0)

≤P(sup
ñ≥0
{Ar(0, ñ)− Cñ} ≥ Ck)

≤ E[Πh(−→an)]

Πh(c, 2c, . . . , pc)
e−θ̃Ck ,

with the usual substitution ñ = n − k and the stationarity assumption in the fourth line. In the last line
Eq. (7) and Theorem 5 with σ = Ck were used.

Proof of Lemma 14. Consider the two continuous functions

ϕ1(θ) := E[eθa1 ] and ϕ2(θ) := eθc .

Due to the first stability condition from Eq. (16) we know that

d

dθ
ϕ1(θ)

∣∣∣∣
θ=0

= E[a1] < c =
d

dθ
ϕ2(θ)

∣∣∣∣
θ=0

,

i.e., (since ϕ1(0) = ϕ2(0) = 1) there is ε > 0 such that ϕ1 < ϕ2 on [0, ε]. Due to the second stability
condition, ϕ1 will eventually become larger than ϕ2, and so by continuity there exists θ0 > 0 such that
ϕ1(θ0) = ϕ2(θ0). Now,

E[eθ0(A(n+1)−(n+1)c) | a1, . . . , an] = eθ0(A(n)−nc)E[eθ0a1 ]e−θ0c

= eθ0(A(n)−nc) ,

and so eθ0(An−nc) is a martingale.
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Proof of Corollary 15. Use the martingale-envelope from Lemma 14. For the first part, apply Theorem 5.
For the second apply Corollaries 10 – 13 using the transform from Lemma 8.

Proof of Lemma 16. Given M(n) as in Eq. (8), we have to show that it is a martingale. Note that:

E[h(an+1)eθan+1 | an = si] =

m∑
j=1

h(sj)e
θsjT (i, j)

=

m∑
j=1

Tθ(i, j)v(j) ,

so that

E[h(an+1)eθ(an+1−c) | Fn] = e−θcTθv

= e−θcλ(θ)h(an) = h(an) .

Now simply multiply both sides with eθ(A(m,n)−(n−m)c).

Proof of Corollary 17. With the remark below Lemma 4,

inf{x > c | P(an ∈ [x,∞) > 0)} = R .

Now apply Theorem 5 to the martingale-envelope constructed in Lemma 16.

Proof of Corollary 18. By the remark below Lemma 4 we can use τ = RdCR−1e as the smallest possible
value such that the aggregate input is larger than the capacity. Clearly:

h⊗N (τ∑N
i=1 Ai,C

) = v
N−dCR−1e
0 v

dCR−1e
1 .

Now simply apply Theorem 7 and Lemmas 10 – 13 to the envelope of Lemma 16.

Proof of Theorem 20. Note first that

Πh(−→an) = e
θ

1−ϕ
∑p
k=1 ϕk

∑k
i=1 an−i+1 .

For n ≥ 0, let Fn := σ{Zm | m ≤ n} and

Mn := h(an, . . . , an−p+1)eθ(An−nc) .

We show that Mn is a martingale w.r.t. Fn. Note that

E[h(an, . . . , an−p+1)eθ(an−c) | Fn−1]

=E[eθ(
1

1−ϕ (
∑p
k=1 ϕk

∑k
i=1 an−i+1)+an−c) | Fn−1]

=E[eθ(
1

1−ϕ (
∑p
k=1 ϕk

∑k
i=2 an−i+1)+ ϕ

1−ϕan+an−c) | Fn−1]

=E[eθ(
1

1−ϕ (
∑p
k=1 ϕk

∑k−1
i=1 an−i)+

∑p
k=1

ϕk
1−ϕan−k+µ+σZn−c) | Fn−1]

=E[eθ(
1

1−ϕ (
∑p
k=1 ϕk

∑k
i=1 an−i)+µ+σZn−c) | Fn−1]

=h(an−1, . . . , an−p)E[eθ(µ+σZn−c)]

=h(an−1, . . . , an−p) .

Multiplying both sides by eθ(An−1−(n−1)c) yields

E[Mn | Fn−1] = Mn−1

and the proof is complete.
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Proof of Corollary 21. Evaluating the leading constant from Theorem 5 with the given parameters yields:

E[h(an, . . . , an−p+1)]

h(c, . . . , pc)
=

E[e
θ

1−ϕ (µ
∑p
k=1 kϕk+νZ0)]

e
θ

1−ϕ (
∑p
k=1 ϕk

∑k
i=1 an−i+1)

=
e

θ
1−ϕ

(
µ
∑p
k=1 kϕk+

θν2

(1−ϕ)2

)
e

θ
1−ϕ

∑p
k=1 ϕkkc

= e
θ(µ−c)
1−ϕ

(∑p
k=1 kϕk−

ν2

(1−ϕ)σ2

)
= κ .

Now simply apply Theorem 5 and Theorem 20.

Proof of Corollary 22. By definition of hi in Theorem 20:

hi ⊗ hi(t) = hi(t)
2 . (A.2)

Now simply apply Theorem 7 and Corollaries 10 – 13 to the envelope of Theorem 20.
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