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ABSTRACT

The high variability of solar power due to intrinsic diurnal variabil-

ity, as well as additional stochastic variations due to cloud cover,

have made it difficult for solar farms to participate in electricity

markets that require pre-committed constant power generation. We

study the use of battery storage to ‘firm’ solar power, that is, to

remove variability so that such a pre-commitment can be made.

Due to the high cost of storage, it is necessary to size the battery

parsimoniously, choosing the minimum size to meet a certain re-

liability guarantee. Inspired by recent work that identifies an iso-

morphism between batteries and network buffers, we introduce a

new model for solar power generation that models it as a stochastic

traffic source. This permits us to use techniques from the stochastic

network calculus to both size storage and to maximize the revenue

that a solar farm owner can make from the day-ahead power mar-

ket. Using a 10-year of recorded solar irradiance, we show that our

approach attains 93% of the maximum revenue in a summer day

that would have been achieved in daily market had the entire solar

irradiance trace been known ahead of time.
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1. INTRODUCTION
The intermittent nature of solar energy hinders its fast penetra-

tion in the day-ahead electricity market. Using storage to firm solar

power is one of the most promising solutions. An important and

complex problem in this area is maximizing revenue in the day-

ahead market for a battery-equipped solar farm given the weather

forecast and the battery size. This problem has been explored in the

literature for wind power, but not solar power, which is different in

that it exhibits stochastic fluctuations modulating a deterministic

diurnal variation. Our work proposes a highly accurate technique

for solar firming as illustrated by numerical examples.

Our key contributions are:

1. We provide a new stochastic model for solar output power

which obviates the shortcomings of existing models. It lays

the foundation of many analyses that require the stochastic

characterization of the solar energy including storage sizing,

and revenue maximization in the day-ahead market.
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2. We use this model along with existing power loss formula-

tions from the stochastic network calculus to provide solu-

tions to the revenue maximization in the day-ahead market.

3. Using a large real data set consisting of the solar irradiance

measurements gathered over 10 years, we numerically show

that our analyses are quite accurate.

2. SOLAR POWERMODELLING
Solar power is measured by irradiance, which is the total power

incident on a unit area, and is referred to as the global irradiance

ig . The output electricity power from a photovoltaic (PV) panel

is αpvIg
1, where αpv is the product of PV area and PV panel ef-

ficiency in converting solar energy into electricity. Our aim is to

characterize αpvIg .

Fluctuations in ig consist of two elements: (1) idet: the deter-

ministic variation in diurnal irradiance which mainly occurs due to

the position of the sun in the sky (also called clear-sky irradiance)

and (2) idet(t) − ig(t): the high frequency fluctuations due to the

effect of clouds which modulate the clear-sky irradiance.

Existing clear-sky irradiance models accurately capture varia-

tions in idet as a function of location, date, and time. Hence, the

fluctuation of ig(t) at a given time instant t is limited to idet(t) −
ig(t). Existing models, however, do not accurately capture short

term fluctuations. To be more precise, the best known models (e.g.,

step changes [3, 4] and wavelet-based analysis [2]) require station-

arity and for this reason they choose to model the clear-sky index

(
ig

idet
) instead of ig(t)−idet(t) assuming that clear sky index (CSI)

is stationary which is not true in practice.

To characterize αpvIg , we seek to find a statistical sample path

lower envelope βl with bounding function εl which satisfies the

following for any time t ≥ 0 and any x ≥ 0P{sup
s≤t

{βl(t− s)− αpvIg(s, t)} > x

}

≤ ε
l(x) . (1)

Note that we do not require stationarity. We model the following

stochastic process instead of CSI:

iaux(t) = idet(t)− ig(t) + offset , (2)

where offset is a constant chosen such that iaux(t) is always posi-
tive. One can simply set it tomaxt(ig(t)− idet(t)).

We model fluctuations in Iaux using an approach originally de-

veloped for teletraffic modelling by determining two functions Gu
aux

1We use capital letters to denote cumulative processes, i.e., Ig(t) =
∑t

τ=1 ig(τ ).
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Figure 1: Day-ahead dispatch problem: net benefit as a function of the
battery size in summer days in site C1 with p = 58.51$/MWh, c =

55.51$/MWh, αpv = 1, T = 8 hr, and T1 = 8 am.

and εu such thatP{ sup
s≤t

{Iaux(s, t)− Gu
aux(t− s)}

︸ ︷︷ ︸

:=Y (t)

> x

}

≤ ε
u(x) (3)

for any x ≥ 0 and t ≥ 0. Note that εu can be chosen to be the com-

plementary cumulative distribution function (CCDF) of Y . That is,

εu(x) =
∫∞

x
fY (y)dy, where fY is the probability density func-

tion of Y .

Given Gu
aux and εu from Eq. (3) and combining it with Eq. (2),

we are able to provide a sample path lower envelope βl on αpvIg
with bounding function εl in the sense of Eq. (1).

3. POWER LOSS CALCULATIONS
Using the above definitions and given a lower sample path enve-

lope on the solar irradiance, we improve the power loss formulation

from [5] using the following lemma.

LEMMA 1. Suppose that an intermittent power source with pro-

cess S is fed to a battery with size C and the battery is used to pro-

vide a constant output power P . There is a statistical sample path

lower envelope βl on the intermittent energy source with bounding

function εl in the sense of Eq. (1). Suppose that εbl is a constant

which satisfies

∀τ ≥ 1 : P{P > S(τ − 1, τ )} ≤ ε
bl
. (4)

If the initial state of deficit battery charge2 is Bd
0 , then the power

loss at time t satisfies the followingP{l(t) > 0} ≤min

(

ε
bl
, εl

(

C −B
d
0 − sup

0≤τ≤t

(Pτ − β
l(τ ))

))

.

(5)

4. ELECTRICITY MARKET
Suppose that a power supplier wants to trade the next day’s avail-

able power in the electricity market for a time interval of size T ,

where the start time of the contract is T1. Energy can be traded as

2defined as the amount of energy needed to fully charge the battery
at a given time instant.

constant-power bids for time slots of size Ts (totalling
T

Ts
contracts

per day) and the supplier can propose a different constant power at

each time slot. The supplier earns $c for each watt-hour it is sched-
uled for. During the day of operation, if the supplier cannot provide

its scheduled power for a time interval of size larger than Tu, he is

penalized $p for each watt-hour under-power. Thus, Tu is the time

resolution (time unit) needed for the revenue maximization; note

that there are Ts

Tu
time units in a time slot.

For a given battery size and lower bound sample path envelope

on solar irradiance, we can compute the guaranteed output power

P ε∗(τ )watt in τ ’th time slot of the next day with loss of power less

than ε∗
P
(τ ) using Lemma 1. Denoting by P the actual available

power, the revenue maximization is given by

DA max revenue ≥ max
0≤ε∗≤1

T+T1
Ts∑

τ=T1

(

cP ε∗(τ )

− p
Ts

Tu

ε
∗

P
(τ )[P ε∗(τ )− P (τ )]+

)

Ts .

(6)

5. EVALUATION
We use the the dataset from SGP-C1 permanent site of Atmo-

spheric Radiation Measurement (ARM) program [1] for a large

time interval of 10 years (from 2002 to 2011) to numerically eval-

uate the accuracy of our analysis; the results are shown in Fig. 1,

illustrating that our analysis closely matches numerical simulations

across a variety of weather conditions.

6. CONCLUSION
Our work provides an accurate approach, based on the stochastic

network calculus, to compute probabilistic bounds on solar pro-

duction. We believe that our solar power model captures solar gen-

eration variability over multiple time scales more accurately than

the best-existing models. Using this approach, we pose and solve

an optimization problem where we seek to maximize the expected

revenue of a solar farm operator participating in a day-ahead mar-

ket. Our framework can also be used to size a battery such that

the overall revenue during battery life time is maximized. We have

evaluated our analysis on ten year’s traces of solar output and find

that our analysis closely approximates the results found from an

exact numerical evaluation.

This work assumes perfect batteries. In ongoing work, we are

using teletraffic approaches to model battery imperfections.
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