
Modelling Workflow Executions under Role-based Authorisation Control
Ligang He1, Kewei Duan2, Xueguang Chen3, Deqing Zou3, Zongfen Han3, Ali Fadavinia1 and Stephen A. Jarvis1

1. Department of Computer Science, University of Warwick, Coventry, UK
2. Department of Computer Science, University of Bath, Bath, UK

3. School of Computer Science and Technology, Huazhong University of Science and Technology, Wuhan, China.
liganghe@dcs.warwick.ac.uk

Abstract— Workflows are often used to represent
enterprise-type activities, and authorisation control is an
important security consideration in enterprise-level
applications. Role-Based Access Control (RBAC) is a
popular authorisation control scheme under which users
are assigned to certain roles, and the roles are associated
with permissions. This paper presents a novel
mechanism for modelling workflow execution in cluster-
based resource pools under Role-Based Access Control
(RBAC) schemes. Our modelling approach uses
Coloured Timed Petri-Nets, and various authorisation
constraints are modelled, including role constraints,
temporal constraints, cardinality constraints, Binding of
Duty and Separation of Duty constraints, etc. The
interactions between workflow authorisation and
workflow execution are also captured in the model. In
this paper, the modelling mechanism is developed in
such a fashion that the construction of the authorisation
model for a workflow can be automated. This feature is
very helpful in modelling a large collection of
authorisation policies or complex workflows. A Petri-net
simulation tool, the CPN-Tool, is utilised to implement
the developed modelling mechanism and simulate the
constructed model. Both system-level performance (e.g.,
utilisation of resource pools) and application-level
performance (e.g., workflow response time) can be
obtained from model simulations. This work can be used
to plan system capacity and investigate the impact of
authorization policies on system and application
performance.

Keywords: Modelling, Authorisation, Workflow, RBAC

I. INTRODUCTION

Business processes or workflows are often used to
model enterprise applications [6]. A workflow consists of
multiple activities or tasks with precedence constraints.
When we design workflow management/scheduling
strategies, or evaluate the performance of workflow
execution on target resources, it is often assumed that when
a task is allocated to a resource, the resource will accept the
task and start the execution once the processor becomes
available. In reality, however, authorisation policies may be
deployed in the organisations and used to specify who is
allowed to perform which tasks at what time. When these

authorisation schemes are taken into account, the situation
can become complex.

A number of authorisation schemes have been
presented, see [1][16]. The RBAC (Role Based Access
Control) scheme is one of the most popular authorisation
schemes. Under the RBAC scheme, users are assigned to
certain roles, while the roles are associated with prescribed
permissions. Therefore, the organisations can control the
users’ permissions through these roles.

The following example illustrates RBAC deployed in
banking [3]. A bank often uses a variety of computing
applications to support its business; these applications may
be deployed on a central resource pool (e.g., a computing
cluster) at the bank. A workflow may consist of tasks such
as credit data checks, automated signature approval, risk
analysis and so on. In each task, a particular application has
to be launched to perform the corresponding business
functions. Under RBAC, an application can only be
launched by certain users (i.e., the employees in the bank)
assuming certain roles (i.e., official positions such as branch
manager or financial advisor). The following authorisation
constraints are often encountered in such scenarios: 1) Role
constraints: An application may only be run by assuming a
particular set of roles; 2) Temporal constraints: A role or
user is only activated during certain time intervals (e.g., an
employee only covers morning shifts in a particular role); 3)
Cardinality constraints: The maximum number of
applications running simultaneously under a role is N; 4)
Separation of Duty constraints: If Task A is run by a role (or
a user), then Task B must not be run by the same role (or
user); 5) Binding of Duty constraints: If Task A is run by a
role (or user), then Task B must be run by the same role (or
user).

It is common to find such authorisation constraints and
workflow scenarios in several application domains, such as
healthcare systems [16] and in the manufacturing
community [8]. All these authorisation constraints may
affect the execution behaviors of applications and impact on
both application and system performance (e.g. mean
response time of workflows, utilisation of the resource pool,
etc). The focus of this paper is to model the authorisation
and execution of workflows in cluster-based resource pools.
The constructed models can then be analysed and/or
simulated to obtain system performance in terms of certain
metrics. Various types of authorisation constraints are
modelled in this paper, including role constraints, temporal

constraints, cardinality constraints, Binding of Duty (BoD)
and Separation of Duty (SoD) constraints. Various
performance metrics can be analysed and obtained from the
constructed models, including those for system-oriented
performance (e.g., utilisation and throughput) and for
application-oriented performance (e.g., response time of
workflows).

In this paper, the Colour Timed Petri-net formalism
[8][19] is applied to model workflow authorisation and
execution. A Petri-net simulation tool, the CPN Tool [25], is
utilised to implement and simulate the model. Performance
data is then obtained from running model simulations. The
work presented in this paper can be used to plan system
capacity or estimate application performance in the presence
of authorisation policies. This work can also provide insight
into how to tune performance by adjusting authorisation
policies so as to achieve balance between performance and
security overhead.

The remainder of this paper is organised as follows:
Section 2 discusses related work; Section 3 introduces the
Colour Timed Petri-Net formalism applied in this paper;
workflow authorisation and execution is modelled in
Section 4; model simulations are provided in Section 5 and,
Section 6 concludes the paper.

II. RELATED WORK

Workflow management has been extensively studied
and as a result is well documented in related literature
[3][6][11][18]. Much of this research is aimed at automating
the execution, and enhancing the performance, of workflows
in parallel and distributed systems [11][19]. Some of this
research has also utilised Petri-nets to model workflow
execution, however we note that their work does not
formally investigate the performance of workflow execution
under authorisation constraints.

Research has also been conducted on the topic of
security and authorisation constraints in workflow execution
[3][7][19][20]. Some of this research also uses Petri-nets to
model authorisation constraints. The work presented in this
paper differs from that research in the following respects:
First, the work found in [3][20] does not capture the
temporal constraints of the roles’ availability; in this work,
the roles’ temporal constraints are modelled. Second, it is
assumed in [3][7][14] that a task can only be run under one
role. This assumption simplifies the modelling process;
however, the assumption is not always true. It may well be
the case that a task is allowed to run under a range of roles.
The relaxation of this assumption is especially necessary
when temporal constraints of roles’ availability are taken
into account. In so doing, when one role is not available,
another activated role may be assigned to run the task, so
that the workflow execution can still progress. In this work,
the task-role assignments and the task-user assignments are
modelled in a flexible fashion, which allows a task to be run
under a selection of roles/users. Third, the work in [5][22]
does not capture the interactions between workflow

authorisation and workflow execution. The work presented
in this paper models resource competition and interactions
between the authorisation module and the execution
module. Finally, previous work only models the execution
or authorisation of a single workflow [21][24]. The
modelling mechanism developed here however, is able to
model the simultaneous execution of multiple workflows.

In previous work [10], we have applied Generalised
Stochastic Petri-Net (GSPN) theory to model workflow
executions under Role-based Authorisation Control, and
then used standard Petri-net analysis techniques to
theoretically calculate the performance from the constructed
models. Although GSPN is adequate to model the scenarios
investigated in that work, it struggles to meet the following
new requirements: First, although the temporal constraints
are modeled in [10], the temporal constraints have to be
regular due to the nature of GSPN. In this paper, the tokens’
temporal attributes, the time stamps and the transition
guards in the CTPN formalism, are all combined to capture
any type of temporal constraints. Second, duty constraints
are also modelled in [10]. However, it is assumed that two
tasks with duty constraints have to be run in sequence. In
this paper, the duty constraints between parallel tasks are
modelled. Moreover, Separation of Duty and Binding of
Duty are modelled in a uniform fashion in this paper, which
enables the assembly of authorisation modules to be
automated. Third, the maximum number of workflow
instances has to be known in advance before constructing
the models and the number cannot be varied after the
models have been constructed. In this work, different
workflow instances are represented by different token
colours and the number of workflow instances is an
adjustable model parameter. Finally, it is very difficult for
the GSPN modelling scheme in [10] to achieve automated
component assembly. It becomes tedious and error-prone
when we need to model a large collection of authorisation
policies. In this work, the model is constructed in a modular
fashion and individual authorisation modulars can be
assembled automatically to form the authorisation model for
the entire system.

Another major difference between the work in [10] and
this work is that in [10] we applied a theoretical approach to
calculate performance metrics from the constructed models.
In this paper, the developed modelling mechanism has been
implemented and performance data can be obtained by
running model simulations. These two approaches
complement each other, but the simulation approach is more
amenable to evaluating large-scale and irregular models.

III. COLOUR TIMED PETRI-NETS

The formal definition of a Colour Petri-Net (CPN) differs
depending on the source literature [3][25]. The CPN
formalism applied in this paper can be formally defined as
in Eq.(1) [25],

CPN = (P, T, I, O, CS, CF, A, G) (1)

where P is a finite set of places; T is a finite set of
transitions; I: T → P∞ is the input function mapping from a
transition to a multiset of places, which are termed input
places of the transition; O: T → P∞ is the output function
mapping from a transition to a multiset of places, which are
termed the transition’s output places; CS is a set of colours1

(a colour in the CPN in [25] is represented as a data type,
which can be a primitive data type or a derived data type);
CF: P → 2CP is the colour function mapping from places to a
subset of the colour set2; A: (T × P) (P × T) →f(CF(P)) is
the arc function, mapping a directed arc (from a place to a
transition or from a transition to a place) to a function of the
colours in the place P; G: T →))((

))()((

TOUTTINP

PCFf

is a guard

function mapping a transition to a function of the colours in
all places associated with T. The guard function defined in
[25] represents the substantive difference from CPN
definitions found in other literature [3].

A CPN model consists of places (defined in P) and
transitions (defined in T), and a number of directed arcs
(defined in IN and OUT). Each place can be marked with a
number of tokens, and each token has a data value, which is
termed the token color. The data value can be a primitive
data type, such as an integer and a string, or a complex
structure consisting of other primitive data types or complex
structures. The number of tokens and the token colours in
each place, called a marking, represents the state of the
model. A place is associated with a data type (termed a
colour set), which is defined in CS. A place’s colour set
determines the set of token colours that the tokens in the
place are allowed to possess. The model determines whether
a token can be fired through the arc functions associated
with the arcs (defined in A) and/or guard functions
associated to transitions (defined in G). An arc function
evaluates to a set of tokens, which determine the type and
number of tokens that can pass through the arc. An arc
function or a guard function can contain a number of
variables as well as the operations (e.g. comparison) and
logical operators (e.g. if-else branch) on these variables.
Therefore, an arc function or a guard function may evaluate
to different values for different tokens.

A Colour Timed Petri-Net is an extension of a CPN. In
a CTPN, a token can be associated with both a colour and a
time stamp. Furthermore, a CPN model has a global timer
representing the model time. The time stamp attached to a
token indicates the earliest time when the token can be
processed. In addition to the arc and guard function, whether
a transition can fire or not in a CTPN model, is also
controlled by the model’s global timer and the tokens’ time
stamps. The rule is that besides satisfying the arc and the
guard functions associated with a transition, the tokens must

1

A colour in the CPN defined in [25] is represented as a data type, which
can be a primitive data type (e.g., an integer) or a derived data type (e.g., a
record derived from other data types).
2 2CP is the power set of the colour set.

have time stamps which are no later than the value of the
global timer. The model remains at a given model time as
long as there are enabled transitions. If there are no such
transitions, the global timer is advanced to the earliest
model time at which at least one transition is enabled.

IV. MODELLING WORKFLOW AUTHORISATION

In this section, various types of authorisation constraint
and controls are modelled using CTPNs. These include: 1)
Role constraints; 2) Temporal constraints; 3) Role and user
assignment; 4) Binding-of-duty constraints; 5) Separation-of-
duty constraints; 6) Cardinality constraints; 7) Workflow
execution under authorisation control.

A. Role and user assignment subject to temporal
constraints

As discussed in the banking example above, a constituent
task of a workflow involves an application being launched
by an employee with an official position. Generally
speaking, a role (e.g., an official position) and a user (e.g., an
employee) need to be assigned to handle a task of a
particular type in the workflow. The model of assigning a
role and a user to a task is illustrated in Figure 1. In this
model, the transition Trt assigns a role in the Pr place to a task
in the Pt place, and deposits a token to the Prt place,
indicating the task-role assignment has been established.
When a token is deposited into the place Purt, it means that a
user has been assigned to the task. We call the model of
assigning a role and a user to a task a role and user
assignment module. It will be shown in Subsection IV.C that
these modules can be assembled to construct the
authorisation control module for the entire workflow.

A Petri-net model can be formally defined using Eq.1.
The remainder of this subsection is dedicated to determining
the attributes CS, CF, A and G (ie., token colours, arc and
Guard functions) for the role and user assignment module in
Fig.1. These attributes together enforce the temporal
constraints and role constraints. It is straightforward to
determine the attributes P, T, I and O in the model.
Therefore, they are omitted for brevity.

Figure 1. Role and user assignment module

1) Token colours
 A token in the Pr place, denoted as r, represents a role. The

colour of the token r is defined as r = (rid, D), where rid is
the role identifier and D is a set of durations in which the
role is activated and can be assigned to tasks, i.e.,

D = {[ldi, udi] | i ∈ }. (2)
 A token in the Pt place, denoted as t, represents a task. The

token colour is defined as t = (tid, wid, e), where tid is the
task identifier, wid is the identifier of the workflow that the

task belongs to, and e is the task’s execution time. A time
stamp ts is attached to the token t, which is symbolised as
t@ts. The time stamp represents the earliest time at which
the task can be processed. The time stamp of a new task is
initialised as the task’s arrival time.

 The colour of a token in the Prt place, which is the
combination of the color attributes of token t and r, is
defined as follows:

rt = (tid, wid, e, rid, D)
 A token in place Pu represents a user, whose colour is

defined as u = (uid, rid), where rid is the role that the user
belongs to.

 The colour of a token in the place Purt is defined as
urt = (uid, rid, tid, wid, e, D)

 (a) Sequential tasks (b) Parallel tasks
Figure 2. Duty constraints modules

2) arc functions
 The arc function A(Pr, Trt) can be defined as “If gt ⊑ r.D

then r”; This expression means that a role is allowed to be
assigned to a task only when the value of the global timer
is within one of the role’s activation durations (denoted by
the symbol “⊑”), i.e., the role is available. It is assumed in
this paper that the users have the same availability as their
associated roles. But it is straightforward to extend the
model to allow individual users to have different (more
restricted) availability (e.g., in the case of different
employees rotating to cover different shifts of the same
official position).

 Other arc functions in the model are defined as A(Pt, Trt) =
“t”, A(Pu, Tut) = “u”, A(Prt, Tut) = “rt” and A(Tut, Purt) =
“urt”

3) Guard functions
The guard G, associated with transition Trt, denoted as

G(Trti), is used to enforce role assignment restrictions. There
are two types of restriction. One is the role constraint which
specifies the set of roles that are allowed to run a task. This
restriction is expressed as “r.rid ∈ R(ti)”, where R(ti)
denotes the set of roles which can run ti. The other type of
restrictions specify that a role is assigned to a task only when
the task can run to completion within one of the role’s
activation durations specified in Eq.2. This restriction is
motivated by the fact that most existing workflow
description languages, such as BPMN [26], assume that a
task in a workflow is atomic. This restriction is formulated as
“[gt, gt+t.e] ⊑ r.D”. Therefore,

G(Trti) = r.rid ∈ R(ti) && [gt, gt+t.e] ⊑ r.D. (3)

B. Binding of duty and separation of duty constraints

The duty constraints impose restrictions on the role
assignments of two tasks in a workflow. Although Binding
of Duty (BoD) and Separation of Duty (SoD) represent
opposite authorisation behaviors, these two types of duty
constraints are modelled in a uniform fashion so that they
have the same model structure. We call these the SoD
module and the BoD module. The differences between these
are essentially in some arc and guard functions, as well as
the colour set of some places. The benefit of doing this is
that the models for individual duty constraints can be easily
assembled to form the authorisation model for the entire
workflow.

There are two types of relationship between two tasks
in a workflow in terms of precedence constraints: sequential
tasks and parallel tasks. Assume task ta and tb. If tb ∈

Pred(ta) or tb ∈ Succ(ta) (Pred(ti) and Succ(ti) denote the set
of tasks which are task ti’s predecessors and successors,
respectively), then ta and tb are sequential tasks and have to
be run in the required order. If tb ∉ Pred(ta) and tb ∉ Succ(ta),
ta and tb can be executed in parallel. Duty constraints are
modelled in a different way for these two types of tasks.
Their model structures are shown in Fig.2a and Fig.2b,
respectively.
1) Sequential tasks

As shown in Fig.2a, the duty constraints module
consists of the role and user assignment modules for ta and
tb, connected by place Pseq. Pseq is one of the output places of
transition Trt(ta) and one of the input places of transition
Trt(tb). The attributes of the role and user assignment
modules have been discussed in Subsection A. The
attributes related to the new place, Pseq, are as follows.

 Token colours: The colour of a token in place Pseq is
defined as seq = (tid, wid, rid), which carries the
information of which role has been assigned to task tid.

 Arc functions: A(Trt(ta), Pseq) and A(Pseq, Trt(tb)) are both
defined as “seq”.

 Guard functions: The guard functions associated with
Trt(tb) are different for SoD and BoD constraints. If it is a
SoD constraint, G(Trt(tb)) is expressed as Eq.4. If it is a
BoD constraint, G(Trt(tb)) is formulated as Eq.5. t in Eq.4
and Eq.5 is a token in place Ptb. The condition
seq.wid=t.wid is used to guarantee that the same workflow
instance is referred to, since this model allows multiple
instances of the same workflow to be processed
simultaneously. Different instances of a workflow will
have different values of wid.

seq.wid=t.wid && seq.rid ≠ r.rid. (4)
seq.wid=t.wid && seq.rid = r.rid. (5)

2) Parallel tasks
Similar to Fig.2a, a new place, labelled Ppar, is used in

Fig.2b to interface between the role and user assignment
module when ta and tb are parallel tasks. In the remainder of
this subsection we first determine the attributes related to

place Ppar, and then use an example to illustrate the
workings of the module.
 Token colours: There are two types of tokens in Ppar:

par_init and par. par_init is defined as par_init = (tida,
tidb, wid), while par is defined as par = (tid, rid, wid).

 Guard functions: If a SoD constraint, the guard function
of the transition Trt(ta) (or Trt(tb)) is formulated as Eq.6. If a
BoD constraint, it is expressed as Eq.7.

((t.tid = par_init.tida || t.tid = par_init.tidb) && t.wid =
par_init.wid) || (t.wid = par.wid && r.rid ≠ par.rid) (6)
((t.tid = par_init.tida || t.tid = par_init.tidb) && t.wid =
par_init.wid) || (t.wid = par.wid && r.rid = par.rid) (7)
 Arc functions: A(Ppar, Trt) and A(Trt, Ppar) are defined in

Eq.8 and Eq.9, respectively.
A(Ppar, Trt) = par_init || par (8)

A(Trt, Ppar) =“if part_init then par” (9)

3) Workings of the duty constraint modules
The workings of the duty constraint modules and the

above expressions are illustrated as follows. When
performing the role assignment for a task (e.g., ta), the
model will check whether the other task (e.g., tb) has been
assigned a role. Assume there is a BoD constraint between ta

and tb, then the place Ppar will contain a par_init token in the
model’s initial marking. When the Trt transition performs
the role assignment for ta, it will evaluate which token in
Ppar can satisfy Eq.6, and therefore can be fired by the
transition. There are two possibilities:

a) If there is a corresponding par_init token in Ppar,
which means that tb has not been assigned a role, then the
first part of Eq.6 (i.e., the portion before the second “||”) will
be evaluated as true. Consequently, the Trt(ta) transition will
remove the par_init token from Ppar and deposit a par token
back to Ppar as shown in Eq.9.

b) If there is a par token in Ppar, this means that tb has
been assigned to a role. Further, if there is a role in place Pr

whose identifier (i.e., r.rid) is the same as the role assigned
to tb (i.e., par.rid), the second part of Eq.6 will be evaluated
as true. Thus, the BoD constraint is enforced.

C. Assembling authorisation modules

One of the biggest advantages of the modelling
mechanism developed in this paper is that the authorisation
model can be constructed automatically by assembling a set
of interacting hierarchical modules. There are clear
interfaces and hierarchy structure among the modules. As
shown in Fig.2, the duty constraints module consists of the
role and user assignment modules for ta and tb, interfacing
via place Ppar or Pseq. Generally, the assembly procedure is
as follows.
Definition 1. Mk = (Pk, Tk, Ik, Ok, CSk, CFk, Ak, Gk) is the
role and user assignment module for task tk;
Definition 2. M = (P, T, I, O, CS, CF, A, G) is a module in
which j tasks, ti1, ti2, …, tij, have the duty constraints with
task tk;

Definition 3. M’=(P′, T′, I′, O′, CS′, CF′, A′, G′) is the
module that captures the duty constraints between the j tasks
in module M and task tk in module Mk.

Then, the module M’ in Definition 3 can be constructed
by assembling M and Mk as shown in Theorem 1.
Theorem 1. Given Mk, M, and M’ in Definition 1, 2 and 3,
the attributes of M’can be computed as follows.
 }),({}),({'

)(Pr)()(Pr

kki

k

kkik

k

tedt
kipar

tSucctedt
kiseqk ttPttPPPP

 (10)

 T′ = T�Tk (11)
 CS′ = CS CSk seq {par, par_init} (12)
 CF′ = CF CFk CF(Pseq) CF(Ppar) (13)
 A can be computed using Eq.14, where Pseq(tx, ty) or

Ppar(tx, ty) denote the Pseq or Ppar place that is added to
model the duty constraints between tx and ty.

 I, O and G can be computed using Algorithm 1,
where seq

SODg , seq
BODg , par

SODg and par
BODg are the guard

expressions specified in Eq.4, Eq.5, Eq.6 and Eq.7,
respectively.

Proof. 1) For each task in the module M that has the duty
constraint with task tk, a new place (either Pseq or Ppar

depending on whether they have the precedence constraint)
is added in the new module M. So P′ can be computed as in
Eq.10. 2) There is no need to add new transitions in M’. So
T′ can be computed as Eq.11. 3) The new colour set of M′ is
the union of the colour sets of Mk and M, plus the colours of
the tokens in place Pseq and Ppar. So CS′ can be computed as
Eq.12. Similarly, CF′ can be computed using Eq.13. 4) The
arc function set in M is the union of the arc function sets of
Mk and M plus the arcs added between place Pseq or Ppar and
the corresponding Trt transitions, as shown in Fig.2. So A
can be computed using Eq.14. 5) Since there are no new
transitions added in M, steps 1 to 3 in Algorithm 1 first
initialise I, O, and G to be the union of I and Ik, O and Ok,
and G and Gk respectively. Then in the for-loop, the
algorithm adjusts the input, output and guard functions of the
individual transitions that have the arc connections with the
newly added Pseq and Ppar places. �

The importance of Theorem 1 is that with the
formalised equations and algorithm, the process of
constructing the authorisation control model can be
automated rather than being built manually, which can
greatly speedup the modelling process.

 (a) An exemplar workflow (b) Duty constraints graph

Figure 3. An exemplar workflow and its duty constraints graph
We use a case study to illustrate how to assemble the

individual role assignment modules subject to the duty
constraints. The exemplar workflow is abstracted from a
loan lending process in a bank [28]. The roles which are

involved in the process are listed in Table 1. The workflow
consists of 7 tasks, whose topology is shown in Fig.3a. The
tasks and role assignment constraints are shown in Table 2.

Table 1 Role descriptions in the loan lending workflow
Role Description Role Description
SM Second Market Official BM Bank Manager
FA Financial Advisor CL Bank Clerk
LB Loan Broker UW Underwriter

Table 2 Task descriptions and role constraints in the workflow
Task Description Role constraints

t1 Updating products and rates SM
t2 Product and Rate decision engine FA/LB/BM
t3 Collecting data FA/LB/CL
t4 Analysing data of third-party 1 FA/LB/CL
t5 Analysing data of third-party 2 FA/LB/CL
t6 Analysing business rules FA/BM
t7 Underwriting UW/BM

Assume that the following BoD and SoD constraints are
imposed on the tasks, where r(ti) denotes the role assigned
to task ti.

C1: r(t2) = r(t4);C2: r(t2) ≠ r(t5);C3: r(t2) ≠ r(t7);
C4: r(t6) ≠ r(t7);C5: r(t3) = r(t5);

These duty constraints can be represented as a duty
constraints graph shown in Fig.3b. In the duty constraints
graph, if there are duty constraints between two sequential
tasks, a single-headed arrow is used to connect the
predecessor to the successor. If there exists duty constraints
between two parallel tasks, the two tasks are connected by a
double-headed arrow. Applying the module assembly
operations described in Eq.10-14 and Algorithm 1, the
hierarchy of the authorisation control model for the entire
workflow can be constructed as shown in Fig.4, where
Murt(ti) denotes a role and user assignment module for task
ti; please note that there should be a directed arc from the Pr

place and the Pu place to every module as shown in Fig.2,
these are omitted for the sake of clarity.

In this work we model the fact that the tokens in Pr and
Pu are shared by all tasks. This is reasonable since the roles
and users are global parameters and should be applied to all
tasks in the system. Cardinality constraints, which specify
the maximum number of tasks that can be handled at the
same time by a role (or a user), can be modelled by the
number of tokens representing the role (or the user) in Pr (or
Pu).

D. Modelling workflow execution under authorisation

Fig.5 models the execution of the workflow in Fig.3a
under authorisation control. The detailed hierarchy of the
Authorisation Control Module (ACM) can be found in

Fig.4. It can be seen that there are clear interfaces between
the actual execution of the workflow and the ACM. When
task ti is ready (i.e. it has no predecessor or its predecessors
have been completed), a token t is deposited into place Pti,
which is the same Pti place in the ACM. This starts the
authorisation process in the ACM for the task. After the
authorisation is completed, a urt token is deposited by the
ACM into the Purti place. The task is now assigned a role
and a user, and can undergo the resource allocation
procedure.

Algorithm 1. Calculating I′, O′ and G′ from M and Mk

1. I′ = I Ik

2. O′ = O Ok

3. G′ = G Gk

4. for each task
si

t in M that has BoD or SoD with tk do

5. If
si

t � Pred(tk) then {

6. I′(Trt(tk)) = I′(Trt(tk)) {Pseq(tis, tk)}
7. O′(Trt(tis))=O′(Trt(tis)) {Pseq(tis, tk)}
8. if there is SoD between tk and tis then

9. G(Trt(tk)) = Gk(Trt(tk)) && seq
SODg

10. else
11. G(Trt(tk)) = Gk(Trt(tk)) && seq

BODg
12. }
13. else if tis � Succ(tk) then {
14. O′(Trt(tk)) = O′(Trt(tk)) {Pseq(tis, tk)}
15. I′(Trt(tis))=I′(Trt(tis)) {Pseq(tis, tk)}
16. if there is SoD between tk and tis then

17. G(Trt(tis)) = G(Trt(tis)) && seq
SODg

18. else
19. G(Trt(tis)) = G(Trt(tis)) && seq

BODg
20. }
21. else { // tis and tk can be run in parallel
22. I′(Trt(tis)) = I′(Trt(tis)) {Ppar(tis, tk)}
23. O′(Trt(tis)) = O′(Trt(tis)) {Ppar(tis, tk)}
24. I′(Trt(tk)) = I′(Trt(tk)) {Ppar(tis, tk)}
25. O′(Trt(tk)) = O′(Trt(tk)) {Ppar(tis, tk)}
26. if there is SoD between tk and tis then

27. G(Trt(tk)) = Gk(Trt(tk)) && par
SODg

28. G(Trt(tis)) = G(Trt(tis)) && par
SODg

29. else
30. G(Trt(tk)) = Gk(Trt(tk)) && par

BODg

31. G(Trt(tis)) = G(Trt(tis)) && par
BODg

32. }

))),(),(()),(),(())(),,(())(),,(((

))(),,(()),(),(('

)()(Pr

)()(Pr

kiparkrtkiparirtkrtkipar
tSucctedt

irtkipar

tSucct
irtkiseq

tedt
kiseqirtk

ttPtTAttPtTAtTttPAtTttPA

tTttPAttPtTAAAA

ssss

kkis

ss

ksi

ss

kis

ss

(14)

Figure 4. Hierarchy of the authorisation control module for the workflow
in Fig.3a

Figure 5. Modelling workflow execution under authorisation control; only
the Petri-net components for task t1 are labelled, and the labels for other
tasks are omitted for the sake of clarity); the place Pnp represents the node
pool and the individual Pnp places should be regarded as a single Pnp
place.

Figure 6. Authorisation and executions of multiple workflows (submitted
by different clients); ACM stands for Authorisation Control Module, and
WEM stands for Workflow Execution Module

In Fig.5, the place Pnp, depicted as a bold circle,
represents the resource pool. In this place, a token represents
a resource (e.g., a compute node), and the number of tokens
represents the number of resources currently available in the
system. The Tex transition represents the resource allocation
and task execution. There is only one resource pool
(therefore, a single Pnp place) in the model, connecting to all
Tex transitions. Fig.5 is drawn so that every Tex transition is
associated with a separate Pnp place; this is done for the sake

of clarity (to avoid too many arcs crossing the figure). These
individual Pnp places should be regarded as a single Pnp place.
A token in the Pnp place is defined as np = nid.

In this model, the execution of a task is modelled in the
following way. If there are tokens in the Pnp place (i.e., there
are free compute nodes) and there is the urti token in Purti,
the Texi transition fires immediately (indicating the start of
ti’s execution) and a t token is deposited into the Ptj place
(suppose tj is ti’s child). The time stamp of the deposited
token t will be set as the current global time plus ti’s
execution time, that is, tj@ts =gt + ti.e. Therefore, the tj

token is not allowed to be fired until the time duration of ti.e
has lapsed, which simulates the execution of task ti.

Moreover, after a task is completed, the role and user
assigned to the task need to be returned to place Pr and Pu,
so that the role and the user can be assigned to other tasks.
This procedure is modelled as follows. When Texi fires, an r
token is deposited back to the Pr place and a u token to the
Pu place. The time stamps of these two tokens are both set as
gt+ti.e. Similarly, when Texi fires, an np token is deposited
back to the Pnp place (expressed as double-headed arrows).
np@ts is also set as gt+ti.e, which means that although the
np token is back to the Pnp place, the corresponding resource
is only allowed to be allocated to other tasks when the
simulated execution of ti has been completed.

If multiple workflows are running (and each workflow
can have many instances) in the system, an authorisation
control module and an execution module need to be
constructed for each workflow. The model structure for
authorising and executing multiple workflows is shown in
Fig.6. As can be seen from the figure, the different
workflow authorisation modules only share place Pr and Pu,
and the different workflow execution modules only share
the Pnp place.

V. MODEL SIMULATIONS

The modelling mechanism presented in this paper has
been implemented using the CPN Tools [25]. The CPN
Tools are a software platform that is able to construct and
simulate Petri-net models. CPN provides a flexible
mechanism that allows users to monitor a set of places
and/or transitions. The runtime status of these places and
transitions can be automatically collected during model
simulations. CPN can evaluate a constructed Petri-net model
in terms of various performance metrics. For example,
resource utilisation can be evaluated by monitoring the
number of tokens in the place corresponding to the resource
pool (which is Pnp in our model). Assuming the initial
marking of the place is n, and during model simulations the
average number of tokens in the place observed by CPN is
avg_n, then the resource utilisation, denoted as ru, can be
calculated as:

ru = 1 − avg_n/n
It is also straightforward to determine the response time

of a workflow in CPN. The tool can extract the time stamp
when a workflow arrives at the system, and the time stamp

when the last task in the workflow is completed. The
difference between these two time stamps is the response
time of the workflow. Based on this information, we can
easily calculate the mean response time of all workflows.
Other performance metrics that the CPN tools are able to
evaluate include throughput, deadline miss rate, etc. In this
section, the simulation results are presented in terms of
mean Response Time (RT) of workflows and Resource
Utilisation (RU) of the resource pool, The performance in
terms of deadline miss rate and throughput has the
correlated relationship with response time and utilisation,
respectively.

In the simulations, the CTPN model is constructed for
the loan lending workflow given in Fig.3a. The workflow
instances arrive following the Poisson process. The runtime
of a task follows an exponential distribution and the mean
runtime of task t1-t7 is set to be 10, 15, 5, 10, 10, 20 and 25
time units, respectively, based on runtime comparisons
among the tasks in reality [28].

1) Impact of Cardinality constraints
Fig.7 shows workflows’ RT and RU with the existence

of cardinality constraints as the arrival rate of workflow
instances increases. In order to investigate the impact of
cardinality constraints, no other constraints are imposed
except the duty constraints given in Fig.3b. Each role has 4
users. There are 8 homogeneous resources in the pool.

It can be observed from Fig.7a that when cardinality
constraints are imposed, RT increases. This is because it is
more likely that the tasks have to wait not only for
resources, but also for the availability of roles. This
qualitative analysis seems obvious. However, only through
the modelling approach and simulation results we can
acquire quantitative insight into how much impact a
particular authorisation constraint can have. For example,
suppose the workflows’ RT is desired to be no more than
300 time units. When there is no cardinality constraint, the
system can accommodate a workflow stream with a mean
arrival rate of up to 0.095. However, when the cardinality
constraint is 8 and 4, the workload level that the system is
able to handle is reduced to approximately 0.075 and 0.045,
respectively.

 (a) Mean response time (b) Resource utilisation
Figure 7. Impact of cardinality constraints on mean response time and
resource utilisation; “no card” means there are no cardinality constraints;
“card=8” and “card=4” mean that the maximum number of tasks that a role
can run simultaneously is 8 and 4, respectively.

As can be observed from Fig.7b, the cardinality
constraints also have a negative impact on RU.
Quantitatively, when there are no cardinality constraints, the
resource utilisation is approximately 90% as the arrival rate
increases. However, in the case of “card =8”, the utilisation
can only reach around 75%; the performance is even worse
(approximately 35%) when the cardinality parameter is 4.
These results suggest that even if there are free resources in
the system, the tasks cannot make use of them because of
the unavailability of roles due to the cardinality constraints.
Through modelling and simulation, we are able to determine
an optimised number of resources when we plan a system’s
capacity to support workflow executions under pre-specified
authorisation constraints.

2) Impact of Temporal constraints
Fig.8 demonstrates the impact of temporal constraints

on performance in terms of RT and RU as the workflow
instances’ arrival rate increases. The temporal constraints on
roles are set in the following way in the simulations in
Fig.8. For each role, a time duration is selected from a
period of 100 time units. The selected time duration
occupies the specified percentage of the 100 time units. The
starting time of the selected duration is chosen randomly.
For example, to select a time duration which is 70% of 100
time units, the starting point of the duration is randomly
selected from 0 to 30%100 time units.

 (a) Mean response time (b) Resource utilisation
Figure 8. Impact of temporal constraints on mean response time and
resource utilisation; “no temp” means there are no temporal constraints;
“temp = 70%” and “temp = 40%” means that the roles are available for
70% and 40% of the time, respectively.

It can be observed from Fig.8 that temporal constraints
have a negative impact on performance in terms of both RT
and RU, as to be expected. Another interesting observation
is that under temporal constraints, the performance seems to
be less affected compared with the performance under
cardinality constraints. This may be because the roles’
availability period may overlap. Therefore, when one role is
not available, the task may be able to find another role.

3) Impact of the number of resources
Figure 9 shows the impact on performance of

increasing the number of resources (nr) when there exist
cardinality and temporal constraints. As can be observed
from Fig.9a, when the temporal constraint is 70%, RT
decreases as nr increases, until nr reaches 10. Also, when
temp=40%, RT decreases until nr reaches 6. This is because
when nr is greater than a threshold, the workflow executions

are mainly hampered by the authorisation constraints. These
results demonstrate that with the modelling and simulations,
we can quantitatively investigate the impact of the deployed
authorisation policies, and therefore can potentially balance
the authorisation policy settings to remove performance
bottlenecks. The trend in Fig.9b is different from that in
Fig.9a. In Fig.9b, RU keeps decreasing as nr increases. A
closer observation shows that RU decreases linearly after nr
is greater than 10 and 6 in the case of temp=70% and
temp=40%, respectively. This is because of the same reason
discussed above, i.e., an execution bottleneck is now caused
by authorisation and therefore, the increased resources will
be largely idle. This result suggests that when planning
system capacities, we should take authorisation into account
and avoid over-provisioning unnecessary resources.

 (a) Mean response time (b) Resource utilisation
Figure 9. Effect of increasing the number of resources (nr) in the existence
of temporal and cardinality constraints; card=8; arrival rate is 7×10-2

VI. CONCLUSIONS

This paper employs Colour Timed Petri Nets (CTPN) to
model workflow execution under authorisation constraints in
cluster-based resource pools. Various authorisation
constraints are modelled in this paper, including role
constraints, temporal constraints, cardinality constraints,
separation of duty and binding of duty constraints. The
model allows a task in the workflow to run under a selection
of roles and users, and it also allows multiple workflows
from different clients to be authorised and executed in the
system simultaneously. The model is constructed in a
modular fashion. Therefore, it is easy to model a large
collection of authorisation policies and complex workflows
using the modelling approach developed in this paper. The
modelling mechanism has been implemented using the CPN
Tools. Various performance metrics can be computed from
the constructed model, including those for system-oriented
performance and application-oriented performance.

VII. ACKNOWLEDGEMENTS

This work is partly sponsored by the Leverhulme Trust
Research Project Grant (RPG-101), the National Natural
Science Foundation of China (60773188 and 60973038), the
Fundamental Research Funds for the Central Universities of
China (HUST: 2010MS017).

REFERENCES

[1] G. Ahn and R. Sandhu, “Role-Based Authorization Constraints
Specification,” ACM Trans. Information and System Security, 3(4), 2000.
[2] R. Alfieri, et. al., “VOMS, an Authorization System for Virtual
Organizations”, 1st European Across Grids Conference, 2003.

[3] V. Atluri, “A Petri net based safety analysis of workflow authorization
models”, Journal of Computer Security, 8(2/3): 209-240, 2000
[4] R. Baker, L. Gommans, A. McNab, M. Lorch, L. Ramakrishnan, K.
Sankar and M. Thompson, “Conceptual Grid Authorization Framework and
Classification”, in 7th Global Grid Forum Workshop (GGF7), March, 2003
[5] X. Zhao, Z. Qiu, C. Cai, H. Yang, “A formal Model of Human
Workflow”, the 2008 IEEE Intl. Conference on Web Services, pp. 195-202.
[6] D. Chakraborty, V. Mankar, A. Nanavati, “Enabling Runtime
Adaptation of Workflows to External Events in Enterprise Environments”,
the 2007 IEEE International Conference on Web Services, pp.1112-1119.
[7] J. Crampton, “A reference monitor for workflow systems with
constrained task execution”, Proceedings of the tenth ACM symposium on
Access control models and technologies, pp. 38-47, 2005
[8] Y. Jin, S. Reveliotis, “A generalized stochastic Petri net model for
performance analysis and control of capacitated reentrant lines”, IEEE
Transactions on Robotics and Automation, 19(3): 474 - 480, 2003
[9] G. Della-Libera, P. Hallam-Baker, M. Hondo, T. Janczuk, et al. Web
Services Security Policy Language (WS-SecurityPolicy), http://www-
106.ibm.com/developerworks/library/ws-secpol/. 2002.
[10] L. He, M. Calleja, M. Hayes, S.A. Jarvis, Performance prediction for
running workflows under role-based authorization mechanisms," Proc. of
the 2009 IEEE International Symposium on Parallel & Distributed
Processing, IEEE Computer Society Press.
[11] L. He, S Jarvis, D. Spooner, D. Bacigalupo, G. Tan, G. Nudd,
"Mapping DAG-based Applications to Multiclusters with Background
Workload", Proceedings of the 5th IEEE International Symposium on
Cluster Computing and the Grid (CCGrid'05), 9-12 May 2005, Cardiff, UK
[12] L. He, S. Jarvis, D. Spooner, H. Jiang, D. Dillenberger, G. Nudd,
"Allocating Non-real-time and Soft Real-time Jobs in Multiclusters", IEEE
Transactions on Parallel and Distributed Systems, 17(2):99-112, 2006
[13] S. Indrakanti and V. Varadharajan, “An Authorization Architecture for
Web Services”, 19th Annual IFIP WG 11.3 Working Conference on Data
and Applications Security, pp. 222-236, 2005
[14] D. Ferrariolo, J. Barkley, and D. Kuhn, “A Role-Based Access Control
Model and Reference Implementation within a Corporate Intranet,” ACM
Trans. Information and System Security, vol. 2, no. 1, pp. 34-64, 1999.
[15] I. Foster, C. Kesselman, J. Nick and S. Tuecke, “The Physiology of
the Grid: An Open Grid Services Architecture for Distributed Systems
Integration”, in Open Grid Service Infrastructure WG (GGF), June, 2002.
[16] J. Joshi, E. Bertino, U. Latif and A. Ghafoor, “A Generalized
Temporal Role-Based Access Control Model”, IEEE Transactions on
Knowledge and Data Engineering, 17(1): 4-23, 2005
[17] K. Keahey and V. Welch, “Fine-Grain Authorization for Resource
Management in the Grid Environment”, in 3rd International Workshop on
Grid Computing, Baltimore, USA, November 18, 2002, pp. 199–206.
[18] S.H. Kim, J. Kim, S.J. Hong and S. Kim, “Workflow-based
Authorization Service in Grid”, in 4th International Workshop on Grid
Computing, Phoenix, USA, November 17, 2003, pp. 94–100.
[19] S. Manolache, “Schedulability Analysis of Real-Time Systems with
Stochastic Task Execution Times”, Ph.D Thesis, Department of Computer
and Information Science, IDA, Linkoping University
[20] K. Tan, J. Crampton and C. Gunter, “The consistency of task-based
authorization constraints in workflow systems”, In Proceedings of 17th
IEEE Computer Security Foundations Workshop, pp. 155–169, 2004
[21] J. Wainer, P. Barthelmess, A. Kumar, “W-RBAC – A workflow
security model incorporating controlled overriding of constraints”, Intl.
Journal of Cooperative Information Systems, 12(4), 455–486, 2003
[22] T. Ziebermayr and S. Probst. “Web Service Authorization
Framework”, The 2004 International Conference on Web Services, pp.614.
[24] W. Zuberek, “Timed petri nets in modeling and analysis of cluster
tools,” IEEE Trans. on Robotics and Automation, 17, pp.562–575, 2001
[25] K. Jensen, L. Kristensen, L. Wells, “Coloured Petri Nets and CPN
Tools for modelling and validation of concurrent systems”, Intl. Journal on
Software Tools for Technology Transfer, 9(3), pp.213-254, 2007
[26] M. Owen and J. Raj, “BPMN and Business Process Management”,
http://www.bpmn.org/Documents/6AD5D16960.BPMN_and_BPM.pdf
[27] D. Schall, S. Dustdar and M. Blake, “Programming Human and
Software-based Web Services”, IEEE Computer, 43(7), pp.82-85, 2010.
[28]http://msdn.microsoft.com/en-us/library/bb330937.asp

