
Image Mat
hing Based On The Co-o

urren
eMatrixHsing-Wen Hseu, Abhir Bhalerao, Roland WilsonDepartment of Computer S
ien
e,University of Warwi
k,Coventry CV4 7ALMar
h 17, 1999In this work, the Gray Level Co-o

urren
e Matri
es (GLCM) and 
ross-
orrelationare 
ompared in an image mat
hing pro
ess. First, three images are generated indi�erent noise environments to simulate the images being derived from di�erent sen-sors. Then, a Lapla
ian Pyramid is used as a high-pass �lter. Finally, 
orrelationof GLCM and 
ross-
orrelation are 
ompared. Mutual information(MI) of GLCM isalso in
luded to evaluate the framework of the GLCM.
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1 Introdu
tionImage mat
hing has been a widely studied problem in identifying the similarity of thes
ene or obje
ts in two images. It plays an essential role in pro
esses su
h as textureanalysis, stereo vision, 3D re
onstru
tion, obje
t re
ognition, motion analysis, image
lassi�
ation and image registration[4℄. When the image mat
hing has been 
arriedout, 
ommon diÆ
ulties that arise are: operating images obtained from di�erentmodalities su
h as CT and MR, heavy 
omputation, dete
ting motion like s
alingand rotation. Although 
ross-
orrelation is su

essfully used in a single modality, it iseasily defeated when using multiple modalities. In this 
ase, mutual information hasbeen shown to be more e�e
tive[1℄. In order to �nd the best mat
h, Viola et al. [10℄designed a formulation to �nd the maximum of mutual information between a modeland the image. Bro-Nielsen[1℄, in his paper, has 
laimed that mutual informationis the best general feature. There are many other people[3℄[9℄ su

essfully applyingmutual information to image mat
hing. In addition to mutual information, momentsand entropy are also important features in gray level 
o-o

urren
e matrix(GLCM),whi
h 
ould be used instead. By applying one of the measures derived from theGLCM, the best mat
h 
an be found between two images. The MultiresolutionFourier Transform(MFT)[11℄ is a linear transformation providing lo
al frequen
yestimation over multiple spatial resolutions whi
h 
ould help analysing the motionbetween two images[7℄. This work, therefore, will give an assessment of 
omputation
ost to the image mat
hing by 
omparing GLCM and 
ross-
orrelation method.There are four major steps in this work. Firstly, a Lapla
ian pyramid of a pair ofimages is 
onstru
ted by using a low-pass �lter. Se
ondly, the 
ross-
orrelation is
omputed between the pair of images and the peak value will be 
hosen to estimatethe translation between the images. Thirdly, the gray level 
o-o

urren
e matrix isalso applied to 
al
ulate the 
orrelation of the pair of images and the peak value isalso 
hosen as the translation between the pair of images. Finally, to 
ompare results,we 
al
ulate the squared di�eren
e between a
tual value and results 
al
ulated fromthese two methods. Future work 
ould employ the MFT and GLCM to �nd thegeometri
 transformation between two views of the same s
ene or between obje
tsin two images.
1



2 Toward Image Mat
hingA digital image 
an be viewed as a dis
rete 2-D latti
e pixels whose row and 
ol-umn indi
es identify a point in the image and the 
orresponding value of the pointidenti�es the intensity at that point. Let f(i; j) and g(i; j) be two images. The 
ross-
orrelation between them 
an be expressed by a fun
tion of displa
ement (m;n) asfollows[5℄ Cfg(m;n) = 1MN Xi Xj f(i; j)g(i�m; j � n) (1)where M and N are the total samples of one row and one 
olumn. Eq. (1) 
analso be viewed as the sample average estimate of the two images, viewed as samplesof a random pro
ess. If we have two random variables(RV's), X and Y , say, the
orrelation between them is de�ned asRXY = E[XY ℄ = Z Z p(x; y)xydxdy (2)where p(x; y) is the joint density. If we have a set of M samples from the jointpro
ess, Xi and Yi, say, the sample 
orrelation is de�ned asCXY = 1M MXi=1XiYi (3)Thus if Yi represents the shifted image fg(i�m; j�n)g and Xi represents the imageff(i; j)g, we 
an get a formal equivalen
e between Eq. (1) and Eq. (3): Cfg(m;n)is the sample 
ross-
orrelation between f and g, viewed as samples from a randompro
ess. A histogram is a fun
tion whi
h returns the relative frequen
y of a parti
-ular gray level in a given image and is useful when applying a statisti
al method.Now suppose we have a joint histogram hXY (k; l) for X and Y , based on the samplesXi and Yi . Then Eq. (3) 
an be written asCXY =Xk;l hXY (k; l)kl (4)Other measures of dependen
e between X and Y in
lude mutual information(MI)[5℄.I(X; Y ) = E[i(x; y)℄ = Z Z pXY (x; y)log pXY (x; y)pX(x)pY (y)dxdy (5)with sample estimate IXY =Xk;l hXY (k; l)log hXY (k; l)hX(k)hY (l) (6)2



(0,0) (1,0) (2,0)(0,1) (1,1) (2,1)(0,2) (1,2) (2,2) Ti = f0; 1; 2g ; Tj = f0; 1; 2gTi0 = fi+ 1ji+ 1 2 Tig = f1; 2gTj0 = fjjj 2 Tjg = f0; 1; 2gS = f((i; j); (i0; j 0)) 2 (Ti � Tj)� (Ti0 � Tj0)ji0 = i+ 1; j 0 = jg= f((0; 0); (1; 0)) ((1; 0); (2; 0)) ((0; 1); (1; 1))((1; 1); (2; 1)) ((0; 2); (1; 2)) ((1; 2); (2; 2))gTable 1: The set of all pairs of 
orresponding indi
es of two 3� 3 images related bya displa
ement (1,0)where hX(k) = Pl hXY (k; l)hY (l) = Pk hXY (k; l)are the marginal histograms for X and Y . k and l are intensities as are X and Y .2.1 Co-o

urren
e matri
esGray Level Co-o

urren
e Matri
es (GLCM) is a method for estimating spatial graylevel dependen
e[6℄. Given a displa
ement between two images, a sample spa
e XYis de�ned and the total number of pairs of pixels within it having the same pair ofgray levels, (r; s), are a

umulated to generate a joint histogram, hXY (r; s). Table 1illustrates the set of all pairs of 
orresponding indi
es of two 3� 3 images related bya displa
ement (1,0). The joint histogram of the example 
an be expressed as,hXY (r; s) = Nr;sNS (7)where Nr;s is the total number of pairs of 
orresponding indi
es in S (as given inTable 1)where X gives a gray level value r to the �rst pair of indi
es and Y givesa gray level value s to the se
ond pair of indi
es. NS is the total number of pairsof pixels in S. Sin
e the joint histogram 
an be represented in a matrix form,it is 
alled a 
o-o

urren
e matrix. Thus GLCM 
an be used to determine the
orresponden
e between a sta
k of images or registration of a pair of images. Thejoint histogram estimated from GLCM 
an also be used to generate many measuressu
h as 
orrelation, and mutual information[6℄.3



2.2 Pyramid Stru
tures in Mutiresolution methodsMultiresolution methods are widely used in image pro
essing and analysis[8℄. Thestru
tures, in general, represent the image a
ross a number of di�erent resolutions:from 
oarse-to-�ne. There are links between 
onse
utive levels of the stru
tureproviding the possibility of redu
ing 
omputational 
ost of various image operationsusing a divide-and-
onquer methodology[8℄. The Gaussian pyramid is an importantexample of multiresolution stru
ture. It 
onsists of the input image at the bottomof the sta
k and ea
h level obtained by applying a lowpass-�lter to the one beneath.The Lapla
ian pyramid is obtained by taking the di�eren
e between 
onse
utivelevels of a Gaussian pyramid. The di�eren
e-of-Gaussians resemble the Lapla
ianoperators 
ommonly used in image pro
essing to enhan
e image features su
h asedges. A low-pass �lter is a mask used to smooth the intensities of an image. Thusthe di�eren
es between the intensities of an image and those of the smoothed image
an be 
al
ulated. For a Lapla
ian image the average di�eren
e should be zero.Thus the main reasons to use Lapla
ian pyramids in this work are as follows� dete
ting a displa
ement at a level whi
h is a fra
tion of original images.� zero mean intensity at every level.� robust in the presen
e of noise.These give a 
han
e to optimise the 
omputations.3 ExperimentsWe sele
t the fourth level of the Lapla
ian Pyramid as an initial mat
hing levelin this work. At this level, 2 pixels shift is equivalent to 32 pixels shift in theoriginal image. We use an image of size 256x256, Lena, to 
reate a set of images,L = fL0; L1; L2; L3g, in whi
h ea
h one of them is 32 pixels shift of the other oneshown in Fig 1. A 24 pixel shift 
ase is also in
luded in this work. We wish toexamine1. The 
omparison between 
ross-
orrelation and GLCM-based methods.2. The e�e
ts of noise on the performan
e of the methods.4



(b)(a)

(c) (d)Figure 1: 32 pixels horizontal or verti
al shift imagesIn order to 
arry out the experiment �ve other sets of images are needed as follows1. a set of images, I = fI0; I1; I2; I3g, by adding Gaussian noise with varian
e:80.6381(PSNR: 10db) to the original image and applying 32 pixels shift.2. a set of images, J = fJ0; J1; J2; J3g, by adding Gaussian noise with varian
e:25.5000(PSNR: 20db) to the original image and applying 32 pixels shift.3. a set of images, K = fK0; K1; K2; K3g, by applying 24 pixels shift.4. a set of images, M = fM0;M1;M2;M3g, by adding Gaussian noise with vari-an
e: 80.6381(PSNR: 10db) to the original image and applying 24 pixels shift.5. a set of images, N = fN0; N1; N2; N3g, by adding Gaussian noise with varian
e:25.5000(PSNR: 20db) to the original image and applying 24 pixels shift.3.1 The Lapla
ian PyramidA pyramid of an image is the stru
ture where ea
h layer or level is half the resolutionof the one below. For an N level Gaussian Pyramid, the upward fun
tion, REDUCE,5
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Laplacian pyramidGaussian pyramidFigure 2: Relationship between Gaussian and Lapla
ian Pyramidof a level 
an be expressed asgl(i; j) = 2Xm=�2 2Xn=�2 w(m;n) gl�1(2i+m; 2j + n) (8)Where l is the number of a level in the pyramid range 0 < l < N�1 and g(i; j) is theintensity of position (i; j) at level l of the pyramid. w(m;n) is a 2D weighting kernelgenerated by an 1D Gaussian fun
tion w(m) � w(n). By using the same weightingkernel the downward fun
tion, EXPAND, of two 
onse
utive levels 
an be expressedas follows ĝl(i; j) = 4 2Xm=�2 2Xn=�2 w(m;n) gl+1� i +m2 ; j + n2 � (9)where gl gives a value only when i+m and j+n are even numbers. The relationshipbetween these two fun
tions are des
ribed as Figure 2. Be
ause a Gaussian-likekernel is a low-pass �lter, the di�eren
e of the two fun
tions 
an be viewed as ahigh-pass image at ea
h 
orresponding level. A Lapla
ian pyramid is a sequen
e ofthe high-pass images whi
h 
an be expressed asll(i; j) = gl(i; j) � ĝl(i; j) (10)In this work, we use w(:) =(0.005, 0.25, 0.4, 0.25, 0.005) as the Gaussian-likekernel[2℄. The Gaussian and Lapla
ian pyramid of the image Lena is shown inFigure 3. For ea
h prepared image set su
h as L, we 
an generate a 
orrespondingLapla
ian image set, L4 = fL40; L41; L42; L43g.3.2 CorrelationThe experiment 
an be arranged as in Fig 4. In the 32 pixels 
ase, X0 is L0 and Yis one of the Lapla
ian image sets L, I, or J . In the 24 pixel shift 
ase, X0 is K0and Y is one of the Lapla
ian image sets K, M , or N .6



(a) The Gaussian pyramid 

(b) The Laplacian pyramid Figure 3: Gaussian and Lapla
ian Pyramid of Lena
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(0; 0) (2; 0)(0; 2) (2; 2) (0; 0) (1:5; 0)(0; 1:5) (1:5; 1:5) (0; 0) (2; 0)(0; 2) (2; 2)(a) (b) (
)(0; 0) (2; 0)(0; 2) (2; 2) (0; 0) (2; 0)(0; 2) (2; 1) (2; 1) (4; 1)(2; 3) (4; 3)(d) (e) (f)Table 2: (a) A
tual displa
ement of 32 pixels. (b) A
tual displa
ement of 24 pixels.(
) A
tual displa
ement of reverse intensities and 32 pixels. (d) Cross-
orrelationresult of L4 , I4 and J4. (e) Cross-
orrelation result of K4 , M4 and N4. (f)
ross-
orrelation result of reverse intensities and 32 pixels.r(0; 0) r(0; 1)r(1; 0) r(1; 1) Ck(X40 ; Y 40 ) Ck(X40 ; Y 41 )Ck(X41 ; Y 40 ) Ck(X41 ; Y 41 )square differen
e(k) = vuuuti=1Xi=0 j=1Xj=0(r(i; j)� Ck(X4i ; Y 4j ))2Table 3: square di�eren
es of a
tual displa
ement and 
orrelation of GLCM at a binwidth kIn GLCM, the bin width is the range of intensities in an image and the maximum
orrelation 
an be generated for every bin width. Thus we will have maximum
orrelation in ea
h bin width.After the 
orrelation has been 
omputed, the square di�eren
e 
an be de�ned asshown in Table 3 where the left table is the a
tual displa
ement and the right tableis generated by the 
ross-
orrelation or 
orrelation of GLCM at a bin width k. Thesquare di�eren
e is the tool with whi
h to analyse the results of this experiment.By applying a DFT, the 
ross-
orrelation 
an be 
omputed eÆ
iently in frequen
ydomain and transfered ba
k to spatial domain to �nd the best mat
h as follows[5℄Cfg(m;n) =Xi Xj f(i; j)g(i�m; j � n) <=> F (u; v)G�(u; v) (11)where F (u; v) is the Fourier transform of f(i; j) and G�(u; v) is the 
omplex 
onju-gate of Fourier transform of g(i; j). The a
tual displa
ements and results of applyingthe 
ross-
orrelation method is shown in Table 2(a)(b)(d)(e). The result show usthe noise(PSNR=10db and 20db) has no e�e
t on the method and it 
an �nd thebest displa
ement at this level.The bin width is an odd number in this experiment so that we 
an take the mean8



value to be the 
entre. We take an observation range of twi
e the standard deviationof the original image, �, from the mean value of the original image, �, on ea
h side[��2�; �+2�℄. For example, given a bin width 3, we 
an build a histogram from thegray level value 0 in whi
h the intensity ranges from [��1,�+1℄. On the left the graylevel values de
rease by 1 and on the right the gray level values in
rease by 1. On
ethe relationship between the gray level values and intensities are built, we assign agray level value to every pixel in both images. Let f̂(i; j) and ĝ(i; j) be the two newimages and 
an be viewed as two RV's X̂ and Ŷ . If the two RV's are related bya displa
ement (m,n), the joint histogram 
an be 
al
ulated by introdu
ing a validregion fun
tion VX̂Ŷ (i; j). The valid region fun
tion 
an be de�ned asVX̂Ŷ (i; j) = 8><>: 1 if (0; 0) � (i +m; j + n) � (15; 15):0 else where:For example, given a displa
ement (�4;�4), VX̂Ŷ (i; j) maps a valid region rangefrom (4; 4) to (16; 16) in the �rst image to the region range from (0; 0) to (11; 11) inthe se
ond image. Thus the valid region size 
an be expressed asRX̂Ŷ = P16i=0P16j=0 VX̂Ŷ (i; j)= (16� jmj)(16� jnj) (12)After a valid region size is de�ned, we 
an 
ount the frequen
y of a gray level valuein one image to a gray level value in another image. The 
ounter fun
tion 
an bede�ned as NX̂Ŷ (r; s) = 16Xi=0 16Xj=0UX̂Ŷ (r; sjVX̂Ŷ (i; j)) (13)where UX̂Ŷ (r; sjVX̂Ŷ (i; j)) = 8>>>><>>>>: 1 if VX̂Ŷ (i; j) = 1and f̂(i; j) = rand ĝ(i+m; j + n) = s:0 else where:Then the joint histogram matri
es 
an be de�ned ashX̂Ŷ (r; s) = NX̂Ŷ (r; s)RX̂Ŷ (14)Be
ause the displa
ements is ranged from (-4,-4) to (4,4) and ea
h displa
ement givesa joint histogram matrix, we will have 81 matri
es in this work. The 
orrelation of9



a displa
ement (m;n) 
an be 
al
ulated as followsCX̂Ŷ = Xr Xs r s hX̂Ŷ (r; s) (15)The �rst experiment is to 
ompare the 
orrelation results in di�erent noise envi-ronment with the a
tual displa
ement. The results are des
ribed as1. The square di�eren
es of a
tual displa
ement and 
orrelation of GLCM in 32pixels shift 
ase are all zeros in every bin width ex
ept 195 where only one binis used to measure the 
orrelation.2. Fig 5 is 24 pixels shift 
ase shown us that the results are all the pixels at thefourth level whi
h are the 
losest to the a
tual result at every bin width ex
eptthe ranges [141 � 171; 177 � 185; 195℄.In order to observe the e�e
t of the noise, we repla
e the a
tual displa
ementsin Table 3 with the 
orrelation of GLCM. Then we 
ompute the square di�eren
esbetween the 
orrelation of GLCM where PSNR=10db and PSNR=20db. The resultsof the se
ond experiment are1. The noise has no e�e
t on 32 pixels shift 
ase.2. The e�e
t on 24 pixels shift 
ase is at bin width [71; 97; 119; 141; 157; 159; 171; 183℄shown as Fig 6.3.3 Mutual InformationMI of GLCM is de�ned by the probability matri
es obtained from the previousse
tion. The equation 
an be expressed asI(m;n) = Xr Xs hX̂Ŷ (r; s) log hX̂Ŷ (r; s)hX̂(r) hŶ (s) (16)We 
an do an experiment as in the previous se
tion by repla
ing the 
orrelation ofGLCM with the MI of GLCM. Results of the �rst experiment are des
ribed as1. In 32 pixels shift 
ase, the results are as good as those of 
orrelation ex
eptthe bin width [1; 3℄.2. The results shown in Fig 7 are also as good as those of 
orrelation ex
ept thebin width [1 � 13; 137℄. Fig 8 show us that the e�e
t happened at the binwidth [1 � 17; 43; 55; 71; 97; 101; 103; 111; 119; 137; 195℄.10
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(a)
at different bin widths

Square difference results of K  and M  (PSNR=10db)(b)
at different bin widths

(c)
at different bin widths

Square difference results of K  and K  (PSNR=0db) 

Square difference results of K  and N  (PSNR=20db)Figure 5: Square Di�eren
es of a
tual displa
ement and 
orrelation of GLCM atdi�erent bin widths for 24 pixels shift
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32 pixels shift 24 pixels shift
orrelation of GLCM 1-141, 173,1-193 175,187-193MI of GLCM 17-135, 139,141,5-193 169-175,187-193Table 4: bin widths with the best square di�eren
es at the fourth levelA
tual Displa
ement Cross-
orrelation Correlation of GLCM MI of GLCM(0,0) (0,0) (0,0) (0,0)(0,2) (0,2) (0,2) (0,2)(2,0) (2,0) (2,0) (2,0)(2,2) (2,2) (2,2) (2,2)(0,0) (0,0) (0,0) (0,0)(0,1.5) (0,2) (0,2) (0,2)(1.5,0) (2,0) (2,0) (2,0)(1.5,1.5) (2,1) (2,1) (1,2)Table 5: The best results of the three methodsResults of the se
ond experiment are des
ribed as1. The noise has no e�e
t on 32 pixels shift 
ase.2. The e�e
t on 24 pixels shift 
ase is at bin width [1 � 17; 43; 55; 71; 97; 101; 103;111; 119; 137; 195℄ shown as Fig 8.The reversed Lapla
ian images are also used in this se
tion. The 
ross-
orrelationgives an in
orre
t result shown in Table 2(e). However, the MI of GLCM works wellin this 
ase shown in Fig 9.3.4 ComputationFrom the results in se
tion 3.1 ,3.2 and 3.3, we 
an 
olle
t the bin widths with zerosquare di�eren
es for 32 pixels and the square di�eren
e value lower than or equalto one for 24 pixels. A

eptable bin widths for the Lena image is shown in Table 5.This means that the a

eptable bin width is quite large and the results of the threemethods shown in Table 4 are the 
losest pixels to the a
tual displa
ement. Thebigger the bin width we sele
t, the more 
omputation time we 
an save, so we sele
tthe bin width range [187 � 193℄.The 
omputation times of the two methods are shown as Table 6. In this work,13
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(a)
at different bin widths
Square difference results of K  and K  (PSNR=0db) 

Square difference results of K  and M  (PSNR=10db)(b)
at different bin widths

(c)Square difference results of K  and N  (PSNR=20db)
at different bin widthsFigure 7: Square Di�eren
es of 
ross-
orrelation and MI of GLCM at di�erent binwidths in 24 pixels shift 
ase
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t on the MI of GLCM in 24 pixels shift
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e between a
tual displa
ement and MI of GLCM in nega-tive and 32 pixels shift 
ase 15



Item Comparison Add/Subtra
t Multiply/DivideFFT 2(N2k log2 N2k ) 2(12 N2k log2 N2k )Correlation 2(2N2k N2k )IFT 2(N2k log2 N2k ) 2(12 N2k log2 N2k )PeakFinding N2k N2k(a) Computations of 
ross-
orrelationItem Comparison Add/Subtra
t Multiply/Dividestandarddeviation 2(N2k N2k � 1) 2(N2k N2k + 1)(�)grayLevel N2k N2k d2�w e d2�w e 2(3)Assignment 2(2)(2d+ 1)2 2(4)(2d+ 1)2 + 2(3Co-o

urren
e PdxPdy(N2k � jdxj)matri
es (N2k � jdxj) +Pdx(N2k � jdxj))2[(2d2�w e � 1) 2(2d2�w e � 1)(2d2�w e � 1)� 1℄ (2d2�w e � 1)Correlation (2d+ 1)2 2(2d+ 1)2(2d2�w e � 1)Peak (2d2�w e � 1)Finding (2d+ 1)2(b) Computations of 
orrelation of GLCMw is the sele
ted bin width.� is the standard deviation of the original image.d is the total number of possible displa
ement.dx and dy are the displa
ement in x axis and y axis.Table 6: Computation 
omparison of two methods
16



Item Comparison Add/Subtra
t Multiply/Divide TotalFFT 128 64 192Correlation 1024 1024IFT 128 64 192PeakFinding 256 256Total 256 1280 128 1664(a) Computations of 
ross-
orrelationItem Comparison Add/Subtra
t Multiply/Divide Totalstandarddeviation(�) 510 514 1024grayLevelAssign 512 2 6 520Co-o

urren
ematri
es 324 47024 47348Correlation 1296 2916 4212PeakFinding 729 729Total 1565 48832 3436 52833(b) Computations of 
orrelation of GLCMTable 7: Computation 
omparison of two methods in this experiment for image size256x256we take the image, Lena, as the original image and take the Lapla
ian pyramid atthe fourth level, k = 4. At this level we take the ratio of 2 times standard deviationto bin width, d2�=we = 1. In this 
ase 2� = 98 and bin width is 193 whi
h wefound above and the displa
ement range is from -4 to 4. We 
an then 
ompletethe 
omparison shown as Table 7. The 
omputational 
omplexity of 
orrelation ofGLCM is almost 32 times that of 
ross-
orrelation. Note also that the 
orrelationof GLCM 
an only dete
t the best mat
h range from (-4, -4) to (4, 4).4 Con
lusions and further workFrom the experiments we know the image mat
hing 
an be done by using these twodi�erent methods. Be
ause the Lapla
ian image is robust in the presen
e of noise,17



the 
ross-
orrelation is not a�e
ted by the noise and GLCM is also not a�e
ted by thenoise. The 
omparison of 
omputational 
omplexity shows that the GLCM are notas eÆ
ient as 
ross-
orrelation and the mat
hing is restri
ted by the displa
ementsset in this experiment. However, the 
ross-
orrelation 
annot be applied to imagemat
hing where one image is negative to the other one while the MI of GLCM isa good 
hoi
e to solve the problem. GLCM is a robust framework for solving thisproblem, but the performan
e needs to be improved. Further work is to optimisethe 
omputation and apply GLCM to dete
t a rotation and s
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