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In this work, the Gray Level Co-occurrence Matrices (GLCM) and cross-correlation
are compared in an image matching process. First, three images are generated in
different noise environments to simulate the images being derived from different sen-
sors. Then, a Laplacian Pyramid is used as a high-pass filter. Finally, correlation
of GLCM and cross-correlation are compared. Mutual information(MI) of GLCM is
also included to evaluate the framework of the GLCM.
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1 Introduction

Image matching has been a widely studied problem in identifying the similarity of the
scene or objects in two images. It plays an essential role in processes such as texture
analysis, stereo vision, 3D reconstruction, object recognition, motion analysis, image
classification and image registration[4]. When the image matching has been carried
out, common difficulties that arise are: operating images obtained from different
modalities such as CT and MR, heavy computation, detecting motion like scaling
and rotation. Although cross-correlation is successfully used in a single modality, it is
easily defeated when using multiple modalities. In this case, mutual information has
been shown to be more effective[l]. In order to find the best match, Viola et al. [10]
designed a formulation to find the maximum of mutual information between a model
and the image. Bro-Nielsen[1], in his paper, has claimed that mutual information
is the best general feature. There are many other people[3][9] successfully applying
mutual information to image matching. In addition to mutual information, moments
and entropy are also important features in gray level co-occurrence matrix(GLCM),
which could be used instead. By applying one of the measures derived from the
GLCM, the best match can be found between two images. The Multiresolution
Fourier Transform(MFT)[11] is a linear transformation providing local frequency
estimation over multiple spatial resolutions which could help analysing the motion
between two images|7]. This work, therefore, will give an assessment of computation
cost to the image matching by comparing GLCM and cross-correlation method.
There are four major steps in this work. Firstly, a Laplacian pyramid of a pair of
images is constructed by using a low-pass filter. Secondly, the cross-correlation is
computed between the pair of images and the peak value will be chosen to estimate
the translation between the images. Thirdly, the gray level co-occurrence matrix is
also applied to calculate the correlation of the pair of images and the peak value is
also chosen as the translation between the pair of images. Finally, to compare results,
we calculate the squared difference between actual value and results calculated from
these two methods. Future work could employ the MFT and GLCM to find the
geometric transformation between two views of the same scene or between objects

in two images.



2 Toward Image Matching

A digital image can be viewed as a discrete 2-D lattice pixels whose row and col-
umn indices identify a point in the image and the corresponding value of the point
identifies the intensity at that point. Let f(7, j) and g(7, j) be two images. The cross-
correlation between them can be expressed by a function of displacement (m,n) as

follows|[5]
Crg(m,n) = ZZfzy (i —m,j—n) (1)

where M and N are the total samples of one row and one column. Eq. (1) can
also be viewed as the sample average estimate of the two images, viewed as samples
of a random process. If we have two random variables(RV’s), X and Y, say, the

correlation between them is defined as

Rxy = EIXY] = [ [ pla,y)eydzdy (2)

where p(x,y) is the joint density. If we have a set of M samples from the joint
process, X; and Yj;, say, the sample correlation is defined as
1 M
Cxy = i ; XY (3)
Thus if Y; represents the shifted image {g(i —m, j —n)} and X; represents the image
{f(i,7)}, we can get a formal equivalence between Eq. (1) and Eq. (3): Cy,(m,n)
is the sample cross-correlation between f and ¢, viewed as samples from a random
process. A histogram is a function which returns the relative frequency of a partic-
ular gray level in a given image and is useful when applying a statistical method.
Now suppose we have a joint histogram hxy (k,[) for X and Y, based on the samples
X; and Y; . Then Eq. (3) can be written as
Cxy = % hxy (k, 1)kl (4)

Other measures of dependence between X and Y include mutual information(MI)[5].

pXY( )
I(X,Y) = xM—//meww ()(ﬂdy (5)

with sample estimate

Ixy = %j hy (K 1)109#%



(0,0) | (1,0) | (2,0) | T; = {0,1,2}; T, = {0,1,2}
0D L) | 20| Tr={i+1i+1e T} ={1,2)
(02) | (1,2) | (2,2) | Ty ={jls € T;} ={0,1,2}

S= {((,5),,") € (T xT) x (Ty x Ty)[i' =i+ 1,j" = j}
= {((0,0),(1,0)) ((1,0),(2,0)) ((0,1),(1,1))
((1,1),(2,1)) ((0,2),(1,2)) ((1,2),(2,2))}

Table 1: The set of all pairs of corresponding indices of two 3 x 3 images related by
a displacement (1,0)

where

hx(k) :ZthY(kal)
hy(l) :ZthY(kal)

are the marginal histograms for X and Y. k and [ are intensities as are X and Y.

2.1 Co-occurrence matrices

Gray Level Co-occurrence Matrices (GLCM) is a method for estimating spatial gray
level dependence[6]. Given a displacement between two images, a sample space XY
is defined and the total number of pairs of pixels within it having the same pair of
gray levels, (r, s), are accumulated to generate a joint histogram, hxy(r, s). Table 1
illustrates the set of all pairs of corresponding indices of two 3 x 3 images related by
a displacement (1,0). The joint histogram of the example can be expressed as,

N’I‘S
’ 7
NS )

th(r, 5) =

where N, ; is the total number of pairs of corresponding indices in S (as given in
Table 1)where X gives a gray level value r to the first pair of indices and Y gives
a gray level value s to the second pair of indices. Ng is the total number of pairs
of pixels in S. Since the joint histogram can be represented in a matrix form,
it is called a co-occurrence matrix. Thus GLCM can be used to determine the
correspondence between a stack of images or registration of a pair of images. The
joint histogram estimated from GLCM can also be used to generate many measures

such as correlation, and mutual information[6].



2.2 Pyramid Structures in Mutiresolution methods

Multiresolution methods are widely used in image processing and analysis[8]. The
structures, in general, represent the image across a number of different resolutions:
from coarse-to-fine. There are links between consecutive levels of the structure
providing the possibility of reducing computational cost of various image operations
using a divide-and-conquer methodology[8]. The Gaussian pyramid is an important
example of multiresolution structure. It consists of the input image at the bottom
of the stack and each level obtained by applying a lowpass-filter to the one beneath.
The Laplacian pyramid is obtained by taking the difference between consecutive
levels of a Gaussian pyramid. The difference-of-Gaussians resemble the Laplacian
operators commonly used in image processing to enhance image features such as
edges. A low-pass filter is a mask used to smooth the intensities of an image. Thus
the differences between the intensities of an image and those of the smoothed image
can be calculated. For a Laplacian image the average difference should be zero.

Thus the main reasons to use Laplacian pyramids in this work are as follows
e detecting a displacement at a level which is a fraction of original images.
e zero mean intensity at every level.
e robust in the presence of noise.

These give a chance to optimise the computations.

3 Experiments

We select the fourth level of the Laplacian Pyramid as an initial matching level
in this work. At this level, 2 pixels shift is equivalent to 32 pixels shift in the
original image. We use an image of size 256x256, Lena, to create a set of images,
L = {Ly, Ly, Ly, L3}, in which each one of them is 32 pixels shift of the other one
shown in Fig 1. A 24 pixel shift case is also included in this work. We wish to

examine
1. The comparison between cross-correlation and GLCM-based methods.

2. The effects of noise on the performance of the methods.



Figure 1: 32 pixels horizontal or vertical shift images

In order to carry out the experiment five other sets of images are needed as follows

1. a set of images, I = {I,, I, I, I3}, by adding Gaussian noise with variance:

80.6381(PSNR: 10db) to the original image and applying 32 pixels shift.

2. a set of images, J = {Jy, J1, Jo, J3}, by adding Gaussian noise with variance:

25.5000(PSNR: 20db) to the original image and applying 32 pixels shift.
3. a set of images, K = { Ky, K1, K5, K3}, by applying 24 pixels shift.

4. a set of images, M = {M,, My, My, M3}, by adding Gaussian noise with vari-
ance: 80.6381(PSNR: 10db) to the original image and applying 24 pixels shift.

5. aset of images, N = {Ny, N1, No, N3}, by adding Gaussian noise with variance:
25.5000(PSNR: 20db) to the original image and applying 24 pixels shift.

3.1 The Laplacian Pyramid

A pyramid of an image is the structure where each layer or level is half the resolution

of the one below. For an N level Gaussian Pyramid, the upward function, REDUCE,
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Figure 2: Relationship between Gaussian and Laplacian Pyramid

of a level can be expressed as

Z Z w(m,n) g 1(2i +m,2j +n) (8)

m=—2 n=-—2

Where [ is the number of a level in the pyramid range 0 < I < N—1 and ¢(i, ) is the
intensity of position (7, j) at level [ of the pyramid. w(m,n) is a 2D weighting kernel
generated by an 1D Gaussian function w(m) * w(n). By using the same weighting
kernel the downward function, EXPAND, of two consecutive levels can be expressed

as follows

22 i+m j4+n
:42 Z mngH_l( 5 s 9 > (9)

where g; gives a value only when i+m and j +n are even numbers. The relationship
between these two functions are described as Figure 2. Because a Gaussian-like
kernel is a low-pass filter, the difference of the two functions can be viewed as a
high-pass image at each corresponding level. A Laplacian pyramid is a sequence of

the high-pass images which can be expressed as
ll(zaj) = gl(Z,]) - gl(Z,]) (10)

In this work, we use w(.) =(0.005, 0.25, 0.4, 0.25, 0.005) as the Gaussian-like
kernel[2]. The Gaussian and Laplacian pyramid of the image Lena is shown in
Figure 3. For each prepared image set such as L, we can generate a corresponding

Laplacian image set, L* = {L;, L], L3, L3}.

3.2 Correlation

The experiment can be arranged as in Fig 4. In the 32 pixels case, Xy is Ly and Y
is one of the Laplacian image sets L, I, or .J. In the 24 pixel shift case, X, is K
and Y is one of the Laplacian image sets K, M, or N.



(b) The Laplacian pyramid

Figure 3: Gaussian and Laplacian Pyramid of Lena

Image Y Image X,
shifting
YoY1,Y5,Y,
Laplacian pyramid Laplacian pyramid
YoY1,Y5.Ys Xs
calculating correlation
Cross-correlation GLCM
finding peak finding peak
COX:.Ys) | CX3.Y,) Ci(Xo Yo )| CulXo.Ys)
C0G.¥;) | O Ya) ClXs.Y2)| CiXo ¥2)

Figure 4: Arrangement of experiments



(0,0) [ (2,0) (0,0) [(1.5,0) (0,0) [ (2,0)
0,2) | (2,2) (0,1.5) | (1.5,1.5) 0,2) | (2,2)
(a (b) c)
(0,0) | (2,0) (0,0) | (2,0) (2,1) | (4,1)
0,2) | (2,2) 0,2) | (2,1 (2,3) | (4,3)
(d (e) (f)

Table 2: (a) Actual displacement of 32 pixels. (b) Actual displacement of 24 pixels.
(c) Actual displacement of reverse intensities and 32 pixels. (d) Cross-correlation
result of L* , I* and J*. (e) Cross-correlation result of K* , M* and N*. (f)
cross-correlation result of reverse intensities and 32 pixels.

r(0,0) [ r(0, 1) Ci(Xg, Yy) | Cp(Xy, Y1)
T(la 0) T(la 1) Ck(Xila%4) Ck(XiLJleél)
1=17=1
square dif ference(k ZZ k(X Y4))
=0 j=0

Table 3: square differences of actual displacement and correlation of GLCM at a bin
width k

In GLCM, the bin width is the range of intensities in an image and the maximum
correlation can be generated for every bin width. Thus we will have maximum
correlation in each bin width.

After the correlation has been computed, the square difference can be defined as
shown in Table 3 where the left table is the actual displacement and the right table
is generated by the cross-correlation or correlation of GLCM at a bin width k. The
square difference is the tool with which to analyse the results of this experiment.

By applying a DF'T, the cross-correlation can be computed efficiently in frequency

domain and transfered back to spatial domain to find the best match as follows[5]
Ctq(m,n) ZZf i,7)9(i —m,j —n) <=> F(u,v)G(u,v) (11)

where F'(u,v) is the Fourier transform of f(i,j) and G*(u,v) is the complex conju-
gate of Fourier transform of ¢(7, j). The actual displacements and results of applying
the cross-correlation method is shown in Table 2(a)(b)(d)(e). The result show us
the noise(PSNR=10db and 20db) has no effect on the method and it can find the
best, displacement at this level.

The bin width is an odd number in this experiment so that we can take the mean



value to be the centre. We take an observation range of twice the standard deviation
of the original image, o, from the mean value of the original image, u, on each side
[t —20, u+20]. For example, given a bin width 3, we can build a histogram from the
gray level value 0 in which the intensity ranges from [ —1,u+1]. On the left the gray
level values decrease by 1 and on the right the gray level values increase by 1. Once
the relationship between the gray level values and intensities are built, we assign a
gray level value to every pixel in both images. Let f (,7) and g(7, j) be the two new
images and can be viewed as two RV’s X and V. If the two RV’s are related by
a displacement (m,n), the joint histogram can be calculated by introducing a valid
region function Vi (4, j). The valid region function can be defined as

1 if (0,0) < (i+m,j+n) < (15,15).

Vip (i g) =

0 else where.
For example, given a displacement (—4,—4), Viy-(4,j) maps a valid region range
from (4,4) to (16, 16) in the first image to the region range from (0,0) to (11,11) in
the second image. Thus the valid region size can be expressed as

Rgy =332 5520 Viy (i)

(12)
= (16 — [m])(16 — [n])

After a valid region size is defined, we can count the frequency of a gray level value

in one image to a gray level value in another image. The counter function can be

defined as

16 16

Ny (r,8) =323 Ugy (1, 8|V (i, 5)) (13)

i=0 j=0

where

L if Viy(inj) =1
and f(i, ) = r

and (i +m,j+n) =s.
0 else where.

Uy (r, 8|V (4, 7)) =

Then the joint histogram matrices can be defined as

Now
i (r,5) = ) (14
Ry
Because the displacements is ranged from (-4,-4) to (4,4) and each displacement gives

a joint histogram matrix, we will have 81 matrices in this work. The correlation of



a displacement (m,n) can be calculated as follows

Cxy = 2> 17 8hgp(rs) (15)

The first experiment is to compare the correlation results in different noise envi-

ronment with the actual displacement. The results are described as

1. The square differences of actual displacement and correlation of GLCM in 32
pixels shift case are all zeros in every bin width except 195 where only one bin

is used to measure the correlation.

2. Fig 5 is 24 pixels shift case shown us that the results are all the pixels at the
fourth level which are the closest to the actual result at every bin width except

the ranges [141 ~ 171,177 ~ 185, 195].

In order to observe the effect of the noise, we replace the actual displacements
in Table 3 with the correlation of GLCM. Then we compute the square differences
between the correlation of GLCM where PSNR=10db and PSNR=20db. The results

of the second experiment are

1. The noise has no effect on 32 pixels shift case.

2. The effect on 24 pixels shift case is at bin width [71,97,119, 141, 157,159, 171, 183]
shown as Fig 6.

3.3 Mutual Information

MI of GLCM is defined by the probability matrices obtained from the previous

section. The equation can be expressed as

Im,n) = S5 hgy(r,s) log hff)—(h()) (16)

We can do an experiment as in the previous section by replacing the correlation of

GLCM with the MI of GLCM. Results of the first experiment are described as

1. In 32 pixels shift case, the results are as good as those of correlation except

the bin width [1, 3].

2. The results shown in Fig 7 are also as good as those of correlation except the
bin width [1 ~ 13,137]. Fig 8 show us that the effect happened at the bin
width [1 ~ 17,43,55,71,97,101,103,111,119,137,195].

10
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32 pizels shift

24 pizels shift

correlation of GLCM 1-141, 173,
1-193 175,187-193

MI of GLCM 17-135, 139,141,
5-193 169-175,187-193

Table 4: bin widths with the best square differences at the fourth level

Actual Displacement | Cross-correlation | Correlation of GLCM | MI of GLCM
(0,0) (0,0) (0,0) (0,0)
(0,2) (0,2) (0,2) (0,2)
(2,0) (2,0) (2,0) (2,0)
22) 2.2 22) 22)
(0,0) (0,0) (0,0) (0,0)
(0,1.5) (0,2) (0,2) (0,2)
(1.5,0) (2,0) (2,0) (2,0)
(1.5,1.5) (2,1) (2,1) (1,2)

Table 5: The best results of the three methods

Results of the second experiment are described as

1. The noise has no effect on 32 pixels shift case.

2. The effect on 24 pixels shift case is at bin width [1 ~ 17,43,55,71,97,101, 103,
111,119,137,195] shown as Fig 8.

The reversed Laplacian images are also used in this section. The cross-correlation

gives an incorrect result shown in Table 2(e). However, the MI of GLCM works well

in this case shown in Fig 9.

3.4 Computation

From the results in section 3.1 ,3.2 and 3.3, we can collect the bin widths with zero

square differences for 32 pixels and the square difference value lower than or equal

to one for 24 pixels. Acceptable bin widths for the Lena image is shown in Table 5.

This means that the acceptable bin width is quite large and the results of the three

methods shown in Table 4 are the closest pixels to the actual displacement. The

bigger the bin width we select, the more computation time we can save, so we select

the bin width range [187 ~ 193].

The computation times of the two methods are shown as Table 6. In this work,

13
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Item Comparison | Add/Subtract | Multiply/Divide
FFT (leOQQZk) 2(%2—]\£log2%)
Correlation 2(2% )

IFT 2(5 ,log%k) 2(%2—]\£log2%)
Peak

Finding ﬂk%

(a) Computations of cross-correlation

Item Comparison | Add/Subtract Multiply/Divide
standard
deviation 2L N 1) 2(gr9r +1)
(o)
gray
Level %] [22] 2(3)
Assignment

2(2)(2d + 1)? | 2(4)(2d +1)* +2(3
Co-occurrence Edw Edy(gk |dz|)
matrices ( — |dg|) + Zd@(_ — |ds]))

[( [l —1) 2(2[%1-1)
(2 (ﬂ— 1) —1] (2[%1-1)

Correlation (2d + 1) 2(2d +1)°

2[21-1)
Peak (2[%2] - 1)
Finding (2d + 1)?

(b) Computations of correlation of GLCM
w is the selected bin width.
o is the standard deviation of the original image.
d is the total number of possible displacement.
d, and d, are the displacement in z axis and y axis.

Table 6: Computation comparison of two methods
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Item Comparison | Add/Subtract | Multiply/Divide | Total
FFT 128 64 192
Correlation 1024 1024
IFT 128 64 192
Peak

Finding | 256 256
Total 256 1280 128 1664

(a) Computations of cross-correlation

Item Comparison | Add/Subtract | Multiply/Divide | Total
standard

deviation

(o) 510 514 1024
gray

Level

Assign 512 2 6 520
Co-occurrence

matrices 324 47024 47348
Correlation 1296 2916 4212
Peak

Finding 729 729
Total 1565 48832 3436 52833

(b) Computations of correlation of GLCM

Table 7: Computation comparison of two methods in this experiment for image size
256x256

we take the image, Lena, as the original image and take the Laplacian pyramid at
the fourth level, &k = 4. At this level we take the ratio of 2 times standard deviation
to bin width, [20/w] = 1. In this case 20 = 98 and bin width is 193 which we
found above and the displacement range is from -4 to 4. We can then complete
the comparison shown as Table 7. The computational complexity of correlation of
GLCM is almost 32 times that of cross-correlation. Note also that the correlation

of GLCM can only detect the best match range from (-4, -4) to (4, 4).

4 Conclusions and further work

From the experiments we know the image matching can be done by using these two

different methods. Because the Laplacian image is robust in the presence of noise,

17



the cross-correlation is not affected by the noise and GLCM is also not affected by the
noise. The comparison of computational complexity shows that the GLCM are not
as efficient as cross-correlation and the matching is restricted by the displacements
set in this experiment. However, the cross-correlation cannot be applied to image
matching where one image is negative to the other one while the MI of GLCM is
a good choice to solve the problem. GLCM is a robust framework for solving this
problem, but the performance needs to be improved. Further work is to optimise

the computation and apply GLCM to detect a rotation and scaling.
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