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Abstract 

There is considerable interest in the role of coupling between theta and gamma oscillations in 

the brain in the context of learning and memory. Here we have used a neural network model 

which is capable of producing coupling of theta phase to gamma amplitude firstly to explore 

its ability to reproduce reported learning changes and secondly to memory-span and phase 

coding effects. The spiking neural network incorporates two kinetically different GABAA 

receptor-mediated currents to generate both theta and gamma rhythms and we have found that 

by selective alteration of both NMDA receptors and GABAA,slow receptors it can reproduce 

learning-related changes in the strength of coupling between theta and gamma either with or 

without coincident changes in theta amplitude. When the model was used to explore the 

relationship between theta and gamma oscillations, working memory capacity and phase 

coding it showed that the potential storage capacity of short term memories, in terms of 

nested gamma-subcycles, coincides with the maximal theta power.  Increasing theta power is 

also related to the precision of theta phase which functions as a potential timing clock for 

neuronal firing in the cortex or hippocampus.    

 

A uthor Summary 

Altered coupling of theta phase and gamma amplitude has been reported in memory and 

learning-related experiments involving both cortical and hippocampal networks. Its functional 

importance has also been studied in many theoretical papers. However, how neural 

connectivity and neurotransmitters function to generate and regulate theta-gamma coupling 
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changes and different associated changes in theta and gamma power has not been fully 

established. Here we have used a neural network model to show how alterations in synaptic 

transmission between excitatory (NMDA receptor) and fast and slow inhibitory interneurons 

(GABAA receptor) can reproduce different patterns of change in theta and gamma parameters 

reported following learning in both the cortex and hippocampus and also help to explain their 

potential role in influencing working memory capacity.   

 

Introduction 

The roles of different brain oscillatory rhythms, either alone or in combination, in controlling 

learning and memory functions have been the subject of intensive investigation and 

speculation. Local field potential (LFP) recordings in the hippocampus have shown that low 

frequency theta oscillations (4-8Hz) are important in carrying information about memory 

processes [1,2] and function to decreasing reaction times in decision making tasks [3]. 

Recording studies in the CA1 region of the hippocampus have also shown that both synaptic 

plasticity and the strength of inputs vary systematically with ongoing theta oscillations [4,5]. 

On the other hand, high frequency oscillations such as gamma waves (30-80Hz) can provide 

tighter co-ordinated control than those in low frequency ranges [6]. EEG and MEG as well as 

LFP recordings have revealed that synchronous firing of a group of neurons in visual 

processing is associated with binding problem in which gamma synchronization can combine 

features in a visual scene to form a coherent percept [7,8].  Modulation of oscillatory 

synchronisation can also lead to the increase in synaptic gain at postsynaptic target sites 

thereby potentiating responses to learned stimuli [8,9]. 
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Both low and high frequency oscillations occur in many brain regions [10] and recent 

interest has focused on how these can be coupled and what the functional consequences of 

such coupling might be. With the development of mathematical tools such as Bayesian 

network and Granger causality analysis [10], several cross-frequency interactions have been 

observed, e.g. n : m amplitude-independent phase coupling [11], and the phase of slow 

frequency wave interacts with the amplitude of fast rhythm [12,13]. Cross-frequency coupling 

(CFC) of theta phase with gamma amplitude has recently been shown to strengthen 

significantly as a function of learning both in the inferior temporal cortex (IT) following a 

visual face-discrimination task [14] and also in the hippocampus during an item-context 

association task [15]. The change in coupling strength also correlated positively with 

behavioral performance.  However, while in the IT changes in coupling strength occurred in 

conjunction with increased theta power [14], although they appeared not to be causally linked, 

in the hippocampus they occurred without theta power changes [15].  

Another potential functional role of theta-gamma coupling may also relate to short term 

memory and its capacity. In 1956, Miller [16] first provided evidence that people can only 

hold around 7 ± 2 items in a variety of short-term memory (STM) tasks. It has subsequently 

been proposed that this capacity limit on STM storage can be explained by a multiplexing 

mechanism based on coupled theta and gamma oscillations [17]. If individual memory items, 

for instance a sequence of words, are stored in separate high frequency (gamma) subcycles 

coupled to a low frequency (theta) oscillation，then only around 7±2 gamma sub-cycles can 

occur in each theta cycle corresponding to short term memory (i.e. one memory per sub-cycle) 

[17]. A recent study in humans has also shown that there is a significant correspondence 
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between the number of gamma-subcycles nested on a theta wave and actual individual 

short-term memory capacity [18]. Furthermore, slow NMDA receptors were found to account 

for recalling these stored memories at the gamma frequency range [19]. The theta wave in the 

neuronal networks proposed by Lisman and Jensen [17,19] was driven by an external input. 

However it has been demonstrated that there are two forms of GABAA receptor-mediated 

inhibitory currents (slow and fast) in hippocampus [20,21] which can generate the 

simultaneous occurrence of both slow and fast frequency oscillations. Recently, GABAA slow 

inhibitory postsynaptic currents (IPSCs) have also been observed in visual cortex [22]. All 

these findings suggest that control over theta and gamma power and coupling can occur 

within both cortical and hippocampal networks using a combination of NMDA and slow and 

fast GABAA receptors.    

Recently, we have investigated the effects of face and object discrimination learning on 

theta and gamma oscillations and the interactions between them in sheep IT using 

64-electrode recording arrays [14]. The experiment gave two prominent results: i). From the 

wavelet-analyzed results of the recorded LFP data, it was found substantial theta-band activity 

occurring at about 300ms after the presentation of stimulus, accompanied by a much smaller 

contribution from gamma-band activity in the time-dependent spectrum.  ii). Following 

training, the amplitude of theta but not gamma was increased. Over 75% of electrodes showed 

significant increase of the coupling between theta phase and gamma amplitude. We have 

already produced a spiking neural network model based on two kinetically distinct GABAA 

receptor-mediated currents to reproduce the above visual-discrimination learning effects on 

theta power and theta and gamma coupling by altering the strength of NMDA receptors [14]. 
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However, we have not fully characterised the influence of different elements of our model or 

tested its efficacy for generating the different patterns of learning-evoked changes observed in 

the hippocampus and elsewhere. The utility of the model for investigating the relationship 

between theta and gamma in relation to potential memory span in short-term memory tasks 

has also not been established.  

In this paper, we firstly carried out a detailed investigation of the contributions made by 

the different individual components in the model to theta and gamma oscillations. Using this 

knowledge we then established the most effective combinations of altered synaptic 

mechanisms in the model which can produce the different patterns of learning-evoked 

changes in theta and gamma power and theta-gamma coupling and neuronal firing that have 

been reported in [14]. Lastly, using the same spiking neuronal network model, we 

investigated its utility in demonstrating the proposed relationship between short-term memory 

capacity and theta/gamma dual oscillations and what parameters can increase or decrease this. 

Our results show that this model whether in its original all-to-all connection form or with 

more realistic sparse connectivity is able to reproduce different permutations of learning 

evoked changes primarily using a combinations of altered NMDA and GABAA receptor 

strength. They also show that while 7 ± 2 sub-cycles can be nested on theta waves that this 

can be modulated by alterations in theta amplitude and phase.  

 

Results and discussion 

Biophysical models for generating hippocampal theta and gamma rhythms have already been 

provided by Kopell et al. in [23], where it was claimed that theta nested-gamma activity is 
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due to the h-current in the oriens-lacunosum molecular cell in the hippocampus. Instead of 

using a Hodgkin-Huxley type neuronal network with the h-current, here we applied a simple 

spiking neural network based on two kinetically distinct GABAA receptor-mediated currents 

to explore the synaptic mechanism of learning-evoked changes in theta amplitude and 

theta-gamma coupling. A schematic showing the neural network model is given in Fig. 1A. Here 

only 100 excitatory (EX) neurons, 50 inhibitory fast (INf) neurons and 50 inhibitory slow (INs) 

neurons with all-to-all or sparse connections are considered. Each cell, receives AMPA and 

NMDA receptor mediated currents from pyramidal cells and GABAA receptor mediated currents 

from INf and INs neurons. The weight and direction of the connections are shown in Fig.1A. For 

example, GAseg represents the connection from INs neuron to EX neuron mediated by GABAA 

receptors, NMeeg  represents the recurrent connection among EX neurons mediated by NMDA 

receptors, etc. For detailed modeling equations of the network, see the methods section. To mimic 

a typical visual-evoked response lasting 300 ms we applied a transient current pulse to represent 

the stimulus, with intensity corresponding to stimulus strength and the transient time 

corresponding to stimulus duration.    

  

Figs. 1B, 1C and 1D respectively illustrate the effects of an applied stimulus lasting 300ms in the 

model on the firing of the slow and fast inhibitory and EX neurons, on the local field potential 

(LFP), power spectrum and theta and gamma amplitude and on the strength of coupling between 

theta phase and gamma amplitude. This mimics multi-unit neuronal activity (MUA spikes) and the 

averaged field potential (LFP) recorded in the animal s IT cortex in the presence of a transient 

object representation.  
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The importance of fast and slow inhibitory neuron connections for generating 

theta and gamma oscillations, thei r coupling and neuronal fi ring  

In order to establish the key contributions of the slow (INs) and fast (INf) inhibitory neuron 

connections in the network for influencing theta and gamma power and coupling we compared the 

effects of three different network configurations upon them (see Fig. 2A).  

Fig. 2A1, shows that if the connection from the INs cells to the EX cells is blocked 

( 0GAseg ) EX cells only exhibit gamma oscillations. Contrarily, when the connection from the 

INf inter-neurons is minimal ( 0GAfeg ) and that from the INs ones ( GAseg ) is strong, it is seen in 

Fig. 2A2 that theta power is enhanced but no neuronal spikes fire in the gamma frequency range 

and as a result the downstream neuron becomes silent. Only when both GAfeg and GAseg are 

functionally modulated, then the EX cells exhibit theta-nested gamma oscillations and the 

magnitude of the averaged LFP is significantly increased in response to the stimulus (see Fig. 

2A3). In this case, the power spectrum is highly concentrated in the theta band and increases when 

the stimulus is applied. Moreover, compared with the case in Fig. 2A2, here both the EX and 

downstream neurons are more active during the period when the stimulus is on. Hence both 

 to achieve the presence of both theta and gamma 

and oscillations. An optimal coupling between them is necessary for both EX and downstream 

neurons to respond strongly and selectively during a stimulus.    

To explore more fully the effects of these two inhibitory synaptic couplings on the behavior 

of the network we plotted theta and gamma amplitudes, the coherence of CFC and theta phase 

variation as a function of increases in either GAseg  or GAfeg  strengths. Effects of increasing the 

reciprocal connection strength were also plotted by increasing the strength of AMPA receptor 
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(gAMes and gAMef).  In Figs. 2B and C, respectively it can be seen that across a range of AMesg  

values, as GAseg  is strengthened then gamma amplitude exhibits a monotonic decrease while 

theta amplitude progressively increases. The coherence of CFC also increases progressively 

as GAseg  is strengthened and the variation of theta phase decreases. Increasing gAMes has very little 

effect. This tells us that strengthening the connection from INs neurons to EX neurons not only 

increases theta amplitude, but also coupling between theta phase and gamma amplitude. There is 

also tighter regulation of the timing of theta phase. An explanation for these findings is that with 

the increase in GAseg , the EX neurons are more and more tightly controlled by the theta-band 

oscillation from the INs neurons. Since the synaptic inputs from INs neurons are inhibitory, the 

firing rate decreases with the increase in GAseg , resulting in a reduction in the number of nested 

spikes in each theta cycle and a corresponding decrease in gamma amplitude.  

Fig. 2C 

gradually decreases at first but, after reaching a minimum, starts to increase slightly again as 

GAfeg  is further strengthened. Gamma amplitude on the other hand shows the opposite pattern 

slightly increasing to begin with and then decreasing again as GAfeg is strengthened progressively. 

The strength of theta-gamma coupling remains fairly constant and theta-phase variation is initially 

sharply increased and then slowly reduces in a similar pattern to that of theta amplitude. These 

observations show that when GAseg  is not st

are very high frequency bursting oscillations nested in each theta cycle so that gamma amplitude 

is weak while theta amplitude is strong. With the increase strength of GAfeg , the nested high 

frequency oscillations gradually shift to oscillations in the gamma band and thus gamma 

amplitude increases while theta amplitude decreases. Since the synaptic inputs from INf to EX 
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neurons are also inhibitory, further increasing GAfeg  will eventually shut down the gamma-band 

oscillations although theta-band (subthreshold) oscillations are always present. Thus after a critical 

value of GAfeg , gamma amplitude decreases while theta amplitude increases.  

Figure 3 shows the effects of altering the strength of connections within (gGAss in INs and 

gGaff in INf) and between inhibitory (gGAsf from INs to INf) neurons. The three connections all 

contribute to increased firing rate but they have different effects on the theta amplitude and 

theta-gamma coupling: The connection within INs neuron gGAss decreases theta amplitude as well 

as the coherence of CFC between theta and gamma, while the connection gGAsf is responsible for 

increasing theta amplitude and theta-gamma coupling (although increasing the strength of this 

connection too much tends to saturate these two quantities). Increasing the connection within INf 

neurons gGAff  does not have much effect on increasing either theta amplitude or theta-gamma 

coupling (see Fig 3B). 

In summary, the simultaneous occurrence of theta and gamma oscillations requires the 

presence of recurrent couplings in both INf and INs neurons, and a delicate balance between the 

connection should 

is required to be relatively weak.  

 

E ffects of excitatory neuron connections on altering theta and gamma 

oscillations, thei r coupling and neuronal fi ring  

We found that just increasing the conductance of the NMDA receptors between and within EX 

cells (gNMee) increased their firing rate and that of the downstream neuron. Coupling between theta 
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and gamma was initially stable but then was reduced, whereas theta phase variation progressively 

increased (see Fig. 4A). On the other hand increasing NMDA receptor conductance between EX 

and INs neurons (gNMes) increased theta amplitude, but slightly decreased gamma amplitude. 

Theta-gamma coupling increased progressively in strength whereas theta phase variation 

decreased.  

     Increasing the coupling strength between EX and INf neurons (gNMef) has the effect of 

reducing the firing frequency of EX and the downstream neuron and theta amplitude. It also 

reduces theta-gamma coupling and increases theta phase variation while having no effect on 

gamma amplitude (see Fig. 4). 

 

E ffects of sparsening network connections  

We chose at the outset for simplicity to use an all to all connection design in our network. 

However, to show that the results obtained are not entirely dependent upon this design we 

also investigated if they could be replicated by a progressively sparsened network, which 

would perhaps be more representative of normal physiological neural networks. The same 

numbers of neurons were included in the network and sparseness was realized by randomly 

assigning the coupling between neurons. In this case the probability that a pair of neurons are 

connected in either direction is p=0.8. Results shown in the supporting material confirmed that the 

sparsened network produced similar changes in theta and gamma parameters, including 

theta-gamma coupling (see supplementary Fig. S1).  

Although such a coupling probability between neurons is still far from estimating real 

neuronal networks, larger network sizes can compensate for sparse connectivity [38,39]. It has 
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been previously reported that in network of 106 neurons with 5% sparseness and an average rate of 

5 spikes-1 received by a neuron, then simulating a network of 105 neurons, the sparseness could 

increase to 20% and average rate of 12.5 spikes-1 to obtain the same afferent spike statistics [38]. 

In our model, numerical simulation shows that when the network size increases to NEX =200, NINf 

=100, NINs =100, the coupling probability can be reduced to p=0.6 and all results still hold true 

(see supplementary Fig. S2). 

     

Learning effects on theta amplitude and theta-gamma coupling optimally requi re 

coordinated regulation of N M D A and G A B A A ,slow receptors 

Experimental recordings in sheep IT cortex have revealed that after learning, theta amplitude and 

the theta/gamma ratio as well as the strength of theta-gamma coupling are enhanced whereas 

gamma amplitude remains unchanged. The proportionate changes in these parameters were 

positively correlated with actual discriminatory performance [14]. On the other hand in the dorsal 

hippocampus of rats theta-gamma coupling is increased in rats after they learned to associate items 

with their spatial context but without any increase in theta amplitude and again the strength of 

theta gamma coupling was directly correlated with the increase in performance accuracy during 

learning sessions [15].  We used our neural network model to investigate whether it could 

reproduce both of these outcomes.   

Firstly we investigated the role of NMDA and GABAA receptors in mediating changes 

where both theta amplitude and theta-gamma coherence are altered. This confirmed that altering 

the strength of recurrent coupling of NMDA receptors in EX neurons and that between EX 

neurons and INs neurons could reproduce the findings in IT as we have previously reported [14]. 
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However, it was found that only moderate increases in theta amplitude could be produced by just 

using changes in NMDA receptors (both gNMee and gNMes).  We found that a more robust and 

greater range of increased theta amplitude in conjunction with strengthened theta-gamma coupling 

could be produced by increasing both the strength of the NMDA receptors and that of the GABAA 

receptors between the INs and EX ones (gGAse) (see Fig. 5). This had the effect of both increasing 

EX and downstream neuron activity. Increasing the conductance GAseg  alone results in decreased 

firing by EX neurons leading to a decreased firing rate by the downstream one. However, the 

decreased firing rate of a downstream neuron caused by the increase of GAseg can be compensated 

for by moderately increasing the conductance NMeeg . Interestingly it has also recently been 

proposed that homeostatic synaptic plasticity may optimally involve both changes in 

glutamatergic and GABAergic transmission [24]. The remaining parameters in the model do not 

appear to play an important role in generating such learning effects as those observed by 

coordinately regulating NMDA and GABAA, slow receptors. Indeed, Figs. 2-4 show that altering the 

couplings gGAfe, gGAff, gGAss, gNMef, gNMee do not result in increased theta amplitude, and the 

parameter range of gGAsf for increasing theta amplitude is restricted to a very small range.  

We used the network model to further explore the corresponding dynamic mechanism 

behind all these learning-altered changes. Numerical simulations show that increasing NMeeg  

induces gamma waves to become more and more shallowly nested on the theta wave (Fig.5E), but 

at the same time it increases the number of the nested spikes per theta cycle (i.e., increasing the 

firing rate of EX cells). The former situation is favorable for increasing theta power, while the 

later plays an opposite role by redistributing the power from the slow frequency band to the high 

frequency band. The distribution of power in the two frequency bands depends on the competition 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



 

 14 

between the number and shape (deep or shallow) of the nested gamma subcycles. If only the 

conductance NMeeg  is increased, the effect of increasing the firing rate but decreasing theta 

amplitude may compete with that of increasing theta amplitude by enhancing the shallowness of 

the nested gamma. Thus it is difficult to produce all potential learning effects involving increased 

theta amplitude by only increasing NMeeg . However, the GABAA,slow receptor-mediated synaptic 

currents from the INs neurons to the EX neurons, which are comparable to the time scale of the 

theta range oscillations, in turn give feedback to EX neurons via 

the increase of the conductance GAseg , the EX neurons are more and more tightly controlled by the 

theta-band oscillations, but at the cost of decreasing the firing rate. Thus it is necessary to 

modulate the conductance of NMDA receptors together with the conductance of GABAA receptors 

to enhance both the effects in frequency (theta power and the phase-to-amplitude modulation) and 

time domains (the concentration of the theta-band phases and the firing rate of a downstream 

neuron), as observed in Fig. 5A4-C4 and Fig.5D. 

Finally we confirmed that we could produce the same learning outcomes using a sparsened 

as opposed to an all-to-all version of our network for both the situation where only conductances 

of NMDA receptor are altered (see supplementary Fig. S3) or where both NMDA excitatory and 

GABA inhibitory connections are altered (see supplementary Fig. S4). As with the all-to-all 

network the combined changes in NMDA and GABA synaptic strengths produced the most robust 

effect. 

     In the second learning scenario involving the hippocampus it was reported that, unlike 

in the IT [14],  increased theta and gamma coupling strength occurred without a corresponding 

increase in theta amplitude [15]. It can be seen from Fig. 5 that this cannot be reproduced by 
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changes in NMeeg together with GAseg  since across the range of stimulus strengths applied theta 

amplitude is always increased as well as the strength of theta-gamma coupling. However, it can be 

seen from Fig. 2C that by slightly increasing gGAfe from a small value (from 0.005 to 0.02) theta 

amplitude decreases but the strength of theta gamma coupling is increased. It can further be seen 

in Figs. 3B and C that increasing the couplings gGAff and gGAsf results in increased theta amplitude 

as well as the theta-gamma coupling. Thus we can balance the decreased and increased effects on 

theta amplitude produced by increasing the coupling strengths of both gGAfe and gGAsf + gGAff . At 

the same time the changes in these three couplings can produce an increase in the coherence of 

CFC between theta and gamma. Supplementary Fig. S5 illustrates this finding and shows that 

increases in theta amplitude are not necessarily correlated with  increases in theta-gamma 

coupling. Obviously the possibility that plasticity changes in these different GABA receptors are 

important requires experimental support and there are clearly other potential variants of coupling 

changes that can result in a similar learning outcome and could involve changes in NMDA as well 

as GABA receptors.   

        

Short-term memory: Theta amplitude, Phase precision and M emory Capacity 

Here we have tested the ability of our model to reproduce the proposed function of the dual 

oscillations in limiting the capacity of short-term memory.  We first investigated the spectrum 

property of combined theta/gamma oscillations in the short-term memory. Fig. 6A and B show that 

with increases in stimulus strength the amplitude of the theta-band oscillation exhibits a 

bell-shaped property, reaching a maximum at a critical stimulus strength c
AmpI . Corresponding to 

the peak of theta amplitude the number of nested gamma spikes per theta cycle, denoted 
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as c
spi kenestedN _ , is around 3~9 (see Figs. 6A and B). Spike and gamma-sub-cycle activity are highly 

synchronized such that each spike corresponds to a gamma-subcycle. Interestingly, it was shown 

that when c
spikenestedN _  = 5±2, the frequency range of maximal gamma power at c

AmpI  is around 

30~50Hz (Fig. 6A); and when c
spikenestedN _  = 7±2 (Fig. 6B), the frequency range of gamma power 

at c
AmpI  is around 50~80Hz.  

    To see whether this was a general result, we calculated different curves of theta amplitude vs. 

the stimulus amplitude AmpI , by modulating the system parameters GAseg and background currents. 

From these curves, we counted the number of nested spikes per theta cycle at the critical stimulus 

amplitude c
AmpI and plotted c

spikenestedN _  vs. the frequency corresponding to the maximal gamma 

amplitude in Fig. 6C. It was found that 5±2 nested spikes correspond to low-frequency gamma 

oscillations, whereas 7±2 spikes correspond to high-frequency gamma oscillations. 

Why does theta amplitude reach its maximum at around 3~9 gamma sub-cycles per theta 

cycle? The reason can be understood from the counterbalance of the shape of nested gamma wave 

and the number of nested gamma-range spikes. When the stimulus strength AmpI  is weak, the 

oscillations are mainly sub-threshold and under these circumstances increasing AmpI will push the 

membrane potentials of EX neurons closer to the threshold. As a result, the amplitudes of both 

theta and gamma oscillations increase. One may intuitively think that theta amplitude attains a 

maximum at a stimulus strength which drives the EX neurons to fire only a single spike in each 

theta cycle. However, this is not the case because there are sub-threshold gamma oscillations that 

are deeply nested in the theta wave. As the stimulus strength increases, these deeply nested gamma 

oscillations gradually become more and more shallowly nested. This effect plays a dominant role 

in increasing theta amplitude when AmpI is small. But, when the stimulus strength becomes too 
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strong, the increased number of gamma sub-cycles in each theta cycle gradually redistributes the 

power from theta band to gamma band, which reduces theta amplitude. The competing result of 

the shape vs. the number of nested gamma-range spikes produces a critical value of the stimulus 

strength, say c
AmpI , that maximizes theta amplitude.  

From the large body of evidence showing the involvement of both theta and gamma 

oscillations in working memory and in phase precession of hippocampal place cells, it appears that 

the phase of the theta oscillation functions as a clocking system for a neural code: phase coding. In 

view of the coincidence of maximal theta amplitude and storage capacity shown in Figs.6A and B, 

we speculated that the peak of the theta amplitude, or the optimal storage capacity, could be 

related to the precision of theta phase. To verify this, we applied a Hilbert transform on the 

membrane potentials of the EX neurons and extracted the corresponding phases of the theta waves. 

The variation of theta-band phases of the EX neurons was then calculated at each time point. The 

time-averaged value of the variations is used to measure the precision of the theta phase, and the 

phase variation is shown in Figs. 7A and B. Interestingly, our computational results revealed that 

maximizing theta power corresponds to minimizing the variation of theta phases (this is in line 

with positive correlation between theta amplitude and theta-phase variation we have already 

presented in the previous sections). Fig. 7D gives an illustration of the effects of stimulus strength 

on theta phase and from this is can be seen that for too weak or too strong stimulus strengths, the 

variations in theta phases are both larger than that of the intermediate stimulus strength c
AmpI .  

To further show the relationship of the theta power and the phase precision, we modulated 

the synaptic connection from INs to EX cells. It was shown that with the increase of GAseg ,  

theta power increases, while the variation of theta-band phase decreases correspondingly. The 
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variation of theta phase in EX cells vs. theta power is plotted in Fig. 7A. For illustration, we 

selected three points (with weak, intermediate and lager theta amplitudes) in the curve 

of 8.0AmpI  in Fig. 7A, and plotted the corresponding time-frequency spectrum and theta phase 

in Figs. 7B and C, respectively. From these it is clear that with the increase of the theta amplitude, 

the gamma oscillation becomes more and more shallowly nested in the theta wave, and the 

theta-band phase in EX cells becomes less and less variable resulting in a more accurate in phase 

code.   

The fact that theta amplitude reaches its maximum at around 7 gamma subcycles per theta 

cycle also has functional significance. Biological systems are usually assumed to work in an 

optimal setting. Since maximizing theta power corresponds to minimizing the variation of the 

theta phase among neurons, it is reasonable to assume that neural networks involved in learning 

tend to maximize theta power during the performance of memory tasks. As an example, let us 

suppose that there are 7 spikes (i.e., 7 memory items) per theta cycle at c
AmpI

 
which corresponds 

to the maximal theta power. In performing a short term memory task with less than 7 items (for an 

example, 3 items: A B C), the phase variation is large since the power is weaker than the optimal 

one. But the phase can be improved by simply including more items (for example A A B B C C C 

or A B C D E F G) which drives theta power close to its maximum. However, with items larger 

than 7 (for an example, 10 items: A B C D E F G H I J), the theta power is lower than the 

maximum and phase variation is large. If one wants to improve the precision of retrieving memory 

under the latter circumstances then some items need to be lost. This indicates that the storage 

capacity of memory should correspond to the maximal theta power: one can retrieve all the 

memory items in the left side of c
AmpI , but cannot retrieve all the items in the right side of c

AmpI . 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



 

 19 

From this a reasonable assumption would be that the number of nested gamma sub-cycles which 

result in maximum theta amplitude represents the maximum accurate memory storage capacity. 

This number is consistent with the one proposed by Lisman and his colleagues from the time 

domain [17,25] However, in their model it was impossible to elaborate the underlying mechanism 

whereby theta and gamma oscillations optimally distribute their powers in processing information. 

In contrast, our model enables us to show how the dual oscillations may contribute to short-term 

memory capacity by optimally distributing their power. In the following subsection, one can 

further see that this capacity limit obtained from the maximal theta power also corresponds to the 

precision of phase coding. 

     It was recently pointed out that working memory maintenance in general is accompanied by 

increased coupling between theta phase and gamma amplitude [26]. The results shown in previous 

sections (Fig.2B and Fig.5B) provided a consistent conclusion that increasing theta power is 

accompanied by enhanced phase-to-amplitude modulation and improved precision of phase 

coding. Together these findings demonstrated that maximizing theta power may correspond to the 

best retrieval of working memory, accompanied by the strongest modulation of theta phase to 

gamma amplitude.  

 

Hippocampal place cells: phase precision and position reconst ruction 

From the results above, we concluded that the working memory capacity limit proposed by others 

from the time-domain information [16,17,27,28], coincides with the optimal capacity obtained 

from the maximal theta amplitude from the frequency domain. Furthermore, the maximum theta 

power is achieved when theta-band phase becomes most precise. This indicates that 7±2 nested 
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spikes per theta cycle corresponds to the most precise theta phase. This is also in agreement with 

what Jensen and Lisman have proposed in their work on the contribution of the theta phase to 

position construction from an ensemble of hippocampus place cells [29]. In their experiment, they 

simultaneously recorded spikes from 38 hippocampal place cells of rats which were trained to run 

for a food reward in a triangular maze. Spikes with inter-spike intervals in a theta period were 

considered and were assigned a phase for further data analysis. The first 500s of recorded spikes 

were used to construct correlations of position and the firing phase of individual cells, and the last 

500s of data were used to reconstruct position from the observed spikes. The decoding error was 

defined as the average distance between the reconstructed position and the actual position. It was 

found that the best reconstruction was obtained when theta phase is more finely divided into 

around 7 bins (see Fig. 7 A-C in [29]). In our model, we simply considered the averaged variation 

of theta-band phase in the each of the 100 EX cells. We found that if the number of nested spikes 

was smaller than 3 or larger than 9 then the theta phase variation was larger than when 7 spikes 

were generated. This agreement between the modeling and the experimental results shows that 

when too few spikes are nested in a theta cycle this is not enough to reconstruct position precisely, 

whereas when too many spikes are nested in a theta cycle this introduces redundant information, 

causing an inaccurate reconstruction. Thus in agreement with the results from Jensen and Lisman 

[29], we conclude that around 7 spikes per theta cycle can precisely reconstruct or retrieve 

memory.  

 

Summary 

The results we have obtained from a simple spiking neuronal network show that several 
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oscillation related phenomena can be produced by configuring a particular set of parameters: i). 

The network can successfully generate theta and gamma oscillations as well as coupling between 

theta phase and gamma amplitude. It can also do this whether in its original form where the 

network has an all-to-all connection configuration or where this connectivity is sparsened. We 

have also shown that two kinetically different GABAA (GABAA,slow and GABAA,fast) 

receptor-mediated currents are key in generating theta-nested gamma oscillations while the rest of 

parameters do not play an important in producing such oscillations although they may help shape 

the gamma oscillation form. ii). In either all-to-all or sparsened connection form the model can 

also successfully reproduce observed learning-induced changes in theta-gamma coupling in either 

the cortex [14] or hippocampus [15]. In the first learning scenario where both theta amplitude and 

theta-gamma coupling are increased (as observed in IT cortex), coordinated regulation of NMDA 

and GABAA,slow receptors-mediated currents are shown to be the underlying synaptic mechanism. 

In the second learning scenario where increased theta and gamma coupling occur without a 

corresponding increase in theta amplitude (as observed in hippocampus), we can reproduce this 

phenomenon by increasing the coupling strength of both gGAfe and gGAsf +gGAff. iii). Finally the 

presented model could also be used to further elucidate a mechanism whereby an optimal working 

memory capacity of around 7 can be explained by interactions between theta and gamma coupling. 

Here it showed that maximal theta amplitude and synchronization occur across the network when 

an optimal number of 7 gamma sub-cycles are nested on each theta wave.  

While our numerical results were obtained using only a small network, they could easily be 

extended to larger size networks. However, simply increasing the network size will destroy the 

established rhythm by a small network. Actually, in a sparsely connected network of excitatory 
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and inhibitory networks, there is a very rich behavior including synchronous regular states, 

synchronous irregular states, asynchronous regular states as well as quench states [39]. The 

occurrence of these states and the transition from one to another depends crucially on the network 

size, the sparseness of its connections, the delay of synaptic interactions and the external inputs as 

well as other factors. Indeed, finite size effects on spatial and temporal aspects such as entrainment 

and transition synchronization are quite complex and a thorough investigation into these issues 

was beyond the scope of this current work. Nevertheless, we would expect the major conclusion 

reached here using a small network would still hold in a larger spiking network by properly 

scaling the probability of connections between neurons and reweighting the synaptic couplings.   

 

M ethods 

Model   

We constructed a spiking neuronal network consisting of three populations of neurons: 100 

excitatory (pyramidal) neurons, 50 inhibitory fast (inter) neurons and 50 inhibitory slow (inter) 

neurons with all-to-all connections (see Fig. 1(G)). Each set of neurons obeys an integrate-and-fire 

equation: 

appsynLL IIEVg
dt

tdVC )()(  ，                                         (1) 

where C is the capacitance for the neuron, Lg  is the leaky conductance, synI is the synaptic 

input from other neurons and appI  is the external input. When V reaches a firing threshold thV , a 

spike is discharged and V is reset to restV and stays there for an absolute refractory period ref . 

For excitatory neurons, we set 5.0C nF, ,025.0 sg L ，mV70LE  mV,52thV  

，mV59restV ；msec2ref while for inhibitory neurons, we set nF,2.0C   

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



 

 23 

,02.0 sgL ，mV65LE mV,52thV ,mV60restV  .msec1ref  

Each neuron receives AMPA and NMDA receptor-mediated currents from excitatory (EX) 

cells, GABAA receptor-mediated currents from fast inhibitory (INf) neurons as well as slow 

inhibitory (INs) neurons. The gating variable s  for AMPA and NMDA receptors is described by 

two first-order kinetics [30]: 

,/)( x
j

jx xtt
dt
dx     ,/)1( ss ssx

dt
ds                                (2) 

where jt is the presynaptic spike time. We used 1x (in dimensionless), 

msec0.2msec0.1msec05.0 1
ssx ，， for AMPA receptors, and  1x  (in 

dimensionless), msec80msec0.1msec2 1
ssx ，，  for NMDA receptors. The gating 

variable GABAs  for GABAA receptors obeys a simple first-order kinetics [31]: 

     ,/)1)(( IGABA
j

GABAjI
GABA sstt
dt

ds                                 (3) 

where jt  indicates the time immediately before the spike at time jt .We used 

1msec1msec,9 II for the fast GABAA channels, and 1msec2.0msec,50 II  for the 

slow GABAA channels. The AMPA and NMDA receptors-mediated currents are given by: 

)( EAMPAAMPAAMPA VVsgI , and ))(( ENMDANMDANMDA VVVBsgI , respectively, with 

1]57.3/)062.0exp(1[)( VVB . The GABAA receptor-mediated current is given 

by )( IGABAGABAGABA VVsgI . Here mV0EV , mV70IV .  

We assumed that all neurons receive background currents all of the time. In studying 

learning mediated alterations of theta and gamma parameters these were set as: 0.7 (1±10%) nA 

for EX neurons, 0.85nA for INf neurons and 0.6nA for INs neurons. The stimulus was assumed to 

be applied to the EX neurons. The strengths of synaptic connections are given in Table 1.  
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Local F ield Potential 

Recent report of local field potentials (LFPs) recorded in macaque IT cortex has confirmed that 

LFPs are selective to different stimuli [32] and carry robust information that can be used to decode 

the object category and identity rapidly and accurately [33].  Although it is still unclear whether 

the LFP is related to synaptic or ionic current, or membrane potentials [34], here we adopted the 

description of the LFP in the model as the average of membrane potential of the 100 EX cells in 

the network [35], i.e., 

100

1
)(

100
1

i

i
e tVLFP .                             (6)  

 

Time-frequency Analysis  

To extract more information relating to time, frequency and space, we used a wavelet transform 

convolving the LFP )(tx  with a mother wavelet )(t  [36]: 

.)(),(
0

*

0

dt
f

ttx
f
fftCWTx                         (7) 

Here we used a Morlet wavelet 849.00f defined as 

             .2)(
2

0 )22(
2
1

4/1 ff
ef                               (8) 

We extracted the amplitudes (or powers) of the wavelet transform at 4-8Hz and averaged them 

across this frequency band. For the gamma band, amplitudes in the 30-70Hz frequency range were 

averaged. We therefore have time-dependent mean amplitudes (or powers) for theta and gamma 

rhythms, as we shown in the bottom of Fig.1C. To quantify the learning-related changes in theta 

and gamma amplitudes, we further averaged the above time-dependent mean amplitudes over the 
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time and got a quantity for averaged theta amplitude as well as a quantity for gamma amplitude, 

we simply called them theta amplitude and gamma amplitude.  

 

Coherence of C ross-frequency Coupling  

We used coherence analysis to detect the modulation of phase to amplitude of the two band 

limited signals at each frequency band. In the literature, several different methods have been used 

to measure phase to amplitude modulation [13-15,37]. In the current paper, we adopted the 

method proposed by Tort et al [37], which is outlined as follows:  

i). Separate the raw signal into two sets of band-pass filtered signals. The first set had 

centre frequencies from 2 Hz to 20 Hz, in 1Hz steps with a 2 Hz bandwidth. This created a 

real-value band-pass filtered signal set 19,,1),( mitx phase
i . The second set of 

real-value band-pass filtered signals 25,,1),( njtx Amplitude
j  was created by filtering 

the raw signal with centre frequencies from 30 Hz to 70 Hz, in 2Hz steps with a 4Hz 

bandwidth. 

ii). Extract the phase signals from )(tx phase
i  and the amplitude signals from )(tx Amplitude

j , 

and apply a Hilbert Transform to both sets to generate complex-valued analytic band-passed 

signals. Denoted the phase sets as )(ti  and the amplitude time series 

as )(tAj , njmi ,1;,1 . 

 iii). For each pair of signals )(t  and )(tA , )(t is binned into N intervals from 0 to 2  

with 
N
2

bin size (here N=18), and the mean of amplitude of )(tA  over each phase bin is 

calculated. We denoted by )(nA  the mean amplitude at the nth phase bin. 

iv). Normalize the mean amplitude to get a distribution-
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.,1,
)(

)(
)(

1

Nn
nA

nA
nP N

n

                          (9) 

And then calculate Kullback-Leiber (KL) distance of P from the uniform distribution U:                          

N

n

N

n
KL nPnPN

N
nPnPUPD

11
)(log)()log(

/1
)(log)(),(                   (10) 

 v). The coherence of CFC between the ith phase signal )(tj and the jth amplitude 

signal )(tAj  is then defined by dividing the above KL distance by log(N): 

                     .,1;,1,
)l o g (

),( njmi
N

UPDC
ij
KL

ij                   (11) 

We took the average of the above pair-wised coherence as the coherence of CFC between theta 

phase and gamma amplitude:  

)( i jCmeanC  .                                   (12) 

 

Theta-phase variation  

The wavelet transform also provides phase information in the time-frequency domain. We applied 

the wavelet transform to the membrane potential of each EX neuron, and applied the Hilbert 

transform to take out the phase signal of the complex wavelet transform at 4-8Hz frequency band 

for each EX neuron. We therefore obtained 100 different time series of phase signals. The time 

courses of phase signals of the 100 EX neurons shown in Fig.5 C1 and Fig. 6D were calculated by 

this method. To quantify the synchronization of theta-band phase between neurons, we calculated 

the variation of the phase at each fixed time and then averaged the variation over the whole period. 

This quantity is denoted as theta-phase variation to measure the concentration of theta-band phase. 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



 

 27 

The smaller this value is, the more synchronized the phase of theta is between neurons. 
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Figure. 1. Stimulus-enhanced theta wave as well as C F C . (A) A network of 100 excitatory (EX), 

50 fast inhibitory (INf) and 50 slow inhibitory neurons (INs). The outputs of EX neurons are 

projected to a downstream neuron. (B) The firing behaviors of single INs, INf and EX neurons. 

The bottom trace is the firing pattern of 50 EX neurons. (C) Input stimulus (Iapp), the LFP which 

is the average of membrane potentials of all EX neurons, the time-dependent power spectrum of 

the LFP of mean powers in the theta (red curve) and in the gamma band (blue curve). (D) 

Coherence of CFC between the theta phase and the gamma amplitude for the pre and during 

stimulus epochs. 

   

F igure 2. Coordinated regulation of G A B A A ,fast and G A B A A ,slow cur rents is the key for 

generating theta-nested gamma oscillations. (A) Three different response behaviors of the 

network to a stimulus: (A1) Only gamma rhythm ; (A2) only 

theta rhythm ( ; (A3) theta-nested gamma rhythm (in the 

bottom are the time-frequency power spectrum, the firing behaviors of EX cells and the firing 

behavior of a downstream neuron, respectively. (B-C) Effects of increasing GAseg and GAfeg  on 

the theta and gamma amplitudes, the coherence of cross-frequency coupling, the tightness of theta 

phase.  
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F igure 3. E ffects of modulating G A B A conductances between and within inhibitory cells. The 

amplitudes of theta and gamma oscillations, the coherence of CFC, theta phase variation and the 

firing of excitatory neurons as a function of changes in the strength of (A) gGAss (B) gG ff (C) gGAsf  

are shown.
 

 

 

F igure 4: E ffects of modulating N M D A conductances from excitatory to inhibitory neurons. 

The amplitudes of theta and gamma oscillations, the coherence of CFC, the phase variation 

vs. NMesg and NMeeg  are depicted, respectively. (A) shows the effect of increasing NMeeg , (B) 

shows the effect of increasing NMesg , (C) shows the effect of increasing NMefg . 

 
 
 

F igure 5. E ffect of coordinately regulating synaptic gains of N M D A and G A B A A ,slow to 

simulate learning effects. (A1-A3) Theta amplitude. (B1-B3) The coherence of CFC. (C1-C3) 

The temporal dynamics of theta phase. The stimulus is applied during 0-500ms. To mimic 

different learning stages, we set NMDA receptor mediated conductances NMesg , NMeeg and the 

GABAA,slow mediated conductance GAseg  as: 0.0001, 0.001, 0.05 (1st), 0.00025, 0.0025,0.06 

(2nd), 0.00035 and 0.004, 0.07 (3rd), 0.00045, 0.005, 0.08(4th). The values of NMesg and NMeeg  

in the three panels in A1-C1 are corresponding to the three marked points (1st, 2nd and 3rd) in 

A2-C3. The values of other parameters are stated in Table 1. (A4-C4) Variations of theta and 

gamma amplitudes, the coherence of cross-frequency coupling and the phase variation with the 
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increase of AmpI . (D) The firing rates of a downstream neuron vs. AmpI . (E) Comparison of the 

membrane potentials of single EX neurons before and after learning. In (C) the blue curve 

where 05.0,001.0,0001.0 GAseNMeeNMes ggg represents before learning, while the red one 

where 07.0,004.0,00035.0 GAseNMeeNMes ggg represents after learning. 

 

 

Figure 6. Relationship of maximal theta amplitude, the number of nested spikes per theta 

cycle and theta-phase concentration. (A-B) From the upper trace to the bottom trace：Theta 

amplitudes vs. the stimulus strength AmpI , the corresponding number of nested spikes per theta 

cycle vs. AmpI , theta phase variation vs. AmpI , and the time-frequency spectra at c
AmpI  of one 

curve. In (A), ,50,2.0,9,1 ,,., slowGABAslowGABAfastGAfastGABA the three curves correspond 

to 07.0,06.0,05.0GAseg . In (B), 80,2.0,5.4,5.0 ,,., slowGABAslowGABAfastGAfastGABA , the 

three curves correspond to  6.0,55.0,45.0INsI . (C) The number of nested spikes per theta cycle 

calculated at c
AmpI  vs. the frequency of the corresponding maximal gamma power. The marked 

points are obtained from different curves of theta amplitude vs. c
AmpI . One can see that for low 

gamma power (20-50Hz), around 5±2 spikes could be nested in each theta cycle, while for high 

gamma power (>50Hz), around 7±2 spikes could be nested. (D) Theta phases of the EX cells for 

different stimulus strength. It was shown that for too weak and too strong stimulus, the theta 

phases of neurons are less synchronized than that of the intermediate stimulus strength.   
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Figure 7. Relationship of theta amplitude, shape of nested gamma wave and the phase 

precision. (A). Variation of theta phase vs. theta amplitude. The increased theta amplitude is 

realized by increasing the conductance GAseg . (B) and (C). From the upper panel to the bottom 

panel are corresponding to three points chosen for low, intermediate and high theta powers in (A) 

for 8.0AmpI . It was shown in that with the increase of theta amplitude, gamma oscillation 

becomes more and more shallowly nested in the theta rhythm, and meanwhile, the theta-band 

phases among EX neurons become more and more concentrated.  

 

 

 

Figure S1. Stimulus-enhanced theta wave as well as C F C in a sparsely connected network 

with N E X =100, N INf =50, N INs =50, and the probability of connection p = 0.8. (A) The firing 

behaviors of single INs, INf and EX neurons. The bottom trace is the firing pattern of 50 EX 

neurons. (B) The response of the LFP to a stimulus lasting 500ms and correspondent 

time-dependent power spectrum of the LFP. (C) Coherence of CFC between theta phase and the 

gamma amplitude for the pre and during stimulus epochs. 

 

 

Figure S2. The corresponding figures in Fig.S1 for NEX =200, NINf =100, NINs =100, and the 

probability of connection p = 0.6. The corresponding weights of connections are as follows: 
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gGAfe = 0.015; gGAse = 0.06, gNMee = 0.002,gNMes = 0.0003, gAMee = 0.007, gAMef = 0.08, gNMef = 

0.003, gGAff = 0.08, gGAfs = 0.0, gGAsf = 0.1, gAMes = 0.005, gGAss = 0.08.    

  

 

 

 

Figure S3. Effects of increasing only NMDA receptor (gNMee and gNMes) strengths in a sparse 

network on (A) theta and gamma amplitude, (B) the coherence of CFC between theta phase and 

gamma amplitude and (C) the variation of theta-band phase.  

 

 

FigureS4. Dependence of theta amplitude and gamma amplitude (A), the coherence of CFC (B) 

and the variation of theta-band phase (C) on the EX-to-EX connection mediated by NMDAR and 

the Ins-to-EX connection mediated by slow GABAA receptors.  

 

 

Figure. S5. Increasing theta-gamma coupling without a cor responding change in theta 

amplitude by appropriately increasing the couplings gG Afe, gG Aff and gG Asf together. In 

(A1-C1), to mimic the learning effects, the values of the couplings (gGAfe, gGAff ,gGAsf) are 

chosen as: (0.007, 0.03,0.02) for 1st, (0.01,0.05,0.02) for 2nd, (0.015,0.06,0.035) for 3rd, and 

(0.02, 0.07, 0.04) for 4th. In (A2-C2), the theta and gamma amplitudes, the coherence of CFC and 

the phase variation are plotted vs. the stimulus strength. The black curve corresponds to before 
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learning with (gGAfe, gGAff, gGAsf)=(0.007,0.03,0.02), the pink one corresponds to after 

learning with (gGAfe, gGAff, gGAsf)=(0.015,0.06,0.03).   

 

Table 1: Values of parameters  

Variable Definition  Value         Range 

AMeeg        connection mediated by AMPA receptors   0.03 0.01-0.05 

AMefg       connection mediated by AMPA receptors   0.03 0.02-0.08 

AMesg       connection mediated by AMPA receptors   0.001 0.0001-0.01 

NMeeg       connection mediated by NMDA receptors  0.001 0.0001-0.008 

NMefg       connection mediated by NMDA receptors 0.001   0.0001-0.005 

NMesg       connection mediated by NMDA receptors 0.0001 0.0001-0.0005 

GAffg       connection mediated by GABA receptors 0.05 0.01-0.08 

GAfeg       connection mediated by GABA receptors 0.015 0.005-0.05 

GAfsg       connection mediated by GABA receptors 0.00 0.0-0.05 

GAssg       connection mediated by GABA receptors 0.08 0.007-0.05 

GAseg       connection mediated by GABA receptors 0.06 0.02-0.1 

GAsfg       connection mediated by GABA receptors 0.04 0.02-0.08 

AmpI       The stimulus amplitude    0.8 0.5-1.5 

 

 

 

 

 

 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



 

 38 

  1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 
64 
65 



 

A

G Assg

Inhibitory  fast neurons Inhibitory slow neurons

Downstream neuron
Excitatory neurons

G A ffg
G Asfg

A M e fg
G Aseg

G A feg

A M e eg
NM e eg

NM e fg
NM e sg A M e sg

 

0 500 1000
0

10

20

30

40

50

N
eu

ro
n 

in
de

x

time (msec)
0 500 1000

0

10

20

30

Po
w

er
 (a

. u
.)

time (msec)

   
-70

-60

-50

-40

LF
P(

m
V)

   
 
 
 
 

   
 
 
 
 

   
 
 
 
 

Vo
lta

ge
 (m

V)

Fr
eq

ue
nc

y(
H

z)

 

 

   

10

20

30

frequency for phase

 

 

5 10 15 20

50

100

150

200

Fr
eq

ue
nc

y 
fo

r a
m

pl
itu

de

 

 

5 10 15 20

50

100

150

200

500 1000 1500 2000

0.01 0.02 0.03 0.04 0.05

I
app

During stimulus

Pre stimulus

INs neuron

INf neuron

EX neuron

coherence indexB C  D

 
                         

Figure 1 
 
 
 
 
 
 
 
 
 
 
 

http://www.editorialmanager.com/pone/download.aspx?id=2923304&guid=c6af4b97-97ed-4095-b9b3-a2b606abcc88&scheme=1


0.02 0.04 0.06 0.08
0.01

0.015

0.02 C2

0.02 0.04 0.06 0.08
0

20

40 C1

0.05 0.1 0.15
 

0.01

 

0.02

 

Co
he

re
nc

e 
of

 C
FC

B2

0.05 0.1 0.15
0

0.2

0.4

0.6

gGAse
Ph

as
e 

va
ria

tio
n

B3

 

 

0 0.05 0.1

0.2

0.3

0.4

0.5

gGAfe

C3

 

 

0.05 0.1 0.15
0

20

40

Am
pl

itu
de

B1 gAMes=0.0005
gAMes=0.001

gAMes=0.005

gAMef=0.03

gAMef=0.05

gAMef=0.07

gamma

theta

gamma

theta

 

 
 
Figure 2 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



0.05 0.1
0

20

40

Am
pl

itu
de

0.05 0.1
0.005

0.01

0.015

Co
he

re
nc

e 
of

 C
FC

0.05 0.1
0

0.2

0.4

 

 

ph
as

e 
va

ria
tio

n
0 0.05 0.1

0

10

20

0 0.05 0.1
0

0.005

0.01

0 0.05
0

0.1

0.2

0.3

 

 

0.05 0.1
0

0.01

0.02

0.03

0 0.05 0.1
10

15

20

25

gGAsf

0.05 0.1
0

20

40

0.02 0.04 0.06 0.08
0

0.1

0.2

 

 

0.05 0.1
0

10

20

gGAss

 

 

0.05 0.1
0

5

10

15

Fi
rin

g 
ra

te

gGAff

IAmp=0.08

IAmp=0.07

IAmp=0.05

A

B

C

 
 
 
Figure 3 
 
 
 
 
 
 



2 4 6 8
x 10-3

0
5

10
15
20
25

2 4 6 8
x 10-3

0.005

0.01

0.015

0.02

0.025

 

 

gNMee

2 4 6 8
x 10-3

0.2

0.3

0.4

0.5

0 0.5 1
x 10-3

0

10

20

Am
pl

itu
es

 

 

0 0.5 1
x 10-3

0.01

0.015

0.02

0.025

C
oh

er
en

ce
 o

f C
FC

gNMes
0 0.5 1

x 10-3

0.15

0.2

0.25

0.3

Ph
as

e 
va

ria
tio

n

 

 

0 0.005 0.01
0

10

20

0 0.005 0.01
0

0.01

0.02

0.03

gNMef

0 0.005 0.01
0.1

0.2

0.3

0.4

 

 IAmp=0.5
IAmp=0.65
IAmp=0.8

gamma

theta

gamma

B1 B2

C1 C2 C3

theta B3

A3A2A1

 
 
 
Figure 4 
 
 
 
 
 
 
 
 
 
 

 



    
-5

0

5

Th
et

a 
ph

as
e

-500 0 500 1000
-5

0

5

time (msec)

 

 

time(msec)
-500 0 500 10001500

20
 

60
 

100

Ne
ur

on
  I

nd
ex

 

 

     

20
 

60
 

100

Fr
eq

ue
nc

y 
fo

r a
m

pl
itu

de
 (H

z)

 

 

    

50
 

150
 

 

 
A1

     

20
 

60
 

100

20

40

    
-5

0

5
C1

time(msec)

 

 

5 10 15 20

50
 

150
 

0.02
0.04
0.06
0.08

B1

 

 

    

50
 

150
 

1st

2nd

3rd

 

    
0.015

 

0.025

 

0.035 B2

    
0.15

0.2

0.25

0.3 C2

 

 

1 2 3 4
0

10

20

30
A3Am

pl
itu

de

1 2 3 4
0.02

 

0.03

 

0.04

Co
he

re
nc

e 
of

 C
FC

B3

1 2 3 4
0.1

0.15

0.2

0.25

0.3
C3

Ph
as

e 
va

ria
tio

n

 

 
IAmp=0.5
IAmp=0.7
IAmp=0.9

gGAfe=0.015
gGAfe=0.01
gGAfe=0.02

    
0

10

20

30
A2

rdndst stndst rdth th nd

gamma

gamma

theta

theta

thrd

 

     
0

10

20

30

40

A4-D: x-axis: IAmp (0.1-1.2)

Fi
rin

g 
ra

te

D

      
-70

-60

-50

-40

-30

Vo
lta

ge
 (m

V)

E

time

     
0

0.005

0.01

0.015

0.02

Co
he

re
nc

e 
of

 C
FC

B4

     
0.1

0.2

0.3

0.4

Ph
as

e 
va

ria
tio

n

C4

     
0

10

20

Am
pl

itu
de

A4

IAmp=0.8

100ms

theta
gamma

 
 

Figure 5 
 



 

 

 

 
Figure 6 
 
 
 
 
 
 
 



10 20 30
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

theta amplitde

Ph
as

e 
va

ria
tio

n

 

 
Low theta power

IAmp=0.6
IAmp=0.8
IAmp=1.0

    
 

 

 

 

High theta power

    
 

 

 

50
H

z

      
 

 

 

 

B C

200ms 200ms

Deep gamma

Shallow gamma

A

 
 
 
Figure 7 
 
 
 
 
 
 
 



    

http://www.editorialmanager.com/pone/download.aspx?id=2923351&guid=90343353-e412-49bf-8639-14b3cfe07090&scheme=1

