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Abstract

We compared the behavior of the Hodgkin}Huxley (HH) model subjected to two input
regimes: "rstly, discrete pulses from a Poisson process, and then to a di!usion approximation,
constructed to share statistical properties with the discrete pulse input. The results show that
under a wide range of physiologically plausible input conditions the di!usion process is
equivalent to the pulse process, in terms of output interspike interval distribution. In this
respect, the HH model di!ers from the integrate and "re model, which has been widely used to
address a variety of questions in computational neuroscience. ( 2000 Published by Elsevier
Science B.V. All rights reserved.
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1. Introduction

For a wide range of neuronal models it is common to model the input as a Poisson
process, or more generally a renewal process, which is appropriate for a neuron
subjected to a stream of post-synaptic potentials, characterized by a short rise time
which may be considered as a step process at the axon hillock. The e!ect of such input
has in the past been analyzed for a very simple neuronal model, the integrate and "re
model (IF), both with and without leakage, and with and without reversal potentials
[5,1,2]. However, the resulting system of di!erential di!erence equations has no useful
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closed-form solution except for some special cases. Moreover, for the biologically
more interesting biophysical models, such as the Hodgkin}Huxley (HH), an analytical
solution is impossible.

One way to simplify, and thus better understand, these problems has been to
replace the discrete pulses with a process composed of a constant current plus small
randomly sized steps at small intervals of time, which shares statistical properties with
the original Poisson process, i.e. a di!usion process. The simplest method to obtain
this approximation is to arrange for the di!usion process to share the same "rst and
second in"nitesimal moments with the pulse process, known as the usual approxima-
tion. This approximation is realised in the limit as the rate of the Poisson process
tends to in"nity and the size of the inputs to zero. We further investigated the
distribution of the output ISI, and inspection of the ISI histograms revealed the
distributions to be extremely similar.

In summary, the HH model exhibits physiologically more plausible behavior when
stimulated with random input, due to its non-linearity and memory, which smooth
out input discontinuities. This allows the di!usion approximation to work well in
a wide region of parameter space. We are extending this work to other physiological
models and correlated inputs.

2. Models and methods

We use the following HH model:
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Here I
4:/

is the synaptic current applied to the model. The model parameters are as in
Ref. [4]. We apply two input regimes:

f Inputs are modelled in terms of excitatory and inhibitory synaptic inputs into
a neuron. Inputs are independent, time homogeneous Poisson processes, and
we have N

%
excitatory inputs, each of magnitude a

%
and mean rate j

%
, and

N
*
inhibitory inputs, each of magnitude a

*
and mean rate j

*
;
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Fig. 1. Output frequency (Hz) of a Hodgkin}Huxley model neuron receiving N
%

excitatory inputs of
magnitude a

%
"0.5 mV and N

*
"r * N

%
inhibitory inputs of magnitude a

*
"0.5 mV. All inputs have mean

frequency 100 Hz.

f We compare this input to a di!usion process sharing the same mean and variance
as the Poisson input [3], I

4:/
"k#pB(t), where B(t)"dm(t)/dt with m (t) as the

standard Brownian motion and k and p are given by k"a
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Simulations were performed over a wide variety of physiologically plausible input
regimes, and in each case 2000 output interspike intervals were obtained.

3. Results

We begin our simulation using small inputs (a
%
"a

*
"0.5 mV). The threshold for

"ring in this model is at around !58 mV compared to the resting potential of
!65 mV, and so around 20 input spikes are required to cause spiking. Results
(Fig. 1) show a close agreement between Poisson input and the di!usion approxima-
tion. Analysis of these results shows no signi"cant di!erence between them. Repeating
the experiment with larger inputs (a

%
"a

*
"2.0 mV) show a similar close agreement

(Fig. 2), though in this case there are signi"cant di!erences for low N
%

and N
*
. Given

the theoretical underpinning of the di!usion approximation, this is perhaps unsurpris-
ing. For both of the above inputs, the coe$cient of variation of the output interspike
interval was also recorded, and shows similar close agreement between the two input
regimes. Further investigation using ISI histograms reveals that the similarity ex-
pressed by the "rst- and second-order statistics is repeated in the distribution (see, for
example, Fig. 3). Here we are unable to detect any signi"cant di!erence between the
input regimes.

4. Discussion

Our numerical simulations show close agreement for mean interspike interval (ISI)
between the Poisson input case and its associated di!usion approximation over the
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Fig. 2. Output frequency (Hz) of a Hodgkin}Huxley model neuron receiving N
%

excitatory inputs of
magnitude a

%
"2.0 mV and N

*
"r * N

%
inhibitory inputs of magnitude a

*
"2.0 mV. All inputs have mean

frequency 100 Hz.

Fig. 3. Histograms showing percentage of interspike intervals of a Hodgkin}Huxley model neuron
receiving N

%
"5 excitatory inputs of magnitude a

%
"2.0 mV and N

*
"r *N

%
inhibitory inputs of magni-

tude a
i
"2.0 mV. All inputs have mean frequency 100 Hz.

whole range of parameter space. Corresponding results were typically less than two
standard errors (of the estimation error in the simulation experiments) apart. There
was no evidence of systematic di!erence between the two sets of results. Similarly,
coe$cient of variation (CV) of the output ISI was estimated well by the di!usion
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approximation, the two estimates being well within one standard error of each other.
It should be noted, in particular, that the di!usion approximation works well even
when the input is of low intensity or high magnitude; cases when the assumptions
underlying the approximation break down.

In previous work with the IF model [6], the di!usion approximation was shown to
have limitations: in particular, the output frequency under the di!usion approxima-
tion was shown to be systematically higher, by around 10%, than that obtained with
discontinuous inputs. For the HH model, we observe no such discrepancies, as we
state above. The case of exact balance has attracted considerable attention, both for
its physiological signi"cance and the behavior of the IF model, which has very high
mean ISI, and a high CV [1]. Due to these features, the di!usion approximation
breaks down for the IF model. The HH model, however, exhibits no such behavior,
and both ISI and CV remain relatively constant even when excitatory and inhibitory
inputs are balanced; and again the di!usion approximation holds. This is further
evidence of the more robust nature of the HH model compared to the IF model.
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