HACD.2: Temporal Data and The Relational Model 13 December, 2010

Temporal Data and The Temporal Data and The Relational Model
Relational Model

Authors: C.J. Date, Hugh Darwen,
Nikos A. Lorentzos

Hugh Darwen
hugh@dcs.warwick.ac.uk

N A detailed investigation into the application of
www.dcs.warwick.ac.uk/~hugh

interval and relation theory to the problem of
temporal database management
Based on the book of the same title,

by C.J. Date, Hugh Darwen, and Nikos A. Lorentzos Morgan-Kaufmann, 2002

. . . ISBN 1-55860-855-9
summarised in C.J. Date: Introduction to Database

Systems (8th edition, Addison-Wesley, 2003), Chapter 23.

for Caveat: not about technology available anywhere today!
Warwick University
CS253 But MighTyD deserves a mention!
The Book’s Aims Contents (Parts I and 1I)

« Describe a foundation for inclusion of support for temporal data in a truly
relational database management system (TRDBMS)

. _) Part I: Preliminaries

« Focussing on problems related to data representing beliefs that hold throughout
given intervals (usually, of time).

Chapter 1: A Review of Relational Concepts
Chapter 2: An Overview of Tutorial D
« Propose additional operators on relations and relation variables ("relvars")
having interval-valued attributes.
« Propose additional constraints on relation variables having interval-valued Part II: Laymg the Foundations
attributes.
Chapter 3: Time and the Database
« All of the above to be definable in terms of existing operators and constructs. Chapter 4: What Is the Problem?
Chapter 5: Intervals
Chapter 6: Operators on Intervals

* And explore some interesting side issues. Chapter7: The COLLAPSE and EXPAND Operators

Chapter 8: The PACK and UNPACK Operators

Chapter 9: Generalising the Relational Operators
3 4
Contents (Part III) Appendixes
Part I11: Building on the Foundations
Chapter 10: Database Design Appendix A: Implementation Considerations
Chapter 11: Integrity Constraints I: Candidate Keys and Related Constraints Appendix B: Generalizing the EXPAND and COLLAPSE Operators

Chapter 12: Integrity Constraints II: General Constraints
Chapter 13: Database Queries

Chapter 14: Database Updates

Chapter 15: Stated Times and Logged Times

Chapter 16: Point and Interval Types Revisited

Appendix C: References and Bibliography

CS253: Topics in Databases 1

HACD.2: Temporal Data and The Relational Model

13 December, 2010

Part I: Preliminaries

Chapter 1: A Review of Relational Concepts

Introduction; The running example (based on Date's familiar "suppliers
and parts" database); Types; Relation values; Relation variables; Integrity
constraints; Relational operators; The relational model; Exercises (as for
every chapter).

Chapter 2: An Overview of Tutorial D

A relational database language devised for tutorial purposes by Date
and Darwen in “Databases, Types, and The Relational Model: The Third
Manifesto" (3rd edition, Addison-Wesley, 2005). Also used in 8th edition of
Date's "Introduction to Database Systems".

Introduction; Scalar type definitions; Relational definitions; Relational
expressions; Relational assignments; Constraint definitions; Exercises.

Chapter 3: Time and the Database

Introduction

Timestamped propositions
E.g. "Supplier S1 was under contract throughout the period from
1/9/1999 (and not immediately before that date) until 31/5/2002
(and not immediately after that date)."

"Valid time" vs. "transaction time"

Some fundamental questions:
Introduction of quantisation and its consequences.

CHAPTER 4:
What is The
Problem?

Example: Current State Only

“Suppliers and Shipments”

S S# SP S# P#

S1 S1 P1

Predic?(e:) S2 Predic.ate:) s1 P2
"Supplier S# is "Supplier S# is able

under contract” S3 to supply part P#" 1 P3

S4 S1 P4

S5 S1 P5

S1 P6

S2 P1

S2 P2

Consider queries: Which suppliers can supply sS3 P2

something? Which suppliers cannot supply Sa P2

anything?
sS4 P4
S4 P5

“Semitemporalising”

S_SINCE s# | SINCE SP_SINCE | s# | P# | SINCE

S1 do4 s1 | P1 do4
Predicate: Predicate:
"Supplier S# has S2 do7 "Supplier S# has Sl P2 dos
been under S3 do3 been able to supply | S1 | P3 dog
contract since sS4 do4 part P# since day S1 | P4 dos
day SINCE! S5 402 SINCE s1 P5 404

S1 | P6 do6

S2 | P1 dos

S2 | P2 do9

S3 | P2 dos

Consider queries: Since when has supplier S# sS4 | P2 d06

been able to supply anything? (Not too difficult) sa | pa w04
Since when has supplier S# been unable to supply

anything? (Impossible) S4 | P5 dos

CS253: Topics in Databases

‘ “Fully temporalising” (try 1) ‘

S_FROM_TO [s#][From[T0] sp_FRoM_To[s#[P#] FRom | TO

S1| do4 |d10 S1 | P1 do4 | d10
S2| do2 |do4 S1|P2| do5 |d10
Predicate: Predicate:
"Supplier S# was 52 d07_|[d10 "Supplier S# was S1/P8 d09 d10

under contract [S3| d03 | d710| able to supply S1|P4| d05 |d10

fromday FROM | s4 | do4 | d10| partP#fromday | S1 | P5 do4 | d10

today TO." s5| doz |ar0| FROMtoday sy pg| gos | d10

TO."
S2 | P1 do8 | d10

S2 | P1 d02 | do4

S2 |P2| do08 |d10

S2 |P2| d03 |dO3

Consider queries: During which times was supplier S3 | P2 do9 | d10

S# able to supply anything? (Very difficult)
During which times was supplier S# unable to S4 | P2 do6 | dog

supply anything? (Very difficult) S4 |P4| do4 |do8

S4 |P5| do5 |d10

HACD.2: Temporal Data and The Relational Model 13 December, 2010

Required Constraints

S_FROM_TO | S# [FROM | TO SP_FROM_TO | S# | P# | FROM | TO

S1| do4 |d10 S1 | P1 do4 | d10

S2 | do2 |do4 S1|P2| do5 |d10
Same supplier s2 | q07 |at0 Same supplier s1|P3 d09 | d10
can't be under can't be able to

contractduring | S3 | d03 | d10| supply same part | S1|P4 | d05 | d70 HAP I ER .
distinct but S4 | do4 |d10| duringdistinctbut| S1 | P5 do4 d10 .

overlapping or "o o | overlappingor - 's4Tpg [o | a0

abutting intervals. abutting intervals 521 P 408 | a10 I I
S [o e e ntervals

S2|P2| dog |d10
S2|P2| do3 |do3
These are very difficult! S3|P2| do9 |d10
S4 | P2| do6 | do9
S4 | P4 | do4 |dos
S4 | P5| dos |d10

“Fully temporalising” (try 2) ‘

S_DURING S# | DURING SP_DURING S# | P# | DURING
S1 | [d04:d10] S1 | P1 | [d04:d10]
S2 | [d02:d04] S1 | P2 | [d05:d10]

S [wroro AT CHAPTER 6:
Introduction of S1 | P4 | [d05:d10] -

. S3 | [d03:d10]
interval types
and their $4 | [d04:d10] S1 | PS | [d04:d10]

point types. S5 | [d02:d10] S1 | P6 | [d06:d10] O p e rato rS O n

s2 | P1 | [do8:a10]

s2 | P1 | [d02:d04]

Here, the type of the DURING attributes is perhaps S2 | P2 | [d08:d10] I n te rva I S

named INTERVAL_DATE (its point type being DATE). s2 | P2 | [d03:d03]

Avoint t) aunction - in th S3 | P2 | [d09:d10]
point type requires a successor function - in this case .

NEXT_DATE (d). This is based on the scale of the S4 | P2 | [d06:d09)]
point type. S4 | P4 | [d04:d08]

S4 | P5 | [d05:d10]

15 16
Interval Selectors Monadic Operators on Intervals

In Tutorial D, we make the type name part of the For a given interval, i:
operator name. E.g.:

PRE (1) gives open begin bound

INTERVAL_INTEGER ([1:10]) BEGIN (i) gives closed begin bound

END (i) gives closed end bound

Note special syntax for denoting bounds. Square bracket POST (i) gives open end bound

denotes a closed bound, round one an open bound. Thus:
COUNT (/) gives length (number of points)

INTERVAL_INTEGER ([1:10]) =
INTERVAL_INTEGER ((0:10]) =
INTERVAL_INTEGER ([1:11)) =
INTERVAL_INTEGER ((0:11))

CS253: Topics in Databases 3

HACD.2: Temporal Data and The Relational Model

13 December, 2010

Comparisons of Two Intervals

For given intervals, i1 and i2:
i1=i2
i1 MEETS i2 Allen’s operators

i1 OVERLAPS i2
i1 SUCCEEDS 12 (James F. Allen, 1983)

i1 PRECEDES i2

i1ci2 Allen uses DURING for ¢

i1 BEGINS i2

i1 ENDS i2 Allen uses STARTS and ENDS

’:7 = /:2 Added by Date, Darwen, Lorentzos
i1ci2

1502

i1 MERGES i2 MERGES = MEETS OR OVERLAPS

Some Pictorial Definitions

i1=i2 _—
i1 MEETS i2
or
i1 OVERLAPS i2
i1 SUCCEEDS i2
i1 PRECEDES i2

i1ci2 or

i12i2 — or
i1 BEGINS 2 —

i1 ENDS i2

More Dyadic Operators

Membership test:

peit or p IN i1 (where p is a point)

Dyadic operators that return intervals:

i1 UNION i2

i1 INTERSECT i2 Deﬁne_d only for cases where_ the
result is a single, nonempty* interval.

i1 MINUS i2

* empty intervals, such as INTERVAL_INTEGER ([1:1)), are not supported at all!

21

CHAPTER 7:
The COLLAPSE
and EXPAND
Operators

Sets of Intervals

Let S/1 and S/2 be sets of intervals—e.g., {[1:2], [4:7], [6:9]}
We define an equivalence relationship:

SI1 = SI2 iff every point in an interval in S/7 is a
point in some interval in S/2, and vice versa.

Under this equivalence relationship we then define two
canonical forms: collapsed form and expanded form.

In each of these forms, no point appears more than once.

Collapsed Form

CS253: Topics in Databases

No two elements, i1 and i2 (i1#i2) are such that
i1 MERGES i2.

So the collapsed form of {[1:2], [4:7], [6:9]} is {[1:2], [4:9]}.

HACD.2: Temporal Data and The Relational Model

13 December, 2010

Expanded Form

Every element is a unit interval
(i.e., consists of a single point)

So the expanded form of {[1:2], [4:7], [6:9]}
is {[1:1], [2:2], [4:4], [5:5], [6:6], [7:7], [8:8], [9:9]}.

COLLAPSE and EXPAND

Let S/ be a set of intervals.

Then:
COLLAPSE(S/) denotes the collapsed form of SI.
EXPAND(S/) denotes the expanded form of SI.

These operators are handy for definitional purposes (as
we shall see) but are not required to exist in the
database language.

CHAPTER 8:
The PACK and
UNPACK Operators

Packed Form and Unpacked Form

Canonical forms for relations with one or more interval-
valued attributes.

Based on collapsed and expanded forms.

Both forms avoid redundancy (“saying the same thing”
more than once).

Packed Form

Packed form of

SD_PART SD_PART
“on DURING™:
S# | DURING
. s# | DURING
S2 | 1602041 | ppcK SD_PART ON (DURING) [g5 do2d05]
S2 | [d03:d05] - [d02id06]
s4 | [d02:d05) :
S4 | [d04:d06] $4 | [d09:d10]
S4 | [d09:d10)

Unpacked Form

CS253: Topics in Databases

Unpacked form of SD_PART “on DURING”: | s# | DURING
s2 | [d02:d02)

SD_PART S2 | [d03:d03]
s# | DURING S2 | [d04:d04)
S2 | [d02:d04] | ;NpACK SD_PART ON (DURING) | 52| [405:d05]
52 | [d03:00] S4 | [d02:d02]
S4 | [d02:d05) S4 | [d03:d03]
S4 | [d04:d06] S4 | [d04:d04]
S4 | [d09:d10] S4 | [d05:d05]
S4 | [d06:d06]

S4 | [d09:d09]

s4 | [d10:010]

HACD.2: Temporal Data and The Relational Model 13 December, 2010

Properties of PACK and UNPACK

Packing and unpacking on no attributes:
« Important degenerate cases

« Each yields its input relation C HAPT E R 9 :

Unpacking on several attributes:
*« UNPACK rON (a1, a2) =

UNPACK (UNPACK r ON a7) ON a2 = Genera“ZIng the

UNPACK (UNPACK r ON a2) ON af
Packi | attributes: H

PAGKION (a1, 90) = Relational Operators

PACK (PACK (UNPACK r ON (a1,a2)) ON a7) ON a2

not: PACK (PACK(UNPACK r ON (a1,a2)) ON a2) ON a1
and not: PACK (PACK r ON a7) ON a2

« Although redundancy is eliminated, result can be of

greater cardinality than r. 3 »
. y .
Tutorial D’s Relational Operators USING Example 1
W?CNHING USING (DURING) « SP_DURING { S#, DURING } »
NOT MATCHING New syntax for invoking each operator:
triction (WHERE . gives (S#, DURING) pairs such that supplier S# was able
res.rlct!on () USING (ACL) < rel op inv » to supply some part throughout the interval DURING.
ngﬁc ion ({...}) where ACL is an attribute-name
EXTEND commalist and rel op inv an invocation We call this “U_project”.
of a relational operator. -
StUMMARIZE U_project is an example of what we call a “U_ operator”.
etc.
Common principle: .
1. Unpack the operand(s) on ACL Other examples are U_JOIN, U_UNION, U_restrict, etc.
2. Evaluate rel op inv on unpacked forms.
3. Pack result of 2. on ACL
33 34
Example 2: U NOT MATCHING Example 3: U_ SUMMARIZE
USING (DURING)
USING (DURING) < SUMMARIZE SP_DURING
< S_DURING NOT MATCHING SP_DURING » PER (S_DURING { S#, DURING })
ADD COUNT AS NO_OF_PARTS »
gives (S#, DURING) pairs such that supplier S# was under gives (S#, NO_OF_PARTS, DURING) triples such that
.contract but unable to supply any part throughout the supplier S# was able to supply NO_OF PARTS parts
interval DURING. throughout the interval DURING.
Temporal counterpart of:
Note: We have now solved the two query problems mentioned in Chapter 4,
“What's the Problem?” SUMMARIZE SP PER (S {S#})
ADD COUNT AS NO_OF_PARTS
35 36

CS253: Topics in Databases 6

HACD.2: Temporal Data and The Relational Model

13 December, 2010

U _SUMMARIZE is Interesting (1)

U SUMMARIZE is Interesting (2)

USING (DURING)
<SUMMARIZE SP_DURING
PER ('S_DURING { DURING })
ADD COUNT AS NO_OF PARTS »

* note lack of S# from PER relation

* gives (NO_OF_PARTS, DURING) pairs such that
NO_OF_PARTS parts were available from some supplier
throughout the interval DURING.

USING (DURING)
<«SUMMARIZE SP_DURING

PER (S_DURING { S#})

ADD COUNT AS NO_OF CASES »

* note lack of DURING from PER relation

« gives (S#, NO_OF_CASES) pairs such that there are
NO_OF_CASES distinct cases of S# being able to supply
some part on some date.

CHAPTER 10:
Database Design

Contents

Chapter 10: Database Design

« Introduction

« Current relvars only

« Historical relvars only

« Sixth normal form (6NF)

« "The moving point now"

« Both current and historical relvars
« Concluding remarks

« Exercises

At last, we focus on specifically temporal issues!

Current Relvars Only

Semitemporalizing SSSC (try 1)

SsSSC | s# | sNAME | sTATUS | cITY sp |s#|p#
S1 Smith 20 London S1|P1

S2| Jones 10 Paris S1 | P2

S3| Blake 30 Paris S1|P3

S4 | Clark 20 London S1| P4

S5| Adams 30 Athens S1|P5

S1| P6

S2 | P1

S2 | P2

Note: keys indicated by underlining S3 | P2
attribute names S4 | P2
S4 | P4

S4 | P5

SSSC | S# | SNAME | STATUS CITY SINCE
S1 Smith 20 London do4
S2 | Jones 10 Paris d05
S3 | Blake 30 Paris do2
S4 Clark 20 London d0o9
S5 | Adams 30 Athens d09

Problem: SINCE gives date of last update for that supplier.
So we cannot tell:

since when a given supplier's STATUS has held, or

since when a given supplier's CITY has held, or

since when a given supplier's NAME has held, or even
since when a given supplier has been under contract.

CS253: Topics in Databases

HACD.2: Temporal Data and The Relational Model 13 December, 2010

Semitemporalizing SSSC (try 2) ‘ ‘ Fully Temporalizing SSSC
VAR S_SINCE VAR S_DURING Predicate: Supplier S# was under
BASE RELATION BASE RELATION contract throughout DURING and neither
{ S# S#, S#_SINCE DATE, { S# S#, immediately before nor immediately after
SNAME CHAR, SNAME_SINCE DATE, DURING INTERVAL_DATE} DURING.
STATUS INT, STATUS_SINCE DATE, KEY { S#, DURING } ;
CITY CHAR, CITY_SINCE DATE }
KEY {S#}; VAR S_NAME_DURING Predicate: Supplier S# was named
. i BASE RELATION SNAME throughout DURING and neither
Predlgate. . { S# S#, immediately before nor immediately after
Supplier S# has been under contract since S#_SINCE, SNAME CHAR, DURING.
has been named NAME since NAME_SINCE, DURING INTERVAL_DATE }
has had status STATUS since STATUS_SINCE and KEY { $#, DURING } ;
has been located in city CITY since CITY_SINCE.
. And so on. We call this process vertical decomposition.
But we clearly cannot develop a fully temporalized
counterpart on similar lines!
43 44

Sixth Normal Form (6NF) | | “Circumlocution” and 6NF
Recall: A relvar R is in 5NF iff every nontrivial join S# NAME STATUS DURING
depe_ndency that is satisfied by R is implied by a S1 Smith 20 [d07:d06]
candidate key of R.
A relvar R is in 6NF iff R satisfies no nontrivial join S1 Smith 30 [007:d09]
dependencies at all (in which case R is sometimes said to
be irreducible). Note S1 named Smith throughout [d01:d09], split across tuples.
We call this undesirable phenomenon circumlocution.
SSSC and SSSC_SINCE are in 5NF but not 6NF (which Decompose to 6NF, using U_projection:

is not needed).

S_DURING, SNAME_DURING and so on are in 6NF, S# NAME DURING S# | STATUS DURING
thus allowing each of the supplier properties NAME, CITY S1 | Smith | [d07:d09] $1 20 [d01:d06]
and STATUS, which vary independently of each other S1 30 [d07:d09]
over time, to have its own recorded history (by supplier).

“The Moving Point NOW” ‘ ‘ Horizontal Decomposition
We reject any notion of a special marker, NOW, as an A very loose term! Components do not have exactly the
interval bound. (Itis a variable, not a value. Its use same structure:
\;VSOKJSJEE iZs)much a departure from the Relational Model 1. The current state component (S_SINCE)
T . 2. The past history component, with DURING in place of
(We reject the use of NULL too, obviously.) S SINCE’s SINCE.

If current state is to be recorded, along with history, in The past history component is then vertically
S_DURING, S_NAME_DURING, S_STATUS_DURING decomposed as already shown, giving
and S_C|TY_DUR|NG, then we have a choice of evils: S DURING, S NAME_DURING,

« guess when, in the future, current state will change S:STATUS_DURING,_and S_CITY_DURING.

+ assume current state will hold until the end of time . .
Having accepted the occasional (perhaps frequent)

inevitability of vertical and horizontal decomposition, we

Better instead to use horizontal decomposition need to consider the consequences for constraints ...

CS253: Topics in Databases 8

HACD.2: Temporal Data and The Relational Model 13 December, 2010

Candidate Keys and Related Constraints

Example database:

S_SINCE { S#, S# SINCE, STATUS, STATUS_SINCE }
] SP_SINCE { S#, P#, SINCE }

CHAPTER 1 1 . g:g'LrJE'lrrl\ng_{lejl’?ll:l)\lUGR{”\lSi}STATUS, DURING }
Integrity Constraints I

SP_DURING { S#, P#, DURING }

We first examine three distinct problems:
« The redundancy problem

« The circumlocution problem

« The contradiction problem

A fourth problem, concerning "density", will come later.

The Redundancy Problem ‘ ‘ The Circumlocution Problem
Consider: Still considering:
S_STATUS_DURING { S#, STATUS, DURING } S_STATUS_DURING { S#, STATUS, DURING }
The declared key, { S#, DURING } doesn't prevent this: The declared key, {S#, DURING } doesn't prevent this:
S# STATUS DURING Sk STATUS | DURING
4 25 [d05 : d06] g gg [ﬁ f%ﬂ
4 25 [d06: d07] [d06:07]
Longwinded way of saying that S4 has status 25 from day 5 to day 7.
S4 shown twice as having status 25 on day 6.
Also avoided in the packed form of S_STATUS_DURING.
Avoided in the packed form of S_STATUS_DURING.
51 52

Solving The Redundancy and Circumlocution The Contradiction Problem
Problems

Still considering:

VAR S_STATUS_DURING RELATION

{ S# S#, S_STATUS_DURING { S#, STATUS, DURING }
STATUS INT, DURING INTERVAL_DATE } ,
KEY { S#, DURING } The declared key, { S#, DURING } and PACKED ON (DURING) don't

prevent this:
PACKED ON (DURING) ;

Sk STATUS | DURING
PACKED ON (DURING) causes an update to be rejected if 7 25 [d04 :d06]
acceptance would result in [10 [d05 'don
S_STATUS_DURING # PACK S_STATUS_DURING ON (DURING) :

S4 has two statuses on days 5 and 6.
This kills two birds with one stone. We see no compelling reason

for distinct shorthands to separate the two required constraints. Easily avoidable in the unpacked form of S_STATUS_DURING!

CS253: Topics in Databases 9

HACD.2: Temporal Data and The Relational Model

13 December, 2010

Solving The Contradiction Problem ‘

VAR S_STATUS_DURING RELATION
{ S# S#,
STATUS CHAR, DURING INTERVAL_DATE }
KEY { S#, DURING }
PACKED ON (DURING)
WHEN UNPACKED ON (DURING)
THEN KEY { S#, DURING } ;

WHEN UNPACKED_ON (DURING) THEN KEY { S#, DURING }
causes an update to be rejected if acceptance would result in
failure to satisfy a uniqueness constraint on { S#, DURING } in the
result of UNPACK S_STATUS_DURING ON (DURING).

WHEN / THEN without PACKED ON

Example (presidential terms):

TERM | DURING PRESIDENT

[1974 : 1976] Ford

[1977 : 1980] Carter

[1981 : 1984] Reagan
[1985 : 1988] Reagan
[1993 : 1996] Clinton
[1997 : 2000] Clinton
[2009 : 2012] Obama

PACKED ON (DURING) not desired because it would lose distinct
consecutive terms by same president (e.g., Reagan and Clinton)
But we can't have two presidents at same time!

Perhaps not good design (better to include a TERM# attribute?) but
we don't want to legislate against it.

Neither WHEN / THEN nor PACKED ON

Example (measures of inflation):

INFLATION | DURING PERCENTAGE
[m01:m03] 18
[m04:m06] 20
[m07:m09] 20
[m07:m07] 25
[m01:m12] 20

But the predicate for this is not:
"Inflation was at PERCENTAGE throughout the interval DURING"
but rather, perhaps:

"Inflation was measured to be PERCENTAGE over the interval DURI5N7G"

WHEN / THEN and PACKED ON both
required

VAR S_STATUS_DURING RELATION
{ St S#,

STATUS CHAR, DURING INTERVAL_DATE }
USING (DURING) « KEY { S#, DURING } » ;

USING (ACL) « KEY { K} », where Kincludes ACL, is

shorthand for: WHEN UNPACKED ON (ACL)
THENKEY { K}
PACKED ON (ACL)
KEY { K}

(KEY { K} is implied by WHEN/THEN + PACKED ON anyway)

We call this constraint a "U_key" constraint. 58

General Constraints

CHAPTER 12:
Integrity Constraints 11

Example database is still:

S_SINCE { S#, S# SINCE, STATUS, STATUS_SINCE }
SP_SINCE { S#, P#, SINCE }

S_DURING { S#, DURING }

S_STATUS_DURING { S#, STATUS, DURING }
SP_DURING { S#, P#, DURING }

with added U_keys. But more constraints are needed.

We examine nine distinct requirements, in three groups of three.
In each group, one requirement relates to redundancy (and
sometimes also to contradiction), one to circumlocution and
one to denseness.

CS253: Topics in Databases

10

HACD.2: Temporal Data and The Relational Model 13 December, 2010

Requirement Group 1 ‘ ‘ Requirement Group 2
Requirement R1: Requirement R4:
If the database shows supplier Sx as being under contract on day d, If the database shows supplier Sx as having some status on day d,
then it must contain exactly one tuple that shows that fact. then it must contain exactly one tuple that shows that fact.
Note: avoiding redundancy Note: avoiding redundancy and contradiction
Requirement R2: Requirement R5:
If the database shows supplier Sx as being under contract on days d If the database shows supplier Sx as having status s on days d and
and d+1, then it must contain exactly one tuple that shows that fact. d+1, then it must contain exactly one tuple that shows that fact.
Note: avoiding circumlocution Note: avoiding circumlocution
Requirement R3: Requirement R6:
If the database shows supplier Sx as being under contract on day d, If the database shows supplier Sx as having some status on day d,
then it must also show supplier Sx as having some status on day d. then it must also show supplier Sx as being under contract on day d.
Note: to do with denseness Note: to do with denseness

61 62
Requirement Group 3 Meeting the Nine Requirements (a):

current relvars only

Requirement R7:
If the database shows supplier Sx as being able to supply part Py

on day d, then it must contain exactly one tuple that shows that fact. S_SINCE { S#, S#_SINCE, STATUS, STATUS_SINCE }
Note: avoiding redundancy KEY { S#}

Requirement R8: CONSTRAINT CR6 IS_EMPTY

If the database shows supplier Sx as being able to supply part Py (S_SINCE WHERE STATUS_SINCE < S#_SINCE)
on days d and d+1, then it must contain exactly one tuple that

shows that fact. SP_SINCE { S#, P#, SINCE }

Note: avoiding circumlocution KEY { S#, P#}

FOREIGN KEY { S# } REFERENCES S_SINCE
Requirement R9:

If the database shows supplier Sx as being able to supply some CONSTRAINT CR9 IS EMPTY
part on day d, then it must also show supplier Sx as being under ((S_SINCE JOIN_SP_SINCE)
contract on day d. WHERE SINCE < S# SINCE)
Note: to do with denseness
63 64
Meeting the Nine Requirements (b): Meeting the Nine Requirements (c):
historical relvars only current and historical relvars

Very difficult, even with shorthands defined so far. E.g.,
S_DURING { S#, DURING}

USING (DURING) « KEY { S#, DURING } » Requirement R9:
USING (DURING) « FOREIGN KEY { S#, DURING } If the database shows supplier Sx as being able to supply any part Py on day
REFERENCES S_STATUS_DURING » d, then it must also show supplier Sx as being under contract on day d.
CONSTRAINT BR9_A IS_EMPTY
S_STATUS_DURING { S#, STATUS, DURING } (('S_SINCE JOIN SP_SINCE) WHERE S# SINCE > SINCE)
USING (DURING) « KEY { S#, DURING } »
USING (DURING) « FOREIGN KEY { S#, DURING } CONSTRAINT BR9_B
REFERENCES S_DURING » WITH (EXTEND S_SINCE

ADD (INTERVAL_DATE ([S#_SINCE : LAST_DATE ()])
AS DURING) { S#, DURING } AS T1,

SP_DURING { S#, P#, DURING } (T1 UNION S_DURING) AS T2,
USING (DURING) <« KEY { S#, P#, DURING } » SP_DURING { S#, DURING } AS T3 :
USING (DURING) « FOREIGN KEY { S#, DURING } USING (DURING) 4« T3.C T2 »

REFERENCES S_DURING » (Note U_ form of relational comparison opergfor)

CS253: Topics in Databases 11

HACD.2: Temporal Data and The Relational Model 13 December, 2010

Special Treatment for
Current and Historical Relvars

So, to cut a long story short:
VAR S_SINCE RELATION
{s# S#,

S#_SINCE DATE SINCE_FOR { S#}
HISTORY_IN (S_DURING), C HAPT E R 1 3 .

STATUS INTEGER, .

STATUS_SINCE DATE SINCE_FOR { STATUS }
HISTORY_IN

Database Queries

VAR SP_SINCE RELATION
{S# S#, P# P#,
SINCE DATE SINCE_FOR { S#, P#}
HISTORY_IN (SP_DURING) }

KEY { S#, P#}
FOREIGN KEY { S# } REFERENCES S_SINCE ;

and we conjecture that the historical relvar definitions can be generated automatically.
67

Database Queries Query Example

In Chapter 13, twelve generic queries of varying complexity are presented Example for c. (both current and historical relvars):

and then solved:

a. for current relvars only
b. for historical relvars only
c. for both current and historical relvars WITH (EXTEND SP_SINCE

ADD INTERVAL_DATE ([SINCE : LAST_DATE ()])

The c. section raises requirement for virtual relvars (views) AS DURING) { S#, P#, DURING } AS T1,
that "undo" horizontal decomposition, such as:

Get supplier numbers for suppliers who were able to supply both part P1
and part P2 at the same time

(SP_DURING UNION T1)AS T2,
VAR S_DURING_NOW_AND_THEN VIRTUAL

S DURING UNION (T2 WHERE P# = P# (P1))) { S#, DURING } AS T3,
(EXTEND S_SINCE -
ADD INTERVAL_DATE ([S#_SINCE : LAST_DATE ()]) (T2 WHERE P# = P# (P2')) { S#, DURING } AS T4,

AS DURING) { S#, DURING
) } (USING (DURING) « T3JOINT4 »)AS T5:

T5{S#}
69 70
The Example Database

S_DURING s# | DURING SP_DURING | S# | P# | DURING
s1 | (do4:a10] s1 | P1 | [d04:d10]
Predicate: S2 | [d02:d04] Predicate: S1 | P2 | [d05:d10]
"Supplier S# was [go [d07:d10] "Supplier S# was | 51 | P3 | [d09:d10]

] under contract - able to supply N
CH AP I ER 14_ throughout s3 | [d03:d10] part P# s1 | P4 | [d05:d10]
DURING (and S4 | [d04:d10] throughout S1 | P5 | [d04:d10]
D t b d t notimmediately | g5 | [402:d10] DURING (and s1 | P6 | [d06:d710]

before or after not immediately .
atabase Updates A
DURING).” s2 | P1 | [d02:d04]
s2 | P2 | [do8:d10]
s2 | P2 | [d03:d03]
Regular INSERT, UPDATE, L d
DELETE become too difficult for S3 | P2 | [d09:010)
many common purposes S4 | P2 | [606:d09)
Y purp S4 | P4 | [d04:d08]
2 s4 | P5 | [d05:d10]

CS253: Topics in Databases 12

HACD.2: Temporal Data and The Relational Model

What Are The Problems?

Thirteen generic update operations of varying complexity are presented
in terms of addition, removal or replacement of propositions. E.g.:

Add the proposition "Supplier S2 was under contract from day 5 to day 6".

Remove the proposition "Supplier S1 was able to supply part P1 from
day 5 to day 6".

Replace the proposition "Supplier S2 was able to supply part P1

from day 3 to day 4" by the proposition "Supplier S2 was able to
supply part P1 from day 5 to day 7".

Inevitable conclusion is need for U_update operators ...

13 December, 2010

U_ update operators

"U_INSERT":
USING (ACL) < INSERTRr »;

is shorthand for
R := USING (ACL) <« RUNIONr ;»

"U_DELETE":
USING (ACL) « DELETE R WHERE p ;>

is shorthand for
R := USING (ACL) « RWHERE NOT p ;»

and there's "U_UPDATE" too, of course (difficult to define formally)

But U_update operators aren't all that's needed ...

The PORTION Clause

S_DURING [s# DURING
S1 [d03 : d10]
S2 [d02 : d05]

Replace the proposition "Supplier S1 was under contract from day 4
to day 8" by "Supplier S2 was under contract from day 6 to day 7".
(A trifle unreasonable but must be doable!)

We introduce PORTION:

UPDATE S_DURING WHERE S# = S# ('S1')

PORTION { DURING = INTERVAL_DATE ([d04: d08])}
(S#:=S#('S2'),

DURING := INTERVAL_DATE ([d06: d07]));

yielding: S# DURING
S1 [d03 :d03]
S1 [d09 :d10]
S2 [d02 :d07] 75

Updating the Combination View

Finally, we need to be able to apply update operators to the virtual
relvar that combines current state with history.

So we propose to add a COMBINED_IN specification to relvar
declaration syntax, for that express purpose. E.g.:

VAR S_SINCE RELATION
{s# S#,
S#_SINCE DATE SINCE_FOR { S#}
HISTORY_IN (S_DURING)
COMBINED_IN (S_DURING_NOW_AND_THEN),
STATUS INTEGER,
STATUS_SINCE DATE SINCE_FOR { STATUS }
HISTORY_IN
(S_STATUS_DURING)
COMBINED_IN
(S_STATUS_ DURING_NOW_AND_THEN)
KEY { S#};

CHAPTER 15:
Stated Times and
Logged Times

Proposed Terminology

CS253: Topics in Databases

Stated times = "valid times"
Logged times = "transaction times"

Justification for proposed terms:

The stated times of proposition p are times when,
according to our current belief, p was, is or will be true.
The logged times of proposition g are times (in the past
and present only) when the database recorded q as being
true.

[If g includes a stated time, then some might call "q
during logged time [t7:t2]" a "bitemporal" proposition
and hence talk about "bitemporal relations”. We don't.]

13

HACD.2: Temporal Data and The Relational Model

13 December, 2010

Special Treatment for Logged Times

Chapter 16: Point Types Revisited

We propose a LOGGED_TIMES_|IN specification to be
available in relvar declarations. E.g.:

VAR S_DURING RELATION
{S# SH,
DURING INTERVAL_DATE }
USING (DURING) < KEY { S#, DURING } »
LOGGED_TIMES_IN (S_DURING_LOG);

Attributes of S_DURING_LOG are S#, DURING and a
third one, for logged times.

Detailed investigation of point types and the significance of scale
(preferred term to "granularity"). Includes discussion of:

If point type pt2 is a proper subtype of pt1 (under specialisation by
constraint), what are the consequences for types INTERVAL_pt2
and INTERVAL_pt1?

(E.g.: EVEN_INTEGER and INTEGER)

What about nonuniform scales, as with pH values, Richter values
and prime numbers?

What about cyclic point types, such as WEEKDAY and times of day?
Consequences of a < b being equivalent to a # b for all (a,b), leading
to modified definitions of various interval operators.

Is there any point in considering continuous point types? We
conclude not, because you lose some operators and gain none.

Appendixes

Beware of Wikipedia!l

A. Implementation Considerations
Various useful transformations.
Avoiding unpacking.
The SPLIT operator.
Algorithms for implementing U_ operators.

B. Generalizing EXPAND and COLLAPSE
On sets of relations, sets of sets, sets of bags, other kinds of sets.
PACK, UNPACK and U_ operators therefore also defined for
relations with attributes having such types.

C. References and Bibliography

Over 100 references

"A temporal database is a database management system with built-
in time aspects, e.g. a temporal data model and a temporal version
of structured query language.

"More specifically the temporal aspects usually include valid-time
and transaction-time. These attributes go together to form bitemporal
data.

« "Valid time denotes the time period during which a fact is true with
respect to the real world.

« "Transaction time is the time period during which a fact is stored in
the database.

« "Bitemporal data combines both Valid and Transaction Time."

Beware of Wikipedia!

"Valid time is the time for which a fact is true in the real
world. In the example above, the Person table gets two
extra fields, Valid-From and Valid-To, specifying when a
person's address was valid in the real world. On April 4th,
1975 Joe's father proudly registered his son's birth. An
official will then insert a new entry to the database stating
that John lives in Smallville from the April, 3rd. Notice that
although the data was inserted on the 4th, the databases
states that the information is valid since the 3rd. The
official does not yet know if or when John will ever move to
a better place so in the database the Valid-To is filled with

infinity (o0). Resulting in this entry in the database:

"Person(John Doe, Smallville, 3-Apr-1975, x)"
Uh?

CS253: Topics in Databases

14

