
HACD.2: Temporal Data and The Relational Model 13 December, 2010

CS253: Topics in Databases 1

Temporal Data and The
Relational Model

Hugh Darwen
hugh@dcs.warwick.ac.uk

www.dcs.warwick.ac.uk/~hugh

Warwick University

Based on the book of the same title,
by C.J. Date, Hugh Darwen, and Nikos A. Lorentzos

summarised in C.J. Date: Introduction to Database
Systems (8th edition, Addison-Wesley, 2003), Chapter 23.

CS253

for

2

Temporal Data and The Relational Model

Authors: C.J. Date, Hugh Darwen,
Nikos A. Lorentzos

A detailed investigation into the application of
interval and relation theory to the problem of
temporal database management

Morgan-Kaufmann, 2002
ISBN 1-55860-855-9

Caveat: not about technology available anywhere today!

But MighTyD deserves a mention!

3

The Book’s Aims

• Describe a foundation for inclusion of support for temporal data in a truly
relational database management system (TRDBMS)

• Focussing on problems related to data representing beliefs that hold throughout
given intervals (usually, of time).

• Propose additional operators on relations and relation variables ("relvars")
having interval-valued attributes.

• Propose additional constraints on relation variables having interval-valued
attributes.

• All of the above to be definable in terms of existing operators and constructs.

• And explore some interesting side issues.

4

Contents (Parts I and II)

Part I: Preliminaries

Chapter 1: A Review of Relational Concepts
Chapter 2: An Overview of Tutorial D

Part II: Laying the Foundations

Chapter 3: Time and the Database
Chapter 4: What Is the Problem?
Chapter 5: Intervals
Chapter 6: Operators on Intervals
Chapter 7: The COLLAPSE and EXPAND Operators
Chapter 8: The PACK and UNPACK Operators
Chapter 9: Generalising the Relational Operators

5

Contents (Part III)

Part III: Building on the Foundations

Chapter 10: Database Design
Chapter 11: Integrity Constraints I: Candidate Keys and Related Constraints
Chapter 12: Integrity Constraints II: General Constraints
Chapter 13: Database Queries
Chapter 14: Database Updates
Chapter 15: Stated Times and Logged Times
Chapter 16: Point and Interval Types Revisited

6

Appendixes

Appendix A: Implementation Considerations
Appendix B: Generalizing the EXPAND and COLLAPSE Operators
Appendix C: References and Bibliography

HACD.2: Temporal Data and The Relational Model 13 December, 2010

CS253: Topics in Databases 2

7

Part I: Preliminaries

Chapter 1: A Review of Relational Concepts

Introduction; The running example (based on Date's familiar "suppliers
and parts" database); Types; Relation values; Relation variables; Integrity
constraints; Relational operators; The relational model; Exercises (as for
every chapter).

Chapter 2: An Overview of Tutorial D

A relational database language devised for tutorial purposes by Date
and Darwen in “Databases, Types, and The Relational Model: The Third
Manifesto" (3rd edition, Addison-Wesley, 2005). Also used in 8th edition of
Date's "Introduction to Database Systems".

Introduction; Scalar type definitions; Relational definitions; Relational
expressions; Relational assignments; Constraint definitions; Exercises.

8

Chapter 3: Time and the Database

Introduction

Timestamped propositions
E.g. "Supplier S1 was under contract throughout the period from

1/9/1999 (and not immediately before that date) until 31/5/2002
(and not immediately after that date)."

"Valid time" vs. "transaction time"

Some fundamental questions:
Introduction of quantisation and its consequences.

9 10

Example: Current State Only

S2

S3

S4

S5

S1

S#

P4S4

P2S4

P2S3

P2S2

P1S2

P6S1

P5S1

P4S1

P3S1

P2S1

P1S1

P5S4

P#S#S SP

“Suppliers and Shipments”

Predicate:
"Supplier S# is
under contract"

Predicate:
"Supplier S# is able
to supply part P#"

Consider queries: Which suppliers can supply
something? Which suppliers cannot supply
anything?

11

“Semitemporalising”

S5

S4

S3

S2

S1

S#

d02

d04

d03

d07

d04

SINCE

P5

P4

P2

P2

P2

P1

P6

P5

P4

P3

P2

P1

P#

d04S4

d06S4

d08S3

d09S2

d08S2

d06S1

d04S1

d05S1

d09S1

d05S1

d04S1

d05S4

SINCES#S_SINCE SP_SINCE

Predicate:
"Supplier S# has
been under
contract since
day SINCE"

Predicate:
"Supplier S# has
been able to supply
part P# since day
SINCE"

Consider queries: Since when has supplier S#
been able to supply anything? (Not too difficult)
Since when has supplier S# been unable to supply
anything? (Impossible)

12

“Fully temporalising” (try 1)

d10d07S2

d02

d04

d03

d02

d04

FROM

S5

S4

S3

S2

S1

S#

d10

d10

d10

d04

d10

TO

d10d08P2S2

d03d03P2S2

d05

d04

d06

d09

d02

d08

d06

d04

d05

d09

d05

d04

FROM

P5

P4

P2

P2

P1

P1

P6

P5

P4

P3

P2

P1

P#

d08S4

d09S4

d10S3

d04S2

d10S2

d10S1

d10S1

d10S1

d10S1

d10S1

d10S1

d10S4

TOS#S_FROM_TO SP_FROM_TO

Predicate:
"Supplier S# was
under contract
from day FROM
to day TO."

Predicate:
"Supplier S# was
able to supply
part P# from day
FROM to day
TO."

Consider queries: During which times was supplier
S# able to supply anything? (Very difficult)
During which times was supplier S# unable to
supply anything? (Very difficult)

HACD.2: Temporal Data and The Relational Model 13 December, 2010

CS253: Topics in Databases 3

13

Required Constraints

d10d07S2

d02

d04

d03

d02

d04

FROM

S5

S4

S3

S2

S1

S#

d10

d10

d10

d04

d10

TO

d10d08P2S2

d03d03P2S2

d05

d04

d06

d09

d02

d08

d06

d04

d05

d09

d05

d04

FROM

P5

P4

P2

P2

P1

P1

P6

P5

P4

P3

P2

P1

P#

d08S4

d09S4

d10S3

d04S2

d10S2

d10S1

d10S1

d10S1

d10S1

d10S1

d10S1

d10S4

TOS#S_FROM_TO SP_FROM_TO

Same supplier
can't be under
contract during
distinct but
overlapping or
abutting intervals.

Same supplier
can't be able to
supply same part
during distinct but
overlapping or
abutting intervals

These are very difficult!

14

15

“Fully temporalising” (try 2)

[d07:d10]S2

[d02:d10]

[d04:d10]

[d03:d10]

[d02:d04]

[d04:d10]

DURING

S5

S4

S3

S2

S1

S#

[d08:d10]P2S2

[d03:d03]P2S2

[d05:d10]

[d04:d08]

[d06:d09]

[d09:d10]

[d02:d04]

[d08:d10]

[d06:d10]

[d04:d10]

[d05:d10]

[d09:d10]

[d05:d10]

[d04:d10]

DURING

P5

P4

P2

P2

P1

P1

P6

P5

P4

P3

P2

P1

P#

S4

S4

S3

S2

S2

S1

S1

S1

S1

S1

S1

S4

S#S_DURING SP_DURING

Introduction of
interval types
and their
point types.

Here, the type of the DURING attributes is perhaps
named INTERVAL_DATE (its point type being DATE).

A point type requires a successor function - in this case
NEXT_DATE (d). This is based on the scale of the
point type.

16

17

Interval Selectors

INTERVAL_INTEGER ([1:10]) =
INTERVAL_INTEGER ((0:10]) =
INTERVAL_INTEGER ([1:11)) =
INTERVAL_INTEGER ((0:11))

In Tutorial D, we make the type name part of the
operator name. E.g.:

INTERVAL_INTEGER ([1:10])

Note special syntax for denoting bounds. Square bracket
denotes a closed bound, round one an open bound. Thus:

18

Monadic Operators on Intervals

For a given interval, i:

PRE (i) gives open begin bound
BEGIN (i) gives closed begin bound
END (i) gives closed end bound
POST (i) gives open end bound

COUNT (i) gives length (number of points)

HACD.2: Temporal Data and The Relational Model 13 December, 2010

CS253: Topics in Databases 4

19

Comparisons of Two Intervals

For given intervals, i1 and i2:

i1 = i2
i1 MEETS i2
i1 OVERLAPS i2
i1 SUCCEEDS i2
i1 PRECEDES i2
i1  i2

i1 BEGINS i2
i1 ENDS i2

i1  i2
i1  i2
i1  i2

i1 MERGES i2

Allen’s operators
(James F. Allen, 1983)

Allen uses DURING for 

Allen uses STARTS and ENDS

Added by Date, Darwen, Lorentzos

MERGES = MEETS OR OVERLAPS

20

Some Pictorial Definitions

i1 = i2

i1 MEETS i2

i1 OVERLAPS i2

i1 SUCCEEDS i2

i1 PRECEDES i2

i1  i2

i1  i2

i1 BEGINS i2

i1 ENDS i2

or

or

or

21

More Dyadic Operators

p  i1 or p IN i1 (where p is a point)

i1 UNION i2

i1 INTERSECT i2

i1 MINUS i2

Membership test:

Dyadic operators that return intervals:

Defined only for cases where the
result is a single, nonempty* interval.

* empty intervals, such as INTERVAL_INTEGER ([1:1)), are not supported at all!

22

23

Sets of Intervals

Let SI1 and SI2 be sets of intervals—e.g., {[1:2], [4:7], [6:9]}

We define an equivalence relationship:

SI1  SI2 iff every point in an interval in SI1 is a
point in some interval in SI2, and vice versa.

Under this equivalence relationship we then define two
canonical forms: collapsed form and expanded form.

In each of these forms, no point appears more than once.

24

Collapsed Form

So the collapsed form of {[1:2], [4:7], [6:9]} is {[1:2], [4:9]}.

No two elements, i1 and i2 (i1i2) are such that
i1 MERGES i2.

HACD.2: Temporal Data and The Relational Model 13 December, 2010

CS253: Topics in Databases 5

25

Expanded Form

So the expanded form of {[1:2], [4:7], [6:9]}
is {[1:1], [2:2], [4:4], [5:5], [6:6], [7:7], [8:8], [9:9]}.

Every element is a unit interval
(i.e., consists of a single point)

26

COLLAPSE and EXPAND

Then:
COLLAPSE(SI) denotes the collapsed form of SI.
EXPAND(SI) denotes the expanded form of SI.

Let SI be a set of intervals.

These operators are handy for definitional purposes (as
we shall see) but are not required to exist in the
database language.

27 28

Packed Form and Unpacked Form

Canonical forms for relations with one or more interval-
valued attributes.

Based on collapsed and expanded forms.

Both forms avoid redundancy (“saying the same thing”
more than once).

29

Packed Form

Packed form of
SD_PART

“on DURING”:

[d02:d05]S4

[d09:d10]

[d04:d06]

[d03:d05]

[d02:d04]

DURING

S4

S4

S2

S2

S#

PACK SD_PART ON (DURING)

SD_PART

[d02:d06]S4

[d09:d10]

[d02:d05]

DURING

S4

S2

S#

30

Unpacked Form

[d05:d05]S2

[d03:d03]S4

[d04:d04]S4

[d05:d05]S4

[d06:d06]S4

[d04:d04]S2

[d02:d02]S4

[d10:d10]

[d09:d09]

[d03:d03]

[d02:d02]

DURING

S4

S4

S2

S2

S#Unpacked form of SD_PART “on DURING”:

[d02:d05]S4

[d09:d10]

[d04:d06]

[d03:d05]

[d02:d04]

DURING

S4

S4

S2

S2

S#

UNPACK SD_PART ON (DURING)

SD_PART

HACD.2: Temporal Data and The Relational Model 13 December, 2010

CS253: Topics in Databases 6

31

Properties of PACK and UNPACK

Packing and unpacking on no attributes:

Unpacking on several attributes:

Packing on several attributes:

• Although redundancy is eliminated, result can be of
greater cardinality than r.

• Important degenerate cases
• Each yields its input relation

• UNPACK r ON (a1, a2) 
UNPACK (UNPACK r ON a1) ON a2 
UNPACK (UNPACK r ON a2) ON a1

• PACK r ON (a1, a2) 
PACK (PACK (UNPACK r ON (a1,a2)) ON a1) ON a2
not: PACK (PACK(UNPACK r ON (a1,a2)) ON a2) ON a1
and not: PACK (PACK r ON a1) ON a2

32

33

Tutorial D’s Relational Operators

UNION
MATCHING
NOT MATCHING
restriction (WHERE)
projection ({…})
JOIN
EXTEND
SUMMARIZE
etc.

New syntax for invoking each operator:

USING (ACL)  rel op inv 

where ACL is an attribute-name
commalist and rel op inv an invocation
of a relational operator.

Common principle:
1. Unpack the operand(s) on ACL
2. Evaluate rel op inv on unpacked forms.
3. Pack result of 2. on ACL

34

USING Example 1

USING (DURING)  SP_DURING { S#, DURING } 

We call this “U_project”.

gives (S#, DURING) pairs such that supplier S# was able
to supply some part throughout the interval DURING.

U_project is an example of what we call a “U_ operator”.

Other examples are U_JOIN, U_UNION, U_restrict, etc.

35

Example 2: U_NOT MATCHING

USING (DURING)
 S_DURING NOT MATCHING SP_DURING 

gives (S#, DURING) pairs such that supplier S# was under
contract but unable to supply any part throughout the
interval DURING.

Note: We have now solved the two query problems mentioned in Chapter 4,
“What’s the Problem?”

36

Example 3: U_SUMMARIZE

USING (DURING)
 SUMMARIZE SP_DURING

PER (S_DURING { S#, DURING })
ADD COUNT AS NO_OF_PARTS 

gives (S#, NO_OF_PARTS, DURING) triples such that
supplier S# was able to supply NO_OF_PARTS parts
throughout the interval DURING.

SUMMARIZE SP PER (S { S# })
ADD COUNT AS NO_OF_PARTS

Temporal counterpart of:

HACD.2: Temporal Data and The Relational Model 13 December, 2010

CS253: Topics in Databases 7

37

U_SUMMARIZE is Interesting (1)

USING (DURING)
SUMMARIZE SP_DURING

PER (S_DURING { DURING })
ADD COUNT AS NO_OF_PARTS 

• note lack of S# from PER relation
• gives (NO_OF_PARTS, DURING) pairs such that
NO_OF_PARTS parts were available from some supplier
throughout the interval DURING.

38

U_SUMMARIZE is Interesting (2)

USING (DURING)
SUMMARIZE SP_DURING

PER (S_DURING { S# })
ADD COUNT AS NO_OF_CASES 

• note lack of DURING from PER relation
• gives (S#, NO_OF_CASES) pairs such that there are
NO_OF_CASES distinct cases of S# being able to supply
some part on some date.

39 40

Contents

Chapter 10: Database Design

• Introduction
• Current relvars only
• Historical relvars only
• Sixth normal form (6NF)
• "The moving point now"
• Both current and historical relvars
• Concluding remarks
• Exercises

At last, we focus on specifically temporal issues!

41

Current Relvars Only

30

20

30

10

20

STATUS

Adams

Clark

Blake

Jones

Smith

SNAME

S5

S4

S3

S2

S1

S#

Athens

London

Paris

Paris

London

CITY

P2S2

P5

P4

P2

P2

P1

P6

P5

P4

P3

P2

P1

P#

S4

S4

S3

S2

S1

S1

S1

S1

S1

S1

S4

S#SSSC SP

Note: keys indicated by underlining
attribute names

42

Semitemporalizing SSSC (try 1)

Athens

London

Paris

Paris

London

CITY

d09

d09

d02

d05

d04

SINCE

30

20

30

10

20

STATUS

Adams

Clark

Blake

Jones

Smith

SNAME

S5

S4

S3

S2

S1

S#SSSC

Problem: SINCE gives date of last update for that supplier.
So we cannot tell:
since when a given supplier’s STATUS has held, or
since when a given supplier’s CITY has held, or
since when a given supplier’s NAME has held, or even
since when a given supplier has been under contract.

HACD.2: Temporal Data and The Relational Model 13 December, 2010

CS253: Topics in Databases 8

43

Semitemporalizing SSSC (try 2)

VAR S_SINCE
BASE RELATION
{ S# S#, S#_SINCE DATE,
SNAME CHAR, SNAME_SINCE DATE,
STATUS INT, STATUS_SINCE DATE,
CITY CHAR, CITY_SINCE DATE }

KEY { S# } ;

Predicate:
Supplier S# has been under contract since S#_SINCE,
has been named NAME since NAME_SINCE,
has had status STATUS since STATUS_SINCE and
has been located in city CITY since CITY_SINCE.

But we clearly cannot develop a fully temporalized
counterpart on similar lines!

44

Fully Temporalizing SSSC

VAR S_DURING
BASE RELATION
{ S# S#,
DURING INTERVAL_DATE }

KEY { S#, DURING } ;

Predicate: Supplier S# was under
contract throughout DURING and neither
immediately before nor immediately after
DURING.

VAR S_NAME_DURING
BASE RELATION
{ S# S#,
SNAME CHAR,
DURING INTERVAL_DATE }

KEY { S#, DURING } ;

Predicate: Supplier S# was named
SNAME throughout DURING and neither
immediately before nor immediately after
DURING.

And so on. We call this process vertical decomposition.

45

Sixth Normal Form (6NF)

Recall: A relvar R is in 5NF iff every nontrivial join
dependency that is satisfied by R is implied by a
candidate key of R.

A relvar R is in 6NF iff R satisfies no nontrivial join
dependencies at all (in which case R is sometimes said to
be irreducible).

SSSC and SSSC_SINCE are in 5NF but not 6NF (which
is not needed).

S_DURING, SNAME_DURING and so on are in 6NF,
thus allowing each of the supplier properties NAME, CITY
and STATUS, which vary independently of each other
over time, to have its own recorded history (by supplier).

46

“Circumlocution” and 6NF

[d07:d09]30SmithS1

[d01:d06]20SmithS1

DURINGSTATUSNAMES#

[d01:d09]SmithS1

DURINGNAMES#

[d07:d09]30S1

[d01:d06]20S1

DURINGSTATUSS#

Note S1 named Smith throughout [d01:d09], split across tuples.
We call this undesirable phenomenon circumlocution.
Decompose to 6NF, using U_projection:

47

“The Moving Point NOW”

We reject any notion of a special marker, NOW, as an
interval bound. (It is a variable, not a value. Its use
would be as much a departure from the Relational Model
as NULL is!)

(We reject the use of NULL too, obviously.)

If current state is to be recorded, along with history, in
S_DURING, S_NAME_DURING, S_STATUS_DURING
and S_CITY_DURING, then we have a choice of evils:

Better instead to use horizontal decomposition

• guess when, in the future, current state will change
• assume current state will hold until the end of time

48

Horizontal Decomposition

A very loose term! Components do not have exactly the
same structure:

1. The current state component (S_SINCE)
2. The past history component, with DURING in place of

S_SINCE’s SINCE.

The past history component is then vertically
decomposed as already shown, giving
S_DURING, S_NAME_DURING,
S_STATUS_DURING, and S_CITY_DURING.

Having accepted the occasional (perhaps frequent)
inevitability of vertical and horizontal decomposition, we
need to consider the consequences for constraints ...

HACD.2: Temporal Data and The Relational Model 13 December, 2010

CS253: Topics in Databases 9

49 50

Candidate Keys and Related Constraints

Example database:

S_SINCE { S#, S#_SINCE, STATUS, STATUS_SINCE }
SP_SINCE { S#, P#, SINCE }
S_DURING { S#, DURING }
S_STATUS_DURING { S#, STATUS, DURING }
SP_DURING { S#, P#, DURING }

We first examine three distinct problems:
• The redundancy problem
• The circumlocution problem
• The contradiction problem

A fourth problem, concerning "density", will come later.

51

The Redundancy Problem

Consider:

S_STATUS_DURING { S#, STATUS, DURING }

The declared key, { S#, DURING } doesn't prevent this:

S4 shown twice as having status 25 on day 6.

Avoided in the packed form of S_STATUS_DURING.

S# STATUS DURING

S4 25 [d05 : d06]

S4 25 [d06 : d07]

52

The Circumlocution Problem

Still considering:

S_STATUS_DURING { S#, STATUS, DURING }

The declared key, {S#, DURING } doesn't prevent this:

Longwinded way of saying that S4 has status 25 from day 5 to day 7.

Also avoided in the packed form of S_STATUS_DURING.

S# STATUS DURING
S4 25 [d05 :d05]

S4 25 [d06 :d07]

53

Solving The Redundancy and Circumlocution
Problems

VAR S_STATUS_DURING RELATION
{ S# S#,
STATUS INT, DURING INTERVAL_DATE }

KEY { S#, DURING }
PACKED ON (DURING) ;

PACKED ON (DURING) causes an update to be rejected if
acceptance would result in

S_STATUS_DURING ≠ PACK S_STATUS_DURING ON (DURING)

This kills two birds with one stone. We see no compelling reason
for distinct shorthands to separate the two required constraints.

54

The Contradiction Problem

Still considering:

S_STATUS_DURING { S#, STATUS, DURING }

The declared key, { S#, DURING } and PACKED ON (DURING) don't
prevent this:

S# STATUS DURING

S4 25 [d04 :d06]

S4 10 [d05 :d07]

S4 has two statuses on days 5 and 6.

Easily avoidable in the unpacked form of S_STATUS_DURING!

HACD.2: Temporal Data and The Relational Model 13 December, 2010

CS253: Topics in Databases 10

55

Solving The Contradiction Problem

VAR S_STATUS_DURING RELATION
{ S# S#,
STATUS CHAR, DURING INTERVAL_DATE }

KEY { S#, DURING }
PACKED ON (DURING)
WHEN UNPACKED ON (DURING)

THEN KEY { S#, DURING } ;

WHEN UNPACKED_ON (DURING) THEN KEY { S#, DURING }
causes an update to be rejected if acceptance would result in
failure to satisfy a uniqueness constraint on { S#, DURING } in the
result of UNPACK S_STATUS_DURING ON (DURING).

56

WHEN / THEN without PACKED ON

Example (presidential terms):

TERM

Clinton[1997 : 2000]

Obama[2009 : 2012]

Clinton[1993 : 1996]

Reagan[1985 : 1988]

Reagan[1981 : 1984]

Carter[1977 : 1980]

Ford[1974 : 1976]

PRESIDENTDURING

PACKED ON (DURING) not desired because it would lose distinct
consecutive terms by same president (e.g., Reagan and Clinton)
But we can't have two presidents at same time!
Perhaps not good design (better to include a TERM# attribute?) but
we don't want to legislate against it.

57

Neither WHEN / THEN nor PACKED ON

Example (measures of inflation):

INFLATION

But the predicate for this is not:

DURING PERCENTAGE
[m01:m03] 18

[m04:m06] 20

[m07:m09] 20

[m07:m07] 25

.......... ..
[m01:m12] 20

"Inflation was at PERCENTAGE throughout the interval DURING"

but rather, perhaps:

"Inflation was measured to be PERCENTAGE over the interval DURING"
58

WHEN / THEN and PACKED ON both
required

VAR S_STATUS_DURING RELATION
{ S# S#,
STATUS CHAR, DURING INTERVAL_DATE }

USING (DURING)  KEY { S#, DURING }  ;

USING (ACL)  KEY { K } , where K includes ACL, is
shorthand for: WHEN UNPACKED ON (ACL)

THEN KEY { K }
PACKED ON (ACL)
KEY { K }

(KEY { K } is implied by WHEN/THEN + PACKED ON anyway)

We call this constraint a "U_key" constraint.

59 60

General Constraints

Example database is still:

S_SINCE { S#, S#_SINCE, STATUS, STATUS_SINCE }
SP_SINCE { S#, P#, SINCE }
S_DURING { S#, DURING }
S_STATUS_DURING { S#, STATUS, DURING }
SP_DURING { S#, P#, DURING }

with added U_keys. But more constraints are needed.

We examine nine distinct requirements, in three groups of three.
In each group, one requirement relates to redundancy (and
sometimes also to contradiction), one to circumlocution and
one to denseness.

HACD.2: Temporal Data and The Relational Model 13 December, 2010

CS253: Topics in Databases 11

61

Requirement Group 1

Requirement R1:
If the database shows supplier Sx as being under contract on day d,
then it must contain exactly one tuple that shows that fact.
Note: avoiding redundancy

Requirement R2:
If the database shows supplier Sx as being under contract on days d
and d+1, then it must contain exactly one tuple that shows that fact.
Note: avoiding circumlocution

Requirement R3:
If the database shows supplier Sx as being under contract on day d,
then it must also show supplier Sx as having some status on day d.
Note: to do with denseness

62

Requirement Group 2

Requirement R4:
If the database shows supplier Sx as having some status on day d,
then it must contain exactly one tuple that shows that fact.
Note: avoiding redundancy and contradiction

Requirement R5:
If the database shows supplier Sx as having status s on days d and
d+1, then it must contain exactly one tuple that shows that fact.
Note: avoiding circumlocution

Requirement R6:
If the database shows supplier Sx as having some status on day d,
then it must also show supplier Sx as being under contract on day d.
Note: to do with denseness

63

Requirement Group 3

Requirement R7:
If the database shows supplier Sx as being able to supply part Py
on day d, then it must contain exactly one tuple that shows that fact.
Note: avoiding redundancy

Requirement R8:
If the database shows supplier Sx as being able to supply part Py
on days d and d+1, then it must contain exactly one tuple that
shows that fact.
Note: avoiding circumlocution

Requirement R9:
If the database shows supplier Sx as being able to supply some
part on day d, then it must also show supplier Sx as being under
contract on day d.
Note: to do with denseness

64

Meeting the Nine Requirements (a):
current relvars only

S_SINCE { S#, S#_SINCE, STATUS, STATUS_SINCE }
KEY { S# }

CONSTRAINT CR6 IS_EMPTY
(S_SINCE WHERE STATUS_SINCE < S#_SINCE)

SP_SINCE { S#, P#, SINCE }
KEY { S#, P# }
FOREIGN KEY { S# } REFERENCES S_SINCE

CONSTRAINT CR9 IS_EMPTY
((S_SINCE JOIN SP_SINCE)

WHERE SINCE < S#_SINCE)

65

Meeting the Nine Requirements (b):
historical relvars only

S_DURING { S#, DURING }
USING (DURING)  KEY { S#, DURING } 
USING (DURING)  FOREIGN KEY { S#, DURING }

REFERENCES S_STATUS_DURING 

S_STATUS_DURING { S#, STATUS, DURING }
USING (DURING)  KEY { S#, DURING } 
USING (DURING)  FOREIGN KEY { S#, DURING }

REFERENCES S_DURING 

SP_DURING { S#, P#, DURING }
USING (DURING)  KEY { S#, P#, DURING } 
USING (DURING)  FOREIGN KEY { S#, DURING }

REFERENCES S_DURING 
66

Meeting the Nine Requirements (c):
current and historical relvars

Very difficult, even with shorthands defined so far. E.g.,

Requirement R9:
If the database shows supplier Sx as being able to supply any part Py on day
d, then it must also show supplier Sx as being under contract on day d.

CONSTRAINT BR9_A IS_EMPTY
((S_SINCE JOIN SP_SINCE) WHERE S#_SINCE > SINCE)

CONSTRAINT BR9_B
WITH (EXTEND S_SINCE

ADD (INTERVAL_DATE ([S#_SINCE : LAST_DATE ()])
AS DURING) { S#, DURING } AS T1,

(T1 UNION S_DURING) AS T2,
SP_DURING { S#, DURING } AS T3 :

USING (DURING)  T3  T2 

(Note U_ form of relational comparison operator)

HACD.2: Temporal Data and The Relational Model 13 December, 2010

CS253: Topics in Databases 12

67

So, to cut a long story short:
VAR S_SINCE RELATION
{ S# S#,
S#_SINCE DATE SINCE_FOR { S# }

HISTORY_IN (S_DURING),
STATUS INTEGER,
STATUS_SINCE DATE SINCE_FOR { STATUS }

HISTORY_IN
(S_STATUS_DURING) }

KEY { S# } ;

VAR SP_SINCE RELATION
{ S# S#, P# P#,
SINCE DATE SINCE_FOR { S#, P# }

HISTORY_IN (SP_DURING) }
KEY { S#, P# }
FOREIGN KEY { S# } REFERENCES S_SINCE ;

and we conjecture that the historical relvar definitions can be generated automatically.

Special Treatment for
Current and Historical Relvars

68

69

Database Queries

In Chapter 13, twelve generic queries of varying complexity are presented
and then solved:
a. for current relvars only
b. for historical relvars only
c. for both current and historical relvars

The c. section raises requirement for virtual relvars (views)
that "undo" horizontal decomposition, such as:

VAR S_DURING_NOW_AND_THEN VIRTUAL
S_DURING UNION

(EXTEND S_SINCE
ADD INTERVAL_DATE ([S#_SINCE : LAST_DATE ()])
AS DURING) { S#, DURING }

70

Query Example

WITH (EXTEND SP_SINCE
ADD INTERVAL_DATE ([SINCE : LAST_DATE ()])

AS DURING) { S#, P#, DURING } AS T1 ,

(SP_DURING UNION T1) AS T2 ,

(T2 WHERE P# = P# ('P1')) { S#, DURING } AS T3 ,

(T2 WHERE P# = P# ('P2')) { S#, DURING } AS T4 ,

(USING (DURING)  T3 JOIN T4 ) AS T5 :

T5 { S# }

Example for c. (both current and historical relvars):

Get supplier numbers for suppliers who were able to supply both part P1
and part P2 at the same time

71 72

The Example Database

[d07:d10]S2

[d02:d10]

[d04:d10]

[d03:d10]

[d02:d04]

[d04:d10]

DURING

S5

S4

S3

S2

S1

S#

[d08:d10]P2S2

[d03:d03]P2S2

[d05:d10]

[d04:d08]

[d06:d09]

[d09:d10]

[d02:d04]

[d08:d10]

[d06:d10]

[d04:d10]

[d05:d10]

[d09:d10]

[d05:d10]

[d04:d10]

DURING

P5

P4

P2

P2

P1

P1

P6

P5

P4

P3

P2

P1

P#

S4

S4

S3

S2

S2

S1

S1

S1

S1

S1

S1

S4

S#S_DURING SP_DURING

Predicate:
"Supplier S# was
under contract
throughout
DURING (and
not immediately
before or after
DURING)."

Predicate:
"Supplier S# was
able to supply
part P#
throughout
DURING (and
not immediately
before or after
DURING).”

Regular INSERT, UPDATE,
DELETE become too difficult for
many common purposes …

HACD.2: Temporal Data and The Relational Model 13 December, 2010

CS253: Topics in Databases 13

73

What Are The Problems?

Thirteen generic update operations of varying complexity are presented
in terms of addition, removal or replacement of propositions. E.g.:

Add the proposition "Supplier S2 was under contract from day 5 to day 6".

Remove the proposition "Supplier S1 was able to supply part P1 from
day 5 to day 6".

Replace the proposition "Supplier S2 was able to supply part P1
from day 3 to day 4" by the proposition "Supplier S2 was able to
supply part P1 from day 5 to day 7".

Inevitable conclusion is need for U_update operators ...

74

U_ update operators

"U_INSERT":

USING (ACL)  INSERT R r  ;
is shorthand for
R := USING (ACL)  R UNION r ;

"U_DELETE":

USING (ACL)  DELETE R WHERE p ;
is shorthand for
R := USING (ACL)  R WHERE NOT p ;

and there's "U_UPDATE" too, of course (difficult to define formally)

But U_update operators aren't all that's needed ...

75

The PORTION Clause
S_DURING S# DURING

S1 [d03 : d10]

S2 [d02 : d05]

Replace the proposition "Supplier S1 was under contract from day 4
to day 8" by "Supplier S2 was under contract from day 6 to day 7".
(A trifle unreasonable but must be doable!)

We introduce PORTION:

UPDATE S_DURING WHERE S# = S# ('S1')
PORTION { DURING = INTERVAL_DATE ([d04 : d08]) }

(S# := S# ('S2') ,
DURING := INTERVAL_DATE ([d06 : d07])) ;

yielding: S# DURING
S1 [d03 : d03]

S1 [d09 : d10]

S2 [d02 : d07] 76

Updating the Combination View

Finally, we need to be able to apply update operators to the virtual
relvar that combines current state with history.

So we propose to add a COMBINED_IN specification to relvar
declaration syntax, for that express purpose. E.g.:

VAR S_SINCE RELATION
{ S# S#,
S#_SINCE DATE SINCE_FOR { S# }

HISTORY_IN (S_DURING)
COMBINED_IN (S_DURING_NOW_AND_THEN),

STATUS INTEGER,
STATUS_SINCE DATE SINCE_FOR { STATUS }

HISTORY_IN
(S_STATUS_DURING)

COMBINED_IN
(S_STATUS_ DURING_NOW_AND_THEN)

KEY { S# } ;

77 78

Proposed Terminology

Stated times = "valid times"
Logged times = "transaction times"

Justification for proposed terms:
The stated times of proposition p are times when,
according to our current belief, p was, is or will be true.
The logged times of proposition q are times (in the past
and present only) when the database recorded q as being
true.

[If q includes a stated time, then some might call "q
during logged time [t1:t2]" a "bitemporal" proposition
and hence talk about "bitemporal relations". We don't.]

HACD.2: Temporal Data and The Relational Model 13 December, 2010

CS253: Topics in Databases 14

79

Special Treatment for Logged Times

We propose a LOGGED_TIMES_IN specification to be
available in relvar declarations. E.g.:

VAR S_DURING RELATION
{ S# S#,
DURING INTERVAL_DATE }

USING (DURING)  KEY { S#, DURING } 
LOGGED_TIMES_IN (S_DURING_LOG) ;

Attributes of S_DURING_LOG are S#, DURING and a
third one, for logged times.

80

Chapter 16: Point Types Revisited

Detailed investigation of point types and the significance of scale
(preferred term to "granularity"). Includes discussion of:

If point type pt2 is a proper subtype of pt1 (under specialisation by
constraint), what are the consequences for types INTERVAL_pt2
and INTERVAL_pt1?
(E.g.: EVEN_INTEGER and INTEGER)

What about nonuniform scales, as with pH values, Richter values
and prime numbers?

What about cyclic point types, such as WEEKDAY and times of day?

Consequences of a < b being equivalent to a ≠ b for all (a,b), leading

to modified definitions of various interval operators.

Is there any point in considering continuous point types? We
conclude not, because you lose some operators and gain none.

81

Appendixes

A. Implementation Considerations
Various useful transformations.
Avoiding unpacking.
The SPLIT operator.
Algorithms for implementing U_ operators.

B. Generalizing EXPAND and COLLAPSE
On sets of relations, sets of sets, sets of bags, other kinds of sets.
PACK, UNPACK and U_ operators therefore also defined for
relations with attributes having such types.

C. References and Bibliography

Over 100 references

82

Beware of Wikipedia!

"A temporal database is a database management system with built-
in time aspects, e.g. a temporal data model and a temporal version
of structured query language.

"More specifically the temporal aspects usually include valid-time
and transaction-time. These attributes go together to form bitemporal
data.

• "Valid time denotes the time period during which a fact is true with
respect to the real world.

• "Transaction time is the time period during which a fact is stored in
the database.

• "Bitemporal data combines both Valid and Transaction Time."

83

Beware of Wikipedia!

"Valid time is the time for which a fact is true in the real
world. In the example above, the Person table gets two
extra fields, Valid-From and Valid-To, specifying when a
person's address was valid in the real world. On April 4th,
1975 Joe's father proudly registered his son's birth. An
official will then insert a new entry to the database stating
that John lives in Smallville from the April, 3rd. Notice that
although the data was inserted on the 4th, the databases
states that the information is valid since the 3rd. The
official does not yet know if or when John will ever move to
a better place so in the database the Valid-To is filled with

infinity (∞). Resulting in this entry in the database:

"Person(John Doe, Smallville, 3-Apr-1975, ∞)"
Uh?

84

The End

