Chapter 4

T he Third Mani festo

RM Prescriptions

RM Proscri ptions

OO Prescriptions

OO Proscriptions

RM Very Strong Suggestions
OO Very Strong Suggestions
Recent Manifesto changes

RM PRESCRI PTI ONS

1. A scalar data type (scalar type for short) is a naned, finite
set of scalar values (scalars for short). Gven an arbitrary
pair of distinct scalar types naned Tl and T2, respectively,
with corresponding sets of scalar values S1 and S2,
respectively, the nanmes T1 and T2 shall be distinct and the
sets S1 and S2 shall be disjoint; in other words, two scal ar
types shall be equal —i.e., the sane type—if and only if they
have the same nane (and therefore the sane set of values). D
shal |l provide facilities for users to define their own scal ar
types (user-defined scalar types); other scalar types shall be
provided by the system (built-in or systemdefined scal ar
types). D shall also provide facilities for users to destroy
user-defined scal ar types. The systemdefined scal ar types
shal | i nclude type bool ean (containing just two val ues, here
denoted TRUE and FALSE), and D shall support all four nonadic
and 16 dyadic | ogical operators, directly or indirectly, for
this type

2. Al scalar values shall be typed—i.e., such val ues shal
al ways carry with them at |east conceptually, sonme
identification of the type to which they bel ong.

3. A scalar operator is an operator that, when invoked, returns a
scal ar value (the result of that invocation). D shall provide
facilities for users to define and destroy their own scal ar
operators (user-defined scalar operators). Oher scalar
operators shall be provided by the system (built-in or system
defined scal ar operators). Let Op be a scal ar operator. Then:

a. Op shall be read-only, in the sense that invoking it shal
cause no variables to be updated other than ones that are
purely local to Op.

b. Every invocation of Op shall denote a value ("produce a
result”) of the sane type, the result type—also called the
decl ared type—of Op. The definition of O shall include a

Copyright © 2005 C.J. Date and Hugh Darwen page 4.1

Date and Darwen, DATABASES TYPES & THE RELATIONAL MODEL, pp. 81-92,
© 2007 Pearson Education, Inc. Reprinted by permission of Pearson Education, Inc. All rights reserved.



specification of the declared type of Op. That type shal

be nonenpty.

c. The definition of Op shall include a specification of the
type of each paraneter to Op, the declared type of that
paraneter. That type shall be nonenpty. |If paraneter P is

of declared type T, then, in every invocation of Qp, the
argunment A that corresponds to P in that invocation shal

al so be of type T, and that argunent A shall be effectively
assigned to P. Note: The prescriptions of this paragraph
c. shall also apply if Op is an update operator instead of a
read-only operator (see bel ow).

It is convenient to deal with update operators here as well,
despite the fact that such operators are not scalar (nor are
they nonscal ar—in fact, they are not typed at all). An update
operator is an operator that, when invoked, is allowed to
update at | east one variable that is not purely local to that
operator. Let V be such a variable. |[If the operator accesses
V via sone paraneter P, then that parameter P is subject to
update. D shall provide facilities for users to define and
destroy their own update operators (user-defined update
operators). O her update operators shall be provided by the
system (built-in or systemdefined update operators). Let O
be an update operator. Then:

d. No invocation of Op shall denote a value ("produce a

result").
e. The definition of Op shall include a specification of which
paraneters to OQp are subject to update. |If paraneter P is

subj ect to update, then, in every invocation of Op, the
argunment A that corresponds to P in that invocation shall be
a variable specifically, and, on conpletion of the execution
of Op caused by that invocation, the final value assigned to
P during that execution shall be effectively assigned to A

4. Let T be a nonenpty scalar type, and let v be an appearance in
some context of some value of type T. By definition, v has
exactly one physical representation and one or nore possible
representations (at |east one, because there is obviously
al ways one that is the sane as the physical representation).
Physi cal representations for values of type T shall be
specified by neans of some kind of storage structure definition
| anguage and shall not be visible in D. As for possible
represent ati ons:

a. If Tis user-defined, then at |east one possible
representation for values of type T shall be declared and
thus made visible in D. For each possible representation PR
for values of type T that is visible in D, a selector
operator S, of declared type T, shall be provided with the
foll owi ng properties:

Copyright © 2005 C.J. Date and Hugh Darwen page 4.2

Date and Darwen, DATABASES TYPES & THE RELATIONAL MODEL, pp. 81-92,
© 2007 Pearson Education, Inc. Reprinted by permission of Pearson Education, Inc. All rights reserved.



1. There shall be a one-to-one correspondence between the
paraneters of S and the conponents of PR (see RM
Prescription 5). For definiteness, assunme the paraneters
of S and the conponents of PR each constitute an ordered

list of n elements (n =2 0), such that the ith elenment in
the list of parameters corresponds to the ith elenent in
the list of conponents; then the declared types of the
ith elements in the two lists shall be the same (i = 1,
2, ..., n).

2. Every value of type T shall be produced by sone
i nvocation of Sin which every argunent is a literal.

3. Every successful invocation of S shall produce sone val ue
of type T.

b. If Tis systemdefined, then zero or nore possible
representations for values of type T shall be declared and
thus nmade visible in D. A possible representation PR for
values of type T that is visible in D shall behave in al
respects as if T were user-defined and PR were a decl ared
possi bl e representation for values of type T. If no
possi bl e representation for values of type T is visible in
D, then at |east one selector operator S, of declared type
T, shall be provided with the follow ng properties:

1. Every argunent to every invocation of S shall be a
literal.

2. Every value of type T shall be produced by sone
i nvocation of S

3. Every successful invocation of S shall produce sone val ue
of type T.

5. Let sone declared possible representation PR for val ues of
scalar type T be defined in terns of conponents C1, C2, ..., Cn

(n =2 0), each of which has a nane and a declared type. Let v
be a value of type T, and |let PR(v) denote the possible
representation corresponding to PR for that value v. Then
PR(v) shall be exposed—i.e., a set of read-only and update
operators shall be provided such that:

a. For all such values v and for all i (i =1, 2, ..., n), it
shall be possible to "retrieve" (i.e., read the value of)
the G conponent of PR(v). The read-only operator that
provides this functionality shall have declared type the
sanme as that of G

b. For all variables V of declared type T and for all i (i = 1,
2, ..., n), it shall be possible to update V in such a way
that if the values of V before and after the update are v
and v' respectively, then the possible representations

Copyright © 2005 C.J. Date and Hugh Darwen page 4.3

Date and Darwen, DATABASES TYPES & THE RELATIONAL MODEL, pp. 81-92,
© 2007 Pearson Education, Inc. Reprinted by permission of Pearson Education, Inc. All rights reserved.



corresponding to PR for v and v' (i.e., PR(v) and PR(V'),
respectively) differ in their G conponents.

Such a set of operators shall be provided for each possible
representation declared for values of type T.

6. D shall support the TUPLE type generator. That is, given sone
heading {H (see RM Prescription 9), D shall support use of the
generated type TUPLE{H} as a basis for defining (or, in the
case of values, selecting):

a. Values of that type (see RM Prescription 9)

b. Variables of that type (see RM Prescription 12)

c. Attributes of that type (see RM Prescriptions 9 and 10)
d

Conponents of that type wi thin declared possible
representations (see RM Prescription 5)

Read-only operators of that type (see RM Prescription 20)

f. Paraneters of that type to user-defined operators (see RM
Prescriptions 3 and 20)

®

The generated type TUPLE{H} shall be referred to as a tuple
type, and the nanme of that type shall be, precisely, TUPLE{H}
The term nol ogy of degree, attributes, and heading introduced
in RMPrescription 9 shall apply, mutatis nmutandis, to that
type, as well as to values and variables of that type (see RM
Prescription 12). Tuple types TUPLE{Hl} and TUPLE{H2} shall be
equal if and only if {H1} = {H2}. The applicable operators
shal | i nclude operators anal ogous to the RENAME, project,
EXTEND, and JO N operators of the relational algebra (see RM
Prescription 18), together with tuple assignnment (see RM
Prescription 21) and tuple conparisons (see RM Prescription
22); they shall also include (a) a tuple selector operator (see
RM Prescription 9), (b) an operator for extracting a specified
attribute value froma specified tuple (the tuple in question
m ght be required to be of degree one—see RM Prescription 9),
and (c) operators for performng tuple "nesting" and
"“unnesting."

7. D shall support the RELATION type generator. That is, given
sone heading {H (see RM Prescription 9), D shall support use
of the generated type RELATION{H} as the basis for defining
(or, in the case of values, selecting):

a. Values of that type (see RM Prescription 10)

b. Variables of that type (see RM Prescription 13)

c. Attributes of that type (see RM Prescriptions 9 and 10)
d

Conponents of that type wi thin declared possible
representations (see RM Prescription 5)

e. Read-only operators of that type (see RM Prescription 20)

Copyright © 2005 C.J. Date and Hugh Darwen page 4.4

Date and Darwen, DATABASES TYPES & THE RELATIONAL MODEL, pp. 81-92,
© 2007 Pearson Education, Inc. Reprinted by permission of Pearson Education, Inc. All rights reserved.



f. Paraneters of that type to user-defined operators (see RM
Prescriptions 3 and 20)

The generated type RELATION{H} shall be referred to as a
relation type, and the name of that type shall be, precisely,
RELATION{H}. The term nol ogy of degree, attributes, and
headi ng i ntroduced in RM Prescription 9 shall apply, mutatis
nmutandis, to that type, as well as to values and vari abl es of
that type (see RM Prescription 13). Relation types
RELATI ON{ H1} and RELATI ON{H2} shall be equal if and only if
{H1} = {H2}. The applicable operators shall include the usua
operators of the relational algebra (see RM Prescription 18),
together with relational assignnent (see RM Prescription 21)
and rel ational conparisons (see RM Prescription 22); they shal
also include (a) a relation selector operator (see RM
Prescription 10), (b) an operator for extracting the sole tuple
froma specified relation of cardinality one (see RV
Prescription 10), and (c) operators for perform ng rel ationa
"nesting"” and "unnesting."

8. D shall support the equality conparison operator "=" for every
type T. Let Op be an operator with a paraneter P, let P be
such that the argument corresponding to P in sonme invocation of
o is allowed to be of type T, and let vl and v2 be val ues of
type T. Then vl = v2 shall evaluate to TRUE if and only if,
for all such operators Op, two successful invocations of Op
that are identical in all respects except that the argunent
corresponding to Pis vl in one invocation and v2 in the other
are indistinguishable in their effect.

9. A heading {H is a set of ordered pairs or attributes of the
form <A T>, where:

a. Ais the nanme of an attribute of {H. No two distinct pairs
in {H shall have the sane attribute namne.

b. Tis the nane of the declared type of attribute A of {H}.

The number of pairs in {H —equivalently, the nunber of
attributes of {Hl—is the degree of {H.

Now let t be a set of ordered triples <A T,v> obtained from
{H by extending each ordered pair <A T> to include an
arbitrary value v of type T, called the attribute value for
attribute Aof t. Thent is a tuple value (tuple for short)
that conforns to heading {H}; equivalently, t is of the
corresponding tuple type (see RM Prescription 6). The degree
of that heading {H} shall be the degree of t, and the
attributes and correspondi ng types of that heading {H} shall be
the attributes and correspondi ng declared attribute types of t.
G ven a heading {H}, a selector operator, of type TUPLE{H}
shal | be available for selecting an arbitrary tuple conform ng
to {H; every such tuple shall be produced by sone invocation

Copyright © 2005 C.J. Date and Hugh Darwen page 4.5

Date and Darwen, DATABASES TYPES & THE RELATIONAL MODEL, pp. 81-92,
© 2007 Pearson Education, Inc. Reprinted by permission of Pearson Education, Inc. All rights reserved.



10.

11.

12.

13.

of that selector in which every argunent is a literal, and
every successful invocation of that selector shall produce sone
such tupl e.

A relation value r (relation for short) consists of a heading
and a body, where:

a. The heading of r shall be a heading {H as defined in RM
Prescription 9; r conforns to that heading (equivalently, r
is of the corresponding relation type—see RM Prescription
7). The degree of that heading {H} shall be the degree of
r, and the attributes and correspondi ng types of that
heading {H} shall be the attributes and correspondi ng
decl ared attribute types of r.

b. The body of r shall be a set B of tuples, all having that
same heading {H. The cardinality of that body shall be the
cardinality of r.

G ven a heading {H, a selector operator, of type
RELATI ON{ H}, shall be available for selecting an arbitrary
relation conformng to {H}; every such relation shall be
produced by sone invocation of that selector in which every
argument is a literal, and every successful invocation of that
sel ector shall produce sone such relation

D shall provide facilities for users to define scalar

vari abl es. Each scalar variable shall be naned and shall have
a specified nonenpty (scalar) declared type. Let scalar

vari able V be of declared type T, for so long as variable V
exists, it shall have a value that is of type T. Defining V
shal |l have the effect of initializing V to sone value—either a
val ue specified explicitly as part of the operation that
defines V, or sone inplenentation-defined value if no such
explicit value is specified.

D shall provide facilities for users to define tuple variables.
Each tupl e variable shall be naned and shall have a specified
nonenpty declared type of the form TUPLE{H for sone headi ng
{H}. Let variable V be of declared type TUPLE{H}; then the
degree of that heading {H shall be the degree of V, and the
attri butes and correspondi ng types of that heading {H shall be
the attributes and correspondi ng declared attri bute types of V.
For so long as variable V exists, it shall have a value that is
of type TUPLE{H}. Defining V shall have the effect of
initializing V to sone val ue—either a val ue specified
explicitly as part of the operation that defines V, or sone

i npl ement ati on-defined value if no such explicit value is
speci fi ed.

D shall provide facilities for users to define relation
vari ables (relvars for short)—both database relvars (i.e.,
relvars that are part of some database) and application relvars

Copyright © 2005 C.J. Date and Hugh Darwen page 4.6

Date and Darwen, DATABASES TYPES & THE RELATIONAL MODEL, pp. 81-92,
© 2007 Pearson Education, Inc. Reprinted by permission of Pearson Education, Inc. All rights reserved.



14.

15.

16.

17.

(i.e., relvars that are local to sone application). D shal

al so provide facilities for users to destroy database relvars.
Each relvar shall be naned and shall have a specified declared
type of the form RELATION{H} for sone heading {H}. Let

vari abl e V be of declared type RELATIONH}; then the degree of
that heading {H} shall be the degree of V, and the attributes
and correspondi ng types of that heading {H} shall be the

attri butes and correspondi ng declared attribute types of W.

For so long as variable V exists, it shall have a value that is
of type RELATI O\{ H}

Dat abase relvars shall be either real or virtual. A virtua
relvar V shall be a database relvar whose value at any given
time is the result of evaluating a certain relationa
expression at that tinme; the relational expression in question
shal | be specified when V is defined and shall nention at | east
one database relvar. A real relvar shall be a database relvar
that is not virtual. Defining a real relvar V shall have the
effect of initializing V to sone val ue—either a val ue
specified explicitly as part of the operation that defines V,
or an enpty relation if no such explicit value is specified.

Application relvars shall be either public or private. A
public relvar shall be an application relvar that constitutes
the perception of the application in question of sonme portion
of sone database. A private relvar shall be an application
relvar that is conpletely private to the application in
question and is not part of any database. Defining a private
relvar V shall have the effect of initializing V to sone
val ue—either a value specified explicitly as part of the
operation that defines V, or an enpty relation if no such
explicit value is specified.

By definition, every relvar shall have at |east one candi date
key. At |east one such key shall be defined, either explicitly
or inmplicitly, at the tine the relvar in question is defined,
and it shall not be possible to destroy all of the candidate
keys of a given relvar (other than by destroying the relvar
itself).

A dat abase shall be a naned container for relvars; the content
of a given database at any given tinme shall be a set of

dat abase relvars. The necessary operators for defining and
destroyi ng dat abases shall not be part of D (in other words,
defining and destroyi ng dat abases shall be done "outside the D
envi ronnent").

Each transaction shall interact wth exactly one dat abase.
However, distinct transactions shall be able to interact with
di stinct databases, and distinct databases shall not
necessarily be disjoint. Also, D shall provide facilities for

Copyright © 2005 C.J. Date and Hugh Darwen page 4.7

Date and Darwen, DATABASES TYPES & THE RELATIONAL MODEL, pp. 81-92,
© 2007 Pearson Education, Inc. Reprinted by permission of Pearson Education, Inc. All rights reserved.



a transaction to define new relvars, or destroy existing ones,
Wi thin its associ ated database (see RM Prescription 13).

18. D shall support the usual operators of the relational algebra
(or sone |ogical equivalent thereof). Specifically, it shal
support, directly or indirectly, at |east the operators RENAME,
restrict (WHERE), project, JON, UNI ON, | NTERSECT, M NUS
DI VI DEBY, EXTEND, SUMVARI ZE, GROUP, and UNGROUP. All such
operators shall be expressible w thout excessive
circum ocution. D shall support type inference for relation
types, whereby the type of the result of evaluating an
arbitrary relational expression shall be well defined and known
to both the system and the user.

19. Relvar nanmes and relation selector invocations shall both be
valid rel ational expressions. Recursion shall be permtted in
rel ati onal expressions.

20. D shall provide facilities for users to define and destroy
their own tuple operators (user-defined tuple operators) and
rel ati onal operators (user-defined relational operators).
Paragraphs a.-c. fromRM Prescription 3 shall apply, mutatis
mut andi s.

21. D shall support the assignnent operator ":=" for every type T.
The assignment shall be referred to as a scalar, tuple, or
relation (or relational) assignment according as T is a scalar,
tuple, or relation type. Let V and v be a variable and a
val ue, respectively, of the same type. After assignnent of v
to V, the equality conparison V = v shall evaluate to TRUE (see
RM Prescription 8). Furthernore, all variables other than V
shal | remai n unchanged, apart possibly from variabl es defined
interns of V or variables in ternms of which V is defined or
bot h.

D shall al so support a nmultiple formof assignnment, in which
several individual assignnents shall be perfornmed as a single
operation. Let MA be the nultiple assignnment

Al , A2, ... , An :

(where Al, A2, ..., An are individual assignnents, each
assigning to exactly one target variable, and the sem col on

mar ks the overall end of the operation). Then the semantics of
MA shall be defined by the follow ng pseudocode (Steps a.-d.):

a. For i := 1 to n, expand any syntactic shorthands involved in
Ai. After all such expansions, let MA take the form
Vi :=X1, V2 :=X2, ..., Vz := Xz ;

for some z = n, where Vi is the nane of sone vari abl e not
defined in ternms of any others and Xi is an expression of
decl ared type the sane as that of Vi.

Copyright © 2005 C.J. Date and Hugh Darwen page 4.8

Date and Darwen, DATABASES TYPES & THE RELATIONAL MODEL, pp. 81-92,
© 2007 Pearson Education, Inc. Reprinted by permission of Pearson Education, Inc. All rights reserved.



b. Let p and q (1 <p < g < 2z) be such that Vp and Vq are
identical and there is nor (r <por p<r <) such that
Vp and Vr are identical. Replace Aq in MA by an assignnment
of the form

Vg := WTH Xp AS Vg : Xq

and renmove Ap from MA. Repeat this process until no such
pair p and g remains. Let MA now consist of the sequence

Uuu:=v1r, 2:=Y2, ... , Un:= Ym;

where each U is sone V] (1 <i <] £mxg z).

c. For i
d. For i

Note: Step b. of the foregoing pseudocode nmakes use of the
W TH construct of Tutorial D. For further explanation, see
Chapter 5.

1 tom evaluate Yi. Let the result be yi.

1 tom assignyi to U.

22. D shall support certain conparison operators, as follows:

a. The operators for conparing scalars shall include "=", "+"
and (for ordinal types) "<", ">", etc.

b. The operators for conparing tuples shall include "=" and "=+
and shall not include "<", ">", etc.

c. The operators for conparing relations shall include "=",
", "' ("is a subset of"), and "2" ("is a superset of")
and shall not include "<", ">", etc.

d. The operator "[I" for testing nenbership of a tuple in a
relation shall be supported.

In every case nentioned except "[" the conparands shall be of

the sane type; in the case of "[I'" they shall have the sane

headi ng. Note: Support for "=" for every type is in fact

required by RM Prescription 8.

23. D shall provide facilities for defining and destroying
integrity constraints (constraints for short). Let C be a
constraint; C can be thought of as a bool ean expression (though
it mght not be explicitly fornul ated as such), and it shall be
satisfied if and only if that bool ean expression evaluates to
TRUE. No user shall ever see a state of affairs in which Cis
not satisfied. There shall be two kinds of constraints:

a. A type constraint shall specify the set of val ues that
constitute a given type.

b. A database constraint shall specify that values of a given
set of database relvars taken in conbination shall be such
that a gi ven bool ean expression (which shall nention no
vari abl es other than the database relvars in question)

Copyright © 2005 C.J. Date and Hugh Darwen page 4.9

Date and Darwen, DATABASES TYPES & THE RELATIONAL MODEL, pp. 81-92,
© 2007 Pearson Education, Inc. Reprinted by permission of Pearson Education, Inc. All rights reserved.



24.

25.

26.

evaluates to TRUE. Insofar as feasible, D shall support
constraint inference for database constraints, whereby the
constraints that apply to the result of evaluating an
arbitrary rel ational expression shall be well defined and
known to both the system and the user.

Let DB be a database, |let DBClL, DBC2, ..., DBCn be all of the
dat abase constraints defined for DB (see RM Prescription 23),
and | et DBC be any bool ean expression that is logically

equi valent to

( DBC1 ) AND ( DBC2 ) AND ... AND ( DBCn ) AND TRUE
Then DBC is the total database constraint for DB

Every dat abase shall include a set of database relvars that
constitute the catalog for that database. D shall provide
facilities for assigning to relvars in the catal og.

D shall be constructed according to well-established principles
of good | anguage desi gn.

RM PROSCRI PTI ONS

1. D shall include no concept of a "relation" whose attributes are
di sti ngui shabl e by ordinal position. Instead, for every
relation r expressible in D, the attributes of r shall be
di sti ngui shabl e by nane.

2. D shall include no concept of a "relation" whose tuples are
di sti ngui shabl e by ordinal position. Instead, for every
relation r expressible in D, the tuples of r shall be
di sti ngui shabl e by val ue.

3. D shall include no concept of a "relation" containing two
di stinct tuples t1 and t2 such that the conparison "tl = t2"
evaluates to TRUE. It follows that (as already stated in RM
Proscription 2), for every relation r expressible in D, the
tuples of r shall be distinguishable by val ue.

4. D shall include no concept of a "relation" in which sone
"tuple"” includes sonme "attribute" that does not have a val ue.

5. D shall not forget that relations with no attributes are
respectable and interesting, nor that candi date keys with no
conponents are |ikew se respectable and interesting.

6. D shall include no constructs that relate to, or are logically
affected by, the "physical" or "storage" or "internal" |evels
of the system

7. D shall support no tuple-at-a-tinme operations on relvars or
rel ations.

8. D shall not include any specific support for "conposite" or
"conpound" attributes, since such functionality can nore

Copyright © 2005 C.J. Date and Hugh Darwen page 4.10

Date and Darwen, DATABASES TYPES & THE RELATIONAL MODEL, pp. 81-92,
© 2007 Pearson Education, Inc. Reprinted by permission of Pearson Education, Inc. All rights reserved.



cleanly be achieved, if desired, through the type support
al ready prescri bed.

9. D shall include no "domain check override" operators, since
such operators are both ad hoc and unnecessary.

10. D shall not be called SQ..
OO PRESCRI PTI ONS

D shall permt conpile-tinme type checking.

2. If D supports type inheritance, then such support shall conform
to the inheritance nodel defined in Part IV of this book.

3. D shall be conputationally conplete. That is, D may support,
but shall not require, invocation fromso-called "host
prograns” witten in | anguages other than D. Simlarly, D may
support, but shall not require, the use of other |anguages for
i npl ement ati on of user-defined operators.

4. Transaction initiation shall be perfornmed only by nmeans of an
explicit "begin transaction" operator. Transaction term nation
shal | be perforned only by neans of a "commt" or "roll back"
operator; commt nust always be explicit, but rollback can be
inplicit (if and only if the transaction fails through no fault

of its own). If transaction TX termnates with commt ("nornal
term nation"), changes nade by TX to the applicabl e dat abase
shall be commtted. |If transaction TX term nates with roll back

("abnormal term nation"), changes made by TX to the applicable
dat abase shall be rolled back.

5. D shall support nested transactions—i.e., it shall permt a
parent transaction TX to initiate a child transaction TX
before TX itself has term nated, in which case:

a. TX and TX' shall interact with the sane database (as is in
fact required by RM Prescription 17).

b. Whether TX shall be required to suspend execution while TX
executes shall be inplenentation-defined. However, TX shal
not be allowed to termnate before TX term nates; in other
words, TX shall be wholly contained within TX

c. Rollback of TX shall include the rolling back of TX even if
TX has terminated with conmt. |In other words, "comit" is
al ways interpreted within the parent context (if such
exi sts) and is subject to override by the parent transaction
(again, if such exists).

6. Let AggOp be an aggregate operator, such as SUM If the
argument to AggQp happens to be enpty, then:

a. If AggOp is essentially just shorthand for sone iterated
scal ar dyadi c operator Op (the dyadic operator is "+" in the
case of SUM, and if an identity value exists for Op (the

Copyright © 2005 C.J. Date and Hugh Darwen page 4.11

Date and Darwen, DATABASES TYPES & THE RELATIONAL MODEL, pp. 81-92,
© 2007 Pearson Education, Inc. Reprinted by permission of Pearson Education, Inc. All rights reserved.



identity value is O in the case of "+"), then the result of
that invocation of AggQp shall be that identity val ue.

b. O herwise, the result of that invocation of AggQp shall be
undefi ned.

OO PROSCRI PTI ONS

1
2.

Rel vars are not domains.
No dat abase relvar shall include an attribute of type pointer.

RM VERY STRONG SUGGESTI ONS

1

D shoul d provide a mechani sm according to which val ues of sone
specifi ed candi date key (or certain conponents thereof) for
sonme specified relvar are supplied by the system It should
al so provide a nmechani sm according to which an arbitrary
relation can be extended to include an attribute whose val ues
(a) are unique within that relation (or within certain
partitions of that relation), and (b) are once again supplied
by the system

D shoul d i nclude sone decl arative shorthand for expressing
referential constraints (al so known as foreign key
constraints).

Let RX be a relational expression. By definition, RX can be

t hought of as designating a relvar, R say—either a user-
defined relvar (if RXis just a relvar nane) or a system
defined relvar (otherwise). It is desirable, though not always
entirely feasible, for the systemto be able to infer the

candi date keys of R, such that (anong other things):

a. If RX constitutes the defining expression for some virtua
relvar R, then those inferred candi date keys can be checked
for consistency wth the candi date keys explicitly defined
for R and—assum ng no conflict—beconme candi date keys for
R .

b. Those inferred candi date keys can be included in the
i nformati on about R that is nade available (in response to a
"met aquery") to a user of D.

D shoul d provide such functionality, but w thout any guarantee
(a) that such inferred candi date keys are not proper supersets
of actual candidate keys, or (b) that such an inferred

candi date key is discovered for every actual candi date key.

D shoul d support transition constraints—i.e., constraints on
the transitions that a given database can nmake from one val ue
to anot her.

Copyright © 2005 C.J. Date and Hugh Darwen page 4.12

Date and Darwen, DATABASES TYPES & THE RELATIONAL MODEL, pp. 81-92,
© 2007 Pearson Education, Inc. Reprinted by permission of Pearson Education, Inc. All rights reserved.



D shoul d provi de sonme shorthand for expressing quota queries.
It should not be necessary to convert the relation concerned
into (e.g.) an array in order to fornmulate such a query.

D shoul d provi de sonme shorthand for expressing the generalized
transitive closure operation, including the ability to specify
general i zed concatenate and aggregate operations.

D shoul d provi de sone neans for users to define their own
generic operators, including in particular generic relationa
oper ators.

SQL shoul d be inplenmentable in D—not because such

i npl enentation is desirable in itself, but so that a painless
mgration route mght be available for current SQ users. To
this sanme end, existing SQL databases should be convertible to
a formthat D prograns can operate on w thout error.

OO VERY STRONG SUGGESTI ONS

1

3.

Some | evel of type inheritance should be supported (in which
case, see OO Prescription 2).

Operator definitions should be logically distinct fromthe
definitions of the types of their paraneters and results, not
"bundled in" with those latter definitions (though the
operators required by RM Prescriptions 4, 5 8, and 21 m ght be
exceptions in this regard).

D shoul d support the concept of single-I|evel storage.

RECENT MANI FESTO CHANGES

There are a nunber of differences between the Manifesto as defined
in the present chapter and the version docunmented in this book's
predecessor (reference [83]). For the benefit of readers who m ght
be famliar with that earlier version, we sumuarize the main

di fferences here.

RM Prescription 1 has been sinplified and corrected. 1In
particular, (a) the requirenment that val ues and vari abl es of
type T be operable upon solely by means of operators defined
for type T has been deleted, since it was tautol ogous; (b) the
references to RM Prescriptions 4 and 5 have been del eted, since
they were redundant.

Type truth val ue has been renanmed type bool ean, and the truth
val ues true and fal se have been renanmed TRUE and FALSE
respectively.

RM Prescription 3 has been restructured to make it clear that
scal ar operators are read-only by definition, while update
operators have no type at all but can update vari abl es
(argunents in particular) of any type. Paragraph a. outl aws

Copyright © 2005 C.J. Date and Hugh Darwen page 4.13

Date and Darwen, DATABASES TYPES & THE RELATIONAL MODEL, pp. 81-92,
© 2007 Pearson Education, Inc. Reprinted by permission of Pearson Education, Inc. All rights reserved.



side effects on the part of read-only operators. Paragraph b.
requires result types to be nonenpty. Paragraph c. requires
paraneter types to be nonenpty. Paragraph e. explains the
semanti cs of paraneters that are subject to update in terns of
ef fective assignnent instead of (as previously) in ternms of
passi ng by reference vs. passing by val ue.

* RMPrescription 4 now refers explicitly to nonenpty types. It
al l ows enpty possreps. Also, "actual" representations are now
cal |l ed physical representations, and the requirenent that
decl ared possreps be defined as part of the pertinent type
definition (instead of, possibly, elsewhere) has been del eted.

e Several omssions to do with selectors have been rectified:
Result types (and in fact the conplete semantics) of tuple and
rel ation selectors are specified; scalar selector paraneters
are expl ai ned; and possreps and selectors for systemdefined
scal ar types are specified. Also, result types are specified
for the read-only operators that access possrep components.

e The phrase "at nost only" has been deleted from paragraph b. of
RM Prescription 5. (As it stood, that phrase rendered the
par agraph vacuous, while deleting "at nost" but keeping "only"
woul d result in a prescription that could be awkward to
satisfy.)

* RMPrescriptions 6 and 7 have been extended to include tuple
and relation types as possible declared types for paraneters
and read-only operators.

* RMPrescription 11 now defines tuples in terns of tuple types
i nstead of vice versa.

* Headings are now denoted {H} instead of H.

* The fact that (except for relvars) variables nust have a
nonenpty declared type is now stated explicitly, as is the fact
that they always have a value (there is no such thing as an
unitialized variable). Real relvars can now be explicitly
initialized.

* RMPrescription 14 has been expanded to include details of
application rel vars.

* Candi date key specifications can now be inplicit (for virtua
relvars in particular; previously we required them always to be
explicit, but that was just an oversight).

* RMPrescription 18 now nentions GROUP and UNGROUP
* RMPrescription 20 has been generali zed.

* RMPrescription 21 has been clarified (and, in the case of
mul ti pl e assignnent, corrected).

Copyright © 2005 C.J. Date and Hugh Darwen page 4. 14

Date and Darwen, DATABASES TYPES & THE RELATIONAL MODEL, pp. 81-92,
© 2007 Pearson Education, Inc. Reprinted by permission of Pearson Education, Inc. All rights reserved.



RM Prescription 23 now explicitly spells out the semantics of
type and dat abase constraints (attribute and relvar constraints
as such are no | onger nentioned).

RM Prescription 24 has been revised and sinplified.

RM Very Strong Suggestion 8 has been deleted (and RM Very
Strong Suggestion 9 has been renunbered accordingly); very
strongly suggesting the "special values" approach to m ssing
information is (we now feel) to pronote that approach nore than
it nmerits.

OO Very Strong Suggestion 1 has been abbrevi at ed.

OO Very Strong Suggestions 3 and 4 have been deleted (and OO
Very Strong Suggestion 5 has been renunbered accordingly); we
no | onger believe there are any strong argunents in favor of

supporting additional "collection" type generators, over and

above RELATI ON.

In addition to all of the foregoing, alnost all of the

prescriptions, proscriptions, and very strong suggestions have been
reworded (in some cases extensively). However, those revisions in
t hensel ves are not intended to induce any changes in what is being
descri bed.

*** End of Chapter 4 ***

Copyright © 2005 C.J. Date and Hugh Darwen page 4.15

Date and Darwen, DATABASES TYPES & THE RELATIONAL MODEL, pp. 81-92,
© 2007 Pearson Education, Inc. Reprinted by permission of Pearson Education, Inc. All rights reserved.



