AN ALGEBRA OF RELATIONS FOR MACHINE COMPUTATION
the paper that should have been the game changer, with annotations by Hugh Darwen, 2014

Patrick Hall, Peter Hitchcock, Stephen Todd
IBM (UK) Scientific Centre
Neville Road
Peterlee
Co. Durham
England

Abstract:

This paper extends the relational algebra of data bases,
presented by Codd [4] and others, in four areas. The first is
the use of selector names to remove order dependencies
from the columns of a relation. This use of selector names
enables us to define a more general class of operations,
which include the normal relational operations of union,
equijoin etc., as special cases. Thirdly we introduce
relations represented algorithmically as well as by a stored
set of tuples. Such computed relations cannot always be
effectively realised as a finite set of tuples. Finally we
consider relational expressions as algorithmic
representations of relations and characterize their
effectiveness.

HD: I suggest that this paper would have been a game changer—showing the right
way forward with the relational model—if only it and its aftermath in software
development at the IBM UK Scientific Centre had received wider attention than
apparently it did.

The original text was in the usual two-column format and in something like Courier
throughout. In other respects I have tried to retain the original formatting.

I believe I read this paper in 1978, when my colleague Brian Rastrick and I visited
Peterlee to learn about ISBL, the language, and PRTV, its implementation, but I
didn’t know much about logic and set theory at that time and much of the formal text
would have been over my head. Instead, I was heavily influenced by the language,
ISBL, whose relational operators are based on the abstract algebra defined herein, in
the same way that the relational operators of Tutorial D [16] are defined in terms of
the abstract algebra, A, defined by Chris Date and myself [16] and first published in
1998.

The first implementation of ISBL, named IS/1, was developed at the Scientific Centre
as early as 1972. IS/1 was later renamed Peterlee Relational Test Vehicle (PRTV) at
the behest of executive management at IBM.

I have shaded in yellow some points I find particularly noteworthy.

In my notes, labelled HD1 to HD23, the abbreviations HHT, 77M and BS12 refer to
the subject paper by Hall, Hitchcock and Todd, The Third Manifesto [14], and
Business System 12 [15], respectively.

Acknowledgments: Stephen Todd reviewed the first draft of my annotations and in
so doing gave me some additional material as well as correcting a couple of errors.
Chris Date did the same.

1. Motivation.

We may think of a relation as a table with rows and columns. Row ordering is
unimportant but in the relational algebras developed so far a knowledge of column
ordering has been necessary to specify certain operations. When tables have many
columns, this can be tedious. Codd [4] discusses the use of what he calls relationships,
where the components of a tuple or relation are identified by role name and not
position. The formal details of relationships were not followed up by Codd, as he was
only interested in them for user convenience. He does not seem to have considered
the role names of the result of a relational expression. This is not a straightforward
problem. For example, given a relation with role names A and B identifying the
columns, if we use the project operator to define a new two column relation which has
both columns identical to the original A column, the role names cannot be simply
inherited. Problems concerning the use of role names have not been fully realised in
the literature, let alone adequately solved. Our solution involves generalizing the
relational operations so that the use of role names controls the semantics of the
operations. The particular method we present below is one approach: we have
concurrently also developed an approach based on characteristic functions and lambda
notation.

HD1 The “role names” mentioned here are what soon became known as attribute
names. The authors identify the very problem that BS12 planners (myself and
Brian Rastrick) were confronted with in 1978. We had been assuming all
along, from Chris Date’s teaching, that attribute names would be used to
identify “columns” but couldn’t figure out how the operators of Codd’s
algebra would work and we found serious problems with the use of “dot
qualifiers” in his calculus notation. Codd did later consider the “column
naming” problem and attempted to address it; but his treatment was rather ad
hoc and in fact seriously deficient (see [19], pages 148-152).

The example given, suggesting that the project operator can be used to
duplicate a column, will no doubt give cause for surprise. The authors are
assuming the definition of “generalized project” (Defn 3.5 in Section 3),
which incorporates attribute renaming and allows the same attribute to be
“renamed” more than once, so to speak. But in that case, all except one of
those “renamings” is really an extension.

HD2 The remaining text in this section begins to address the other big concern we
had in 1978: given a relation with attributes qty and price, for example, how to
obtain a relation that gives the total cost (qty*price) for each item. Codd’s
algebra did not address this issue.

The second area we have attacked has been that of including functional operations on
relations. We only consider here first order functions (those which take a row of a
relation and produce a row of a result relation) as opposed to second order ones which
act across tuples, see Hitchcock [9]. Such operations have been easy to specify in the
relational calculus, due to the ability to reason with free variables. Consider:

C={<a,b,c>:b=sin(a) & <a, c>in D}

We would define such an operation on D by defining a relation SINE using an
algorithm, and combine SINE and D using one of our generalised operations. While
considering first order operations on relations, we have also considered the storing of

sets as procedures which would successively generate the elements of the set—for
example, the set INT of non-negative integers.

Algorithmic relations cannot be used as freely as stored relations. For example:

(1) a typical relation SINE may only be used to compute the sine given the angle, but
not the inverse.

(i1) the relations SINE and INT are potentially infinite and the evaluation of relational
expressions involving them may not terminate.

2. Relations with selectors.

HD3 HHT now uses the term selector for the attribute names that Section 1.
Motivation referred to as role names. (77M uses “selector” for something
completely different.)

We develop a precise notion of relation. In normal usage, this is done via set, tuple,
and cartesian product. We take a parallel approach via set, tuple with selectors, and
cartesian product with selectors, and define a relation with selectors which is
equivalent to Codd’s ‘relationship’ . Because we deal only with tuples with selectors
we will drop the ‘with selectors’ after the initial exposition.

We assume a universal underlying set U. The elements of U are called objects. In a
working system we would further divide the objects into ‘domains’—this gives
additional complications with compatibility of operators, etc. which we will not
consider here. However we will discuss multiple domains with respect to their
effectiveness in later sections.

HD4 These “objects” are what 77TM refers to as values. HHT does not mention
whether relations are also objects—i.e., whether a relation can be an attribute
value—but whether they are or not has no effect on the basic algebra. I
assume that the domains mentioned here are what we now call types. The
kinds of operations in which relations as attribute values become relevant—
grouping and aggregation, for example—are not mentioned in HHT, though
aggregation via grouping was later supported in PRTV.

Defn. 2.1: a tuple, t, with selectors, S, is a function t:S—U. S is the selector set for t,
and an element of S is a selector name for t. The elements of the range of t are
called the objects of t. t(s) is called the value of s for the tuple t. [

HDS 7TM defines a tuple as a set of ordered triples, <a, v, £, where a is an attribute
name, v a value, ¢ the type of v, and no two triples within the same tuple have
the same a. As tis implied by v, TTM’s definition is entirely consistent with
HHT.

Defn. 2.2: the cartesian product U(S) with selectors S is the set of all tuples with
selectors S. [

HD6 T7TM calls this set a tuple type.

Defn. 2.3: a relation with selectors S is a set of tuples with selectors S. Equivalently a
relation with selectors S is a subset of the cartesian product with selectors S. [

HD7 TTM uses the term body for the set of tuples and defines a relation as a
heading paired with a body, the heading being a function of S to type names

which merely incorporates the “domains” that the authors have identified as
being needed in a “working system”.

Defn. 2.4: the degree of a relation (tuple, cartesian product) with selectors S is the
number of elements of S. []

Defn. 2.5: the cardinality of a relation is the number of tuples in the relation. [
HD8 TTM'’s definitions of degree and cardinality are equivalent to HHT’s.

Example 2.1:
Consider the relation R, represented by the table

Cust no. part no. qgty.

123 49 3
241 74 7
333 33 3
123 50 4

The selector set for R is cust no, part no, qty. The degree is 3, the cardinality 4. R
contains a tuple, t, which we can represent by:

Cust no. part no. qgty.
123 49 3

This tuple might mean that customer number 123 has ordered 3 of part number 49.
We can identify the quantity object for this tuple using the selector name qty, because

t(qty) = 3.
HD9 In Tutorial D t(qty) becomes qty FROM t.

It is important to note that not only is the row ordering of the table representation of R
unimportant, the column ordering also does not matter. It is not meaningful to talk of
the third column of a relation with selectors, rather we talk of the qty column. Also
the column headings must be carried into a representation of the tuple.

HD10 That last sentence is consistent with 77M. The point about column ordering
was crucial for BS12. Prerelational scripting languages for queries and reports
used field names for record components and scripts did not depend at all on
the order in which the fields appeared. To introduce such a dependency would
have been a backward step. (For “column headings”, read “selectors”, i.e.,
attribute names again.)

3. The Generalised Operators.

We begin with a definition of all the operators, and then explain them in terms of the
usual relational operators. Finally we discuss the algebra induced by these operations.

For all the definitions, we assume that the relations R1, R2, Q, have selector sets S1,
S2, P, respectively.

Notation: t | S means function t restricted to the subset S of its domain; teq is
functional composition, and is the function whose application to object x is equivalent
to t(q(x)); S1.S2 means the usual set intersection of sets S1 and S2.

Defn. 3.1. Generalised Intersection.

R1*R2
= {t: tin U(S1US2) & t| Slin R1 & t|S2 in R2}.

O

HD11 Generalised intersection is the «AND» operator of the abstract algebra A
defined by Chris Date and myself and also Tutorial D’s JOIN (Codd’s
“natural join”).

Defn, 3.2. Generalised Union.

R1 +R2

= {t: tin U(S1US2) & (t|Slin R1V t|S2in R2)}.

L

HD12 Generalised union is the «OR» operator of A. Note that if some attribute of

either operand is of an infinite type and is not a common attribute, then »/
<OR» 72 is infinite. This issue is discussed in Section 4 of HHT.

Defn. 3.3. Project.

Let P be contained in S1,
R1|P={t:t=t|P&tinRl}
]

HD13 In A, projection is defined in terms of an attribute of the relation operand that
is to be excluded: » «REMOVE» 4 denotes the projection of 7 on all attributes
except A. BS12 and Tutorial D both allow projection to be defined either
way: attributes to be retained or those to be dropped—but this is in any case
only a matter of convenience.

Defn. 3.4. Generalised Difference.

R1-R2

={t:tinR1 &t | (S1.S2) not in (R2 | (S1.S2))}
O

HD14 A supports negation by defining «NOT» 7 to be the relation complement of 7:
in HHT terms, the tuples of U(S) that are not contained in . This is not
suitable for computational purposes because when an underlying domain is
infinite, it yields an infinite relation. HHT’s R1-R2 can be defined as R1
<AND» («NOT» R2), which becomes R1 NOT MATCHING R2 in Tutorial
D.

David Maier [17] refers to this operator as antijoin. The term semidifference
has also been advanced for it, as being the opposite of semijoin (MATCHING
in Tutorial D), a shorthand for which ISBL did not have a counterpart.

Defn. 3.5. Generalised Project.

Let q be a function from selector set P to selector set S1,
R1%q

= {t": t' in U(P) & (there exists t in Rl: t'=teq) }.

U]

HD15 An element of q might be written as a — b, where a is a selector of R1 and b,
if not equal to a, is a selector that is not a selector of R1. Thus we can see
here, in addition to projection, the beginnings of the operators that later came
along for attribute renaming and extension (RENAME and EXTEND in
Tutorial D—note that RENAME can be defined in terms of extension
followed by projection).

BS12’s projection operator was equivalent to generalised project except that q
was required to be injective, meaning it could not be used to “duplicate
columns”. Here “selector set P”” appears to be an arbitrary set of selectors, not
as in Defn. 3.3, where it is “contained in S1”.

The generalised intersection is probably the most useful operator. When R1 and R2
are of the same type (ie. S1=S2), the generalised intersection is set intersection. At the
other extreme, if S1 and S2 do not overlap, we have defined a cartesian product or
‘quadratic join’ of R1 and R2. In between, we have an equijoin [4] of the two
relations, the joining components being the selectors common to both R1 and R2

(i.e. S1.S2).

HD16 Actually, it was Codd’s “natural join”, not equijoin, that used the common
selectors. The equijoin of 7/ and »2 on 4=B, where A is an attribute of »/ and
B an attribute of 72, retains both attributes 4 and B—and so gets into trouble
when 4 and B have the same name!

Generalised intersection can also cover the notion of select. Suppose we have a
selection criterion or ‘filter’ defined on certain selectors. We can define a relation F
(possibly infinite) with selector set containing just those selectors, and whose tuples
are just those tuples which satisfy the filter. Then the selection on a relation R using
the filter is the same as the generalised intersection between the relation R and the
relation F derived from the filter.

HD17 This observation is emulated in the description of A, which does not include a
selection or restriction operator. It hints at the idea, discussed later in the
paper, of allowing the selection condition to use whatever boolean operators
are available, in any combination. A similar observation applies to the next
paragraph, hinting at the possibility of the operator we now call extension.

Another use of intersection is functional application. A relation, viewed as a function
mapping a subset of its components to the remaining components, can be applied to a
set of arguments to yield a set of results.

Generalised union degenerates to normal union when R1 and R2 have the same
selectors. When the selectors are different, generalised union seems to have useful
properties related to undefined values and the merging of heterogeneous files. We do
not fully understand the implications of these yet.

HD18 A commendably cautious treatment, considering what happened later when
outer joins were added SQL!

Generalised project has several uses. It can be used to duplicate components, but more
usefully to rename components that are to be used in a join. It is informally called
rename. For example, suppose we have relations, one of which has a component date-
due, and the other of which has a component date-returned. If we wished to join on
these components (to find which books were returned on the last possible day), we
would need to rename at least one component so that the names were identical.
Generalised intersection would then perform the join.

HD19 Regarding its use “to duplicate components”, see HD14. In Tutorial D we
define separate operators for projection and attribute renaming. Duplicating a
component is done with EXTEND. I understand that in the later versions of
PRTYV projection, renaming and extension were all combined in a single
operator, as in SQL’s SELECT clause. This idea was considered for BS12 but

was not adopted because we wanted multiple attribute renamings to be
simultaneous, in parallel—to allow names to be swapped, for example—
whereas we wanted multiple extensions to be done consecutively, so that, for
example, {y:=x+l,z:=y*2}and {y:=x+1,z:=(x+1)*2} would be
equivalent.

Project is a special case of the generalised project, where q is the inclusion mapping
of p into S1. We have included it for notational convenience.

Finally we come to generalised difference. Once again, if R1 and R2 have the same
selectors, then this degenerates to set difference. As an example of its more esoteric
use, let R1 and R2 represent a hierarchy with R1 containing the tuples of the parent
segments, R2 the tuples of the child segments, including the fully concatenated key of
the parent. The selectors corresponding to the fully concatenated key are the only
overlap of S1 and S2. Then R1-R2 gives the childless parent records, and R2-R1 gives
the orphaned child records.

Using these operations we can combine relations within expressions. Each expression
defines a relation. The selectors of this relation can be readily obtained from the
selectors of the operand relations as given below:

selectors(R1*R2) = selectors(R1) U selectors(R2)

selectors(RI+R2) = selectors(R1) U selectors(R2)

selectors(Rl | P) =P

selectors (R1-R2) = selectors(R1)

selectors (R1%q) = domain(q)

HD20 The choice of “domain(q)” in that last definition is a little unfortunate,
considering the previous references to Codd’s use of the term domain. Here it
appears to mean the domain of the function q, which is indeed a set of
selectors.

Relations with selectors, together with the binary operations (generalised) union,
intersection, and difference, form a Boolean Algebra. To demonstrate this structure,
we require a universal element, a null element, partial ordering relationships, and
must then verify the various idempotency and other algebraic laws. For the universal
element, we suppose that all selectors are drawn from a set X of selectors, when the
universal element is U(Z). The null element is the empty relation of no selectors (U(¢)
is the cartesian product of no selectors, which is either empty or full, these two
conditions being effectively the truth values).

HD21 That last sentence delightfully hints at what many years later became
TABLE DEE and TABLE DUM. I question “being effectively the truth
values”. A relation is a relation and a truth value is a truth value. Under the
interpretation of a relation as the extension of a predicate, a relation of degree
zero is the extension of a predicate with no parameters, which therefore has
just one instantiation. The empty relation denotes falsehood for that single
instantiation whereas the “full” one (containing a single tuple) denotes its
truth.

The ordering relationship is relation inclusion, where a relation R1 contains another
relation R2 if the selectors of R1 include the selectors of R2, and the difference R2-R1
is empty. The various algebraic laws then follow, with universal complement obtained
from generalised difference.

4. The Representation of Relations and their Effectiveness.

HD22 Sections 4, 5, and 6 are rather heavy going, a lengthy investigation leading to
the important conclusions, in Section 7, that I alluded to in HD2. We might
even conjecture that the undue amount of text on this particular topic got in the
way of the most important points of this paper, thereby reducing its impact
back in 1975.

I don’t give any annotations on these three sections. Rather, in HD23 in
Section 7, Conclusions, I try to show what the important hints given in that
section were really driving towards.

When we come to embody relations in computing machinery, we find two extremes.
At the one end of the spectrum we have relations which are stored explicitly as sets of
tuples, and at the other end we have relations which are pure predicates, ie. we can
only recognise if a given tuple is in the relation or not. (We do not consider those
relations whose characteristic functions are not decidable). In the Preceding sections
defining relations and the operations on them we deliberately do not distinguish
between such relations. However they have very different properties when it comes to
generating their contents, as the following examples make clear. What we wish to do
in the following sections is to explore the different behaviour of such relations, and
expressions involving them, when we try to generate them.

Examples :

Ex. 4.1: If we are given a representation of a relation which is a table, as in Ex. 2.1,
then we can generate all of the tuples in the table without additional input. These are
the relations as they are usually conceived in relational data bases.

Ex. 4.2: We have a binary relation, SINE, between an angle and its sine, which is
represented by a procedure to calculate the sine of a given angle. We cannot
generate the extent of the relation itself, although we can generate the result of a
relational expression which applies it to a finite set of angles. We cannot, however,
apply the representation of sine so that we obtain arcsines.

Ex.4.3: If we have a relation which is a pure predicate, such as a test whether a given
point is in a particular polygon, then we require that it is used in relational
expressions as a pure predicate. We call such representations of relations
recognisers.

Ex. 4.4: Returning to ex. 4.2, we could consider the same representation augmented
by a second procedure which computes the arcsine, thus allowing the representation
to be used in both directions. Note that this still does not give a generation
capability.

We will use the term ‘effectiveness’ to talk about the generation properties of the
representations of relations and relational expressions.

We will characterise the effectiveness of a representation in terms of a set of input
sets. We will call a subset of the selectors of a relation an ‘input set’ for the
representation if, given values for these selectors we can then obtain a complete set of
values. We gather together all such input sets into a set of input sets which is the
effectiveness of the representation. Note that if any set of selectors P is an input set,
then any set Q containing P is also an input set.

Returning to our examples above, we now characterise the effectiveness of their
representations using sets of input sets. We write the effectiveness of a representation
of relation R as E(R).

Ex. 4.5: for Ex. 4.1 we have
E(R)={ ¢, {cust no}, {part no}, {qty}, { cust no, part no }, {cust no, qty } ,
{part no, qty }, {cust no, part no, qty} }.

This reads ‘given no inputs, or any set of inputs, we can obtain all the other
components.’

Ex. 4.6: for Ex. 4.2 we have
E(SINE) ={x}, {x,sx}}.

This reads ‘given the value of the angle x, we can obtain the value of the other
component, namely the sine sx of the angle; or given both angle x and number SX,
we can test whether sx=sin(x)’.

Ex. 4.7: for Ex. 4.3 we have
E(POINT-IN-POLYGON) = {{point, polygon}} .

This reads ‘given a point and a polvgon, we can test whether the point is in the
polygon’.

Ex. 4.8: for Ex. 4.4 we have
E(SINE)= {{X}, {SX, }{ X,SX}}.

This reads ‘given the angle, we can compute the sine, or, given the sine, we can
compute the angle, or, given both, we can test for membership’ .

To use effectiveness in a particular case, we find the set P of selectors for the input
values. If P is in the effectiveness, we know that the representation will be adequate
for this case.

The view of relations as mappings from a subset of the components to another subset
of the components is by no means new. It has even occurred within relational data
bases, as the ‘mapping’ concept of SQUARE [1] and SEQUEL [2], where it is used
as a user-friendly language device; and it has appeared as a means of representing
functional constraints within ‘normalisation! [5,12].

5. The Effectiveness of Expressions.

When relations are combined by relational operators within an expression, the result
is also a relation. If we have representations of the operands, then the relational
expression together with these representations forms a representation of the result.
Given the effectiveness of the representations of the operands, we can deduce the
effectiveness of the expression.

We require, for each relational operation, to specify the effectiveness of the result as a
function of the effectiveness of the operands. In the following we will write the
selectors (R1)=S1, the selectors (R2)=S2, so that the two relations RI and R2 have
selectors S1AS2, the symmetric difference between S1 and S2, in common.

E(R1*R2) ={P : (P.S1 in E(R1) and (PUSI).S2in E(R2))
or (P.S2 in E(R2) and (PUS2).S1in E(R1))}.

E(R1+R2) = {P : P.Sl inE(RI]) and P.S2 in E(R2) and P contains SIAS2}.

E(R1 P) = { Q:Q contained in P, and Q in E(RI])}.
E(R1-R2) =E (R2) if S1.S2 in E(R2) ¢ otherwise.
E(R1%q) = {P:q(P) in E(R])}.

Note that the last three operations all involve quantification, and that in some cases it
is possible that the operation is totally ineffective, with no input sets at all.

To see that these meet our intuition concerning the relational operations, we require
some notion concerning the evaluation mechanism for relational expressions . The
evaluation would be done ‘tuple at a time’, and given the values of some of the
selectors, the mechanism would attempt to find values for the remaining selectors by
requesting a complete tuple from one of the operand sub-expressions and then use the
extra information so gained to fill in the remaining values from the other operand,
ensuring that the constraints required by the particular operation are met before
returning the completed tuple to the invoking procedure.

For intersection we could use the given values on either operand with equal
effectiveness, and the values gained from one operand can be input into the other to
obtain the complete tuple.

Ex 5.1: we have relation INT with selector x and effectiveness {¢, { x}}, and relation
SINE as in Ex. 4.6. Then to evaluate INT*SINE (which has selectors x and sx)
using no inputs, we must look to either INT or SINE for a complete tuple. INT can
provide it, and this value x can then be supplied to SINE to obtain the sx value. The
effectiveness of INT*SINE from the formula above is {¢ , {x}, {sx}, {x, sx}},
which tells us we have a generator, and agrees with the description of how we
would actually evaluate the expression.

For union we are not able to carry over values gained from one operand to help us
evaluate the other operand, and any input values must be used independently on both
operands.

Ex. 5.2: suppose that in addition to the SINE relation already introduced, we have a
relation COSINE with selectors x and cx and effectiveness {{x }, {x, cx }}. Then
SINE+COSINE with selectors x, sx, and cx, contains all tuples <x, sx, cx> where
either sx=sin(x) or cx=cos(x). To use this relation, supplying a value for x is not
enough. Given the value of x we can find one tuple from the relation by applying
SINE and COSINE separately, but we cannot find all the tuples with this particular
x. We only require that one of the two relations is satisfied, so for example applying
SINE to x would fill in the sx value, to which we would then need to add all
possible values for cx. We could do this last by using a representation of the
underlying set; this possibility will be investigated in the next section; here we
assume that the underlying set cannot be used, and so we are unable to realise the
relation SINE+COSINE given only an x value.

However, if we supply a pair of values, say x and sx, then we may be able to fill in
everything—if it happens that sx is not equal to sin(x), then applying COSINE to x
will complete the tuple. But if sx=sin(x), we are back in the earlier situation, and
cannot realise the relation.

The only circumstance under which we can effectively use the relation
SINE+COSINE is if we are given all three values, and the relation is used as a pure
recogniser. From the formulae, we find that the effectiveness of SINE+COSINE is
{{x, sx, cx }}, which tells us that we only have a recogniser.

-10 -

There are examples where union does provide more than a recogniser, such as the
combination of SINE and COSINE where the selector cx of COSINE has been
renamed sx. Then SINE+COSINE has selectors x and sx and has effectiveness

(RES PR SSE

When generalised union degenerates to a normal union, S1 S2 becomes the empty
set. Looking at the definition of effectiveness of union, we see that P always
contains S1 As2, and the effectiveness becomes greater. The end of the last example
was a case in point.

Difference, project, and generalised project can all involve existential
quantification. The evaluation mechanism for this would involve supplying the
values for the unquantified selectors, and then applying the relation over which
quantification is made to test for the existence of a member.

Ex. 5.3: to illustrate how quantification would be handled, let us take a very simple
example. Let us find the set of numbers sx for which there is angle x such that
sin(x)=sx. We will use the relation SINE from examples 4.6 and 4.8. The set that
we want is obtained by projection, and is SINE | {sx} , with selector sx.

Suppose that SINE has effectiveness {{sx}, {sx, x} }. If we are given a value of sx,
we can apply SINE to this to find a value of x, if any. If we find one or more values
of x, then we know that one exists and the value of sx is in the set; and if no values
of x are found, then sx is not in the set. Clearly then SINE | {sx} is effective as a

recogniser, and we are using an effectiveness
EI(SINE | {sx}) = {{sx}}.

However, suppose that the effectiveness of SINEis{{ x},{x, sx} }. We are helpless
unless a value of x can be obtained from somewhere. It cannot be input, and the
only way to obtain a value would be to use a representation of the set underlying the
selector x. Possibilities in this direction are taken up in the next section. Without
using the underlying set, the representation is ineffective, and thus

E2(SINE | {sx}) = {}.

If SINE was stored explicitly as a table, then it would have effectiveness {¢, {x},
{sx}, {X, sx}} , in which case no input would be necessary, and we could directly
generate the set required. The effectiveness would be

E3(SINE| {sx}) = {b, {sx}}.

In all cases these formulae are obtained directly from the formulae given above.

O

As explained above, our interest in the effectiveness of relational expressions centres
on whether or not they represent relations which are generators. The test for this is
whether E(expression) contains the empty set. The process which computes the
effectiveness of an expression should also record the way this was obtained, and thus
record the particular evaluation process whereby the relation can be generated.

Relations as mappings from one of their components to all the components when the
relations are stored explicitly as sets of tuples, can be viewed as ‘access paths’ in the
sense of Earley [7]. Note, however, that here we have been considerably more general
in that all the data need not be stored explicitly. With access paths in complex
expressions one finds that many combinations of paths will Yield the same result. A
small extension of our approach in computing the effectiveness of an expression will
develop particular choices of access paths, and given that different access paths have

-11 -

different speeds, a direct application of dynamic programming principles will select
the best combination of access paths. A problem similar to this has been tackled by
Stocker and Dearnley [13], but without the theoretical foundations. Note that such
selections of best access paths can be very tricky, as has been pointed out by Hall [8]
in the context of optimization.

Two results that can be obtained with our theory are interesting. These are stated
below, without proof.

Proposition 5.1: if a relational expression represents a generator, then at least one
operand of the expression is also a generator.

O

Proposition 5.2: Relational expressions that are equivalent within the algebra have the
same effectiveness.

O

So far we have ignored the problem of infinite or potentially infinite relations. If we
allow the generation of infinite (or indeed, very large) relations, we encounter three
problems. One is the impossibility of displaying explicitly infinite sets, The others are
more subtle. The result of a complete expression can be finite, even though some
intermediate result is infinite; if we were to generate fully the intermediate relation,
we would never terminate. In using a generator as a recogniser, we must be able to
terminate in the case that the element is not in the set.

The termination problem needs solving. The tuple at a time evaluation mechanism
gives a better solution then the complete evaluation of intermediate results, but this is
not enough. Consider for example, the intersection of the countably infinite relation
INT with the relation SMALL of selector x, which is a pure recogniser for numbers
less than 100. INT*SMALL is then finite, containing all the integers less than 100,
but evaluation of INT*SMALL would have to continue generating integers using INT
ad infinitum just in case SMALL accepts another one. We must exploit further
information in order to be able to terminate the generation of INT. The solution that
we offer is to postulate orderings, either partial or total, on all underlying sets.
However these orderings must be reasonable, in the sense that they will be useful in
the solution to our problem. Not all orderings will be acceptable. For example, for
strings the usual lexicographic ordering would be unreasonable, while the
interpretation of strings as integers base r, where r is the number of symbols, is
reasonable. These orderings then induce partial orderings on all relations, Now to
control the termination of the evaluation of relational expressions, we propose to use
supremum-infimum pairs as bounds for relations. We can then test an expression to
ascertain the bounds for all the intermediate results, given the bounds for the
operands. The method is obvious. If all generations proceed monotonically with
respect to their respective orderings, then the bounds can be used to enforce
termination upon potentially infinite relations.

The conversion of an generator for an infinite set into a terminating recogniser is a
classical problem, and is solved by the method above, using orderings of the sets to
detect termination in the case of non membership.

6. Using the Underlying Sets

In the discussion above we have assumed that the objects came from a single
underlying set U. In discussing the effectiveness of the representation of relations, we

-12 -

have not assumed anything concerning the representations of the underlying sets.
However, it is well known from recursive set theory that if the underlying set is
represented by a generator, then any recogniser of a set can be converted to a
generator by generating successively potential members of the set and then testing for
membership before releasing the element. This is equally true for relations, but in
order to discuss this adequately we will suppose that we have a collection of
underlying sets
Q = {Ui: i in some index set}
The single set of objects U treated so far is simply the union of these underlying sets
Ui. We now associate a single underlying set with each selector, with a mapping
d:2—-Q

For each selector we will talk of the effectiveness of the representations of the
associated underlying set, writing E(d(s)) for selector s. Now we note that
representations of some underlying sets are necessarily only recognisers (for example,
the real numbers and all other uncountable infinite sets), while other underlying sets
may be represented by either recognisers or generators. We express the effectiveness
of a representation for the underlying sets in exactly the same way as before, writing
E(d(s)) either as {{s}} or{d, { s}} as appropriate. We will not consider the case
where the underlying set is not effectively represented, with E(d(s)) = {}.

Cartesian products of the underlying sets would still be written as U(S), but now these
mean something much smaller, since each selector is associated with a subset of
universe of objects, U. This in turn affects the definitions of the relational operations,
definitions 3.1 to 3.5.

The representations of the U(S) are obtained from the representations of the individual
sets. Again the effectiveness of these representations would be expressed as a set of
input sets, and thus the underlying sets can now appear in relational expressions. To
convert all representations as near to generators as possible, we then simply combine
relations with the cartesian product underlying them, using generalised intersection.

Ex. 6.1: we extend Ex. 4.6 to exploit the representation of the set underlying the
selector x if this is possible. We have
SINE' = SINE * U({x, sx})

If the set underlying x is the real numbers, then we necessarily have

El(d(x)) = { {x} },
a pure recogniser for the reals. Substituting this in the formula for the effectiveness of
the representation of SINE’, we have

EI(SINE”) = {{x} , {x, sx}},
which is the effectiveness we had in Ex. 4.6. However, if the set underlying selector x
is the rationals, represented by a generator, we find:

E2(d(x)) ={9, {x}},

E2(SINE’) ={¢, {x} {ss}, {X, sx}}.
The representation of the relation SINE’ has become a pure generator as a result of
exploiting the representation of the underlying set.

Underlying sets can also be exploited within relational operations. This is important
within generalised union, because, as we saw, if underlying sets are not exploited,
then in general only a recogniser results. The general strategy is to combine the
underlying sets into the expressions using generalised intersection. Let us look at the
Ex. 5.2 again.

-13 -

Ex. 6.2. Using the relations SINE and COSINE, as in Ex. 5.2, we now exploit the
underlying sets. Given a value for x, we can now apply SINE to this x to obtain
the sx values, and then use the representation of d(cx) to generate values for the
remaining component, and we can apply COSINE to x and then fill in the third
component using d(sx). The relational expression that we are in effect exploiting
is

(U(cx)*SINE)+(U(sx)*COSINE)
which has effectiveness { {x,} {x, sx}, {X, cx}, {X, sX, cX}}.
The fullest effectiveness that we can achieve is given by
UX)*U(sx)*U(cx)*(SINE+COSINE)
which is a generator. This method for generating the tuples of the relation
generates the tuples of the underlying cartesian product, and then uses the SINE+
COSINE as a recogniser to select only those tuples that we want.

Note that distributing the U(si)’s inside the union gives us an effectiveness
superficially like that we would have obtained had we exploited the underlying sets in
the representations of the operands, but we do obtain extra power from using the
underlying sets at the union. Clearly an important facet of the use of underlying sets is
deciding just where to use their representations most effectively, without overdoing it
and ending up with trivial and inefficient evaluation strategies.

Similar use of the underlying sets is possible for the other operations, and could be
very useful in handling quantifications.

7. Conclusions and Open Problems

The theory that we have presented here forms the basis for the abstract syntax and
semantics for a relational data base system. The extension of the language to include
the usual arithmetic operations and comparisons within the concrete syntax are now
trivial. For example, the relation SMALL of numbers less than 100 could be directly
written as (x<100), while the relation which takes two values x and y to produce a
third, z, which is their sum, could be written in the usual assignment notation,
(z:=xty). The effectiveness of these could be deduced directly from the surface
syntax, and we might have, for example, the effectiveness of the adding relation as
{{xX, ¥}, {X,y, z}}. In this last, if we permitted the usual algebraic manipulations, a
stronger effectiveness could be deduced.

HD23 Unfortunately the text doesn’t clearly spell out that x<100 might be given as
the condition in the “selection” operator that became : in ISBL (mistyped as ;
in PRTV), SELECT in BS12, and WHERE in Tutorial D. Nor does it go so
far as to suggest that an assignment such as z:=x+y might be given in
connection with what in 1975 would have been a new relational operator—the
that was added to ISBL in March, 1976. It became CALCULATE in BS12
and EXTEND in Tutorial D, and is generally referred to as extension now. It
is interesting to note that even those few early textbooks that give any
information on ISBL fail to mention its operator named # (references [17] and
[18], for example).

Consider a Tutorial D expression of the general form
EXTEND 7: {y :=f(x) }

and let s be the result of its evaluation. If we remove the colon and braces
from the second operand, we have the predicate expression y = f(x), which

-14 -

could be taken in this context as denoting the relation that represents the
extension of that predicate. In that case, the expression is equivalent to » JOIN
(y = fix)). If we further take x as denoting an n-tuple (7>0), we can note that
EXTEND requires the heading of » to be a superset of that of x. The implied
join operation is normally expected to be “lossless” (i.e., the cardinalities of
and s are equal), but in ISBL that requirement was dropped, such that where
f(x) 1s undefined (as in division by zero, for example) for some tuple of 7, no
corresponding tuple appears in s.

Note that as well as being convenient, EXTEND automatically limits the user
to write only what HHT calls effective expressions—ones that are guaranteed
to yield finite relations even when an operand might be infinite. Although it
also requires f{x) to be a function, that particular limitation has been noted as
theoretically unnecessary. It could perhaps also allow the use of non-
functional operators such as “square root of”’, where a domain element can
map to n range elements (where # is finite).

When f(x) itself is a predicate expression it can be used as a selection
condition (in Tutorial D, » WHERE f{x)) and again we can regard it as
denoting the relation representing the extension of that predicate, to be joined
with 7. Again, the heading of 7 has to be a superset of that of x, so again we
can say that WHERE limits the user to write only effective expressions.

In recognition of the fact that restriction and extension can both be regarded as
special cases of join, ISBL eventually allowed “filters” to be included in
invocations of #, its extension operator. Thus, an expression of the form
“r#y:=f(x), y<7, z=g(y)” was equivalent to “r # y:=f(x) : y<7 # z=g(y)”, where
: 1s restriction. And as already noted, even y:=f(x) could act as a filter in the
case where f{x) is not defined for every tuple of r.

We are, however, left with some problems. The generalised union suggests the use of
semi-procedural representations, placing a ‘*’ in the positions where arbitrary
elements of the underlying set would be placed. This then gives a finite representation
of infinite sets. The symbol ‘*” would play a ‘matches anything’ role in the manner
that is traditional in computing practice, but here we appear to have a firm theoretical
underpinning. This has yet to be explored.

The evaluation mechanism has been presented informally. This needs a precise
formulation for example by using the techniques of Hitchcock [9]. This would enable
both the derivation of effectiveness from more primitive notions, and the application
of termination theorems such as those of Hitchcock and Park [10]’

The characterisation of effectiveness is not the most powerful that we could use, and
we could imagine partial representations which given a set of input values could
compute some of, but not all of, the remaining components. We are developing a
formalism to cope with this, basing it on the propositional calculus.

Details of the algorithms for obtaining the most effective representation for an
expression have not been filled in. An associated problem concerned with the
estimation of the cardinality of relations is still open.

8. Acknowledgements.

The train of investigations which led to this paper began with a Technical Note by
Stephen Todd, concerning how to implement first order functions on relations within

- 15 -

the current experimental relational data base system at the IBM (UK) Scientific
Centre, Peterlee, England. The current system is based upon the traditional relational
algebra, and it soon became clear that a complete rethink of this approach was
necessary. During the course of the investigations we had numerous discussions with
colleagues at the Scientific Centre.

In particular, we acknowledge ideas concerning role names and how to model these
which came from Ken Hanford (selectors in the spirit of ULD III [11], and Peter
Quarendon (free variables and relations as predicates). We also thank John Owlett for
discussions which helped clarify our thoughts.

9. References

1. Boyce, R.F., Chamberlain, D.D., King, W.F. III, Hammer, M.M.: ‘Specifying
Queries as Relational Expressions: SQUARE’, IBM Research Report, RJ1291,
Oct 16 1973.

2. Boyce, R.F., Chamberlain, D.D.: ‘A Structured English Query Language’, IBM
Research Report, RJ1318, March 1974.

3. Bracchi, G., Fedeli, A., Paolini, P.: ‘A Language for a Relational Data Base
Management Systems’, Proceedings of the Sixth Annual Princeton Conference on
Information Sciences and Svstems, 1972.

4. Codd, E.F.: ‘A Relational Model of Data for Large Shared Data Banks’, Comm.
ACM 13, June 1970, pp. 377-387.

5. Codd, E.F.: ‘Relational Completeness of Data Base Sublanguages’. in ‘Data Base
Svstems’, Editor Rustin, Prentice-Hall, 1972.

6. Codd, E.F.: ‘Further Normalization of the Data Base Relational Model’, in ‘Data
Base Systems’, Editor Rustin, Prentice-Hall 1972.

7. Earley, J.: ‘Relational Level Data Structures for Programming Languages’. Acts
Informatica 2, 1973, pp. 293-309.

8. Hall, P.A.V.: ‘Common Subexpression Identification in General Algebraic
Systems’, IBM UKSC Report UKSCO060, August 1974.

9. Hitchcock, P.: ‘Fundamental Operations on Relations’ , IBM UKSC Report,
UKSCOO051, May 1974.

10. Hitchcock, P. and Park, D.M.R.: ‘Induction Rules and Termination Proofs’, in
Automata, Languages, and Programming, Editor M. Nivat, North—
Holland/Elsevier, 1973, pp. 225-251.

11. Lucas, P., Lauer, P,, Stigleitner, H., ‘Method and Notation for the Formal
Definition of Programming Languages’, IBM Lab., Vienna, Tech. Rep.,
TR25.087, June 1968.

12. Rissanen, J., Delobel, C.: ‘Decomposition of Files, a basis for data storage and
retrieval’, IBM Research Report RJ 1220, May 1973.

13. Stocker, P.M., Dearnley, P.A.: ‘Self-organising Data Management Systems’, The
Computer Journal, Vol. 16, no. 2, pp. 100-105.

The following are referenced in Hugh Darwen’s annotations:

14 The Third Manifesto and much related literature is available at
http://www.thethirdmanifesto.com.

-16 -

15.

16.

17.

18

19

Hugh Darwen’s presentation slides and accompanying notes are available at
https://www.northumbria.ac.uk/sd/academic/ee/work/research/computerscience/co
mputational intelligence/third manifesto/.

The definitions of Tutorial D and A are available at
http://www.thethirdmanifesto.com, in the section Reference Material.

David Maier: The Theory of Relational Databases (1983), available at
web.cecs.pdx.edu/~maier/TheoryBook/TRD.html.

Jeffrey D. Ullman: Principles of Database Systems (2/e, Computer Science Press
inc., 1982).

E.F. Codd: The Relational Model for Database Management, Version 2 (Addison-
Wesley, 1990).

-17 -

