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O England! model to thy inward greatness,  
Like little body with a mighty heart,  
What mightst thou do, that honour would thee do,  
Were all thy children kind and natural!   

—William Shakespeare: 
King Henry the Fifth (1598-1599) 

 
 

What follows is Chapter 4 of Type Inheritance and Relational Theory by C. J. Date, O’Reilly, 2016 (hence the 
references in the introductory text to “this book”, “this chapter”, and suchlike). 

The introductory text uses the first person singular to refer to the book’s sole author, Chris Date, but the section 
THE IM PRESCRIPTIONS—i.e., the rest of the Chapter—is a joint work by him and Hugh Darwen. 

Any further revisions to the Inheritance Model will appear in this document, which should then be taken as 
definitive, superseding Chapter 4 of Type Inheritance and Relational Theory. 

This chapter provides, for purposes of subsequent reference, a precise statement of the 28 IM 
prescriptions that make up our inheritance model.  It’s based on Chapter 19 of the book 
Database Explorations: Essays on The Third Manifesto and Related Topics, by Hugh Darwen 
and myself (available free online at the website www.thethirdmanifesto.com).  However, I’ve 
found it necessary, or at least convenient, to perform a certain amount of revision on some of the 
prescriptions, as will be made clear in subsequent chapters.  I’ve also added two new ones 
(numbers 23 and 26, according to the numbering below).  Note:  Whenever there’s a technical 
discrepancy between the present chapter—or anything else in this book, come to that—and 
previous publications by Darwen and myself on this topic, the present text should be taken as 
superseding.  At the same time, please note that it’s my intention that any such discrepancies be 
called out explicitly and justified.   
 
Throughout this chapter, as well as elsewhere in this book, I use the symbols T and T′ as generic 
names for a pair of types such that T′ is a subtype of T (equivalently, such that T is a supertype of 
T′).  You might find it helpful to think of T and T′ as ELLIPSE and CIRCLE, respectively; 
however, keep in mind that they’re not limited to being scalar types specifically, barring explicit 
statements to the contrary (moreover, the various prescriptions are all worded in such a way as 
not to be limited to single inheritance only, either).  Note too that distinct types have distinct 
names; in particular, if T′ is a proper subtype of T, then their names will be distinct, even if the 
set of values constituting T′ isn’t a proper subset of the set of values constituting T.  (Conversely, 
if their names aren’t distinct, then T′ and T are the very same type and the corresponding sets of 
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values will be identical.)  Also, I assume that all of the types under discussion, including the 
maximal and minimal types discussed in IM Prescriptions 20 and 25, are members of some given 
set of available types GSAT (though the only explicit mention of that set is in IM Prescription 20, 
q.v.); in particular, the definitions of the terms root type and leaf type in IM Prescription 6 are to 
be understood in the context of that set.  For example, given the type hierarchy of Fig. 3.1 in 
Chapter 3, the set of available types consists of:   
 

a. PLANE_FIGURE, ELLIPSE, CIRCLE, POLYGON, RECTANGLE, and SQUARE  
 
b. The types in terms of which the possreps for the types listed under point a. are defined  
 
c. The types in terms of which the possreps for the types included under point b., such as 

LENGTH and POINT, are defined (and so on, recursively, all the way down to and 
including the pertinent primitive types—see below)  

 
d. The maximal scalar type alpha and the minimal scalar type omega (see IM Prescription 20)  
 
e. Tuple and relation types that can be generated using any of the types mentioned in any of 

these five points a.-e.  
 

Note:  The term primitive type, mentioned under point c. above, refers to a system defined 
type (scalar by definition) with no declared possrep.  The qualifier primitive derives from the fact 
that all of the types available in any given context are ultimately defined in terms of such types.  
Typical examples of such primitive types include the types INTEGER, RATIONAL, CHAR, and 
BOOLEAN.   

By the way, it’s worth stating explicitly that type PLANE_FIGURE is not the only root 
type with respect to the foregoing set of types.  It’s not even the only scalar root type.  By way of 
example, consider type POINT.  Since it’s the type of (among other things) a possrep component 
for type CIRCLE, type POINT is certainly a member of the given set of types; however, it’s not 
a subtype of PLANE_FIGURE, and so it must be part of some distinct type hierarchy—possibly 
one consisting of type POINT only—and, by definition, that distinct type hierarchy has a distinct 
root type of its own.   
 
 
THE IM PRESCRIPTIONS  
 

1. T and T′ shall each be types; i.e., each shall be a named set of values.   
 
2. Every value in T′ shall be a value in T; i.e., the set of values constituting T′ shall be a subset 

of the set of values constituting T (in other words, if a value is of type T′, it shall also be of 
type T).   
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3. T and T′ shall not necessarily be distinct; i.e., every type shall be both a subtype and a 

supertype of itself.   
 
4. Every subtype of T′ shall be a subtype of T.  Every supertype of T shall be a supertype 

of T′.   
 

5. Let T and T′ be scalar types.  Then:   
 

a. If and only if T and T′ are distinct, then T shall be a proper supertype of T′ and T′ 
shall be a proper subtype of T.   

 
b. Let T be a proper supertype of T′, and let S be a sequence of types T1, T2, ..., Tm such 

that T is a proper supertype of T1, T1 is a proper supertype of T2, ..., and Tm is a 
proper supertype of T′ (m ≥ 0).  Then either (a) no such sequence S shall exist (i.e., 
every such sequence shall be such that m = 0), in which case (and in which case only) 
T shall be an immediate supertype of T′, or (b) every such sequence S shall be such 
that m > 0, in which case (and in which case only) T shall be a nonimmediate 
supertype of T′.  Also, T′ shall be an immediate subtype of T if and only if T is an 
immediate supertype of T′, and T′ shall be a nonimmediate subtype of T if and only 
if T is a nonimmediate supertype of T.   

 
c. If and only if T is an immediate supertype of T′ and T′ is neither a root type nor type 

omega—see IM Prescription 20—then the definition of T′ shall be accompanied by a 
specification of an example value that is of type T and not of type T′.   

 
6. A scalar type that has type alpha—see IM Prescription 20—as its sole immediate supertype 

shall be a (scalar) root type.  A scalar type that has type omega—again, see IM 
Prescription 20—as its sole immediate subtype shall be a (scalar) leaf type.   

 
7. Types T1 and T2 shall be disjoint if and only if no value is of both type T1 and type T2.  

Types T1 and T2 shall overlap if and only if there exists at least one value that is common 
to both.  Distinct root types shall be disjoint.  If types T1 and T2 are distinct immediate 
subtypes of the same scalar type T, there shall exist at least one value that is of type T1 and 
not of type T2.   

 
8. Let T1, T2, ..., Tm (m  0), T, and T′ be scalar types.  Then:   

 
a. Type T shall be a common supertype for, or of, types T1, T2, ..., Tm if and only if, 

whenever a given value is of at least one of types T1, T2, ..., Tm, it is also of type T.  
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Further, that type T shall be the most specific common supertype for T1, T2, ..., Tm if 
and only if no proper subtype of T is also a common supertype for those types.   

 
b. Type T′ shall be a common subtype for, or of, types T1, T2, ..., Tm if and only if, 

whenever a given value is of type T′, it is also of each of types T1, T2, ..., Tm.  
Further, that type T′ shall be the least specific common subtype—also known as the 
intersection type or intersection subtype—for T1, T2, ..., Tm if and only if no 
proper supertype of T′ is also a common subtype for those types.   

 
Given types T1, T2, ..., Tm as defined above, it can be shown (thanks in particular to 

IM Prescription 20) that a unique most specific common supertype T and a unique least 
specific common subtype T′ always exist.  In the case of that particular common subtype T′, 
moreover, it is required that whenever a given value is of each of types T1, T2, ..., Tm, it is 
also of type T′ (hence the alternative term intersection type).  And it can be shown as a 
consequence that every scalar value v has both a unique least specific type and a unique 
most specific type (regarding this latter—which elsewhere in these prescriptions is denoted 
MST(v)—see also IM Prescription 9).   

 
9. Let scalar variable V be of declared type T.  Because of value substitutability (see IM 

Prescription 16), the value v assigned to V at any given time can have any nonempty 
subtype T′ of type T as its most specific type.  We can therefore model V as a named 
ordered triple of the form <DT,MST,v>, where:   

 
a. The name of the triple is the name of the variable, V.   
 
b. DT is the name of the declared type for variable V.   
 
c. MST is the name of the most specific type—also known as the current most specific 

type—for, or of, variable V.   
 
d. v is a value of most specific type MST—the current value for, or of, variable V.   
 
We use the notation DT(V), MST(V), v(V) to refer to the DT, MST, v components, 
respectively, of this model of scalar variable V.  Note:  Since v(V) uniquely determines 
MST(V)—see IM Prescription 8—the MST component of V is strictly redundant.  We 
include it for convenience.   

Now let X be a scalar expression.  By definition, X represents an invocation of some 
scalar operator Op.  Thus, the notation DT(V), MST(V), v(V) just introduced can be 
extended in an obvious way to refer to the declared type DT(X), the current most specific 
type MST(X), and the current value v(X), respectively, of X—where DT(X) is the declared 
type of the invocation of Op in question (see IM Prescription 17) and is known at compile 
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time, and MST(X) and v(X) refer to the result of evaluating X and are therefore not known 
until run time (in general).   

 
10. Let T be a regular type (see IM Prescription 20) and hence, necessarily, a scalar type, and 

let T′ be a nonempty immediate subtype of T.  For each such immediate supertype T of T′, 
the definition of T′ shall specify a specialization constraint SC, formulated in terms of T, 
such that a value shall be of type T′ if and only if it satisfies all such constraints SC.   

 
11. Consider the assignment  

 
V := X  
 
(where V is a variable reference and X is an expression).  DT(X) shall be a subtype of 
DT(V).  The assignment shall set v(V) equal to v(X), and hence MST(V) equal to MST(X) 
also.   

 
12. Consider the equality comparison  

 
Y = X  
 
(where Y and X are expressions).  DT(Y) and DT(X) shall overlap.  The comparison shall 
return TRUE if v(Y) is equal to v(X) (and hence if MST(Y) is equal to MST(X) also), and 
FALSE otherwise.   

 
13. Let RX and RY be relational expressions.  In accordance with IM Prescription 28, each of 

RX and RY has a declared type.  Let those declared types have headings  
 
{ <A1,TX1> , <A2,TX2> , ... , <An,TXn> }  
 
{ <A1,TY1> , <A2,TY2> , ... , <An,TYn> }  
 
respectively, where (a) n ≥ 0 and (b) for all j (j = 1, 2, ..., n), types TXj and TYj have most 
specific common supertype Tj and least specific common subtype Tj′.  Further, let the 
values denoted by RX and RY be relations rx and ry, respectively.  Then:   

 
a. An expression of the form (RX) UNION (RY), or logical equivalent thereof, shall be 

supported and shall denote the union of rx and ry.  The declared type of that 
expression shall have heading  

 
{ <A1,T1> , <A2,T2> , ... , <An,Tn> }  
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b. An expression of the form (RX) INTERSECT (RY), or logical equivalent thereof, 
shall be supported and shall denote the intersection of rx and ry.  The declared type 
of that expression shall have heading  

 
{ <A1,T1′> , <A2,T2′> , ... , <An,Tn′> }  

 
Note:  Intersection is a special case of join; given the prescriptions of paragraph d. 
below, therefore, the present paragraph b. is strictly redundant.  We include it for 
convenience.   

 
c. An expression of the form (RX) MINUS (RY), or logical equivalent thereof, shall be 

supported and shall denote the difference between rx and ry, in that order.  The 
declared type of that expression shall have heading  

 
{ <A1,TX1> , <A2,TX2> , ... , <An,TXn> }  

 
Now let the declared types of relational expressions RX and RY have headings  

 
{ <A1,TX1> , <A2,TX2> , ... , <An,TXn> , <B1,TB1> , ... , <Bp,TBp> }  
 
{ <A1,TY1> , <A2,TY2> , ... , <An,TYn> , <C1,TC1> , ... , <Cq,TCq> }  
 
where (a) n ≥ 0, p ≥ 0, and q ≥ 0, and (b) for all j (j = 1, 2, ..., n), types TXj and TYj have 
least specific common subtype Tj′.  Further, let the values denoted by RX and RY be 
relations rx and ry, respectively.  Then:   

 
d. An expression of the form (RX) JOIN (RY), or logical equivalent thereof, shall be 

supported and shall denote the join of rx and ry.  The declared type of that expression 
shall have heading  

 
{ <A1,T1′> , <A2,T2′> , ... , <An,Tn′> ,  
             <B1,TB1> , ... , <Bp,TBp> , <C1,TC1> , ... , <Cq,TCq> }  

 
Note:  Intersection is a special case of join; thus, the prescriptions of the present 
paragraph d. degenerate to those for intersection (see paragraph b. above) in the case 
where p = q = 0.   

 
14. Let X be an expression, let T be a type, and let DT(X) and T overlap.  Then an operator of 

the form  
 
TREAT_AS_T ( X )  
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(or logical equivalent thereof) shall be supported, with semantics as follows:  If v(X) is not 
of type T, then a type error shall occur; otherwise, the declared type of the invocation 
TREAT_AS_T(X) shall be T, and the result of that invocation, r say, shall be equal to v(X) 
(hence, MST(r) shall be equal to MST(X) also).   

 
15. Let X be an expression, let T be a type, and let DT(X) and T overlap.  Then an operator of 

the form  
 
IS_T ( X )  
 
(or logical equivalent thereof) shall be supported.  The operator shall return TRUE if v(X) 
is of type T, FALSE otherwise.   

 
16. Let Op be a read-only operator, let P be a parameter to Op, and let T be the declared type of 

P.  Then the declared type of the argument expression (and therefore, necessarily, the most 
specific type of the argument as such) corresponding to P in an invocation of Op shall be 
allowed to be any subtype T′ of T.  In other words, the read-only operator Op applies to 
values of type T and therefore, necessarily, to values of type T′—The Principle of 
Read-Only Operator Inheritance.  It follows that such operators are polymorphic, since 
they apply to values of several different types—The Principle of Read-Only Operator 
Polymorphism.  It further follows that wherever a value of type T is permitted, a value of 
any subtype of T shall also be permitted—The Principle of Value Substitutability.   

 
17. Let Op be an operator.  Then Op shall have a specification signature and a set of invocation 

signatures.  Let the parameters of Op and the argument expressions involved in any given 
invocation of Op each constitute an ordered list of n elements (n  0), such that the jth 
argument expression corresponds to the jth parameter (j = 1, 2, ..., n).  Further, let PDT = 
<DT1, DT2, ..., DTn> be the declared types, in sequence, of those n parameters, and let 
PDT′ = <DT1′, DT2′, ..., DTn′> be a sequence of types such that DTj′ is a nonempty 
subtype of DTj (j = 1, 2, ..., n).  Then:   

 
a. If Op is a read-only operator, the specification signature shall consist of the operator 

name, the sequence PDT, and a type (the declared type DT(Op) for, or of, operator 
Op).  Also, for each possible sequence PDT′, let OpI be an invocation of Op with 
argument expressions of declared types as specified by PDT′; then there shall exist an 
invocation signature for OpI, consisting of that sequence PDT′ and a type (the 
declared type DT(OpI) for, or of, invocation OpI).  DT(OpI) shall be a subtype of 
DT(Op), and the type of the result of OpI shall be a subtype of DT(OpI).   

 
b. If Op is an update operator, the specification signature shall consist of the operator 

name, the sequence PDT, and an indication as to which parameters are subject to 
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update.  Also, let the sequence PDT′ be such that an invocation OpI of Op with 
argument expressions of declared types as specified by PDT′ is legitimate (see IM 
Prescription 19).  For each such sequence PDT′, there shall exist an invocation 
signature consisting of that sequence PDT′.   

 
If two distinct operators (either both read-only or both update operators) have the 

same name and the same number n of parameters, then for some j (1 ≤ j ≤ n) the declared 
types of their jth parameters, as given by their respective specification signatures, shall be 
disjoint.   

Note:  Ordered lists or sequences are used in the text of this prescription purely as a 
convenient basis for defining the various correspondences (e.g., between parameters and 
their declared types) that the prescription requires.  They are not an intrinsic part of the 
prescription as such.  Rather, the implementation is free to establish those correspondences 
by whatever means it deems suitable, just so long as the overall effect is functionally 
equivalent to that defined by the foregoing text.   

 
18. Let Op be an update operator and let P be a parameter to Op that is not subject to update.  

Then Op shall behave as a read-only operator as far as P is concerned, and all relevant 
aspects of IM Prescription 16 shall apply, mutatis mutandis.   

 
19. Let Op be an update operator, let P be a parameter to Op that is subject to update, and let T 

be the declared type of P.  Then it might or might not be the case that the declared type of 
the argument expression (and therefore, necessarily, the most specific type of the argument 
as such) corresponding to P in an invocation of Op shall be allowed to be some proper 
subtype T′ of type T.  It follows that for each such update operator Op and for each 
parameter P to Op that is subject to update, it shall be necessary to state explicitly for 
which proper subtypes T′ of the declared type T of parameter P operator Op shall be 
inherited—The Principle of Update Operator Inheritance.  (And if update operator Op is 
not inherited in this way by type T′, it shall not be inherited by any proper subtype of type 
T′ either.)  Update operators shall thus be only conditionally polymorphic—The Principle 
of Update Operator Polymorphism.  If Op is an update operator and P is a parameter to Op 
that is subject to update and T′ is a proper subtype of the declared type T of P for which Op 
is inherited, then by definition it shall be possible to invoke Op with an argument 
expression corresponding to parameter P that is of declared type T′—The Principle of 
Variable Substitutability.   

 
20. Type T shall be a union type if and only if it is a scalar type and there exists no value that 

is of type T and not of some immediate subtype of T (i.e., there exists no value v such that 
MST(v) is T).  Moreover:   

 
a. A type shall be a dummy type if and only if either of the following is true:   
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1. It is one of the types alpha and omega (see below).   
 
2. It is a union type, has no declared possible representation (and hence no 

selector), and no regular supertype.  Note:  Type alpha in fact satisfies all three 
of these conditions; type omega satisfies the first two only.   

 
A type shall be a regular type if and only if it is a scalar type and not a dummy type.   

 
b. Conceptually, there shall be a system defined scalar type called alpha, the maximal 

type with respect to every scalar type.  That type shall have all of the following 
properties:   

 
1. It shall contain all scalar values.   
 
2. It shall have no immediate supertypes.   
 
3. It shall be an immediate supertype for every scalar root type in the given set of 

available types GSAT.   
 

No other scalar type shall have any of these properties.   
 

c. Conceptually, there shall be a system defined scalar type called omega, the minimal 
type with respect to every scalar type.  That type shall have all of the following 
properties:   

 
1. It shall contain no values at all.  (It follows that, as RM Prescription 1 in fact 

states, it shall have no example value in particular.)   
 
2. It shall have no immediate subtypes.   
 
3. It shall be an immediate subtype for every scalar leaf type in the given set of 

available types GSAT.   
 

No other scalar type shall have any of these properties.   
 

d. The given set of available types GSAT shall contain at least one regular scalar type T 
such that T is neither a subtype nor a supertype of the required (and system defined) 
scalar type boolean.   
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21. Type T shall be an empty type if and only if it is either an empty scalar type or an empty 
tuple type.  Scalar type T shall be empty if and only if T is type omega.  Tuple type T shall 
be empty if and only if T has at least one attribute that is of some empty type.  An empty 
type shall be permitted as the type of (a) an attribute of a tuple type or relation type; 
(b) nothing else.   

 
22. Let T and T′ be both tuple types or both relation types.  Then type T′ shall be a subtype of 

type T, and type T shall be a supertype of type T′, if and only if (a) T and T′ have the same 
attribute names A1, A2, ..., An and (b) for all j (j = 1, 2, ..., n), the type of attribute Aj of T′ 
is a subtype of the type of attribute Aj of T.  Tuple t shall be of tuple type T if and only if t 
has a heading that is that of some subtype of T.  Relation r shall be of relation type T if and 
only if r has a heading that is that of some subtype of T (in which case every tuple in the 
body of r shall also have a heading that is that of some subtype of T).   

 
23. Let T and T′ be both tuple types or both relation types, with headings  

 
{ <A1,T1>  , <A2,T2>  , ... , <An,Tn>  }  
 
{ <A1,T1′> , <A2,T2′> , ... , <An,Tn′> }  
 
respectively.  Then T′ shall be a proper subtype of T, and T shall be a proper supertype of 
T′, if and only if (a) for all j (j = 1, 2, ..., n), type Tj′ is a subtype of Tj and (b) there exists at 
least one j (j = 1, 2, ..., n) such that Tj′ is a proper subtype of Tj.  Also, T′ shall be an 
immediate subtype of T, and T shall be an immediate supertype of T′, if and only if 
(a) there exists some j (j = 1, 2, ..., n) such that Tj′ is an immediate subtype of Tj and (b) for 

all k (k = 1, 2, ..., n, k ≠ j), Tk′ = Tk.  If and only if T′ is a proper but not an immediate 

subtype of T, then T′ shall be a nonimmediate subtype of T and T shall be a 
nonimmediate supertype of T′.   

 
24. Let T1, T2, ..., Tm (m  0), T, and T′ be all tuple types or all relation types, with headings  

 
{ <A1,T11>  , <A2,T12>  , ... , <An,T1n>  }  
 
{ <A1,T21>  , <A2,T22>  , ... , <An,T2n>  }  
 
  ......................................  
 
{ <A1,Tm1>  , <A2,Tm2>  , ... , <An,Tmn>  }  
 
{ <A1,T01>  , <A2,T02>  , ... , <An,T0n>  }  
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{ <A1,T01′> , <A2,T02′> , ... , <An,T0n′> }  
 
respectively.  Then:   
 
a. Type T shall be a common supertype for, or of, types T1, T2, ..., Tm if and only if, 

for all j (j = 1, 2, ..., n), type T0j is a common supertype for types T1j, T2j, ..., Tmj.  
Further, that type T shall be the most specific common supertype for T1, T2, ..., Tm if 
and only if no proper subtype of T is also a common supertype for those types.   

 
b. Type T′ shall be a common subtype for, or of, types T1, T2, ..., Tm if and only if, for 

all j (j = 1, 2, ..., n), type T0j′ is a common subtype for types T1j, T2j, ..., Tmj.  
Further, that type T′ shall be the least specific common subtype—also known as the 
intersection type or intersection subtype—for T1, T2, ..., Tm if and only if no 
proper supertype of T′ is also a common subtype for those types.   

 
Given types T1, T2, ..., Tm as defined above, it can be shown (thanks in particular to 

IM Prescription 25) that a unique most specific common supertype T and a unique least 
specific common subtype T′ always exist.  In the case of that particular common subtype T′, 
moreover, it is required that whenever a given value is of each of types T1, T2, ..., Tm, it is 
also of type T′ (hence the alternative term intersection type)—in which case, for all j (j = 1, 
2, ..., n), type T0j′ is the intersection type for types T1j, T2j, ..., Tmj.  And it can be shown 
as a consequence that every tuple value and every relation value has both a unique least 
specific type and a unique most specific type (regarding the latter, see also IM Prescription 
27).   

 
25. Let T, T_alpha, and T_omega be all tuple types or all relation types, with headings  

 
{ <A1,T1>       , <A2,T2>       , ... , <An,Tn>       }  
 
{ <A1,T1_alpha> , <A2,T2_alpha> , ... , <An,Tn_alpha> }  
 
{ <A1,T1_omega> , <A2,T2_omega> , ... , <An,Tn_omega> }  
 
respectively.  Then (a) type T_alpha shall be the maximal type with respect to type T if 
and only if, for all j (j = 1, 2, ..., n), type Tj_alpha is the maximal type with respect to type 
Tj; (b) type T_omega shall be the minimal type with respect to type T if and only if, for 
all j (j = 1, 2, ..., n), type Tj_omega is the minimal type with respect to type Tj.   

 
26. A root type shall be a scalar root type (see IM Prescription 6), a tuple root type, or a 

relation root type.  A type shall be a tuple root type if and only if it is a tuple type TT such 
that every attribute of TT is of a root type.  A type shall be a relation root type if and only 
if it is a relation type RT such that every attribute of RT is of a root type.   
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A leaf type shall be a scalar leaf type (see IM Prescription 6), a tuple leaf type, or a 
relation leaf type.  A type shall be a tuple leaf type if and only if it is a tuple type TT such 
that every attribute of TT is of a leaf type.  A type shall be a relation leaf type if and only if 
it is a relation type RT such that every attribute of RT is of a leaf type.   

A superroot type shall be a scalar superroot type, a tuple superroot type, or a relation 
superroot type.  A type shall be a scalar superroot type if and only if it is type alpha.  A 
type TT shall be a tuple superroot type if and only if it is a proper supertype of some tuple 
root type (in which case at least one attribute of TT must be of some superroot type).  A 
type RT shall be a relation superroot type if and only if it is a proper supertype of some 
relation root type (in which case at least one attribute of RT must be of some superroot 
type).   

A subleaf type shall be a scalar subleaf type, a tuple subleaf type, or a relation 
subleaf type.  A type shall be a scalar subleaf type if and only if it is type omega.  A type 
TT shall be a tuple subleaf type if and only if it is a proper subtype of some tuple leaf type 
(in which case at least one attribute of TT must be of some subleaf type).  A type RT shall 
be a relation subleaf type if and only if it is a proper subtype of some relation leaf type (in 
which case at least one attribute of RT must be of some subleaf type).   

 
27. Let H be a heading defined as follows:   

 
{ <A1,T1> , <A2,T2> , ... , <An,Tn> }  
 
Then:   

 
a. If t is a tuple of type TUPLE H, meaning t shall take the form  
 

TUPLE { <A1,MST1,v1> , <A2,MST2,v2> , ... , <An,MSTn,vn> }  
 

where, for all j (j = 1, 2, ..., n), type MSTj is a subtype of type Tj and is the most 
specific type of value vj, then the most specific type of t shall be  

 
TUPLE { <A1,MST1> , <A2,MST2> , ... , <An,MSTn> }  

 
b. If r is a relation of type RELATION H, let the body of r consist of tuples t1, t2, ..., tm 

(m ≥ 0).  Tuple ti (i = 1, 2, ..., m) shall take the form  
 

TUPLE { <A1,MSTi1,vi1> , <A2,MSTi2,vi2> , ... , <An,MSTin,vin> }  
 

where, for all j (j = 1, 2, ..., n), type MSTij is a subtype of type Tj and is the most 
specific type of value vij (note that MSTij is different for different tuples ti, in 
general).  Then the most specific type of r shall be  
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RELATION { <A1,MST1> , <A2,MST2> , ... , <An,MSTn> }  
 

where, for all j (j = 1, 2, ..., n), type MSTj is the most specific common supertype of 
those most specific types MSTij, taken over all tuples ti.   

 
28. Let V be a tuple variable or relation variable of declared type T, and let T have attributes 

A1, A2, ..., An.  Then we can model V as a named set of named ordered triples of the form 
<DTj,MSTj,vj> (j = 1, 2, ..., n), where:   

 
a. The name of the set is the name of the variable, V.   
 
b. The name of each triple is the name of the corresponding attribute.   
 
c. DTj is the name of the declared type of attribute Aj.   
 
d. MSTj is the name of the most specific type—also known as the current most specific 

type—for, or of, attribute Aj.  (If V is a relation variable, then the most specific type 
of Aj is the most specific common supertype of the most specific types of the m 
values in vj—see the explanation of vj below.)   

 
e. If V is a tuple variable, vj is a value of most specific type MSTj—the current value 

for, or of, attribute Aj.  If V is a relation variable, then let the body of the current value 
of V consist of m tuples (m  0); label those tuples (in some arbitrary sequence) “tuple 
1,” “tuple 2,” ..., “tuple m”; then vj is a sequence of m values (not necessarily all 
distinct), being the Aj values from tuple 1, tuple 2, ..., tuple m (in that order).  Note 
that those Aj values are all of type MSTj.   

 
We use the notation DT(Aj), MST(Aj), v(Aj) to refer to the DTj, MSTj, vj components, 
respectively, of attribute Aj of this model of tuple variable or relation variable V.  We also 
use the notation DT(V), MST(V), v(V) to refer to the overall declared type, overall current 
most specific type, and overall current value, respectively, of this model of tuple variable or 
relation variable V.   

Now let X be a tuple expression or relation expression.  By definition, X specifies an 
invocation of some tuple operator or relation operator Op.  Thus, the notation DTj(V), 
MSTj(V), vj(V) just introduced can be extended in an obvious way to refer to the declared 
type DTj(X), the current most specific type MSTj(X), and the current value vj(X), 
respectively, of the DTj, MSTj, vj components, respectively, of attribute Aj of tuple 
expression or relation expression X—where DTj(X) is the declared type of Aj for the 
invocation of Op in question (see IM Prescription 17) and is known at compile time, and 
MSTj(X) and vj(X) refer to the result of evaluating X and are therefore not known until run 
time (in general).   



 
 
14      The Inheritance Model 

 
 
 





  

 


