

T h e I n h e r i t a n c e M o d e l
(version dated September 26th, 2016, superseding all previous versions)

O England! model to thy inward greatness,
Like little body with a mighty heart,
What mightst thou do, that honour would thee do,
Were all thy children kind and natural!

—William Shakespeare:
King Henry the Fifth (1598-1599)

What follows is Chapter 4 of Type Inheritance and Relational Theory by C. J. Date, O’Reilly, 2016 (hence the
references in the introductory text to “this book”, “this chapter”, and suchlike).

The introductory text uses the first person singular to refer to the book’s sole author, Chris Date, but the section
THE IM PRESCRIPTIONS—i.e., the rest of the Chapter—is a joint work by him and Hugh Darwen.

Any further revisions to the Inheritance Model will appear in this document, which should then be taken as
definitive, superseding Chapter 4 of Type Inheritance and Relational Theory.

This chapter provides, for purposes of subsequent reference, a precise statement of the 28 IM
prescriptions that make up our inheritance model. It’s based on Chapter 19 of the book
Database Explorations: Essays on The Third Manifesto and Related Topics, by Hugh Darwen
and myself (available free online at the website www.thethirdmanifesto.com). However, I’ve
found it necessary, or at least convenient, to perform a certain amount of revision on some of the
prescriptions, as will be made clear in subsequent chapters. I’ve also added two new ones
(numbers 23 and 26, according to the numbering below). Note: Whenever there’s a technical
discrepancy between the present chapter—or anything else in this book, come to that—and
previous publications by Darwen and myself on this topic, the present text should be taken as
superseding. At the same time, please note that it’s my intention that any such discrepancies be
called out explicitly and justified.

Throughout this chapter, as well as elsewhere in this book, I use the symbols T and T′ as generic
names for a pair of types such that T′ is a subtype of T (equivalently, such that T is a supertype of
T′). You might find it helpful to think of T and T′ as ELLIPSE and CIRCLE, respectively;
however, keep in mind that they’re not limited to being scalar types specifically, barring explicit
statements to the contrary (moreover, the various prescriptions are all worded in such a way as
not to be limited to single inheritance only, either). Note too that distinct types have distinct
names; in particular, if T′ is a proper subtype of T, then their names will be distinct, even if the
set of values constituting T′ isn’t a proper subset of the set of values constituting T. (Conversely,
if their names aren’t distinct, then T′ and T are the very same type and the corresponding sets of

http://www.thethirdmanifesto.com

2 The Inheritance Model

values will be identical.) Also, I assume that all of the types under discussion, including the
maximal and minimal types discussed in IM Prescriptions 20 and 25, are members of some given
set of available types GSAT (though the only explicit mention of that set is in IM Prescription 20,
q.v.); in particular, the definitions of the terms root type and leaf type in IM Prescription 6 are to
be understood in the context of that set. For example, given the type hierarchy of Fig. 3.1 in
Chapter 3, the set of available types consists of:

a. PLANE_FIGURE, ELLIPSE, CIRCLE, POLYGON, RECTANGLE, and SQUARE

b. The types in terms of which the possreps for the types listed under point a. are defined

c. The types in terms of which the possreps for the types included under point b., such as

LENGTH and POINT, are defined (and so on, recursively, all the way down to and
including the pertinent primitive types—see below)

d. The maximal scalar type alpha and the minimal scalar type omega (see IM Prescription 20)

e. Tuple and relation types that can be generated using any of the types mentioned in any of

these five points a.-e.

Note: The term primitive type, mentioned under point c. above, refers to a system defined
type (scalar by definition) with no declared possrep. The qualifier primitive derives from the fact
that all of the types available in any given context are ultimately defined in terms of such types.
Typical examples of such primitive types include the types INTEGER, RATIONAL, CHAR, and
BOOLEAN.

By the way, it’s worth stating explicitly that type PLANE_FIGURE is not the only root
type with respect to the foregoing set of types. It’s not even the only scalar root type. By way of
example, consider type POINT. Since it’s the type of (among other things) a possrep component
for type CIRCLE, type POINT is certainly a member of the given set of types; however, it’s not
a subtype of PLANE_FIGURE, and so it must be part of some distinct type hierarchy—possibly
one consisting of type POINT only—and, by definition, that distinct type hierarchy has a distinct
root type of its own.

THE IM PRESCRIPTIONS

1. T and T′ shall each be types; i.e., each shall be a named set of values.

2. Every value in T′ shall be a value in T; i.e., the set of values constituting T′ shall be a subset

of the set of values constituting T (in other words, if a value is of type T′, it shall also be of
type T).

The Inheritance Model 3

3. T and T′ shall not necessarily be distinct; i.e., every type shall be both a subtype and a

supertype of itself.

4. Every subtype of T′ shall be a subtype of T. Every supertype of T shall be a supertype

of T′.

5. Let T and T′ be scalar types. Then:

a. If and only if T and T′ are distinct, then T shall be a proper supertype of T′ and T′
shall be a proper subtype of T.

b. Let T be a proper supertype of T′, and let S be a sequence of types T1, T2, ..., Tm such

that T is a proper supertype of T1, T1 is a proper supertype of T2, ..., and Tm is a
proper supertype of T′ (m ≥ 0). Then either (a) no such sequence S shall exist (i.e.,
every such sequence shall be such that m = 0), in which case (and in which case only)
T shall be an immediate supertype of T′, or (b) every such sequence S shall be such
that m > 0, in which case (and in which case only) T shall be a nonimmediate
supertype of T′. Also, T′ shall be an immediate subtype of T if and only if T is an
immediate supertype of T′, and T′ shall be a nonimmediate subtype of T if and only
if T is a nonimmediate supertype of T.

c. If and only if T is an immediate supertype of T′ and T′ is neither a root type nor type

omega—see IM Prescription 20—then the definition of T′ shall be accompanied by a
specification of an example value that is of type T and not of type T′.

6. A scalar type that has type alpha—see IM Prescription 20—as its sole immediate supertype

shall be a (scalar) root type. A scalar type that has type omega—again, see IM
Prescription 20—as its sole immediate subtype shall be a (scalar) leaf type.

7. Types T1 and T2 shall be disjoint if and only if no value is of both type T1 and type T2.

Types T1 and T2 shall overlap if and only if there exists at least one value that is common
to both. Distinct root types shall be disjoint. If types T1 and T2 are distinct immediate
subtypes of the same scalar type T, there shall exist at least one value that is of type T1 and
not of type T2.

8. Let T1, T2, ..., Tm (m  0), T, and T′ be scalar types. Then:

a. Type T shall be a common supertype for, or of, types T1, T2, ..., Tm if and only if,

whenever a given value is of at least one of types T1, T2, ..., Tm, it is also of type T.

4 The Inheritance Model

Further, that type T shall be the most specific common supertype for T1, T2, ..., Tm if
and only if no proper subtype of T is also a common supertype for those types.

b. Type T′ shall be a common subtype for, or of, types T1, T2, ..., Tm if and only if,

whenever a given value is of type T′, it is also of each of types T1, T2, ..., Tm.
Further, that type T′ shall be the least specific common subtype—also known as the
intersection type or intersection subtype—for T1, T2, ..., Tm if and only if no
proper supertype of T′ is also a common subtype for those types.

Given types T1, T2, ..., Tm as defined above, it can be shown (thanks in particular to

IM Prescription 20) that a unique most specific common supertype T and a unique least
specific common subtype T′ always exist. In the case of that particular common subtype T′,
moreover, it is required that whenever a given value is of each of types T1, T2, ..., Tm, it is
also of type T′ (hence the alternative term intersection type). And it can be shown as a
consequence that every scalar value v has both a unique least specific type and a unique
most specific type (regarding this latter—which elsewhere in these prescriptions is denoted
MST(v)—see also IM Prescription 9).

9. Let scalar variable V be of declared type T. Because of value substitutability (see IM

Prescription 16), the value v assigned to V at any given time can have any nonempty
subtype T′ of type T as its most specific type. We can therefore model V as a named
ordered triple of the form <DT,MST,v>, where:

a. The name of the triple is the name of the variable, V.

b. DT is the name of the declared type for variable V.

c. MST is the name of the most specific type—also known as the current most specific

type—for, or of, variable V.

d. v is a value of most specific type MST—the current value for, or of, variable V.

We use the notation DT(V), MST(V), v(V) to refer to the DT, MST, v components,
respectively, of this model of scalar variable V. Note: Since v(V) uniquely determines
MST(V)—see IM Prescription 8—the MST component of V is strictly redundant. We
include it for convenience.

Now let X be a scalar expression. By definition, X represents an invocation of some
scalar operator Op. Thus, the notation DT(V), MST(V), v(V) just introduced can be
extended in an obvious way to refer to the declared type DT(X), the current most specific
type MST(X), and the current value v(X), respectively, of X—where DT(X) is the declared
type of the invocation of Op in question (see IM Prescription 17) and is known at compile

The Inheritance Model 5

time, and MST(X) and v(X) refer to the result of evaluating X and are therefore not known
until run time (in general).

10. Let T be a regular type (see IM Prescription 20) and hence, necessarily, a scalar type, and

let T′ be a nonempty immediate subtype of T. For each such immediate supertype T of T′,
the definition of T′ shall specify a specialization constraint SC, formulated in terms of T,
such that a value shall be of type T′ if and only if it satisfies all such constraints SC.

11. Consider the assignment

V := X

(where V is a variable reference and X is an expression). DT(X) shall be a subtype of
DT(V). The assignment shall set v(V) equal to v(X), and hence MST(V) equal to MST(X)
also.

12. Consider the equality comparison

Y = X

(where Y and X are expressions). DT(Y) and DT(X) shall overlap. The comparison shall
return TRUE if v(Y) is equal to v(X) (and hence if MST(Y) is equal to MST(X) also), and
FALSE otherwise.

13. Let RX and RY be relational expressions. In accordance with IM Prescription 28, each of

RX and RY has a declared type. Let those declared types have headings

{ <A1,TX1> , <A2,TX2> , ... , <An,TXn> }

{ <A1,TY1> , <A2,TY2> , ... , <An,TYn> }

respectively, where (a) n ≥ 0 and (b) for all j (j = 1, 2, ..., n), types TXj and TYj have most
specific common supertype Tj and least specific common subtype Tj′. Further, let the
values denoted by RX and RY be relations rx and ry, respectively. Then:

a. An expression of the form (RX) UNION (RY), or logical equivalent thereof, shall be

supported and shall denote the union of rx and ry. The declared type of that
expression shall have heading

{ <A1,T1> , <A2,T2> , ... , <An,Tn> }

6 The Inheritance Model

b. An expression of the form (RX) INTERSECT (RY), or logical equivalent thereof,
shall be supported and shall denote the intersection of rx and ry. The declared type
of that expression shall have heading

{ <A1,T1′> , <A2,T2′> , ... , <An,Tn′> }

Note: Intersection is a special case of join; given the prescriptions of paragraph d.
below, therefore, the present paragraph b. is strictly redundant. We include it for
convenience.

c. An expression of the form (RX) MINUS (RY), or logical equivalent thereof, shall be

supported and shall denote the difference between rx and ry, in that order. The
declared type of that expression shall have heading

{ <A1,TX1> , <A2,TX2> , ... , <An,TXn> }

Now let the declared types of relational expressions RX and RY have headings

{ <A1,TX1> , <A2,TX2> , ... , <An,TXn> , <B1,TB1> , ... , <Bp,TBp> }

{ <A1,TY1> , <A2,TY2> , ... , <An,TYn> , <C1,TC1> , ... , <Cq,TCq> }

where (a) n ≥ 0, p ≥ 0, and q ≥ 0, and (b) for all j (j = 1, 2, ..., n), types TXj and TYj have
least specific common subtype Tj′. Further, let the values denoted by RX and RY be
relations rx and ry, respectively. Then:

d. An expression of the form (RX) JOIN (RY), or logical equivalent thereof, shall be

supported and shall denote the join of rx and ry. The declared type of that expression
shall have heading

{ <A1,T1′> , <A2,T2′> , ... , <An,Tn′> ,
 <B1,TB1> , ... , <Bp,TBp> , <C1,TC1> , ... , <Cq,TCq> }

Note: Intersection is a special case of join; thus, the prescriptions of the present
paragraph d. degenerate to those for intersection (see paragraph b. above) in the case
where p = q = 0.

14. Let X be an expression, let T be a type, and let DT(X) and T overlap. Then an operator of

the form

TREAT_AS_T (X)

The Inheritance Model 7

(or logical equivalent thereof) shall be supported, with semantics as follows: If v(X) is not
of type T, then a type error shall occur; otherwise, the declared type of the invocation
TREAT_AS_T(X) shall be T, and the result of that invocation, r say, shall be equal to v(X)
(hence, MST(r) shall be equal to MST(X) also).

15. Let X be an expression, let T be a type, and let DT(X) and T overlap. Then an operator of

the form

IS_T (X)

(or logical equivalent thereof) shall be supported. The operator shall return TRUE if v(X)
is of type T, FALSE otherwise.

16. Let Op be a read-only operator, let P be a parameter to Op, and let T be the declared type of

P. Then the declared type of the argument expression (and therefore, necessarily, the most
specific type of the argument as such) corresponding to P in an invocation of Op shall be
allowed to be any subtype T′ of T. In other words, the read-only operator Op applies to
values of type T and therefore, necessarily, to values of type T′—The Principle of
Read-Only Operator Inheritance. It follows that such operators are polymorphic, since
they apply to values of several different types—The Principle of Read-Only Operator
Polymorphism. It further follows that wherever a value of type T is permitted, a value of
any subtype of T shall also be permitted—The Principle of Value Substitutability.

17. Let Op be an operator. Then Op shall have a specification signature and a set of invocation

signatures. Let the parameters of Op and the argument expressions involved in any given
invocation of Op each constitute an ordered list of n elements (n  0), such that the jth
argument expression corresponds to the jth parameter (j = 1, 2, ..., n). Further, let PDT =
<DT1, DT2, ..., DTn> be the declared types, in sequence, of those n parameters, and let
PDT′ = <DT1′, DT2′, ..., DTn′> be a sequence of types such that DTj′ is a nonempty
subtype of DTj (j = 1, 2, ..., n). Then:

a. If Op is a read-only operator, the specification signature shall consist of the operator

name, the sequence PDT, and a type (the declared type DT(Op) for, or of, operator
Op). Also, for each possible sequence PDT′, let OpI be an invocation of Op with
argument expressions of declared types as specified by PDT′; then there shall exist an
invocation signature for OpI, consisting of that sequence PDT′ and a type (the
declared type DT(OpI) for, or of, invocation OpI). DT(OpI) shall be a subtype of
DT(Op), and the type of the result of OpI shall be a subtype of DT(OpI).

b. If Op is an update operator, the specification signature shall consist of the operator

name, the sequence PDT, and an indication as to which parameters are subject to

8 The Inheritance Model

update. Also, let the sequence PDT′ be such that an invocation OpI of Op with
argument expressions of declared types as specified by PDT′ is legitimate (see IM
Prescription 19). For each such sequence PDT′, there shall exist an invocation
signature consisting of that sequence PDT′.

If two distinct operators (either both read-only or both update operators) have the

same name and the same number n of parameters, then for some j (1 ≤ j ≤ n) the declared
types of their jth parameters, as given by their respective specification signatures, shall be
disjoint.

Note: Ordered lists or sequences are used in the text of this prescription purely as a
convenient basis for defining the various correspondences (e.g., between parameters and
their declared types) that the prescription requires. They are not an intrinsic part of the
prescription as such. Rather, the implementation is free to establish those correspondences
by whatever means it deems suitable, just so long as the overall effect is functionally
equivalent to that defined by the foregoing text.

18. Let Op be an update operator and let P be a parameter to Op that is not subject to update.

Then Op shall behave as a read-only operator as far as P is concerned, and all relevant
aspects of IM Prescription 16 shall apply, mutatis mutandis.

19. Let Op be an update operator, let P be a parameter to Op that is subject to update, and let T

be the declared type of P. Then it might or might not be the case that the declared type of
the argument expression (and therefore, necessarily, the most specific type of the argument
as such) corresponding to P in an invocation of Op shall be allowed to be some proper
subtype T′ of type T. It follows that for each such update operator Op and for each
parameter P to Op that is subject to update, it shall be necessary to state explicitly for
which proper subtypes T′ of the declared type T of parameter P operator Op shall be
inherited—The Principle of Update Operator Inheritance. (And if update operator Op is
not inherited in this way by type T′, it shall not be inherited by any proper subtype of type
T′ either.) Update operators shall thus be only conditionally polymorphic—The Principle
of Update Operator Polymorphism. If Op is an update operator and P is a parameter to Op
that is subject to update and T′ is a proper subtype of the declared type T of P for which Op
is inherited, then by definition it shall be possible to invoke Op with an argument
expression corresponding to parameter P that is of declared type T′—The Principle of
Variable Substitutability.

20. Type T shall be a union type if and only if it is a scalar type and there exists no value that

is of type T and not of some immediate subtype of T (i.e., there exists no value v such that
MST(v) is T). Moreover:

a. A type shall be a dummy type if and only if either of the following is true:

The Inheritance Model 9

1. It is one of the types alpha and omega (see below).

2. It is a union type, has no declared possible representation (and hence no

selector), and no regular supertype. Note: Type alpha in fact satisfies all three
of these conditions; type omega satisfies the first two only.

A type shall be a regular type if and only if it is a scalar type and not a dummy type.

b. Conceptually, there shall be a system defined scalar type called alpha, the maximal

type with respect to every scalar type. That type shall have all of the following
properties:

1. It shall contain all scalar values.

2. It shall have no immediate supertypes.

3. It shall be an immediate supertype for every scalar root type in the given set of

available types GSAT.

No other scalar type shall have any of these properties.

c. Conceptually, there shall be a system defined scalar type called omega, the minimal
type with respect to every scalar type. That type shall have all of the following
properties:

1. It shall contain no values at all. (It follows that, as RM Prescription 1 in fact

states, it shall have no example value in particular.)

2. It shall have no immediate subtypes.

3. It shall be an immediate subtype for every scalar leaf type in the given set of

available types GSAT.

No other scalar type shall have any of these properties.

d. The given set of available types GSAT shall contain at least one regular scalar type T
such that T is neither a subtype nor a supertype of the required (and system defined)
scalar type boolean.

10 The Inheritance Model

21. Type T shall be an empty type if and only if it is either an empty scalar type or an empty
tuple type. Scalar type T shall be empty if and only if T is type omega. Tuple type T shall
be empty if and only if T has at least one attribute that is of some empty type. An empty
type shall be permitted as the type of (a) an attribute of a tuple type or relation type;
(b) nothing else.

22. Let T and T′ be both tuple types or both relation types. Then type T′ shall be a subtype of

type T, and type T shall be a supertype of type T′, if and only if (a) T and T′ have the same
attribute names A1, A2, ..., An and (b) for all j (j = 1, 2, ..., n), the type of attribute Aj of T′
is a subtype of the type of attribute Aj of T. Tuple t shall be of tuple type T if and only if t
has a heading that is that of some subtype of T. Relation r shall be of relation type T if and
only if r has a heading that is that of some subtype of T (in which case every tuple in the
body of r shall also have a heading that is that of some subtype of T).

23. Let T and T′ be both tuple types or both relation types, with headings

{ <A1,T1> , <A2,T2> , ... , <An,Tn> }

{ <A1,T1′> , <A2,T2′> , ... , <An,Tn′> }

respectively. Then T′ shall be a proper subtype of T, and T shall be a proper supertype of
T′, if and only if (a) for all j (j = 1, 2, ..., n), type Tj′ is a subtype of Tj and (b) there exists at
least one j (j = 1, 2, ..., n) such that Tj′ is a proper subtype of Tj. Also, T′ shall be an
immediate subtype of T, and T shall be an immediate supertype of T′, if and only if
(a) there exists some j (j = 1, 2, ..., n) such that Tj′ is an immediate subtype of Tj and (b) for

all k (k = 1, 2, ..., n, k ≠ j), Tk′ = Tk. If and only if T′ is a proper but not an immediate

subtype of T, then T′ shall be a nonimmediate subtype of T and T shall be a
nonimmediate supertype of T′.

24. Let T1, T2, ..., Tm (m  0), T, and T′ be all tuple types or all relation types, with headings

{ <A1,T11> , <A2,T12> , ... , <An,T1n> }

{ <A1,T21> , <A2,T22> , ... , <An,T2n> }

{ <A1,Tm1> , <A2,Tm2> , ... , <An,Tmn> }

{ <A1,T01> , <A2,T02> , ... , <An,T0n> }

The Inheritance Model 11

{ <A1,T01′> , <A2,T02′> , ... , <An,T0n′> }

respectively. Then:

a. Type T shall be a common supertype for, or of, types T1, T2, ..., Tm if and only if,

for all j (j = 1, 2, ..., n), type T0j is a common supertype for types T1j, T2j, ..., Tmj.
Further, that type T shall be the most specific common supertype for T1, T2, ..., Tm if
and only if no proper subtype of T is also a common supertype for those types.

b. Type T′ shall be a common subtype for, or of, types T1, T2, ..., Tm if and only if, for

all j (j = 1, 2, ..., n), type T0j′ is a common subtype for types T1j, T2j, ..., Tmj.
Further, that type T′ shall be the least specific common subtype—also known as the
intersection type or intersection subtype—for T1, T2, ..., Tm if and only if no
proper supertype of T′ is also a common subtype for those types.

Given types T1, T2, ..., Tm as defined above, it can be shown (thanks in particular to

IM Prescription 25) that a unique most specific common supertype T and a unique least
specific common subtype T′ always exist. In the case of that particular common subtype T′,
moreover, it is required that whenever a given value is of each of types T1, T2, ..., Tm, it is
also of type T′ (hence the alternative term intersection type)—in which case, for all j (j = 1,
2, ..., n), type T0j′ is the intersection type for types T1j, T2j, ..., Tmj. And it can be shown
as a consequence that every tuple value and every relation value has both a unique least
specific type and a unique most specific type (regarding the latter, see also IM Prescription
27).

25. Let T, T_alpha, and T_omega be all tuple types or all relation types, with headings

{ <A1,T1> , <A2,T2> , ... , <An,Tn> }

{ <A1,T1_alpha> , <A2,T2_alpha> , ... , <An,Tn_alpha> }

{ <A1,T1_omega> , <A2,T2_omega> , ... , <An,Tn_omega> }

respectively. Then (a) type T_alpha shall be the maximal type with respect to type T if
and only if, for all j (j = 1, 2, ..., n), type Tj_alpha is the maximal type with respect to type
Tj; (b) type T_omega shall be the minimal type with respect to type T if and only if, for
all j (j = 1, 2, ..., n), type Tj_omega is the minimal type with respect to type Tj.

26. A root type shall be a scalar root type (see IM Prescription 6), a tuple root type, or a

relation root type. A type shall be a tuple root type if and only if it is a tuple type TT such
that every attribute of TT is of a root type. A type shall be a relation root type if and only
if it is a relation type RT such that every attribute of RT is of a root type.

12 The Inheritance Model

A leaf type shall be a scalar leaf type (see IM Prescription 6), a tuple leaf type, or a
relation leaf type. A type shall be a tuple leaf type if and only if it is a tuple type TT such
that every attribute of TT is of a leaf type. A type shall be a relation leaf type if and only if
it is a relation type RT such that every attribute of RT is of a leaf type.

A superroot type shall be a scalar superroot type, a tuple superroot type, or a relation
superroot type. A type shall be a scalar superroot type if and only if it is type alpha. A
type TT shall be a tuple superroot type if and only if it is a proper supertype of some tuple
root type (in which case at least one attribute of TT must be of some superroot type). A
type RT shall be a relation superroot type if and only if it is a proper supertype of some
relation root type (in which case at least one attribute of RT must be of some superroot
type).

A subleaf type shall be a scalar subleaf type, a tuple subleaf type, or a relation
subleaf type. A type shall be a scalar subleaf type if and only if it is type omega. A type
TT shall be a tuple subleaf type if and only if it is a proper subtype of some tuple leaf type
(in which case at least one attribute of TT must be of some subleaf type). A type RT shall
be a relation subleaf type if and only if it is a proper subtype of some relation leaf type (in
which case at least one attribute of RT must be of some subleaf type).

27. Let H be a heading defined as follows:

{ <A1,T1> , <A2,T2> , ... , <An,Tn> }

Then:

a. If t is a tuple of type TUPLE H, meaning t shall take the form

TUPLE { <A1,MST1,v1> , <A2,MST2,v2> , ... , <An,MSTn,vn> }

where, for all j (j = 1, 2, ..., n), type MSTj is a subtype of type Tj and is the most
specific type of value vj, then the most specific type of t shall be

TUPLE { <A1,MST1> , <A2,MST2> , ... , <An,MSTn> }

b. If r is a relation of type RELATION H, let the body of r consist of tuples t1, t2, ..., tm

(m ≥ 0). Tuple ti (i = 1, 2, ..., m) shall take the form

TUPLE { <A1,MSTi1,vi1> , <A2,MSTi2,vi2> , ... , <An,MSTin,vin> }

where, for all j (j = 1, 2, ..., n), type MSTij is a subtype of type Tj and is the most
specific type of value vij (note that MSTij is different for different tuples ti, in
general). Then the most specific type of r shall be

The Inheritance Model 13

RELATION { <A1,MST1> , <A2,MST2> , ... , <An,MSTn> }

where, for all j (j = 1, 2, ..., n), type MSTj is the most specific common supertype of
those most specific types MSTij, taken over all tuples ti.

28. Let V be a tuple variable or relation variable of declared type T, and let T have attributes

A1, A2, ..., An. Then we can model V as a named set of named ordered triples of the form
<DTj,MSTj,vj> (j = 1, 2, ..., n), where:

a. The name of the set is the name of the variable, V.

b. The name of each triple is the name of the corresponding attribute.

c. DTj is the name of the declared type of attribute Aj.

d. MSTj is the name of the most specific type—also known as the current most specific

type—for, or of, attribute Aj. (If V is a relation variable, then the most specific type
of Aj is the most specific common supertype of the most specific types of the m
values in vj—see the explanation of vj below.)

e. If V is a tuple variable, vj is a value of most specific type MSTj—the current value

for, or of, attribute Aj. If V is a relation variable, then let the body of the current value
of V consist of m tuples (m  0); label those tuples (in some arbitrary sequence) “tuple
1,” “tuple 2,” ..., “tuple m”; then vj is a sequence of m values (not necessarily all
distinct), being the Aj values from tuple 1, tuple 2, ..., tuple m (in that order). Note
that those Aj values are all of type MSTj.

We use the notation DT(Aj), MST(Aj), v(Aj) to refer to the DTj, MSTj, vj components,
respectively, of attribute Aj of this model of tuple variable or relation variable V. We also
use the notation DT(V), MST(V), v(V) to refer to the overall declared type, overall current
most specific type, and overall current value, respectively, of this model of tuple variable or
relation variable V.

Now let X be a tuple expression or relation expression. By definition, X specifies an
invocation of some tuple operator or relation operator Op. Thus, the notation DTj(V),
MSTj(V), vj(V) just introduced can be extended in an obvious way to refer to the declared
type DTj(X), the current most specific type MSTj(X), and the current value vj(X),
respectively, of the DTj, MSTj, vj components, respectively, of attribute Aj of tuple
expression or relation expression X—where DTj(X) is the declared type of Aj for the
invocation of Op in question (see IM Prescription 17) and is known at compile time, and
MSTj(X) and vj(X) refer to the result of evaluating X and are therefore not known until run
time (in general).

14 The Inheritance Model

