An Overview and Anal ysi s
of Proposal s
Based on t he TSQL 2 Approach
by
Hugh Darwen and C. J. Date

Date of this DRAFT: March 10t h, 2005

I ntroducti on

TSQ.2 and the SQ standard
TSQL2 tabl es

The central idea
Tenporal upward conmpatibility
Current, sequenced, and nonsequenced operations
Data definition statenents
Statenent nodifiers are flawed
Consequences of hidden col ums
| npreci se specification

Lack of generality

Concl udi ng remarks

Ref erences and bi bl i ography

PR e
MNPROOONOOGTRWNE

1. 1 NTRODUCTI ON

Along with Ni kos Lorentzos, the present witers have described in
detail, in reference [6], an approach to the tenporal database
problemthat is firmy rooted in the relational nodel of data (and
we assune here and there in the present paper that you have sone
famliarity with the ideas of reference [6]). However, many other
approaches have been proposed and described in the literature. In
this paper, we take a brief |Iook at the "tenporal query |anguage”
TSQL2, which is probably the best known and nost influential of
those alternative approaches—i ndeed, a version of it was even
proposed at one time for inclusion in the SQ standard (see
Section 2 below).! Sections 3-7 provide an overview of the najor
features of TSQ.2. Sections 8-11 then describe what we regard as
a series of mgjor flaws in the TSQ.2 approach, and Section 12

of fers a few concl udi ng renmarks.

Wth regard to those "major flaws,"” incidentally, we should
say there is one that seens to us so significant—indeed, it
underlies all the rest—that it needs to be nentioned right away,

! Ref erence [1] describes a tenporal query |anguage very sinmilar to TSQ.2 call ed
ATSQL. In this paper, we use the nane TSQ.2 as a convenient generic |abel to
refer to the approach espoused in all or any of references [1] and [11-14].

Copyright (c) 2005 Hugh Darwen & C. J. Date page 1



and that is that TSQL2 involves "hidden attributes."? As a direct
consequence of this fact, the basic data object in TSQ2 is not a
rel ation, and the approach thus clearly violates The Information
Principle. 1In other words, TSQL2, whatever else it mght be, is
certainly not relational. W should inmediately add that TSQL2 is
not alone in this regard—nost of the other tenporal proposals
described in the literature do the same thing, in one way or
another. What is nore, the picture is nuddied by the fact that
nost if not all of the researchers involved refer to their
proposals, quite explicitly, as relational approaches to the

probl em even though they are clearly not (relational, that is).

W will elaborate on this matter of hidden attributes in
Sections 3 and 9. And al though our remarks in those sections are
framed in ternms of TSQL2 specifically, it should be clear that
those remarks apply with equal force, nutatis nutandis, to any
approach that attenpts to "hide attributes” in the sanme kind of
way that TSQ.2 does.

One final prelimnary remark: Qur discussions of TSQ.2—whi ch
are not nmeant to be exhaustive, please note—are based primarily
on our own understanding of references [13-15]. Naturally we have
tried to nmake those di scussions as accurate as we can, but it is
of course possible that we have misinterpreted those references on
occasion. |If so, we apologize; in our defense, however, we need
to say that those references [13-15] do contradict one another on
occasi on.

2. TSQL2 AND THE SQL STANDARD

First of all, a little background. The body that publishes the
international SQ. standard is the International Organization for
St andardi zation ("1SO'). That body produced versions of the
standard in 1992 (SQL:1992, known informally as SQ.2) and 1999
(SQ.: 1999, known informally as SQL3). SQL:1999 [8] is the version
of the standard that is current at the time of witing; a thorough
tutorial description of the previous version, SQ.:1992, with an
appendi x giving an overview of SQ3 as it was around 1996 or so,
can be found in reference [5]. The next version is likely to be
ratified later this year (2003). Note added later: In fact this
latter did happen, and SQ.: 2003 is now the current standard.

The 1SO commttee with direct responsibility for the SQ
standard has del egates representing a variety of national
standards bodies. During the 1990s, the United States national
body received a proposal for a set of tenporal extensions to SQ
based on TSQ.2. (The nane "TSQ.2" presumably reflects the fact
that the | anguage was desi gned as an extension to SQL2
specifically [11], which—in the formof SQ.:1992—was the
official standard at the tinme.) The US national body in turn

“The TSQL2 termis inplicit colums. Regular attributes are called explicit
col ums.

Copyright (c) 2005 Hugh Darwen & C. J. Date page 2



subm tted that proposal as an "individual expert's contribution”
(i.e., not as a formal position paper) for consideration by the
| SO SQL committee [13].

The 1 SO SQL comm ttee proceeded to exam ne the proposal
carefully. As part of that exam nation, menbers of the United
Ki ngdom nati onal body in particular came to the conclusion that,
whil e the proposal mght |ook attractive at first glance, that
attractiveness did not stand up to close scrutiny. To be
specific, they found that TSQ.2 departed significantly from both
est abl i shed | anguage design principles in general [2] and
rel ati onal database theory in particular (as already noted). What
is nore, they found that the departures in question were
significantly different in kind from SQ.'s other well-docunented
departures fromthose principles and that theory. As a
consequence of those findings, the UK body prepared a paper [4]
and submtted it for consideration at the SO commttee neeting in
January 1997

The UK paper denonstrated conclusively that the specific
proposal s of reference [13] were unacceptable for the working
draft of SQ.3 at that tinme. |Indeed, it went further: It showed
why the UK body was unlikely ever to support any proposal that was
based on TSQ.2. Actually, the UK opposition to such an approach
had becone clear to other participants at previous |ISO conmittee
neetings in 1995 and 1996. However, those previous neetings had
at | east achieved the follow ng positive results anong others:

« Agreenment had been reached that tenporal extensions of sone
ki nd were desirable.

A wrking draft for a possible Part 7 of the international
standard, known informally as "SQ./ Tenporal," had been
establ i shed as the base docunent for such extensions.

« Finally, discussion papers suggesting various ways forward had
been consi dered and debat ed.

Moreover, despite the argunents of reference [4], severa
menbers of the 1 SO commttee renai ned ent husiastic about the
possibility of a TSQ.2-based approach—per haps because of the
apparent reluctance on the part of the TSQ.2 proponents thensel ves
to acknow edge that the argunents of reference [4] held water. Be
that as it may, it was at |east agreed that the specific proposals
of reference [13] needed a significant anpbunt of revision and |eft
several inportant questions unanswered, and the US del egates
therefore agreed to withdraw the submission.® It was further

®In spite of that withdrawal (and in support of our claimabove that the TSQ.2
proponents thensel ves seemreluctant to accept the argunments of reference [4]),
we observe that (a) Chapter 12 of reference [15], published sonme three years
later, continues to describe the TSQ.2-based proposals as if they were part of
SQL3, and (b) reference [1], published later still, continues to pursue the
i dea of statenent nodifiers, even though statenment nodifiers were one of the

Copyright (c) 2005 Hugh Darwen & C. J. Date page 3



agreed that nobody woul d submt any nore tenporal proposals to the
| SO commttee until SQ3 was formally published. That publication
took place at the end of 1999, when the informal nane SQL3 was
replaced by the official one, SQ.:1999.

Following all of the activity described above, 1SOinterest in
t enporal extensi ons waned sonewhat; in fact, nobody was prepared
to spend any nore tinme on the matter unless and until sone
positive nove was nmade by the | eading SQ vendors. And tine ran
out toward the end of 2001, when—si nce no vendor had rmade any
such nove, and the commttee had therefore done no further work on
the project to develop Part 7 of the standard—I SO s own byl aws
led to that project being canceled altogether. At the tine of
witing, therefore, the working draft document nentioned above
("Part 7: SQ/Tenporal™) is in |Iinbo.

3. TSQL2 TABLES

We begin our description of TSQ.2 by describing the basic data
obj ect s—t o be nore specific, the various kinds of "tabl es"—t hat
TSQL2 supports ("tables" in quotes because those "tables" are
certainly not relational tables, as we will quickly see). Then,
i n subsequent sections, we can go on to explain various detailed
aspects of TSQ.2 in terns of those different kinds of tables.

Before we can even start to describe those tables, however, we
need to say a word about term nology. As previously stated, TSQ.Z2
is designed as an extension to SQL specifically. As a result, we
will frequently be forced to use SQ term nol ogy instead of our
own preferred ternms (as docunented in reference [6]) in our
expl anations in this paper. However, we will do our best to stay
with our preferred ternms as nmuch as possi bl e—certainly when we
are tal king about general concepts rather than TSQ.2 specifics.

Here then is a list of our preferred terns and their SQ. or
TSQL2 counterparts. Note that we do not say "equivalents,"”
because the SQL (or TSQ.2) ternms are nostly not equivalent to
their relational counterparts. For exanple, a tuple and a row are
not the sane thing, nor are an attribute and a col um.

TSQ.2 ideas that reference [4] showed to be fundanmentally flawed (see Section
8).

Copyright (c) 2005 Hugh Darwen & C. J. Date page 4



Qur term SQ or TSQ.2 term

rel var tabl e
rel ation t abl e
tuple r ow

attri bute col umm
i nterval peri od

stated tinme | valid tine
| ogged tinme | transaction tine
oper at or operator, function

Now to the question of the kinds of tables that TSQL2
supports. Consider Fig. 1, which shows a sanple value for a
relvar called S DURING LOG with attributes S# (supplier nunber),
DURI NG (stated or "valid" tine), and X DURI NG (| ogged or
"transaction" tine). Note our use of synbols of the form dO1,
d02, etc., in that figure; the "d" in those synbols can
conveni ently be pronounced "day," a convention to which we wll
adhere throughout this paper. W assune that day 1 i mediately
precedes day 2, day 2 i mediately precedes day 3, and so on; al so,
we drop insignificant | eading zeros from expressions such as "day
1" (as you can see). Note: Details of howrelvar S DURING LOG is
nmeant to be interpreted can be found in reference [6]; here we
just note that, for the sake of the exanple, we have assuned that
day 99 is "the end of tine." W have also assuned that today is
day 10 (and we will stay with that assunption throughout the rest
of this paper).

S DURING LOG | S# | DURI NG X_DURI NG

S1 | [dO01:d01] | [dO1:d03]
S1 | [d05:d06] | [do4:d10]
S2 | [d02:d04] | [d02: d06]
S2 | [d02:d04] | [dO8: dos]
S2 | [d02:d99] | [d09: d10]
S3 | [d05:d99] | [dO5:d10]
S4 | [d03:d99] | [d02:d10]
S6 | [d02:d05] | [dO1:do2]
S6 | [d03:d05] | [dO03:d10]

Fig. 1. Relvar S DURI NG LOG—sanpl e val ues
Fig. 2 shows a table that m ght be regarded as a TSQ.2

counterpart to the relvar shown in Fig. 1. Note the follow ng
poi nts right away:

Copyright (c) 2005 Hugh Darwen & C. J. Date page 5



e The table is named S, not S DURI NG LOG
e The table has no double underlining to indicate a primry key.

e The "tinmestanp” colums—i.e., the colums corresponding to
attri butes DURI NG and X DURI NG—ar e unnaned.

* Those tinestanp colums are separated fromthe rest of the
tabl e by a double vertical I|ine.

S1 || [do1:do1] | [dO1:d03]
S1 || [do5:do6] | [d04:d10]
s2 || [d02:do4] | [d02: do6]
s2 || [d02:do4] | [dO8: dos]
s2 || [d02:d99] | [d09: d10]
S3 || [d05:d99] | [dO5: d10]
s4 || [d03:d99] | [d02:d10]
S6 || [d02:do5] | [dOl:do2]
S6 || [d03:d05] | [dO03:d10]

Fig. 2. A TSQ.2 bitenporal table

The object depicted in Fig. 2 is an exanple of what TSQ.2
calls a bitenporal table. Let us examne it nore carefully.

First of all, the unnaned tinmestanp colums are hidden fromthe
user, which is why we show t hem separated fromthe rest of the
tabl e by that double vertical line. (To the user, in other words,

the tabl e contains just one colum, nanmed S#.) O course, there
has to be a way to access those hidden colums, and so there is,
as we wll see near the end of Section 6; however, that access

cannot be done in regular relational fashion—i.e., by sinply
referring to the colums by nanme—because, to repeat, they have no
nanmes. Indeed, those hidden colums are not relationa

attributes, and the overall table is not a relation (nore
precisely, it is not a relvar).

Next, the table is naned S, not S _DURI NG LOG, because TSQ.2
wants to pretend as far as possible that the table is indeed just
the usual suppliers table;i* to say it again, the tinestanp
colums are hidden. |In particular, TSQ2 wants regular SQ
statenents to operate on the table, so far as the user is
concerned, just as if those hidden colums were not there.
(I'ndeed, it wants nuch nore than that, as we will see in Section
6.)

“We are assuning here a version of "the usual suppliers table" that has just
one colum, called S# ("supplier nunber").

Copyright (c) 2005 Hugh Darwen & C. J. Date page 6



Next, we have omtted the double underlining we normally use
to indicate a primary key, because we clearly cannot pretend to
the user that the conbination of all three colums is the prinmary
key (as it really is, in effect), while at the sanme tine
pretending to that same user that the hidden columms are not
there. (In fact, TSQ.2 also wants to pretend, in effect, that
certain rows are not there either, as we will also see in Section
6; as a consequence of this latter pretense, it is able to pretend
as well that {S#} alone is the primary key. But this notion is
hard to illustrate in a figure like Fig. 2, and we have not
attenpted to do so.)

Now we need to explain that both of the hidden columms are in
fact optional, in general. As a result, TSQ.2 supports at |east
four kinds of tables:

* A bitenporal table is one that includes exactly two hi dden
colums, one containing "valid-tinme" tinmestanps and the ot her
"transaction-tinme" tinmestanps.

« Avalid-tine state table® (or just valid-time table for short)
is one that includes exactly one hidden columm, which contains
"valid-tinme" tinestanps.

A transaction-tine state table (or just transaction-tinme table
for short) is one that includes exactly one hidden col um,
whi ch contains "transaction-time" tinmestanps.

* Avregular table (note that we cannot say "just table for
short," because table is a generic termthat now has to
enconpass all of the new kinds of tables introduced by TSQ.2
as well as regular tables per se) is a table that includes no
hi dden columms at all.

More termnology: A table with a valid-tinme hidden columm is
said to be a table with valid-tine support. A table with a
transaction-tine hidden columm is said to be a table with
transaction-tinme support. A table with either valid-tinme support
or transaction-time support is said to be a table with tenpora
support .

Finally—this is inportant!—note that in TSQ2 valid- and
transaction-tinme columms are always hidden by definition. A user-
vi si bl e colum that happens to contain valid or transaction tines
is not regarded by TSQ.2 as a valid- or transaction-tinme colum at
all, but rather as a columm that contains what it calls user-
defined times. Fromthis point forward, therefore, we wll assune

®The termstate here corresponds to reference [6]'s use of the term

during—i.e., it refers to the idea that sonmething is true, or believed to be
true, throughout some period (interval). It is contrasted with the term event,
whi ch corresponds to reference [6]'s use of the termat—i.e., it refers to the

i dea that sonething is true (or believed to be true) at a certain point in
time.

Copyright (c) 2005 Hugh Darwen & C. J. Date page 7



that all valid-tinme colums and all transaction-time colums are
hi dden, barring explicit statenments to the contrary (though we
will often refer to such colums explicitly as "hidden col ums,"
for clarity). See the annotation to reference [10] for further
di scussi on.

4. THE CENTRAL | DEA

We now proceed to describe what we perceive to be the central idea
of TSQL2. Now, as every student of tenporal databases quickly
becones aware, queries involving intervals (tenporal or otherw se)
can be surprisingly tedious or difficult or both to express. And
while it is true that the various operators discussed in reference
[6] —Al l en' s operators, PACK and UNPACK, and (especially) the so-
called "U_ operators"—can help in this regard, sone degree of

both tediumand difficulty still remains, even when those
shorthands are used. Accordingly, it is a goal of TSQ2 to
simplify matters still further. And it appears that such further

sinplification mght be possible in a certain very special case;
to be specific, it mght be possible if and only if the query
under consideration satisfies all four of the follow ng conditions
(1 abel ed C1-C4 for purposes of subsequent reference).

Cl: The output table—i.e., the final result—has at nobst one
(hidden) valid-time colum and at nost one (hidden)
transaction-tine colum.

C2: The output table has at |east one additional (regular) colum,
over and above any hidden valid- or transaction-tine colum.

C3: Every input or internmediate-result table satisfies these sane
properti es—at nost one hidden valid-tinme colum, at nobst one
hi dden transaction-tinme colum, and at |east one additional
regul ar col um.

C4: Every hidden valid-tinme colum in every input, output, or
internedi ate-result table involved at any point in the query
is of exactly the same data type.®

Let us exam ne these conditions a little nore carefully. Here
again is the first one (now stated a little nore sinply):

Cl: The result has at npst one valid-tine colum and at npbst one
transaction-ti me col um.

This condition clearly derives fromthe fact that TSQ.2 tables
have at nobst one valid-tinme colum and at nbst one transaction-
time colum (both hidden, of course). Here by way of exanple is a
Tutorial D query that satisfies the condition (though of course
the "valid- and transaction-time colums”"—i.e., the stated- and

®In fact Condition C4 applies to transaction-time colums as well, but
transaction tines in TSQL2 are always of a data type that is chosen by the
DBMS.

Copyright (c) 2005 Hugh Darwen & C. J. Date page 8



| ogged-tine attributes, in the term nology of reference [6] —are
not hidden in Tutorial D):

W TH ( SP_DURI NG RENAMVE ( P# AS XP# ) ) AS T1 ,
( SP_DURI NG RENAME ( P# AS YP# ) ) AS T2 :
USI NG DURING * T1 JON T2 *

Note: Relvar SP_DURI NG represents the predicate "Supplier S#
was able to supply part P# throughout interval DURING " Thus, the
gquery returns a result with predicate "Supplier S# was able to
supply both part XP# and part YP# throughout interval DURI NG "
That result thus certainly does have at nbst one stated-tine
attribute and at nost one |logged-tinme attribute; in fact, it has
exactly one stated-tinme attribute, called DURI NG (whi ch shows when
supplier S# was able to supply both part XP# and part YP#), and no
| ogged-tine attribute at all.

As a matter of fact, this sane query satisfies Conditions C3
and C4 as well. Here again are those conditions (now slightly
sinplified):

C3: Every input or internediate-result table has at npbst one
valid-tinme colum, at npbst one transaction-tine colum, and at
| east one additional col um.

C4: Every valid-time colum in every input, output, or
internmedi ate-result table is of exactly the sane data type.

Condition C3 derives fromtwo facts: first, the fact that,
again, TSQL2 tables have at nost one (hidden) valid-tine colum
and at nost one (hidden) transaction-tinme colum; second, the fact
that regular SQL tables nust have at | east one colum. Condition
CA derives, in part, fromthe fact that TSQL2 makes use of
statement nodifiers to express queries (as we will see in Section
6), and those nodifiers are "global," in the sense that they are
meant to apply uniformy to every table involved in the query in
question. (We say "neant to" here advisedly; whether they
actually do so is another matter. See Section 8.)

Anyway, to revert to the Tutorial D exanple:

* (Condition C3) The relations denoted by SP_DURING T1, and T2
each have exactly one stated-tinme attribute (called DURING in
every case), as does the final result relation. 1In the case
of SP_DURING for exanple, attribute DURI NG shows when
supplier S# was able to supply part P#; in the case of the
final result, it shows when supplier S# was able to supply
both part XP# and part YP#. Furthernore, the relations
denoted by SP_ DURING T1, and T2 each have at | east one
additional attribute and no |ogged-tinme attribute at all.

* (Condition C4) Attribute DURINGis clearly of the sane type
in every case: nanely, type | NTERVAL_DATE.

Copyright (c) 2005 Hugh Darwen & C. J. Date page 9



Back now to Condition Cl. Here by contrast is a Tutorial D
guery that does not satisfy that condition, nmutatis nutandis:

W TH ( SP_DURI NG RENAVE ( P# AS XPH#,
DURI NG AS XDURING ) ) AS T1 ,
( SP_DURI NG RENAME ( P# AS YP#,
DURI NG AS YDURING ) ) AS T2 ,
( TLJONT2) AS T3 :
T3 WHERE XDUR NG OVERLAPS YDURI NG

This query gives a result with predicate "Supplier S# was able
to supply part XP# throughout interval XDURI NG and part YP#
t hroughout interval YDURI NG and intervals XDURI NG and YDURI NG
overlap." However, it fails to satisfy Condition Cl, because the
rel ati on denoted by T3 and the final result both have two distinct
stated-tine attributes (in both cases, XDURI NG shows when suppli er
S# was able to supply part XP# and YDURI NG shows when supplier S#
was able to supply part YP#). Note: |In fact, this query also
fails to satisfy Condition C3. And if we were to add a fina
step, in which (say) interval YDURING is effectively replaced by
an interval expressed in terns of hours instead of days, then it
woul d fail to satisfy Condition C4 also.

Now | et us turn to Condition C2:

C2: The result has at | east one additional colum, over and above
any valid- or transaction-tine col um.

Condition C2 clearly derives fromthe sane facts as does Condition
C3. And here is a Tutorial D query that fails to satisfy the
condition, mutatis mnutandis:

WTH ( SP.DURING { S#, DURING} ) AS T1 ,
( USING DURING * S DURING MNUS T1 * ) AS T2 :
( T2 WHERE S# = S#('S1') ) { DURI NG }

This query gives intervals during which supplier S1 was unabl e
to supply any parts at all. Note: Relvar S DURI NG shows which
suppliers were under contract when

So much for the four conditions that characterize the "very
special case" that, it is clainmed, TSQL2 deals with very sinply by
nmeans of its special "tables with tenporal support” (together with
certain other features, not yet discussed). O course, we have
not yet shown how queries are formulated in TSQ2 at all (though
we wll, in Section 6). Nevertheless, sone obvious questions
suggest thensel ves right away:

e How often do we need to fornulate queries that do not fit the
profile described above? Quite frequently, we believe.

e Even if nost queries do fit that profile, is the clained
sinplification worth all of the acconpanying conplexity?—in
particular, is it worth jettisoning the relational nodel for?
W do not believe it is.

Copyright (c) 2005 Hugh Darwen & C. J. Date page 10



 And in any case, do the sinplifications actually work? W
bel i eve not (see Section 8).

5. TEMPORAL UPWARD COMPATI BI LI TY

In the previous section, we discussed what we called "the centra
i dea" behind the TSQL2 | anguage. However, the design of the

| anguage was al so strongly notivated by another inportant idea
(related to that previous one) called tenporal upward
conpatibility. That idea can be described in outline as follows:

* Suppose we have sonme nontenporal database D, together with a
set of applications that run agai nst the database.

e Suppose we now want D to evolve to include sone tenpora
support.

e Then it would be nice if we could just "add" that tenporal
support in such a way that those existing applications can
continue to run correctly and unchanged agai nst that tenporal
version of D.

If we neet this goal, then we say we have achi eved tenporal upward
conpatibility (hereinafter abbreviated, occasionally, to just
TUC) .

By way of exanple, suppose the nontenporal database shown in
Fig. 3 is sonehow converted into a fully tenporal counterpart,
such that all of the information in that database at the tinme of
conversion is retained but is now tinestanped in sonme nmanner that
woul d allow all of the information shown in Fig. 4 to be recorded.
Note: We very deliberately show the fully tenporal counterpart in
Fig. 4 in proper relational form in order to sinplify certain
subsequent expl anations that we need to make. |In TSQ.2, of
course, the DURING attributes would be replaced by unnamed hi dden
colums, the resulting tables would be named just S and SP, not
S DURI NG and SP_DURI NG and they would not in fact be proper
relations at all.

Copyright (c) 2005 Hugh Darwen & C. J. Date page 11



S SH SP SH P#
S1 S1 P1
S2 S1 P2
S3 S1 P3
S4 S1 P4
S5 S1 PS

S1 P6
S2 P1
S2 P2
S3 P2
S4 P2
S4 P4
S4 PS

Fig. 3: A nontenporal database

S DURI NG SP_DURI NG
S# | DURI NG S# | P# | DURI NG
S1 | [do4: d10] S1 | P1 | [do4:d10]
S2 | [d02: do4] s1 | P2 | [dO5:d10]
S2 | [do7: d10] S1 | P3 | [d09:d10]
S3 | [d03: d10] S1 | P4 | [dO5:d10]
sS4 | [do4: d10] S1 | P5 | [do4:d10]
S5 | [d02: d10] S1 | P6 | [do6:d10]

Ss2 | P1 | [d02: d04]
s2 | P1 | [dO8: d10]
s2 | P2 | [d03:do3]
s2 | P2 | [d09: d10]
S3 | P2 | [do8: d10]
sS4 | P2 | [do6: dO9]
sS4 | P4 | [do4: dos]
sS4 | P5 | [dO5: d10]

Fig. 4. A tenporal counterpart of Fig. 3

Then the conversion to tenporal form however it is carried
out, is said to achieve tenporal upward conpatibility if and only
if every operation that applied to the database before the
conver si on:

a. Still applies after the conversion, and

Copyright (c) 2005 Hugh Darwen & C. J. Date page 12



b. Has the sane effect as before (apart, possibly, fromeffects
that m ght becone noticeable only by subsequent use of new
operators that becone available as a result of the
conver si on).

In order to illustrate this notion, suppose the tenporal
conversi on has indeed been carried out, sonehow, suppose further
that the converted formof relvar SP is then updated in such a way
that it now represents, sonehow, exactly the information depicted
in Fig. 4, and consider the effect of evaluating the follow ng
sinple Tutorial D expression:

SP

Clearly, there are just two possibilities: Either the result
is exactly as shown as the value of relvar SP in Fig. 3—not
relvar SP_ DURING in Fig. 4!—or tenporal upward conpatibility has
not been achi eved.

By way of a second exanple, suppose we performthe follow ng
DELETE on the tenporal version of relvar SP (which we again assune
represents the informati on shown as the value of relvar SP_DURI NG
in Fig. 4):

DELETE SP WHERE S# = S#(' S3') AND P# = P#(' P2') ;

After this DELETE, if TUCis to be achieved, then the result of
eval uating the expression

SP { S# }
on day 10 must not include supplier S3, because (as Fig. 3 shows)
part P2 was the only part supplier S3 was currently—i.e., on day

10—able to supply before the DELETE. By contrast, suppose we
have sonme way, after the tenporal conversion, of expressing the
query "Who was able to supply sone part on day 9?" Then the
result of that query on day 10 rnust include supplier S3. (In

ot her words, the effect of the DELETE m ght be regarded, | oosely,
as replacing the value [d08:d10] of "attribute" DURING in the
"tuple" for supplier S3 and part P2 by the val ue [d08:d09].
Renmenber, however, that in TSQL2 we cannot really explain the
effect of the DELETE in this way, because in TSQ2 "relvar" SP
does not really include a DURING "attribute,” and "tuples" in that
"relvar" thus do not really include a DURI NG conponent.)

More on term nology: The previous paragraph nade use of the
term”"currently.” Unfortunately, we now have to say that we do
not find the nmeaning of that termvery clear (in a TSQ.2 context,
that is), for reasons we now expl ain:

e (bserve first of all that there seens to be a tacit assunption
pervadi ng TSQL2 to the effect that a tenporal database wll
contain "historical relvars only" (to use the term nol ogy of
reference [6])—there is no suggestion that horizontal
deconposi tion should be perforned (yielding separate current
and historical relvars), as in our own preferred approach.

Copyright (c) 2005 Hugh Darwen & C. J. Date page 13



(Qur exanples in this paper are in line with this assunption;
in particular, note the appearance of the d99 "end-of-tine
markers" in the hidden valid-tine colum in Fig. 2 in Section
3.) Thus, whatever current information the TSQL2 dat abase
contains will in fact be bundled in with those "historical
relvars."

* Following on fromthe previous point: There is no suggestion
that vertical deconposition should be perfornmed, either. As a
consequence, TSQL2 tables will typically not be in sixth
normal form 6NF [6]. Indeed, the reconmended TSQ.2 approach
of sinply "adding tenporal support” to an existing nontenporal
tabl e—see Section 7 or the annotation to reference
[15] —virtual ly guarantees that nost TSQ.2 tables will not be
in 6NF. O course, it is a large part of the point of TUC
that it should be possible just to "add tenporal support™ to
an existing table, but then the consequences of having to dea
W th non6NF tables nmust be faced up to. The TSQ.2 literature
has little or nothing to say on this issue.

* Now, the TSQ.2 literature frequently refers to the conceptua
representation of a tenporal database as a tinme series—in
ot her words, as a chronol ogically ordered sequence of entries,
in which each entry is the value or "state" of the database at
a particular point in tinme. However, the |ast or nost recent
entry in that tinme series is then typically referred to as the
current state—a fact that, it mght be argued, tends to
suggest that beliefs about the future, such as the belief that
a certain supplier's contract will term nate on sonme specific
future date, cannot be expressed using the "tenporal support”
of "tables with tenporal support” (?).

e Mre to the point: Wile the tinme-series notion mght be
conceptual Iy agreeable (since it is clear that one possible
representation of that time series is one involving
intervals), surely the TSQ.2 specification should state
exactly which of those intervals are considered to contain the
current time. But it does not.

* Indeed, the actual tine referred to by the phrase "the current
time" varies over tinme (of coursel). So, if Sis the set of
all intervals that are considered to contain the current tine,
does S itself vary over tine? |If so, then many serious
questions arise (sonme of which are discussed in reference

[6]).

In connection with the foregoing, it is possibly relevant to
note that reference [13] proposed the follow ng definition for
inclusion in the SQ standard: "The current valid-tinme state of a
table with valid-tinme support is the valid-tinme state of that
table at valid-tinme CURRENT_TI MESTAMP" (of course, the val ue of
CURRENT_TI MESTAMP—a niladic built-in function in the SQ standard
[5] —certainly does vary with tine). By contrast, certain

Copyright (c) 2005 Hugh Darwen & C. J. Date page 14



exanples in reference [15] seemto assunme that any interval i such
that END(i) = "the end of tinme" is one that contains the current
time, regardl ess of the value of BEQA N(i).

Back to tenporal upward conpatibility. The TUC goal is
TSQL2's justification for its special kinds of tables, with their
hi dden colums. For that goal would clearly not be achieved if
(e.g.) converting the original nontenporal relvar SP to a tenpora
counterpart required the addition of an explicit new col um—e.g.,
via an SQL ALTER TABLE statenent, as here:

ALTER TABLE SP ADD COLUWN DURING ... ;

(Throughout this paper we follow "direct SQ." [5,8] in using
sem colons as SQL statenent term nators.)

Way woul d the TUC goal not be achi eved? Because, of course,
after execution of the foregoing ALTER TABLE statenent, the result
of the SQ. expression

SELECT * FROM SP

woul d include colum DURING as well as the S# and P# colums it
woul d have included before the tenporal conversion, thereby
violating TUC. It follows that the conversion process cannot
sinmply involve the addition of explicit new colums. See Section
7 for further discussion.

One last point: W have deliberately been sonmewhat vague as
to the nature of the operations for which the TUC concept applies
(or is even possible). The fact is, it is not at all clear
whether it applies to—for exanple—all possible data definition
operations, or dynam c SQ. operations, etc. Here is what
reference [15] has to say on the matter:

"Tenporal upward conpatibility: An [SQL:1992] ... query,
nodi fication, view, assertion, [or] constraint ... will have
the sane effect on an associ ated snapshot database as on the
tenporal counterpart of the database.”

(The expression "snapshot database" as used here sinply neans a
regul ar nontenporal database.)

6. CURRENT, SEQUENCED, AND NONSEQUENCED OPERATI ONS

Suppose now that the process of converting the database to
tenporal form however it has to be done in order to achieve
tenporal upward conpatibility, has in fact been done. Then TSQ.2
supports three kinds of operations agai nst such a database, which
it calls current, sequenced, and nonsequenced operati ons,
respectively. Briefly, if we regard the database as a tine series
once again, then we can characterize the three kinds of operations
(1 oosely) as follows:

Copyright (c) 2005 Hugh Darwen & C. J. Date page 15



5.

Current operations apply just to the nost recent entry in that
time series. (The termcurrent derives fromthe fact that
such operations are intended to apply to current data.)

Sequenced operations apply to all of the entries in that tine
series.’” (The term sequenced derives fromthe fact that such
operations are intended to apply to the entire "tenporal
sequence,” or in other words "at every point in tine.")

Nonsequenced operations apply to sone specified subset of the
entries in that tinme series. (It is not clear why such

operations are said to be nonsequenced. It mght or m ght not
hel p to point out that an operation that is not sequenced is
not necessarily nonsequenced; |ikew se, one that is not

nonsequenced i s not necessarily sequenced. Wat is nore, sone
operations are both sequenced and nonsequenced—t hough it is
not possible to have an operation that is both current and
sequenced or both current and nonsequenced.)

By way of exanple, consider the valid-time table shown in Fig.
Recal | our assunption that today is day 10. Then—very

| oosely speaki ng—current operations are perforned in terns of
just those rows of that table whose hidden valid-tinme conponent
i ncludes day 10; sequenced operations are perfornmed in terns of

al |

of the rows; and nonsequenced operations are perfornmed in

terms of just those rows whose hidden valid-tinme conponent
i ncl udes sonme day or days specified explicitly when the operator
in question is invoked.

S1 || [do1: do1]
S1 | [dos: do6]
s2 || [do2: do4]
s2 | [do6: d99]
s3 || [do5: d99]
s4 || [do3: d99]
S6 || [d02: do3]
S6 || [do6: d09]

Fig. 5: A TSQ.2 valid-tinme table

Current Qperations

"A slight oversinplification; actually, it is possible to restrict sequenced
operations (like nonsequenced operations) to apply to sone specified subset of
the entries in that tinme sequence.

Copyright (c) 2005 Hugh Darwen & C. J. Date page 16



Current operations are, of course, precisely those operations that
wer e avail abl e before the conversion to tenporal form tenpora
upward conpatibility requires those operations still to be
avai |l able and to have the sane effect as they did before the
conversion. A current query involves the execution of sone
current operation of a retrieval nature; a current nodification
i nvol ves the execution of sone current operation of an updating
nature. O course, current nodifications nust now have sone
additional effects "behind the scenes"” (as it were), over and
above those effects that are directly visible to the user of the
current nodification in question. For exanple, consider again
this DELETE exanple from Section 5:

DELETE FROM SP WHERE S# = S#('S3') AND P# = P#('P2')

(W have added the keyword FROM in order to make the DELETE into a
valid SQ. statenent. Also, we assune, here and throughout this
paper, that expressions of the form S#('Sx') and P#('Py') are
valid SQL literals, of types S# and P#, respectively.)

If table SP is a valid-tine table, with current val ue the
TSQL2 anal og of the SP_DURI NG val ue showmn in Fig. 4, then the
| ogi cal effect of the foregoing DELETE nmust be to do both of the
fol |l ow ng:

a. To delete the row for supplier S3 and part P2, as requested
(since that row s valid-tinme conponent does include day 10,
"the current date")

b. To insert a rowinto "the history portion" of the table for
supplier S3 and part P2 with a valid tine of [d08:d09]

In practice, of course, the deletion and subsequent insertion
coul d probably be conbined into a single row repl acenent.

Sequenced Operati ons

We turn now to sequenced and nonsequenced oper ati ons—sequenced
ones in this subsection and nonsequenced ones in the next. After
the conversion to tenporal form has been perfornmed and updates
have been applied to the tenporal version, the database wl|
include historical as well as current data. Thus, the question
arises as to how that historical data can be accessed. dearly,
the answer to this question is going to involve sone new
operations that were not avail able before the conversion, and
those new operations are, precisely, the sequenced and
nonsequenced operations already nentioned. Note: As usual, we
take the term access to include both query and nodification
operations. For reasons of brevity and sinplicity, however, we
will have little to say in this paper regarding nodifications,
ei t her sequenced or nonsequenced.

TSQL2 uses "statenent nodifiers" to specify both sequenced and
nonsequenced operations (the termis a m snoner, actually, since
it is not always statenents per se that such nodifiers nodify).

Copyright (c) 2005 Hugh Darwen & C. J. Date page 17



Those nodi fiers take the formof prefixes that can be attached to
certain statenents and certain (tabl e-valued) expressions. W can
summari ze the avail able prefixes, and the rules regarding the
operand table(s) and the result table, if any, as follows:

Prefix Oper and( s) Resul t
none any nhc
VALI DTI ME VT or BT VT
TRANSACTI ONTI ME TT or BT 1T
VALI DTI ME AND BT BT
TRANSACTI ONTI ME

NONSEQUENCED VALI DTI ME VT or BT nhc
NONSEQUENCED TRANSACTI ONTIME | TT or BT nhc
VALI DTI ME AND BT VT

NONSEQUENCED TRANSACTI ONTI ME

NONSEQUENCED VALI DTI ME AND BT 1T
TRANSACTI ONTI ME

NONSEQUENCED VALI DTI ME AND BT nhc
NONSEQUENCED TRANSACTI ONTI ME

Expl anati on: The abbreviations VT, TT, and BT stand for a
valid-tine table, a transaction-tine table, and a bitenpora
tabl e, respectively; the abbreviation nhc stands for "no hidden
colums” (in other words, the table in question is just a regular
SQ. table). For exanple, we can see that if the prefix
NONSEQUENCED VALI DTI ME is used, then every operand table nust be
either a valid-tine table or a bitenporal table, and the result
(if the statenment or expression to which the prefix applies in
fact returns a result) is a regular table. Note that the result
has a hidden valid-tine colum only if a prefix specifying
VALI DTI ME (w t hout NONSEQUENCED) is specified, and a hi dden
transaction-tinme colum only if a prefix specifying
TRANSACTI ONTI ME (wi t hout NONSEQUENCED) is specified.

At this point, a couple of mnor oddities arise:

 First, the prefix (e.g.) NONSEQUENCED VALIDTIME is regarded in
the TSQL2 literature as specifying a valid-tinme nonsequenced
operation, not a nonsequenced valid-tine operation. Although
we find this inversion of the nodifiers a trifle illogical, we
will conformto it in what follows.

Copyright (c) 2005 Hugh Darwen & C. J. Date page 18



e Second, observe that nonsequenced operations involve the
explicit keyword NONSEQUENCED, but sequenced operations do not
i nvol ve any explicit SEQUENCED counterpart; for exanple, a
sequenced valid-tine operation is specified by just the prefix
VALI DTI ME, unador ned.

For sinplicity, let us concentrate on sequenced valid-tine
operations specifically, until further notice. Let X be an
expression or statenent that is syntactically valid on the
nont enporal version of the database. Let every table nentioned in
X map to a counterpart with valid-time support in the tenpora
version of the database. Then VALIDTIME X is an expression or
statement that

a. Is syntactically valid on the tenporal version of the
dat abase, and

b. Is conceptually eval uated agai nst that tenporal database at
every point in tinme.

Each such conceptual evaluation is perforned on a nontenpora

dat abase that is derived fromthe tenporal one by considering just
those rows whose associated valid tinmes include the applicable
point in time. The results of those conceptual evaluations are
then conceptual ly conbi ned by a process anal ogous to packing to
yield the overall result. Note: Perhaps we should say rather
that the conbination process is somewhat anal ogous to packing; as
we will see alittle later, that overall result is in fact not
precisely defined. But let us ignore this point for now

By way of illustration, consider first the current DELETE
exanpl e fromthe subsection above entitled "Current Operations”:

DELETE FROM SP WHERE S# = S#('S3') AND P# = P#('P2') ,

As you will recall, the effect of this DELETE (ignoring the side-
effect of "inserting into the historical record") is to delete
just the fact that supplier S3 is currently able to supply part
P2. However, if we prefix the DELETE statenment with the nodifier
VALI DTI ME, as here—

VALI DTI MVE
DELETE FROM SP WHERE S# = S#('S3') AND P# = P#(' P2') ;

—then the effect is nowto delete all rows showi ng supplier S3 as
able to supply part P2 fromthe valid-tine table SP, no matter
what the associated valid tinmes mght be. (In terns of the data
values in Fig. 4, the effect is to delete the fact that supplier
S3 was able to supply part P2 throughout the interval fromday 8
to day 10—but it mght delete nore than that, if there were any
other rows for supplier S3 and part P2.)

Anal ogously, the TSQ.2 expression

Copyright (c) 2005 Hugh Darwen & C. J. Date page 19



VALI DTl ME
SELECT * FROM SP

returns the "real” value of the valid-tinme table SP, hidden valid-
time colum and all. Note carefully, however, that that hidden
colum remains hidden in the result; in fact, a valid-tine
sequenced query always returns a valid-tinme table (i.e., a table
with a hidden valid-tinme colum and no hidden transaction-tine
colum). See the final subsection in this section for a

di scussi on of how such hidden col unms can be accessed in that
result (or in any other table with tenporal support, of course).

Incidentally, observe that the expression SELECT * FROM SP is
i ndeed an expression and not a statenent. The foregoing exanple
thus illustrates our earlier claimthat "statenent nodifier" is
really a m snoner.

Here now are a couple nore exanples of valid-tinme sequenced
queri es:

VALI DTl ME | VALI DTl ME
SELECT DI STI NCT S# FROM SP SELECT DI STINCT S# FROM S
EXCEPT

SELECT DI STI NCT S# FROM SP

(In the first exanple, we assune table S has valid-tine support;
in the second, we assune tables S and SP both have valid-tine
support.) These expressions are TSQL2 fornulations for two sanple
queri es—or, rather, TSQL2 counterparts to those queri es—that we
used as a basis for introducing the tenporal database problemin
reference [6]:

e GCet S#-DURING pairs for suppliers who have been able to supply
at | east one part during at |east one interval of tinme, where
DURI NG desi gnates a maxi mal interval during which supplier S#
was in fact able to supply at |east one part.

e GCet S#-DURING pairs for suppliers who have been unable to
supply any parts at all during at |east one interval of tine,
wher e DURI NG desi gnates a maxi mal interval during which
supplier S# was in fact unable to supply any part at all.

The first expression results in a table show ng supplier
nunbers for suppliers who have ever been able to supply anything,
paired in the hidden valid-tine columm with the maxi mal intervals
during which they have been able to do so. The second expression
i s anal ogous. Note carefully, however, that those "maxi mal
interval s" are indeed still represented by hidden colums; if we
want to access those hidden colums—as surely we will?—we wl|l
have to nake use of the operators described in the fina
subsection of this section (see below). Note too that we are
being slightly charitable to TSQ.2 here! In fact, the proposals
of reference [13] did not explicitly require the result of a query
like the ones illustrated above to satisfy any such "maximality"
condition. What is nore, they did not inpose any other

Copyright (c) 2005 Hugh Darwen & C. J. Date page 20



requirenment in place of such a condition, either; as a
consequence, the actual value of an expression such as VALIDTI ME
SELECT DI STINCT S# FROM SP is not precisely specified (it is not
even clear whether the inclusion of the keyword DI STI NCT has any
effect). See Section 11 for further discussion.

Suppose now that S and SP are tables with transaction-tine
support. Then the prefix TRANSACTI ONTI ME can be used in place of
VALI DTI ME i n exanples |ike those shown above; the operations in
guestion then beconme transaction-tinme sequenced operations
(transaction-tinme sequenced queries specifically, in all of those
exanpl es except the very first). A transaction-tinme sequenced
query returns a transaction-tine table (i.e., a table with a
hi dden transaction-time colum and no hidden valid-tine colum).

Finally, suppose S and SP are bitenporal tables. Then the
prefix VALIDTI ME AND TRANSACTI ONTI ME can be used, in which case
the operations in question becone (prosaically enough) valid-tinme
sequenced and transaction-tine sequenced operations. A valid-tine
sequenced and transaction-time sequenced query returns a
bitenporal table. Note: |If the result of such a query is indeed
automatically packed, it is pertinent to ask whether they are
packed on valid tine first and then transaction time or the other
way around. The literature does not appear to answer this
questi on.

Nonsequenced Qperati ons

Nonsequenced operations are specified by neans of the prefixes
NONSEQUENCED VALI DTI ME and NONSEQUENCED TRANSACTI ONTI ME.
Furthernore, if the operand tables are bitenporal, then al
possi bl e conbi nati ons—e. g., (sequenced) VALI DTI ME AND
NONSEQUENCED TRANSACTI ONTI ME—ar e avail able. Thus, operations on
bi t enporal tables can be sinmultaneously sequenced with respect to
valid tinme and nonsequenced wth respect to transaction time, or
the ot her way around, or sequenced with respect to both, or
nonsequenced wth respect to both.

Here is an exanple of a nonsequenced query:

NONSEQUENCED VALI DTI ME
SELECT DI STI NCT P# FROM SP

Tabl e SP nust have valid-tinme support in order for this query to
be legal. The result is a table with no hidden valid-tinme colum
at all, representing part nunbers for all parts we currently
bel i eve ever to have been avail able from any supplier.

Despite the sonmewhat arcane prefixes, nonsequenced operations
are conparatively easy to understand, for here TSQ.2 is
effectively reverting to regular SQ semantics. Well,
al nost —there is a glitch!® The glitch is that "regul ar

® At least, there is according to reference [15], but not (or possibly not)
according to reference [13]. See Exanple 14 in Section 8.

Copyright (c) 2005 Hugh Darwen & C. J. Date page 21



semantics" inplies that we should be able to reference the hidden
colums in the regular way; but such references are inpossible,
preci sely because the columms are hidden. W therefore need sone
speci al nmechanismin order to access the hidden colums. In
TSQL2, that mechanismis provided by the operators VALIDTI ME(T)
and TRANSACTI ONTI ME( T) —see the subsection i mredi ately foll ow ng.
Note: Othogonality dictates that these operators be available in
connection with current and sequenced operations too, despite the
fact that we have introduced themin the context of a discussion
of nonsequenced operations specifically. However, the effect of

i ncludi ng such operators in such queries is unclear to the present
witers.

Accessing the Hi dden Col umms

Consi der the following exanple (note in particular the VALIDTI ME
operator invocations):

NONSEQUENCED VALI DTI ME
SELECT T1.S# AS X#, T2.S# AS Y#,
BEG N ( VALIDTIME ( T2 ) ) AS SW TCH DATE
FROM S AS T1, S AS T2
WHERE END ( VALIDTIME ( T1 ) ) = BEGN ( VALIDTIME ( T2 ) )

This expression returns a table w thout any hidden valid-tine
colum in which each row gives a pair of supplier nunbers X# and
Y# and a date such that, on that date, supplier X# s contract
term nated and supplier Y# s contract began (according to our
current belief). The expression is the TSQ.2 anal og of the
following Tutorial D query (expressed in terns of the database of
Fig. 4):

WTH ( ( (S RENAVE ( S# AS X#, DURING AS XD ) )
JON
( S RENAME ( S# AS Y#, DURING AS YD) ) )
WHERE END ( XD ) = BEGN ( YD) ) AS T1,
( EXTEND T1 ADD ( BEGIN ( YD) AS SWTCH DATE ) ) AS T2 :
T2 { X#, Y#, SW TCH DATE }

O course, the operator invocation VALIDTIME(T) is valid in
TSQL2 only if the table denoted by T has valid-tinme support;
i kewi se, the operator invocation TRANSACTI ONTI ME(T) is valid only
if the table denoted by T has transaction-tinme support. QObserve,
incidentally, how these operators inplicitly rely on the fact that
any given TSQ.2 table has at nost one hidden valid-tinme colum and
at nost one hidden transaction-tinme col um.

7. DATA DEFI NI TI ON STATEMENTS
We now consider the effects of the ideas discussed in the

foregoi ng sections on the SQU CREATE TABLE and ALTER TABLE
statenments.

Copyright (c) 2005 Hugh Darwen & C. J. Date page 22



Val i d-Ti me Tabl es

There are two ways to create a valid-tinme base table in TSQ.2.

The underlying principle in both cases is just to extend a

nont enporal counterpart of the table in question by "adding valid-
time support,” both to that counterpart as such and to the
constraints—primary and foreign key constraints in

particul ar—that apply to that counterpart. "Adding valid-tine
support" can be done either directly in the original CREATE TABLE
statenent or subsequently by neans of appropriate ALTER TABLE
statements.

By way of exanple, consider the follow ng CREATE TABLE
statenents, which will suffice to create a TSQL2 counterpart of
the database of Fig. 3 (note the text in bol dface):

CREATE TABLE S ( S# SH
VALI DTI ME PRI MARY KEY ( S# ) )
AS VALI DTI ME PERI OD ( DATE ) ;

CREATE TABLE SP ( S# S#, P# P#,
VALI DTI ME PRI MARY KEY ( S#, P# ),
VALI DTI ME FOREI GN KEY ( S# ) REFERENCES S )
AS VALI DTI ME PERI OD ( DATE ) ;

Expl anati on:

e The specification AS VALIDTIME ... (in line 3 of the CREATE
TABLE for suppliers and line 4 of the CREATE TABLE for
shi pnents) indicates that tables S and SP are tables with
valid-tinme support; i.e., they have hidden valid-tinme col ums.
They are not packed on those col ums (perhaps because such
packing could lead to a violation of tenporal upward
conpatibility, if the AS VALIDTIME ... specification appeared
in an ALTER TABLE—r at her t han CREATE TABLE, as here—and the
tabl e in question currently contai ned any duplicate rows).

» The specification PERI OD (DATE) follow ng AS VALIDTI ME gi ves
the data type for the hidden valid-tine colums; PERIOD is a
"type constructor” (it is the TSQ2 counterpart of our
| NTERVAL type generator), and DATE is the correspondi ng poi nt
type.® Note: TSQ.2 could not use the keyword | NTERVAL here,
because the SQ. standard al ready uses that keyword for
sonmething else. Mre to the point, observe that—of
course—any TSQ.2 table, regardl ess of whether or not it has
any kind of "tenporal support,"” can have any nunber of regul ar

*Note that TSQL2 follows its keyword PERICD with the nane of the point type in
par ent heses, whereas we follow our keyword | NTERVAL with the nanme of the point
type attached by neans of an underscore instead. A related observation is that
the TSQ.2 anal og of what we would express as, e.g., |INTERVAL DATE ([di:dj]) is
just PERIOD ([di:dj]); in other words, TSQ.2 assunes the type of the

i nterval —or period, rather—ecan be inferred fromthe type of the begin and end
points di and dj. W do not agree with this latter position, for reasons
explained in detail in reference [6].

Copyright (c) 2005 Hugh Darwen & C. J. Date page 23



colums of sonme period type. As noted near the end of Section
3, TSQL2 regards such columms as containing what it calls
user-defined tinme [10].

e The VALIDTIME prefixes on the primary key and foreign key
specifications specify that the corresponding constraints are
valid-tinme sequenced constraints. Moreover:

B A VALIDTI ME PRI MARY KEY constraint is anal ogous, sonewhat,
to a WHEN / THEN constraint as defined in reference [6]
(except that we do not believe in the idea of being forced
to single out sone specific candi date key and nmake it
"primary," and as a matter of fact neither does SQ). It
is not clear whether TSQ.2 all ows a VALIDTI ME PRI MARY KEY
constraint to coexist with a regular PRI MARY KEY
constraint, though it is clear that the existence of a
VALI DTI ME one nmakes a regul ar one nore or |ess redundant.

m A VALIDTI ME FOREI GN KEY constraint is anal ogous, again
somewhat, to a "foreign U key" constraint as defined in
reference [6]. Note that the referenced table—S, in our
exanpl e—nust have valid-tinme support in order for the
VALI DTI ME FOREI GN KEY constraint to be valid.

Absence of the VALIDTIME prefix on a primary or foreign key
specification, in the presence of AS VALIDTI ME, neans the
corresponding constraint is a current one; that is, it applies
only to those rows whose valid-tinme conponent is considered to
contain the current tine (speaking rather |oosely).

Suppose now, in contrast to the foregoing, that the
nont enporal tables S and SP have al ready been defined, thus:

CREATE TABLE S ( S# S#,
PRI MARY KEY ( S# ) ) ;

CREATE TABLE SP ( S# S#, P# P#,
PRI MARY KEY ( S#, P# ),
FOREI GN KEY ( S# ) REFERENCES S ) ;

Suppose further that we now wi sh to "add valid-tine support”
to these tables (renenber the goal of tenporal upward
conpatibility). Then the follow ng nore or |ess self-explanatory
ALTER TABLE statenments will suffice (again, note the text in
bol df ace):

ALTER TABLE S ADD VALI DTI ME PERI OD ( DATE ) ;
ALTER TABLE S ADD VALI DTI ME PRI MARY KEY ( S# ) ;

ALTER TABLE SP ADD VALI DTI ME PERI OD ( DATE ) ;
ALTER TABLE SP ADD VALI DTI ME PRI MARY KEY ( S#, P# ) ;

ALTER TABLE SP ADD VALI DTI ME FOREI GN KEY ( S#) REFERENCES S ;

In rows that already exist when the valid-tine support is
added, the new (hidden) colum is set to contain a period of the

Copyright (c) 2005 Hugh Darwen & C. J. Date page 24



form[b:e], where b is the tinme of execution of the ALTER TABLE
and e is "the end of time."'® Whether it is necessary to drop the
primary and foreign keys that were defined for the tables before
the valid-tinme support was added is unclear.

Transaction-Ti ne Tabl es

Creation of transaction-tine base tables is simlar but not
conpl etely anal ogous to the creation of valid-tine base tabl es:

CREATE TABLE S ( S# SH
TRANSACTI ONTI ME PRI MARY KEY ( S# ) )
AS TRANSACTI ONTI ME

CREATE TABLE SP ( S# S#, P# P#,
TRANSACTI ONTI ME PRI MARY KEY ( S#, P# ),
TRANSACTI ONTI ME FOREI GN KEY ( S# ) REFERENCES S )
AS TRANSACTI ONTI ME

The AS TRANSACTI ONTI ME specifications are nore or |less self-
expl anatory; observe, however, that no data type is specified,
because (as nentioned in a footnote in Section 4) transaction
times in TSQL2 are always of a data type that is chosen by the
DBMS. The TRANSACTI ONTI ME prefixes on the primary and foreign key
specifications are anal ogous to their VALIDTI ME
count er part s—except that there seens to be no point in having
them (al though they are permtted), because the correspondi ng
current constraints nust surely inply that these transaction-tine
sequenced constraints are always satisfied. (By definition,
transaction tinmes cannot be updated; it therefore follows that
constraints that apply to the current state of affairs nust apply
equally to the historical record, since everything in that
hi storical record nust once have been current.) Also, if the
prefix is omtted on a foreign key specification, then the
ref erenced table can be of any kind (not necessarily even one with
tenporal support); in every case, the constraint is then treated
as a current constraint rather than a transaction-tine sequenced
one.

Addi ng transaction-tine support to existing tables via ALTER
TABLE is anal ogous to its valid-time counterpart. |In particular,
in rows that already exist when the transaction-time support is
added, the new (hidden) columm is apparently set to the sane
initial value as it is in the case of adding valid tine—i.e., it
is set to a period of the form[b:e], where b is the tine of
execution of the ALTER TABLE and e is "the end of time"—even
t hough neither the b value nor the e value seens to nmake any sense
(the b value is clearly incorrect, and the e val ue neans we have

Y actually, reference [13] says e is the i mediate predecessor of "the end of
tinme," but this is surely just a slip, probably arising from confusion over
notation (in effect, confusing [b:e] with [b:e)—see reference [6]). Reference
[15] says it is "the end of tine."

Copyright (c) 2005 Hugh Darwen & C. J. Date page 25



transaction tinmes that refer to the future). W omt further
di scussi on here.

Bi t enporal Tabl es

Finally, here are the CREATE TABLE statenents needed to create
bi t enporal versions of tables S and SP:

CREATE TABLE S ( S# S#
VALI DTI ME AND TRANSACTI ONTI ME PRI MARY KEY ( S# )
AS VALI DTI ME PERI OD ( DATE ) AND TRANSACTI ONTI ME

CREATE TABLE SP ( S# S#, P# P#,
VALI DTI ME AND TRANSACTI ONTI ME PRI MARY KEY ( S#, P# ),
VALI DTI ME AND TRANSACTI ONTI ME FOREI GN KEY ( S# )
REFERENCES S )
AS VALI DTI ME PERI OD ( DATE ) AND TRANSACTI ONTI ME

These statenents shoul d once again be sel f-explanatory.

Addi ng bitenporal support to existing tables via ALTER TABLE
is analogous to its valid-tine and transaction-tine counterparts.
We onmit further discussion here.

)

8. STATEMENT MODI FI ERS ARE FLAWED

This brings us to the end of our brief overview of TSQ.2 basics.
In this section and the next three, we give our reasons for
rejecting the TSQ.2 approach, and indeed for seriously questioning
its very notivation. Note: Those reasons are very simlar to
those that have previously been aired in the international
standards and academ c research communities, precisely because two
of the authors of reference [6] (Darwen and Lorentzos) have been
at the forefront in articulating such objections in those
conmuni ti es.

The goal of the present section is to denonstrate a nunber of

| ogi cal problens with the basic idea of statenent nodifiers. In
order to neet that goal, we present a series of sinple exanples
that illustrate those problens. The exanpl es are nunbered for

pur poses of subsequent reference. Here then is the first exanple
(a current query against versions of tables S and SP with—I| et us
assume—val i d-ti me support):

1. SELECT DI STINCT S.S#, SP.P#
FROM S, SP
WHERE S. S# = SP. St
AND  SP.P# = P#(' P1')

Note: It mght be objected that this first exanple is not a
very sensi ble one, inasnuch as (a) the result of the query wll

WAl of the exanples in this section are based on a certain sinple conbination
of a join, arestriction, and a projection. Consideration of exanples
i nvol ving sonething a little nore conplicated is |left as an exerci se.

Copyright (c) 2005 Hugh Darwen & C. J. Date page 26



have part nunber Pl in every row and (b) the DI STI NCT cannot
possi bly have any effect. However, the exanple is adequate as a
basis for illustrating the points we wish to nake, and we w ||
stay with it.

It is easy to see that the follow ng reformul ation (Exanple 2)
i s guaranteed under all circunstances to yield the sane result as
Exanmpl e 1:

2. SELECT DI STINCT S.S#, T1.P#
FROM S, ( SELECT * FROM SP WHERE SP.P# = P#('P1') ) AS T1
WHERE S.S# = T1.S#

Now consi der the TSQ.2 valid-tine counterpart of Exanple 1:

3. VALI DTI ME
SELECT DI STINCT S.S#, SP. P#
FROM S, SP
WHERE S. S# = SP. St
AND  SP.P# = PH#(' P1')

The obvi ous question arises as to whether sinply adding the
VALI DTI ME prefix to Exanple 2 gives an equival ent refornulation,
as it did before:

4. VALI DTI MVE
SELECT DI STINCT S.S#, T1.P#
FROM S, ( SELECT * FROM SP WHERE SP.P# = P#('P1') ) AS T1
WHERE S.S# = T1.S#

The answer to this question is no!l—in fact, the putative
refornmul ation is syntactically invalid. The reason is that, in
the presence of the VALIDTIME nodifier, each and every "table
reference” in the FROM clause is required to denote a table with
valid-tinme support, and in the exanple the second such reference
in the outer FROM cl ause does not do so; as you can see, in fact,
that second reference involves an expression of the form SELECT *
FROM SP WHERE SP. P# = P#(' P1l'), and that expression |acks the
statenent nodifier that is needed to nmake it yield a table with
valid-tinme support. In order to obtain the correct desired
refornul ati on, therefore, we nmust insert the VALIDTIME prefix in
nore than one place, as here:

5. VALI DTI ME
SELECT DI STI NCT S. S#, T1.P#
FROM S, ( VALIDTI ME
SELECT * FROM SP WHERE SP.P# = P#('P1') ) AS T1
WHERE S. S# = T1. S#

Note, by the way, that the foregoing quirk arises (at least in
part) because of an existing quirk in SQ.: The first table
reference in the outer FROM cl ause (i.e., S), does not require the
prefix, sinply because a sinple table nane |ike S does not
constitute a valid query in SQ! If we were to replace it by, for
exanpl e, the expression SELECT * FROM S (which is a valid query,

Copyright (c) 2005 Hugh Darwen & C. J. Date page 27



of course), then we would have to include the prefix as well, as
her e:

6. VALI DTl ME
SELECT DI STI NCT T2. S#, T1.P#
FROM ( VALI DTI ME
SELECT * FROM S ) AS T2,
( VALI DTI ME
SELECT * FROM SP WHERE SP.P# = P#('P1') ) AS T1
VWHERE T2.S# = T1.S#

What if the table denoted by a table reference in a FROV
cl ause happens to be a view? Suppose, for exanple, that view VS
is defined as foll ows:

7. CREATE VI EW VS AS
SELECT * FROM S

In principle—and in SQ too, nornmally—a reference to a given
view and the expression that defines that view are logically
i nt erchangeabl e. The question therefore arises as to whether we
can repl ace the expression SELECT * FROM S in the outer FROM
clause in Exanple 6 by a reference to VS, as foll ows:

8. VALI DTI ME
SELECT DI STI NCT T2. S#, T1.P#
FROM ( VALIDTIME VS ) AS T2,
( VALI DTI ME
SELECT * FROM SP WHERE SP. P# = P#('P1') ) AS T1
VHERE T2.S# = T1.S#

Again the answer is no, and again the replacenent gives rise
to a syntax error, because VS is not a table with valid-tine
support (and sinply inserting the VALIDTIME prefix does not nake
it one, either). Instead, we have to place that prefix inside the
vi ew definition:

9. CREATE VI EW VS AS
VALI DTl ME
SELECT * FROM S

VS is now a table with valid-tine support and a reference to
it can appear wherever a reference to S can appear.

A simlar observation applies when VS is defined "inline,"
using a WTH cl ause:

10. WTH VS AS ( SELECT * FROM S )
VALI DTI MVE
SELECT DI STINCT T2.S#, T1.P#
FROM ( VALI DTI ME
SELECT * FROM SP WHERE SP.P# = P#(' P1') ) AS Ti,
VS AS T2
WHERE T2.S# = T1.S#

This expression is again invalid. However, it can be rescued
by placing the VALIDTIME prefix inside the WTH cl ause:

Copyright (c) 2005 Hugh Darwen & C. J. Date page 28



11. WTH VS AS ( VALIDTI ME SELECT * FROM S )
VALI DTl ME
SELECT DI STI NCT T2. S#, T1.P#
FROM ( VALI DTI ME
SELECT * FROM SP WHERE SP. P# = P#('P1') ) AS T1,
VS AS T2
VHERE T2.S# = T1.S#

In fact, according to reference [13], in a query that includes
a WTH cl ause, the VALIDTIME prefix cannot be placed at the
begi nning of the entire expression. Rather, it can only be placed
as shown above, between the WTH cl ause and the main body of the
expr essi on.

It follows fromall of the foregoing that the TSQL2 claimto
the effect that a tenporal counterpart of a nontenporal query can
be easily obtained by just adding a prefix is not entirely valid
and needs to be made nore precise. For exanple, consider the
fol |l ow ng nont enporal query:

12. WTH VS AS ( SELECT * FROM S )
SELECT DI STI NCT T2.S#, T1.P#
FROM ( SELECT * FROM SP WHERE SP.P# = P#(' P1') ) AS Ti,
VS AS T2
WHERE T2.S# = T1.S#

We cannot obtain a tenporal counterpart of this query by just
adding a VALIDTIME prefix to the beginning, nor, as we have
al ready seen, can we do so by just adding it in the m ddle,
bet ween the WTH cl ause and the main body. Rather, we have to add
it three times, as shown in Exanple 11

Now, all of the exanples we have shown so far have made use
just of the VALIDTIME prefix and have dealt just with tables with
valid-tinme support. As you would probably expect, however, the
whol e di scussion is applicable in |like manner to the
TRANSACTI ONTI VE prefix and tables with transaction-time support.
Here, for instance, is a bitenporal counterpart of Example 11 (and
here we nust assunme that S and SP are bitenporal tables):

13. WTH VS AS ( VALI DTI ME AND TRANSACTI ONTI NE
SELECT * FROM S )
VALI DTI ME AND TRANSACTI ONTI ME
SELECT DI STINCT T2. S#, T1.P#
FROM ( VALI DTI ME AND TRANSACTI ONTI
SELECT * FROM SP WHERE SP. P# = P#(' P1') ) AS Ti1,
VS AS T2
WHERE T2.S# = T1.S#

However, the whol e di scussion appears not to be applicable in
i ke manner in connection with prefixes that use the NONSEQUENCED
nodifier! For exanple, suppose we take Exanple 5 and replace both
of the VALIDTIME prefixes by the prefix NONSEQUENCED VALI DTI ME:

Copyright (c) 2005 Hugh Darwen & C. J. Date page 29



14. NONSEQUENCED VALI DTl ME
SELECT DI STI NCT S. S#, T1.P#
FROM S, ( NONSEQUENCED VALI DTl ME
SELECT * FROM SP WHERE SP. P# = P#('P1') ) AS T1
VHERE S.S# = T1.S#

This expression is syntactically invalid, because the second
table reference in the outer FROM cl ause denotes a table w thout
tenporal support. (In fact, it is not clear exactly what table it
does denote; references [13] and [15] contradict each other on the
i ssue. Details of just how they contradi ct each other are beyond
the scope of this paper, however.)

The net of all of the foregoing is as follows. First, the
suppliers table S is (according to our original assunption) a
table with valid-tine support, fromwhich it follows that in TSQ.2
the expression S can appear as a table reference in a FROM cl ause
in an SQL query that has the VALIDTIME prefix. However, the
expression SELECT * FROM S yields a result that is not a table
with valid-tine support, and so that expression cannot appear as a
table reference in a FROM cl ause in such a query. By contrast,

t he expression VALIDTI ME SELECT * FROM S can so appear. But the
expression VS, when defined to nmean the sane as the expression
SELECT * FROM S, cannot so appear, and nor can the expression

VALI DTI ME VS—nor, for that matter, can the expression VALIDTI MVE
SELECT * FROM VS. Taken together, these anomalies show that TSQ.2
fails to nmeet normal expectations of a conputer |anguage with
respect to construction of expressions from subexpressions and
repl acement of subexpressions by introduced nanes.

But there is still nore to be said regardi ng i ntroduced nanes.
Al'l such nanmes we have considered so far have resulted fromview
definitions and WTH cl auses. |If we go on to consider introduced

nanes that result fromuser-defined functions, we encounter even
nore serious probl ens, problens that nake us conclude that the
concept of statenent nodifiers as manifested in TSQL2 is
fundanmental ly flawed. By way of exanple, consider first the
foll ow ng query (again we assune that tables S and SP have vali d-
time support):

15. VALI DTI ME

SELECT S. S#

FROM S

VWHERE S. S# NOT IN ( SELECT SP. S# FROM SP )

The overall result of this query will obviously depend on

whet her the VALIDTIMVE prefix applies to the whol e expression,

i ncl udi ng the parenthesized subexpression following the IN
operator, or whether it applies only to the portion of the query
not included in those parentheses:

a. (VALIDTIME applies to whole expression) The result is a
valid-tinme table in which the hidden valid-tine colum
i ndi cates, for each supplier nunmber, a tinme interval

Copyright (c) 2005 Hugh Darwen & C. J. Date page 30



t hroughout which the supplier in question was unable to supply
any parts.

b. (VALIDTIME applies only to outer portion) The result is a
valid-tinme table in which the hidden valid-tinme colum
i ndi cates, for each supplier nunber, a tinme interval
t hroughout which the supplier in question was not anong those
suppliers who are currently able to supply any parts.

It is clear frommany exanples in the TSQ2 literature that
the first of these two interpretations is the one intended. Yet
it is difficult to obtain a reading of the expression that is
consistent with that interpretation, because the table denoted by
t he parent hesi zed subexpression seens, according to our
under st andi ng of unprefixed expressions in TSQ.2, to give just
supplier nunbers of suppliers currently able to supply sone
part.'? Cearly, we nmust revise that understandi ng sonehow,
per haps by replacing that "currently" by something |ike "at the
relevant point intinme." (W are deferring here to the notion
that a TSQ.2 sequenced query is conceptually evaluated at each
point in time, wth subsequent packi ng—or, rather, sone
unspecified variant of packi ng—of the resulting conceptual
sequence of results.)

Al t hough the foregoing revised understanding is very vague, it
can presunmably be made nore preci se, sonehow, and so we have
probably not dealt a nortal blow, yet, to the idea of statenent
prefixing. But let us see where else this exanple m ght |ead us.
We now consider the possibility of replacing the expression in the
WHERE cl ause—S. S# NOT I N (SELECT SP. S# FROM SP) —by an equi val ent
i nvocation of a user-defined function. The function in question
could be defined in SQ as foll ows:

16. CREATE FUNCTI ON UNABLE_TO SUPPLY_ANYTHI NG ( S# S# )
RETURNS BOOLEAN
RETURN ( S# NOT IN ( SELECT SP.S# FROM SP ) ) ;

G ven this function, the foll ow ng expressi on—

17. SELECT S. S#
FROM S
VWHERE UNABLE_TO SUPPLY_ANYTHING ( S. S# )

—is clearly equivalent to this one:

18. SELECT S. S#
FROM S
VWHERE S. S# NOT IN ( SELECT SP. S# FROM SP )

The natural question to ask now is whether the follow ng
expressi on—

“Wat is nore, it is our further understanding that that table has no hidden
valid-time columm; as a consequence, it is not clear how the conparisons
inmplied by the I N operator can be the ones that TSQ2 seens to want, either.

Copyright (c) 2005 Hugh Darwen & C. J. Date page 31



19. VALI DTI ME
SELECT S. S#
FROM S
VHERE UNABLE_TO SUPPLY_ANYTHING ( S. S# )

—i s equivalent to this one:
20. VALI DTI ME

SELECT S. S#

FROM S

WHERE S.S# NOT IN ( SELECT SP. S# FROM SP )

The answer to this question is far fromclear! |Indeed, the

foll owi ng excerpt fromthe concluding summary of reference [1] is
per haps revealing in this connection:

| mpl ementing functions ... is another interesting research
topic. Specifically, function calls are affected by statenent
nodifiers, so that the semantics of a function call w |
depend on whether it is used in a tenporal upward-conpatible,
a sequenced, or a nonsequenced context.

The authors of reference [1] appear to be claimng here that
Exanpl es 19 and 20 are equivalent. |In that case, we have to ask
why, if "function calls are affected by statenent nodifiers," the
same is not true of references to view nanes and nanes introduced
using WTH. But in any case the authors are also clearly
admtting that "function calls” in the context of statenent
nodi fi ers have not been fully researched. W venture to think
that anybody attenpting to undertake that research is likely to
neet with insuperable problens. |If the body of the function
consi sts of some highly conplex series of statenments, including
assi gnments, branches, and exception-handling operations, howis
the function to be conceptually evaluated at each point in tine
other than by actually evaluating it at each point in tine? Note:
The matter is made even worse in SQ specifically by the fact that
user-defined functions can be coded in progranm ng | anguages ot her
than SQL, using the sane facilities (such as enbedded SQL,
SQ./CLI, or JDBC) as are available to client application prograns.

One last point to close this section: It mght be thought
that the "U " operators of reference [6] suffer fromthe sane
problens as TSQL2's statenent nodifiers, since those operators
al so involve a prefix that affects the semantics of the expression
following that prefix. However, we believe—of course!—that the
same criticisns do not apply. The reason is that our prefixes are
defined very carefully to affect only the outernost operator in
the pertinent expression (and just what it is that constitutes
that "pertinent expression” is well-defined, too, both
syntactically and semantically). |If that operator is nonadic,
then it is precisely the single relation operand to that nonadic
operator that is initially unpacked; if the operator is dyadic,
then it is precisely the two relation operands to that dyadic
operator that are initially unpacked. 1In both cases, the regular

Copyright (c) 2005 Hugh Darwen & C. J. Date page 32



rel ati onal operation is then perfornmed on the unpacked operand(s),
and the result is then packed again. In brief: Qur USING
prefixes can be thought of as operator nodifiers, not statenent
(or, rather, expression) nodifiers.

9. CONSEQUENCES OF H DDEN COLUMNS

If, as we believe, the concept of statenent nodifiers is

i rredeemably flawed, then perhaps nothing nore needs to be said.
As we have seen, however, TSQ.2 al so involves a radical departure
from The Information Principle. Just to remnd you, that
principle states that all information in the database should be
represented in one and only one way: nanely, by neans of
relations. (SQ tables are not true relations, of course, but for
the sake of the present discussion we can pretend they are; that
is, we can overl ook for present purposes such matters as duplicate
rows, nulls, and left-to-right colum ordering. Wat we want to
do is consider the differences between TSQ.2 tabl es—rat her than
SQL tables in general—and true rel ations.)

Now, the uniformty of structure provided by adherence to The
Information Principle carries with it uniformty of nbde of access
and uniformty of description: Al data in a table is accessed by
reference to its columms, using colum nanmes for that purpose;
al so, to study the structure of a table, we have only to exam ne
the description (as recorded in the catal og) of each of its
col ums.

TSQL2's departure fromthis uniformty |eads to several
complications of the kind that the relational nodel was explicitly
designed to avoid. For exanple, new syntax is needed (as we have
seen) for expressing tenporal queries and nodifications; new
syntax is al so needed for referencing hidden col ums; new features
are needed in the catalog in order to describe tables with
tenporal support; and simlar new features are needed in the "SQ
descriptor areas" used by generalized applications that support ad
hoc queries [5,8]. These are not trivial matters, as the
di scussions of earlier sections in this paper should have been
sufficient to denonstrate.

It is worth taking a nonent to elaborate on the inplications
of hidden columms for generalized applications (the final
complication in the list called out in the previous paragraph).
Consi der the tasks that are typically perfornmed by such an
application. A sinple exanple is the task of saving the result of
an arbitrary query Q So long as Qis well-fornmed, in the sense
that every result colum has a unique name, then all the
application has to do is create an SQL table T, taking its
definition fromthe columm nanmes and data types given in the SQ
descriptor area for the query, and then execute the SQ statenent
INSERT INTO T Q Now consider, by contrast, what the application
will have to do if the query Q happens to take one of the forns

Copyright (c) 2005 Hugh Darwen & C. J. Date page 33



illustrated by the exanples in the previous section. The sinple
solution that worked so well before will clearly now be very far
from adequat e.

10. LACK OF GENERALITY

TSQL2's support for tables with tenporal support and tenpora
intervals fails to include support for operations on intervals in
general. O course, it does support sonme of the operators
normal |y defined for intervals in general —BEG N, MEETS, OVERLAPS,
UNI ON, and so on (though we have not discussed these operators in
this paper)—but even in the case of tenporal intervals it fails
to provide any counterpart of the useful shorthands we have
described in reference [6] for operations on relations and relvars
involving interval attributes. |In particular, it has nothing

equi val ent to the PACK and UNPACK operators,!® nor to any of the
"U" operators, nor to any of the proposed shorthands for
constraints ("U key" constraints and others) or for updating.

TSQ.2 | acks generality in another sense, too. If it is
reasonabl e to use hidden colums for valid tinmes and transaction
times, would it not be equally reasonable to use hidden col ums
for other kinds of data? For exanple, consider a requirenent to
record nmeasurenents showing variation in soil acidity at various
depths [9]. [If we can have tables with valid-tinme support, should
we not al so be able to have, anal ogously, tables with valid-depth
support, tables with valid-pH support, and perhaps tables with
bot h valid-depth and valid-pH support? 1In fact, is there any
reason to confine such facilities to hidden interval colums?
Perhaps relvar SP in the nontenporal version of suppliers and
shi pnments could be a table with valid-P# support (having S# as its
only regular colum), or a table with valid-S# support (having P#
as its only regular columm). Such observations m ght raise a
smle, but we offer themfor serious consideration. The fact is,
as soon as we permt the first deviation from The Information
Principle, we have opened the door—possibly the fl oodgates—to
who knows what further indiscretions to follow

Incidentally, lest we be accused of possible exaggeration in
the foregoing, we would like to draw your attention to another
extract fromreference [1]. The authors are di scussing
"interesting directions for future research":

It would al so be useful to generalize statenent nodifiers to
di mensi ons other than ti ne—for exanple, spatial dinensions in
spatial and spati ot enporal databases, the "dinmensions" in data
war ehousi ng, or the new kinds of nultidinensional data nodels.
Provi di ng general solutions that support the specific
semanti cs associated with the new di nensions is an inportant
chal | enge.

¥ ATSQL [1] does have an anal og of our PACK operator.

Copyright (c) 2005 Hugh Darwen & C. J. Date page 34



11. | MPRECI SE SPECI FI CATI ON

Consi der again Exanple 3 from Section 8:

3. VALI DTI ME
SELECT DI STINCT S. S#, SP. P#
FROM S, SP
WHERE S.S# = SP. St
AND  SP.P# = P#(' P1')

We have already nentioned (in Section 6) TSQL2's failure to
specify precisely what set of rows constitutes the result of a
valid-tinme or transaction-tinme query. The response usually given
to this conplaint is that if all of the tables in sone set of
tabl es are equivalent, in the sense that they yield the sane
result when unpacked (or packed) on sone interval columm, and one
table in that set is agreed to be a correct result for a given
gquery, then any table in that set is equally correct and can be
produced as the result of the query. |In other words, if tables S
and SP represent precisely the information shown for relvars S and
SPin Fig. 4 in Section 5, then either of the tables shown in Fig.
6—as well as literally billions of others®—might be produced as
the result of the query shown above as Exanple 3. (It mght help
to point out explicitly that the table on the left-hand side of
the figure is packed on the hidden valid-tine colum.)

St | P# St | P#
S1 | P1 | [dO4:d10] S1 | P1 | [d04:dog]
S2 | P1 | [d02:d04] S1 | P1 | [do6:dO7]
S2 | P1 | [dO8:d10] S1 | P1 | [dO5:d10]

Ss1 | PL | [d04: d09]
s2 | PL | [d02: dO3]
s2 | PL | [d04: do4]
s2 | PL | [do8: d10]

Fig. 6: Two possible results for Exanple 3

But the foregoing position is surely unacceptable. The
various results that are regarded as equally correct under the
gi ven equi val ence rel ationship are distinguishable from one
another in SQ.. Even the cardinality, unless it happens to be
zero (or possibly one), is not constant over all of those results!

14Actually the upper bound is infinite, since SQ tables can have duplicate
rows. Even if we ignore duplicate rows, however, the nunber of possible
results is still astronomical; in the case at hand, for exanple, there are over
137, 438, 953,472 such possible results—and this figure is just a | ower bound.
(I'n case you are interested, an upper bound for the sane exanple is over a
trillion—1, 099, 511, 627,776, to be precise.)

Copyright (c) 2005 Hugh Darwen & C. J. Date page 35



It follows that, in general, TSQ.2's tenporal queries (and
nodi fi cati ons too, presunmably) are indetermnate.

That said, the problemcan easily be addressed by specifying,
for exanple, sone suitably packed formto be the actual result.
Therefore, we do not regard this fault in TSQ.2, astonishing
though it is, as initself mlitating against the whol e approach.
We think the other reasons we have given are sufficient to do
t hat .

12. CONCLUDI NG REMARKS

We have presented a brief overview and anal ysis of TSQ.2 and found
much in it to criticize. |In fact, we have two broad (and
orthogonal ) sets of criticisns: one having to do with the overal
approach in general, and one having to do with the | anguage's poor
fit with SQL specifically (even nore specifically, with certain of
the features that were added in SQ.:1999—f or exanple, triggers,
row types, and "typed tables"). In this paper, we have
concentrated on the first of these two sets of criticisnms; for a
di scussi on of the second, see references [2], [3], and [4].

By way of conclusion, we repeat in sunmary form some of our
bi ggest criticisns fromthe first category.

* Regarding "the central idea": Even if we accept for the sake
of argunent that TSQL2 succeeds in its objective of
sinplifying the fornul ation of queries that satisfy Conditions
Cl-C4, it is surely obvious that there are many, many queries
that fail to satisfy those conditions.

* Regarding tenporal upward conpatibility: Here we reject the
very idea that the goal mght be desirable, let alone
achievable. In particular, we reject the idea that just
"addi ng tenporal support"™ is a good way to design tenporal
dat abases, because (a) it |leads to the bundling of current and
hi storical data, and (b) it leads to relvars (tables) that are
not in 6NF. Further, we reject the notion that "current
operations" should work exactly as they did before, because
that notion leads to the notion of hidden colums and
(apparently) to the notion of statenent nodifiers.

* Regarding statenment nodifiers: W have discussed at great
length (in Section 8) our reasons for believing this concept
to be logically flawed. Furthernore, we do not believe it can
be fixed.

* Regarding hidden columms: W have di scussed this issue at
consi derable length, too. Hi dden colums are a | ogical
consequence of the objective of tenporal upward
conpati bility—but they constitute the cl earest possible
violation of The Information Principle, and they |lead directly
to many of TSQ.2's other problens.

Copyright (c) 2005 Hugh Darwen & C. J. Date page 36



REFERENCES AND Bl BLI OGRAPHY

1

M chael H. Bohlen, Christian S. Jensen, and Richard T.
Snodgrass: "Tenporal Statenent Modifiers,” ACM TODS 25, No. 4
(Decenber 2000).

Hugh Darwen: "Valid Tinme and Transaction Ti ne Proposal s:
Language Design Aspects,"” in reference [7].

Hugh Darwen, M ke Sykes, et al.: "Concerns about the TSQL2
Approach to Tenporal Databases,"” Kansas Cty, M. (Miy 1996);
ftp:// sql standards. or g/ SC32/ W3/ Meet i ngs/ MCl _1996_05_
KansasCity_ USA/ nti 071. ps.

A precursor to reference [4]. As explained in Section 5, a
maj or part of the rationale for TSQL2 was tenporal upward
conpatibility (TUC). Briefly, TUC neans that it should be
possi bl e to convert an existing nontenporal database into a
tenporal one by just "adding tenporal support,” and then have
exi sting nontenporal applications still run (and run
correctly) against the now tenporal database. Anobng ot her
things, the present paper (i.e., reference [3]) raises
guestions as to whether TUC i s even a sensible goal, and sone
of the argunents it makes in this connection are worth
sumari zi ng here. Consider the follow ng exanple. Suppose we
start with an SQL table EMP, with col ums EMP#, DEPT#, and
SALARY. Suppose we now "add valid time support™ to that table
as described in Section 7, so that every existing EMP row i s
timestanped with the valid-tine value (a period or interval
value) "fromnowtill the end of tine." But:

B The table is not yet telling the truth (as reference [ 3]
puts it), since, in general, existing enployees did not
join the conpany or nove to their current departnent or
reach their current salary "now." So those valid-tine
timestanps all need to be updated, sonehow.

B The table is also not yet telling the truth in that it
contains rows only for current enployees and current
department assignnments and current salary levels. Al of
the historical information for previous enpl oyees and
previ ous departnments and previous sal aries needs to be
added, sonehow.

B W cannot tell for any given row whether the timestanp
shows when the enpl oyee noved to the indicated departnent,
or when the enpl oyee reached the indicated salary, or
per haps even when the enpl oyee joined the conpany. It is
thus likely that the table will need to be vertically
deconposed into three separate tables (one each for
enpl oynment hi story, departnent history, and salary
history), as explained in reference [6].

Copyright (c) 2005 Hugh Darwen & C. J. Date page 37



B \Wat woul d happen if—as is not at all unlikely—table EMP
al ready i ncluded colums DATE _OF _JO NI NG _DEPT and
DATE_OF LAST_ | NCREASE before the "valid-tinme support” was
added?

m Even if all of the foregoing issues can be addressed
successfully, we are left with tables that represent both
history and the current state of affairs. It is thus
Iikely that each such table will need to be split into two,
as described in reference [6].

The net effect of the foregoing points (it seens to us) is
t hat

a. Converting a nontenporal database to a tenporal counterpart
i nvol ves—necessari | y—much nore than just "addi ng tenpora
support,”

and hence that, in general,

b. Havi ng existing applications run unchanged after such a
conversion is not a very realistic goal

4. Hugh Darwen, M ke Sykes, et al.: "On Proposals for Valid-Tine
and Transaction-Time Support,” Mdrid, Spain (January 1997);
ftp://sql standards. org/ SC32/ WE3/ Meeti ngs/ MAD_1997_01_Madri d_ES
P/ mad146. ps.

The "UK response” to reference [13].

5. C. J. Date and Hugh Darwen: A Quide to the SQ Standard (4th
edition). Reading, Miss.: Addison-Wsley (1997).

6. C. J. Date, Hugh Darwen, and N kos A. Lorentzos: Tenporal Data
and the Rel ational Mddel. San Francisco, Calif.: Mrgan
Kauf mann (2003).

The present paper was originally prepared as an appendix to
this book, though it has been edited to make it stand by
itself as far as possible.

7. Opher Etzion, Sushil Jajodia, and Suryanaryan Sripada (eds.):
Tenporal Databases: Research and Practice. New York, N Y.:
Springer-Verlag (1998).

This book is an anthology giving "the state of the tenporal
dat abase art" as of about 1997. It is divided into four najor
parts, as foll ows:

1. Tenporal Database Infrastructure

2. Tenporal Query Languages

3. Advanced Applications of Tenporal Databases
4. Ceneral Reference

8. International O ganization for Standardization (1SO: Database
Language SQ., Docunent |SQO | EC 9075:1999. Also avail able as
American National Standards Institute (ANSI) Docunent ANS
NCI TS. 135-1999.

Copyright (c) 2005 Hugh Darwen & C. J. Date page 38



10.

11.

12.

13.

14.

15.

Ni kos A. Lorentzos and Vassiliki J. Kollias: "The Handling of
Depth and Time Intervals in Soil Information Systens,” Conp.
Geosci. 15, 3 (1989).

Ri chard Snodgrass and Il soo Ahn: "A Taxonony of Time in
Dat abases,” Proc. ACM SIGMOD Int. Conf. on Managenent of Data,
Austin, Texas (May 1985).

The source of the terns transaction time, valid tine, and
user-defined time. Note: Transaction tine and valid time are
di scussed at length in reference [6], but "user-defined tine"
is not. Reference [10] defines this termto nean tenpora
values and attributes that are "not interpreted by the DBMS";
exanpl es are date of birth, date of |ast salary increase, or

time of arrival. Cbserve, however, that in the approach to
tenporal dat abases espoused and described in reference [6],
transaction tines and valid tines are al so—like all other

values and attributes!—"not interpreted by the DBVMS." Wile
it mght nmake sense to have a termfor "tinmes" that are

nei ther transaction tines nor valid tines, the idea that
"user-defined tines" are operationally different fromthe

ot hers makes sense only if we start by assumng a
nonr el ati onal approach to the tenporal database problemin the
first place.

R T. Snodgrass et al.: "TSQ.2 Language Specification," ACM
SIGVMOD Record 23, No. 1 (March 1994).

Richard T. Snodgrass (ed.): The TSQ.2 Tenporal Query Language.
Norwel |, Mass.: Kluwer Academ c Publishers (1995).

Richard T. Snodgrass, M chael H Bohlen, Christian S. Jensen,
and Andreas Steiner: "Adding Valid Tinme to SQ./ Tenporal " and
"Addi ng Transaction Tine to SQ./ Tenporal,” Madrid, Spain
(January 1997);

ftp://sql standards. or g/ SC32/ Wa3/ Meeti ngs/ MAD 1997 01 _Madri d_ES
P/ mad146. ps.

Richard T. Snodgrass, M chael H Bohlen, Christian S. Jensen,
and Andreas Steiner: "Transitioning Tenporal Support in TSQL2
to SQL3," in reference [7].

Richard T. Snodgrass: Devel oping Tine-Oiented Database
Applications in SQ. San Francisco, Calif.: Mrgan Kaufnmann
(2000).

The follow ng remarks on tenporal database design are taken
fromthis reference (we find theminteresting i nasmuch as they
descri be an approach that is dianetrically opposite to that
advocated by the present authors in reference [6]): "In the
approach that we espouse here, conceptual design initially
ignores the tine-varying nature of the applications. W focus
on capturing the current reality and tenporarily ignore any

hi story that nmay be useful to capture. This selective amesia
sonewhat sinplifies what is often a highly conplex task of

Copyright (c) 2005 Hugh Darwen & C. J. Date page 39



capturing the full semantics ... An added benefit is that

exi sting conceptual design nmethodol ogies apply in full ...

Only after the full design is conplete do we augnent the ER [=

entity/relationship] schema with ... tinme-varying semantics
Simlarly, |ogical design proceeds in two stages. First,

the nontenporal ER schenma is napped to a nontenporal

rel ati onal schema, a collection of tables ... In the second

stage, each of the [tenporal annotations on the otherw se

nont enporal ER schema] is applied to the | ogical schens,

nodi fying the tables or integrity constraints to acconmodate

that tenporal aspect.”

* k% End * k% End * k%% End * k%

Copyright (c) 2005 Hugh Darwen & C. J. Date page 40



