
Could packing be specified in terms of closed-open interval semantics 
without having to commit to granularity ?

Erwin Smout

Introduction
“Temporal Data and the Relational Model”1,  by Hugh Darwen, Chris Date & Nikos Lorentzos, 
presents a solution for dealing with the problem of  “temporal data” in relational databases.  Some 
of the concepts involved in the proposed solution are interval types (data types whose values are the 
possible -contiguous- ranges of values of other, underlying, ordered types), operators to operate on 
such interval values (some of them, e.g. OVERLAPS(), MERGES(), … akin to what is commonly 
known  as  Allen's  interval  operators,  some  others,  e.g.  UNION(),  INTERSECT(),  …  akin  to 
operators that are commonly known from set theory), and two canonical forms of relations labeled 
“unpacked form” and “packed form”.

One criticism that regularly pops up is the reliance of their solution on the underlying, ordered, 
types being not only ordered, but ordinal as well, meaning that the solution requires four operators 
to be defined for those underlying types, namely FIRST(), LAST(), PRIOR() and NEXT()2.  This 
means that if a type FLOAT is ordered (a 'greater than' operator has been defined for it), but not 
ordinal (e.g. there is no NEXT() operator that allows to compute the “next-in-line” for a given 
FLOAT value), then the approach by these authors cannot be made to apply to this FLOAT type,  
and the user is, under those authors' approach, deprived of the possibility to work with “ranges of 
FLOAT values”.  Besides FLOAT, other types that would probably be in this situation are type 
CHAR (if there is no type-defined maximum length, then getting the NEXT() after “a” would have 
to mean appending (e.g.) an “a” to get “aa”, then the next would be “aaa”, and so ad infinitum and 
we'd never get from “a” to “b” - and in particular it would also be impossible to define which 
CHAR value is the LAST()), the nominator/denominator version of RATIONAL (try figuring out 
what the NEXT() rational is after 355/113) and if a user wanted to define a type PRIME, he'd also 
be  in  a  bit  of  trouble  implementing  a  NEXT()  operator  for  that.   Not  all  these  types  are  as  
“pathological” as the latter, and so there is indeed a bit of a case to be made for not wanting to 
depend on types being ordinal.

The issue is that as good as the whole subject and/or purpose of the book, is to arrive at a definition 
for  “packed  canonical  form”,  that  the  definition  that  is  arrived  at,  is  expressed  in  terms  of 
“unpacked canonical form”, and the “unpacked canonical form” depends on the notion of granules.

Hence the title question, to which the present document seeks to offer an answer.

Notational stuff
ITA are attribute names for Interval-Typed Attributes in a relation.  Since we will be dealing with an 
arbitrary number of range attributes/dimensions over which is being packed, the involved attributes 
will be named ITA1, ITA2, …, ITAn, with n the number of range dimensions involved (possibly 
zero).

1 In the remainder of the document, this book will be referred to as “TDATRM”.
2 A more formal definition of the term “ordinal type”, suggested on the discussion list  ttm@thethirdmanifesto.com, 

would be that it is a type that is order isomorphic to the set of the first N natural numbers, where N is the cardinality 
of the type.
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In  contexts  where  there  is  no  relevance  to  the  'ordering'  of  the  attributes  within  the  packing 
attributes list, we will denote the collection of packing attributes as a set : {ITA 1, ITA2, …, ITAn}. 
In contexts where there is relevance to the 'ordering' of the attributes within the packing attributes  
list, we will denote the collection of packing attributes as a list : (ITA1, ITA2, …, ITAn).

All interval values mentioned in the examples in the present document must be understood to be in 
“closed-open” notation, barring explicit statements to the contrary.

The definition we're aiming to achieve
A relation R is in (ITA1, ITA2, …, ITAn) packed normal form3 iff

FORALL t1,t2, t1 ∈ R, t2 ∈ R, t1<>t2 : PNF(t1,t2)

The definition essentially aims to state that a relation is in packed normal form (for some specific 
ordered list of packing attributes) if and only if all pairs of distinct tuples taken from the relation, 
are in a state of “satisfying (that particular) PNF”, or, put alternatively, if and only if no two distinct 
tuples from the relation are in a “state of violation” of (that particular) PNF.  Note how this implies 
that  empty relations  and singleton  relations  are  always  in  packed normal  form (for  any list  of 
packing attributes), by definition.

That “reduces” the problem to a space in which only two distinct tuples are involved, and leaves us 
having  to  define  the  exact  nature  of  PNF(t1,t2).   That  definition  of  PNF(t1,t2)  must  satisfy the 
following properties :

• As we are looking for a definition of packed normal form that “expands” to types that are 
not granulated, the definition of PNF(t1,t2) must be exclusively in terms of operators that are 
also definable for “contiguous”, “ungranulated” types.  One consequence is that no algebraic 
operators  can  be  involved  that  rely  themselves  on  NEXT()  or  PRIOR()  being 
available/defined.

• As we are looking for a definition of packed normal form that really is a “proper expansion” 
of  the  definition  from TDATRM, this  definition,  when applied  to  a  type  that  is  indeed 
“granulated”, must yield the same results as the definition from TDATRM that relies on 
granularity.

One consequence of the latter bullet, is that we can be certain that the ordering of the attributes in a 
packing list, matters.  Under the TDATRM approach, packing an unpacked relation on X, then on Y 
does not always yield the exact same result as packing that same unpacked relation on Y, then on X. 
Hence when speaking of a “packed normal form”, it will be necessary to provide the particular 
ordering of the packing attributes that we are dealing with.  Hence, we will be speaking of “(ITA1, 
ITA2, …, ITAn) packed normal form”, “(ITA1, ITA2, …, ITAn) PNF” for short.

3 We use the term “normal form” here, but note that this is unrelated to the usage of that same term in the context of  
database design.  In the context of database design, “normal form” is used in connection with, and as applying to, a  
logical database structure, in this document the term is used in connection with, and as applying to, relation values.
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Preliminary definitions

Interval types & values
Interval types are types that are generated by an “interval type generator”.  Apart from having all the 
obvious  properties  (such as,  e.g.,  a  type  constraint  that  prohibits  badly ordered  begin  and end 
boundary values), these generated interval types & their values have :

• A possible representation consisting of the components FROM and TO (where FROM is the 
(closed/included) start point of the range value, and TO is the (open/excluded) end value of 
the range).   Given an interval  value  iv,  these  components  will  be denoted using dotted 
notation, i.e. iv.FROM, iv.TO.  Note that in Tutorial D, these expressions might appear as 
invocations of THE_FROM() and THE_TO() on these interval values.

• and where it must be understood that, as far as the treatment in this document goes, it is 
perfectly possible for such expressions to denote some “conceptual value of infinity” that 
compares to “actual” values of the underlying ordered type as appropriate.  The fact that 
“infinity is not an actual value” (of the underlying ordered type), is a mere implementation 
problem, and is orthogonal to the treatment here.

OVERLAPS
The expression 'i1 OVERLAPS i2', an invocation of the operator OVERLAPS(it,it), where i1 and i2 

are expressions denoting interval values of the same interval type it, is defined to be equivalent to 
the expression

i1.FROM < i2.TO  AND  i2.FROM < i1.TO

MEETS
The expression  'i1 MEETS i2',  an  invocation  of  the  operator  MEETS(it,it),  where  i1 and  i2 are 
expressions denoting interval values of the same interval type it, is defined to be equivalent to the 
expression

i1.FROM = i2.TO  OR  i2.FROM = i1.TO

{ITA1, ITA2, …, ITAn} equivalence classes in a relation
Let r be a relation including at least the attributes {ITA1, ITA2, …, ITAn}.  A condition that between 
two tuples t1 and t2 (not necessarily distinct) in r, all corresponding attribute values other than {ITA1, 
ITA2, …, ITAn} must be equal, is a condition that constitutes an equivalence relation within r.  We 
call this equivalence relation an “{ITA1, ITA2, …, ITAn} equivalence relation”, and the equivalence 
classes defined by it “{ITA1, ITA2, …, ITAn} equivalence classes”.

Hence if two tuples t1 and t2 do not belong to the same {ITA1, ITA2, …, ITAn} equivalence class, 
then at least one attribute value other than {ITA1, ITA2, …, ITAn} differs between t1 and t2, and we 
define this condition to be sufficient for those two tuples to satisfy (ITA1, ITA2, …, ITAn) PNF.  In 
the remainder of the document, when two or more distinct tuples in a relation are considered, it will 
be implicitly assumed that those tuples all belong to the same {ITA1, ITA2, …, ITAn} equivalence 
class, barring explicit statements to the contrary.

3/36



“Box” and “covered points”
Let t be a tuple with interval-typed attributes ITA1, ITA2, …, ITAn, and interval values iv1, iv2, …, 
ivn.  We say the “box” for this tuple is the solid body in n-dimensional space consisting of all the 
points (c1, c2, …, cn) such that :

• iv1.FROM <= c1 < iv1.TO
• iv2.FROM <= c2 < iv2.TO
• …
• ivn.FROM <= cn < ivn.TO

Of the points in n-dimensional space that are part of the box, we say that they are “covered” by the 
tuple t, or conversely, that the tuple “covers” such a point :

• t COVERS p(c1, c2, …, cn)
• p(c1, c2, …, cn) COVBY t

Likewise, we say that a relation r “covers” such a point, and such a point “is covered by” that  
relation, if the relation contains at least one tuple that covers p :

r COVERS p(c1, c2, …, cn) <===> EXISTS t, t ∈ r : t COVERS p(c1, c2, …, cn)

A similar notion of “coverage” could more usefully be also defined for some {ITA1, ITA2, …, ITAn} 
equivalence class c in a relation :

c COVERS p(c1, c2, …, cn) <===> EXISTS t, t ∈ c : t COVERS p(c1, c2, …, cn)

“{ITA1, ITA2, …, ITAn} meeting tuples”
Two tuples t1 and t2 are “meeting tuples” (for the dimensions {ITA1, ITA2, …, ITAn} ) iff :

EXISTS x,x=1..n : t1.ITAx MEETS t2.ITAx
4

FORALL y,y=1..n,y<>x : t1.ITAy OVERLAPS t2.ITAy

Informally, this property says that two tuples (or the boxes they describe) “meet” if there is exactly 
one dimension for which the respective interval values from the two tuples MEET, and the values 
from the tuples for all the remaining dimensions in {ITA1, ITA2, …, ITAn} OVERLAP.

To illustrate in 2D space, according to this definition, the last three of the following are “meeting 
boxes” (and two tuples with interval values denoting these boxes are then “meeting tuples”), but the 
first one is not :
     +----+      +----+      +----+      +----+
     !    !      !    !      !    !      !    !
+----+----+ +----+    ! +----+    ! +----+    !
!    !      !    !    ! !    !    ! !    !    !
!    !      !    +----+ !    !    ! !    !    !
!    !      !    !      !    !    ! !    !    !
+----+      +----+      +----+----+ +----+    !
                                         +----+
FORALL is  carefully  chosen  for  the  “remaining  dimensions”  in  order  to  make  this  condition 
represent “the opportunity to pick away slices of one box and merge them with [some slice of] the 
other box to obtain another one”.

4 We use the same dotted notation on tuples to “access” their attribute values.  In Tutorial D, these constructs would 
appear in the syntactic form ITAx FROM tn.
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“(ITA1, ITA2, …, ITAn) rearrangeable tuples”
Two tuples t1 and t2 are said to be “(ITA1, ITA2, …, ITAn) rearrangeable” iff :

EXISTS y,y=1..n : t1.ITAy MEETS t2.ITAy

FORALL x,x<y : t1.ITAx EQUALS t2.ITAx

FORALL z,z>y,z<=n : t1.ITAz OVERLAPS t2.ITAz

Observe  that  this  definition  is  strictly  stronger  than  the  definition  for  {ITA1,  ITA2,  …,  ITAn} 
meeting tuples.  Iow, the set of “pairs of rearrangeable tuples” is a subset of the set of “pairs of 
meeting  tuples”.   Or  yet  iow,  rearrangeable  implies  meeting,  and  not  meeting  implies  not 
rearrangeable.

Informally, this property says that two tuples are “rearrangeable” if an alternative set of tuples exists 
(that alternative set must not necessarily be of cardinality two) that covers the same set of points in 
n-dimensional  space,  but  where  the  “meeting” between the  tuples  (and the  boxes  they denote) 
happens “in a less prevailing dimension”.

To illustrate in 2D space (and assuming the usual orientation for the X and Y dimensions), the last  
three of the following are “(X,Y) rearrangeable”, and none of them are “(Y,X) rearrangeable” :
     +----+      +----+      +----+      +----+
     !    !      !    !      !    !      !    !
+----+----+ +----+    ! +----+    ! +----+    !
!    !      !    !    ! !    !    ! !    !    !
!    !      !    +----+ !    !    ! !    !    !
!    !      !    !      !    !    ! !    !    !
+----+      +----+      +----+----+ +----+    !
                                         +----+
How does this definition behave in the degenerate case of no ranges at all ? The EXISTS clause can 
clearly not be satisfied, and hence distinct tuples are never () rearrangeable, by definition.

In the case of a single packing range (“(ITA1) rearrangeable”), both FORALL clauses quantify over 
the empty set, hence both degenerate to TRUE, and overall it means two such tuples are “(ITA1) 
rearrangeable” only if the values for their interval-typed attribute ITA1 MEET.  You will remark that 
if those values OVERLAP, then the tuples could (should) be considered as being “rearrangeable” 
too, but cases of overlaps are dealt with in another way, we'll get to that shortly.

“{ITA1, ITA2, …, ITAn} mergeable” tuples
Two tuples t1 and t2 are said to be “{ITA1, ITA2, …, ITAn} mergeable” iff :

EXISTS x,x=1..n : t1.ITAx MEETS t2.ITAx

FORALL y,y=1..n,y<>x :  t1.ITAy EQUALS t2.ITAy

Informally, if two tuples are “{ITA1, ITA2, …, ITAn} mergeable”, this means they can be replaced 
by a single tuple that covers the same set of points as the two tuples together.

Observe that the definition for “{ITA1, ITA2, …, ITAn} mergeable” is strictly stronger than the one 
for “(ITA1, ITA2, …, ITAn) rearrangeable”, hence, “mergeable” implies “rearrangeable”, and “not 
rearrangeable” implies “not mergeable”.

Also observe that the case of tuples/boxes that “overlap in one dimension” (instead of meeting), and 
are equal in all others, is not taken into account here.  Cases of overlaps are dealt with in another 
way.
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“{ITA1, ITA2, …, ITAn} intersectable” tuples
Two tuples t1 and t2 (not necessarily distinct, but that's not important) are said to be “{ITA1, ITA2, 
…, ITAn} intersectable” iff :

FORALL x,x=1..n : t1.ITAx OVERLAPS t2.ITAx

If two tuples are “{ITA1, ITA2, …, ITAn} intersectable”, this means, loosely speaking, that a “range 
intersection between the two tuples” will produce another tuple that “denotes a nonempty box”.

Observe  that  “{ITA1,  ITA2,  …,  ITAn}  intersectable”  precludes  “(ITA1,  ITA2,  …,  ITAn) 
rearrangeable”,  and  vice  versa.   “Intersectable”  requires  all  range  dimensions  to  overlap, 
rearrangeable requires at least one dimension to not overlap.

“(ITA1, ITA2, …, ITAn) PNF” tuples (informal version)
We say that two distinct tuples t1 and t2 “satisfy (ITA1, ITA2, …, ITAn) PNF”, iff the two tuples are 
in different {ITA1, ITA2, …, ITAn} equivalence classes, or they are in the same {ITA1, ITA2, …, 
ITAn} equivalence class and they are neither {ITA1, ITA2, …, ITAn} intersectable nor (ITA1, ITA2, 
…, ITAn) rearrangeable.

Iow, one of the following conditions must be satisfied :

• t1 and t2 are in different {ITA1, ITA2, …, ITAn} equivalence classes,
• Both of the following conditions must be satisfied :

1. t1 and t2 are not “{ITA1, ITA2, …, ITAn} intersectable”
2. t1 and t2 are not “(ITA1, ITA2, …, ITAn) rearrangeable”

“(ITA1, ITA2, …, ITAn) PNF” tuples (formal version)
Substituting the formal definitions for being “intersectable” and/or “rearrangeable” in the “informal 
version”, we can say that two distinct tuples t1 and t2 “satisfy (ITA1, ITA2, …, ITAn) PNF”, iff one of 
the following conditions is satisfied :

• At least one attribute value other than {ITA1, ITA2, …, ITAn} differs between t1 and t2,
• Or else both of the following are satisfied :

1. NOT (FORALL x,x=1..n : t1.ITAx OVERLAPS t2.ITAx)
2. NOT (EXISTS y,y=1..n : t1.ITAy MEETS t2.ITAy

FORALL x,x<y : t1.ITAx EQUALS t2.ITAx

FORALL z,z>y,z<=n : t1.ITAz OVERLAPS t2.ITAz)
which translates to :

• At least one attribute value other than {ITA1, ITA2, …, ITAn} differs between t1 and t2,
• Or else both of the following are satisfied :

1. EXISTS x,x=1..n : NOT (t1.ITAx OVERLAPS t2.ITAx)
2. FORALL y,y=1..n : NOT (t1.ITAy MEETS t2.ITAy

AND FORALL x,x<y : t1.ITAx EQUALS t2.ITAx

AND FORALL z,z>y,z<=n : t1.ITAz OVERLAPS t2.ITAz)
and ultimately to our final definition for PNF(t1,t2) :

• At least one attribute value other than {ITA1, ITA2, …, ITAn} differs between t1 and t2,
• Or else both of the following are satisfied :

1. EXISTS x,x=1..n : NOT (t1.ITAx OVERLAPS t2.ITAx)
2. FORALL y,y=1..n : NOT (t1.ITAy MEETS t2.ITAy)

OR EXISTS x,x<y : t1.ITAx <> t2.ITAx

OR EXISTS z,z>y,z<=n : NOT (t1.ITAz OVERLAPS t2.ITAz)
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Interlude : some case studies with visualizations
In this section, we will explore, starting with a number of cases in 2D space, how these definitions  
all work out.  The visualizations of the boxes (rectangles, thus) will have the X and Y axes in their 
usual orientation, the attribute names in the relations describing these boxes will be, unsurprisingly, 
X and Y, respectively.

All  cases  have  in  common  that  they  already  satisfy  the  condition  of  “not  being  {X,Y} 
intersectable”.  It is also assumed that the tuples are all in the same {X,Y} equivalence class.  This  
will not be repeated over and over for each case.  Hence, we will exclusively be focusing on the 
condition that

FORALL y,y=1..n : NOT (t1.ITAy MEETS t2.ITAy)
OR EXISTS x,x<y : t1.ITAx <> t2.ITAx

OR EXISTS z,z>y,z<=n : NOT (t1.ITAz OVERLAPS t2.ITAz)

Case 1
+----+          X     Y
!    !        ----- -----
!    !         1- 5  1-10
!    +----+    5- 9  1- 4
+----+----+
Testing for (X,Y) PNF, y=1 is the X dimension, y=2 is the Y dimension.
For the X dimension (y=1) :

• NOT (t1.X MEETS t2.X) FALSE
• EXISTS x,x<1 : t1.ITAx <> t2.ITAx FALSE
• EXISTS z,z>1,z<=n : NOT (t1.ITAz OVERLAPS t2.ITAz) FALSE

Hence this relation is not in (X,Y) PNF.

Testing for (Y,X) PNF, y=1 is the Y dimension, y=2 is the X dimension.
For the Y dimension (y=1) :

• NOT (t1.Y MEETS t2.Y) TRUE
For the X dimension (y=2) :

• NOT (t1.X MEETS t2.X) FALSE
• EXISTS x,x<2 : t1.ITAx <> t2.ITAx TRUE

Hence this relation is in (Y,X) PNF.

Case 2
+----+          X     Y
!    !        ----- -----
!    !         1- 9  1- 4
+----+----+    1- 5  4-10
+---------+
Testing for (Y,X) PNF, y=1 is the Y dimension, y=2 is the X dimension.
For the Y dimension (y=1) :

• NOT (t1.Y MEETS t2.Y) FALSE
• EXISTS x,x<1 : t1.ITAx <> t2.ITAx FALSE
• EXISTS z,z>1,z<=n : NOT (t1.ITAz OVERLAPS t2.ITAz) FALSE

Hence this relation is not in (Y,X) PNF.
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Testing for (X,Y) PNF, y=1 is the X dimension, y=2 is the Y dimension.
For the X dimension (y=1) :

• NOT (t1.X MEETS t2.X) TRUE
For the Y dimension (y=2) :

• NOT (t1.Y MEETS t2.Y) FALSE
• EXISTS x,x<2 : t1.ITAx <> t2.ITAx TRUE

Hence this relation is in (X,Y) PNF.

Case 3
+----+          X     Y
!    !        ----- -----
! t3 !         1- 5  1- 4   (t1)
!    !         5- 9  1- 4   (t2)
+----+----+    1- 5  4-10   (t3)
! t1 ! t2 !
+----+----+
Testing for (Y,X) PNF (and looking at  t1/t2 exclusively), y=1 is the Y dimension, y=2 is the X 
dimension.
For the Y dimension (y=1) :

• NOT (t1.Y MEETS t2.Y) TRUE
For the X dimension (y=2) :

• NOT (t1.X MEETS t2.X) FALSE
• EXISTS x,x<2 : t1.ITAx <> t2.ITAx FALSE
• EXISTS z,z>2,z<=n : NOT (t1.ITAz OVERLAPS t2.ITAz) FALSE

Hence this relation is not in (Y,X) PNF.

Testing for (X,Y) PNF (and again looking at t1/t2 exclusively), y=1 is the X dimension, y=2 is the Y 
dimension.
For the X dimension (y=1) :

• NOT (t1.X MEETS t2.X) FALSE
• EXISTS x,x<1 : t1.ITAx <> t2.ITAx FALSE
• EXISTS z,z>1,z<=n : NOT (t1.ITAz OVERLAPS t2.ITAz) FALSE

Hence this relation is not in (X,Y) PNF.

Case 4
+----+---------+          X     Y
!    !   t5    !        ----- -----
! t2 !         !         1- 8  1- 4   (t1)
!    +----+----+         1- 4  4-12   (t2)
!    ! t3 !    !         4- 8  4- 7   (t3)
+----+----+ t4 !         8-11  1- 7   (t4)
!   t1    !    !         4-11  7-12   (t5)
+---------+----+
This case has a number of tuple pairs that are identical to case 1 (e.g. t2/t3) and also a number of 
tuple pairs that are identical to case 2 (e.g. t2/t1).  Therefore, the one pair dictates that this relation 
cannot be in (X,Y) PNF, and the other pair dictates that this relation cannot be in (Y,X) PNF.

Hence, this relation is in no PNF at all (no PNF involving both X and Y, that is).
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Case 5
+----+---------+          X     Y     Z
!\   !\        !\       ----- ----- -----
! +--!-+-------!-+       1- 8  1- 4  1- 3  (t1)
! !  ! !       ! !       1- 4  4-12  1- 3  (t2)
! !  +----+----+ !       4- 8  4- 7  1- 3  (t3)
! !  !\!  !\   !\!       8-11  1- 7  1- 3  (t4)
+----+----+-+--!-+       4-11  7-12  1- 3  (t5)
!\!   \!  !\!  ! !
! +----+--!-+  ! !
+---------+----+ !
 \!        \!   \!
  +---------+----+
Testing for (X,Y,Z) PNF (and again looking at t2/t3 exclusively), y=1 is the X dimension, y=2 is the 
Y dimension, y=3 is the Z dimension.
For the X dimension (y=1) :

• NOT (t1.X MEETS t2.X) FALSE
• EXISTS x,x<1 : t1.ITAx <> t2.ITAx FALSE
• EXISTS z,z>1,z<=n : NOT (t1.ITAz OVERLAPS t2.ITAz) FALSE

Hence this relation is not in (X,Y,Z) PNF.  The same tuple pair also determines that this relation is 
not in (X,Z,Y) PNF.

Testing for (Y,X,Z) PNF (and again looking at t1/t3 exclusively), y=1 is the Y dimension, y=2 is the 
X dimension, y=3 is the Z dimension.
For the Y dimension (y=1) :

• NOT (t1.Y MEETS t3.Y) FALSE
• EXISTS x,x<1 : t1.ITAx <> t3.ITAx FALSE
• EXISTS z,z>1,z<=n : NOT (t1.ITAz OVERLAPS t3.ITAz) FALSE

Hence this relation is not in (X,Y,Z) PNF.  The same tuple pair also determines that this relation is 
not in (Y,Z,X) PNF.

Testing for (Z,X,Y) PNF, y=1 is the Z dimension, y=2 is the X dimension, y=3 is the Y dimension.
For the Z dimension (y=1) (for all of the possible tuple pairs) :

• NOT (t1.Z MEETS t3.Z) TRUE
For the X dimension (y=2), and inspecting the tuple pair t3/t4 :

• NOT (t4.X MEETS t3.X) FALSE
• EXISTS x,x<2 : t4.ITAx <> t3.ITAx FALSE
• EXISTS z,z>2,z<=n : NOT (t4.ITAz OVERLAPS t3.ITAz) FALSE

Hence this relation is not in (Z,X,Y) PNF.

Testing for (Z,Y,X) PNF, y=1 is the Z dimension, y=2 is the Y dimension, y=3 is the X dimension.
For the Z dimension (y=1) (for all of the possible tuple pairs) :

• NOT (t1.Z MEETS t3.Z) TRUE
For the Y dimension (y=2), and inspecting the tuple pair t4/t5 :

• NOT (t4.Y MEETS t5.Y) FALSE
• EXISTS x,x<2 : t4.ITAx <> t3.ITAx FALSE
• EXISTS z,z>2,z<=n : NOT (t4.ITAz OVERLAPS t3.ITAz) FALSE

Hence this relation is not in (Z,Y,X) PNF.

Consequentially, this relation is not in any possible PNF involving all of {X,Y,Z} !
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Case 6
  X     Y     Z
----- ----- -----
 1- 3  2- 4  3- 4  (t1)
 1- 3  2- 3  4- 5  (t2)
 1- 4  3- 4  4- 5  (t3)
 2- 4  3- 5  5- 6  (t4)
 2- 4  4- 5  4- 5  (t5)
Given  the  three  range  dimensions,  once  again  there  are  six  possible  PNF's  to  consider.   The 
following are violated by, a.o., the tuple pairs indicated in the table below :

Z,Y,X t4/t5

Z,X,Y t4/t5

Y,Z,X t2/t3

Y,X,Z t2/t3

X,Z,Y t1/t2 (do the check for the Z dimension, y=2)

The (X,Y,Z) PNF, on the other hand, is indeed satisfied by this relation (you can check this for 
yourself if you want to, but the process is a bit tedious).

Proof that (ITA1, ITA2, …, ITAn) PNF is unique for any r

If all points in a box are covered by an equivalence class c in a relation,  
then c satisfies PNF only if that box is represented in a single tuple

Or, iow, no “subdivision” of an n-dimensional box in multiple tuples/boxes can possibly satisfy 
(ITA1, ITA2, …, ITAn) PNF, for any permutation of the ITA attributes packing list.

Suppose, contrariwise, a singleton equivalence class ec1 with a tuple t and n interval-typed attributes 
ITA1, ITA2, …, ITAn, and a second equivalence class ec2 with tuples t21, t22, …, t2j (and the same 
interval-typed attributes) such that

FORALL p(c1, c2, …, cn) : p COVBY ec1 <===> p COVBY ec2

Ec1 satisfies  (ITA1,  ITA2,  …, ITAn)  PNF, by definition,  because it  is  a  singleton.   Suppose ec2 

satisfies (ITA1, ITA2, …, ITAn) PNF too.  Take some arbitrary point p(c1, c2, …, cn) in the box.  First, 
we show that if ec2 satisfies (ITA1, ITA2, …, ITAn) PNF, then all points p(c1x, c2, …, cn) such that 
t.ITA1.FROM <= c1x < t.ITA1.TO, must be covered by one and the same tuple in ec2.  For suppose 
contrariwise that there would be two distinct tuples t2j and t2k, both member of ec2, each covering 
one of two distinct points p(c1j, c2, …, cn) and p(c1k, c2, …, cn) respectively, then we have :

• t2j.ITA2.FROM <= c2 < t2j.ITA2.TO
• t2k.ITA2.FROM <= c2 < t2k.ITA2.TO
• t2j.ITA3.FROM <= c3 < t2j.ITA3.TO
• t2k.ITA3.FROM <= c3 < t2k.ITA3.TO
• … (repeat for all subsequent dimensions up to and including n)

from which it follows that :

• t2j.ITA2.FROM <= c2 < t2k.ITA2.TO
• t2k.ITA2.FROM <= c2 < t2j.ITA2.TO
• t2j.ITA3.FROM <= c3 < t2k.ITA3.TO
• t2k.ITA3.FROM <= c3 < t2j.ITA3.TO
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• … (repeat for all subsequent dimensions up to and including n)

from which it follows that (because all lines taken pairwise constitute the definition of overlapping 
intervals) :

• t2j.ITA2 OVERLAPS t2k.ITA2

• t2j.ITA3 OVERLAPS t2k.ITA3

• … (repeat for all subsequent dimensions up to and including n)

or iow, all dimensions after ITA1 OVERLAP.

From this, it follows that if ec2 satisfies (ITA1, ITA2, …, ITAn) PNF, then t2j and t2k must satisfy 
(ITA1, ITA2, …, ITAn) PNF, therefore it must not be the case that t2j.ITA1 MEETS t2k.ITA1 .  If they 
did MEET, then these tuples would be rearrangeable, and if they OVERLAPped in this dimension, 
then they would be intersectable.

So therefore we can conclude that for one of the two tuples t2j and t2k, it holds that

t2j.ITA1.TO < t2k.ITA1.FROM

Now consider the point p(c1x, c2, …, cn) whose c1x value is equal to t2j.ITA1.TO.  This point is not 
covered by t2j, nor by t2k.  But it is covered by t (the single tuple in ec1 that represents the same box). 
So there must be some other tuple t2m in ec2 that does cover this particular point.

But then again, this tuple t2m is subject to the very same reasoning as the tuple t2j that we started out 
with, so there will have to be yet another tuple t2n in ec2 that will cover t2m's ITA1.TO value, etc. etc., 
ad infinitum.

Therefore, we can conclude that there is no finite set of tuples such that :

• none of them taken pairwise will violate (ITA1, ITA2, …, ITAn) PNF,
• and all points  p(c1x, c2, …, cn), for some fixed set of c2, …, cn values and for all c1x values in 

the range t.ITA1.FROM <= c1x < t.ITA1.TO, will be covered by some tuple in that finite set 
of tuples.

This implies in turn that the entire set of points p(c1x, c2, …, cn), for some fixed set of c2, …, cn 

values and for all c1x values in the range t.ITA1.FROM <= c1x < t.ITA1.TO, can only be covered by 
one single tuple in  the relation/equivalence class  covering that  set  of  points.   Hence,  the ITA 1 

attribute value for all tuples t2j in c2 must be equal to the ITA1 interval value from t :

FORALL t2, t2 ∈ ec2 : t2.ITA1 = t.ITA1

Now we can repeat the same reasoning to show that a similar conclusion holds for the “second” 
dimension, ITA2, and again and again to show that in fact a similar conclusion holds for all of the 
involved dimensions.  But if that is true, then this simply means that

FORALL t2, t2 ∈ ec2 : t2 = t

and this simply means that c2 has to be equal to the singleton c1.

Hence this constitutes our proof that no “finite subdivision” of a box can possibly satisfy (ITA1, 
ITA2, …, ITAn) PNF.
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If two distinct tuple pairs t1/t2 and t3/t4, all belonging to the same {ITA1,  
ITA2, …, ITAn} equivalence class, cover the same set of points, then  
only one of them can possibly satisfy (ITA1, ITA2, …, ITAn) PNF.

Suppose, contrariwise, that such distinct tuple pairs both satisfy {ITA1, ITA2, …, ITAn} PNF.  This 
means that both t1/t2 and t3/t4 are neither intersectable nor rearrangeable.  Not being intersectable 
implies  that  there is  at  least  one dimension for  which the interval  values  do not  overlap,  both 
between t1/t2 and t3/t4.

Two cases can occur.  The interval values in t1/t2 for at least one such non-overlapping dimension, 
do not even MEET (i.e. they are AFTER or BEFORE each other in the Allen sense).  In that case,  
the boxes are completely “disjoint”, and the fact that the same set of points must also be covered by 
t3/t4, implies that t3/t4 must be equal to t1/t2.

Or it  is  the case that for all  such non-overlapping dimensions,  the interval values from t1/t2 do 
MEET.  Once again two cases can be considered.  There can be exactly one such non-overlapping 
dimension (between t1/t2) or there can be >1 of them.  If there are >1 of them, then once again we do 
not have a case of “meeting tuples”, and once again the fact that the same set of points must also be 
covered by t3/t4 implies that t3/t4 must be equal to t1/t2.

Hence the last case to consider is when t1/t2 have exactly one non-overlapping dimension where 
their attribute values MEET.  Call that dimension ITAm.  T1/t2 were assumed to satisfy PNF, hence 
they are not rearrangeable, hence this means, for that ITAm dimension, one of the following must 
hold :

• EXISTS j,j<m : t1.ITAj <> t2.ITAj (attribute values for some dimension preceding m must be 
unequal)

• EXISTS  z,z>m,z<=n  :  NOT  (t1.ITAz OVERLAPS  t2.ITAz)  (attribute  values  for  some 
dimension following m must not overlap)

Since we are considering the case with exactly one non-overlapping dimension, the latter bullet 
must necessarily be false, and it must be the case that between t1/t2, the attribute values for some 
dimension preceding m must be unequal (also implying that m cannot possibly be the very first 
dimension ITA1).

So far so good, attempting to get further from here.

Take a point p(c1, c2, …, cm, …, cn) on the “meeting place” of t1/t2.  We have

cm = t1.ITAm.TO = t2.ITAm.FROM

To be completed.

“Alternative” definitions for the USING operators
The foregoing chapters, defining (ITA1, ITA2, …, ITAn) PNF and its properties, have answered the 
actual title question.  But there is more to the problem than just that.  TDATRM essentially defines 
what it calls “USING versions” for all the operators of the relational algebra (and for yet some other 
operators that are often overlooked in the USING context), by relying on the UNPACK operator, 
applying  UNPACK  to  the  arguments  of  the  operator  at  hand,  applying  the  operator  to  the 
“unpacked” relation(s),  and then re-packing the result  (if  it  concerns an operator that  returns a 
relation).  Since UNPACK is not available in the approach presented here, alternative definitions are 
necessary.  In the following sections, we will inspect and discuss the various operators concerned, 
beginning with PACK() itself.
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USING (ITA1, ITA2, …, ITAn) PACK
In our “non-granular” approach, USING (ITA1, ITA2, …, ITAn) PACK (r) is defined to return the 
unique relation that is the (ITA1, ITA2, …, ITAn) PNF equivalent of its sole argument r.  That PNF 
equivalent is the relation r' that :

• is in (ITA1, ITA2, …, ITAn) PNF
• for each (ITA1, ITA2, …, ITAn) equivalence class in it, covers the same set of points as the 

corresponding equivalence class in r.

Note that the “USING (ITA1, ITA2, …, ITAn) PACK (r)” defined here is completely equivalent to 
TDATRM's “PACK r ON (ITA1, ITA2, …, ITAn)”.  (Meaning that if “nongranular PACK” is applied 
to relations containing intervals over a type that is indeed ordinal5, the tuples and their interval 
boundary values in the result will correspond one on one with the results from applying TDATRM's 
“granular PACK” on the same relation.)

And once again, this claim of equivalence might be accompanied by some kind of formal proof.

USING (ITA1, ITA2, …, ITAn) EQUALS
In  TDATRM,  the  'USING'  version  of  the  relational  equality  operator  tests  relation  values  for 
“pointwise equality”, so to speak.  Looking back at cases 1 and 2 (let's call those relations case1 and 
case2, respectively) of the “Interlude with visualizations” section, the following expressions would 
yield the indicated truth values :

• case1 = case2   =   FALSE
• USING (X,Y)  case1 = case2    =◀ ▶    TRUE

In our approach, the second expression would have to be written as the following equivalent :

• USING (X,Y) PACK(case1) = USING (X,Y) PACK(case2)

The question remains a bit open to what degree or extent these seeming differences are also “real 
differences”, rather than mere differences in syntactic notation.  Or iow, whether there is a real 
genuine need altogether for a “distinct operator definition” as per TDATRM.  If such a need there 
is,  then  it  is  of  course  perfectly  possible  for  the  surface  language  to  expose  some  syntactic  
shorthand  as  “being  this  operator”  and  under  the  covers  implementing  it  as  the  equivalent 
expression.

USING (ITA1, ITA2, …, ITAn) UNION
We define both a “tuple version” and a “relation version” of this operator.  The “tuple version” takes 
two tuples as arguments, the “relation version” operates on two relations.

The relation version USING (ITA1, ITA2, …, ITAn) UNION (r1,r2) is defined as being equivalent to 
USING (ITA1, ITA2, …, ITAn) PACK (r1 UNION r2).  Observe that the outermost operator in this 
equivalent expression being PACK(), the result of USING (ITA1, ITA2, …, ITAn) UNION (r1,r2) is 
guaranteed to be in (ITA1, ITA2, …, ITAn) PNF.  Also observe that the property of associativity of 
UNION can be applied to define an associative version USING (ITA1,  ITA2,  …, ITAn) UNION 
(r1,r2,r3,…), and that such an associative version even validly extends to the case of no arguments at 
all  (returning the empty relation  of  some heading that  must  then  be specified  explicitly in  the 
syntax).

5 The “nongranular” approach from this document does not prohibit that !
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The tuple version USING (ITA1, ITA2, …, ITAn) UNION (t1,t2) is defined as being equivalent to 
USING (ITA1, ITA2, …, ITAn) UNION (RELATION{t1}, RELATION{t2}).  Informally, the tuple 
version thus “wraps the two tuples in two singleton relations” and then computes the “USING 
(ITA1, ITA2, …, ITAn) UNION” of those two relations.  Note that this “tuple version” thus returns a 
relation (not a single tuple), and that the returned relation must not necessarily be a singleton.  Also 
note  that  because  the  “tuple  version”  is  defined  in  terms  of  the  “relation  version”,  the  “tuple 
version” too returns a result that is guaranteed to be in (ITA1, ITA2, …, ITAn) PNF.

USING (ITA1, ITA2, …, ITAn) INTERSECT
First, we define a “USING (ITA1, ITA2, …, ITAn) INTERSECT” operator on two tuples.

For two tuples t1 and t2 that are not in the same {ITA1, ITA2, …, ITAn} equivalence class, or are not 
{ITA1, ITA2, …, ITAn} intersectable, the operator returns an empty relation.

For two tuples that are in the same {ITA1, ITA2, …, ITAn} equivalence class, and are {ITA1, ITA2, 
…, ITAn} intersectable,  the operator  returns a  singleton relation whose only tuple has  attribute 
values as follows :

• All attribute values other than (ITA1, ITA2, …, ITAn) are as in t1 and t2.

• Attribute values for (ITA1, ITA2, …, ITAn) are interval values with its ITAx (x=1..n) 
components as follows :
FROM MAX( t1.ITAx.FROM , t2.ITAx.FROM )
TO MIN( t1.ITAx.TO , t2.ITAx.TO )

Observe that since this “tuple version” returns either an empty relation or a singleton relation, the 
result is always, by definition, in (ITA1, ITA2, …, ITAn) PNF.

Then we can define a “USING (ITA1, ITA2, …, ITAn) INTERSECT” operator that operates on two 
relations.  The result of an invocation of this operator on two relations r1 and r2, is defined as the 
“USING (ITA1,  ITA2, …, ITAn) UNION” of all the relations obtained by invoking the formerly 
defined “USING (ITA1, ITA2, …, ITAn) INTERSECT” operator on each possible tuple pair t1 and t2, 
where t1 ∈ r1 and t2 ∈ r2.

Observe that since this “relation version” returns the result coming from a “USING (ITA1, ITA2, …, 
ITAn) UNION”, that result is guaranteed to be in (ITA1, ITA2, …, ITAn) PNF.

USING (ITA1, ITA2, …, ITAn) MINUS
This operator too can be defined in a “tuple version” (taking two tuples as arguments) and in a 
“relation version” (taking two relations as arguments).

The “tuple version”, with 'minuend' t1 and 'subtahend' t2, is defined to return a relation r as follows :

• If t1 and t2 are not in the same (ITA1, ITA2, …, ITAn) equivalence class, then r contains just t1

• If t1 and t2 are in the same (ITA1, ITA2, …, ITAn) equivalence class, then r is the relation 
satisfying (ITA1, ITA2, …, ITAn) PNF such that all its tuples have the same values as t1/t2 

for all of the attributes other than {ITA1, ITA2, …, ITAn}6, and furthermore

FORALL p(c1, c2, …, cn) : p COVBY r <===> p COVBY t1   AND   NOT(p COVBY t2)

Observe that the result is always guaranteed to be in (ITA1, ITA2, …, ITAn) PNF, and this is by 
definition, whichever of the two cases applies.

6 Guaranteeing thereby that r will consist of only one (ITA1, ITA2, …, ITAn) equivalence class
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Likewise, the “relation version”, taking 'minuend' r1 and 'subtahend' r2, is defined to return a relation 
r that satisfies (ITA1, ITA2, …, ITAn) PNF and furthermore :

• For all (ITA1, ITA2, …, ITAn) equivalence classes c1 in r1 that don't have a corresponding 
equivalence  class  in  r2,  r  contains  all  the  tuples  that  are  needed to cover  all  the  points 
covered by the tuples in c1, that is, there will be an equivalence class cr in r containing all the 
tuples that are the result of USING (ITA1, ITA2, …, ITAn) PACK (c1)78.

• and for all (ITA1, ITA2, …, ITAn) equivalence classes c1 in r1 that do have a corresponding 
equivalence  class  c2 in  r2,  r  will  have  an  (ITA1,  ITA2,  …,  ITAn)  equivalence  class  cr 

consisting of the set of tuples such that

FORALL p(c1, c2, …, cn) : p COVBY cr <===> p COVBY c1   AND   NOT(p COVBY c2)

Observe that here too, the result is guaranteed to be in (ITA1, ITA2, …, ITAn) PNF, by definition.

USING (ITA1, ITA2, …, ITAn) JOIN
A “USING  version”  of  JOIN  must  be  defined  much  along  the  same  lines  as  was  done  for 
INTERSECT.

First, we define a tuple version.  Let ta and tb be two tuples.  Let A be the set of attributes that are 
exclusive to ta, B be the set of attributes that are exclusive to tb, and C be the set of attributes that are 
common between ta and tb.  If the set {ITA1, ITA2, …, ITAn} is a subset of C9, then the USING 
(ITA1, ITA2, …, ITAn) JOIN of ta and tb is defined to return a relation that is either empty or a 
singleton.  It is a singleton only if both of the following are satisfied :

• Between ta and tb, the values for all attributes in C but not in {ITA1, ITA2, …, ITAn} are 
equal,

• Between ta and tb, all the values for attributes that are in {ITA1, ITA2, …, ITAn} OVERLAP.
For singleton relations, the contained result tuple tr has attribute values :

• same as in ta for the attributes in A, and same as in tb for the attributes in B,
• same as in ta or tb for the attributes that are in C but not in {ITA1, ITA2, …, ITAn},
• {ITA1, ITA2, …, ITAn} attributes get the value that is the interval intersection between the 

corresponding interval values from ta and tb, respectively.

The “relation version” for  USING (ITA1, ITA2, …, ITAn) JOIN can then simply be defined as it was 
done for USING (ITA1, ITA2, …, ITAn) INTERSECT : the USING (ITA1, ITA2, …, ITAn) JOIN of 
two relations r1 and r2, is defined as the “USING (ITA1, ITA2, …, ITAn) UNION” of all the relations 
obtained by invoking the formerly defined “USING (ITA1, ITA2, …, ITAn) JOIN” operator on each 
possible tuple pair t1 and t2, where t1 ∈ r1 and t2 ∈ r2.

Observe that the result  of invoking a USING (ITA1,  ITA2,  …, ITAn)  JOIN is  thus, once again, 
guaranteed to satisfy  (ITA1, ITA2, …, ITAn) PNF, both for the “tuple version” and the “relation 
version”.

7 Note that we cannot simply say “contains all the tuples in c1, because r1 is not guaranteed to satisfy (ITA1, ITA2, …, 
ITAn) PNF, but we do want the result to be.  So this invocation of PACK is needed.

8 Also note that the use of an equivalence class as the argument to PACK is not entirely invalid, seeing as such an 
equivalence class is itself also nothing more than a set of tuples.

9 It is an error if this condition is not satisfied.  Alternatively, the definition could be extended to include an additional 
(outermost) PACK() invocation to handle the non-common interval-typed attributes to be packed on, but this would 
obfuscate the real point being made here, so the issue is deliberately side-stepped here.
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USING (ITA1, ITA2, …, ITAn) GROUP
TDATRM defines a 'USING' version for GROUP.  The definition imposes the restriction that none 
of the packing attributes {ITA1, ITA2, …, ITAn} can be “moved inside an RVA by the grouping”, as 
this  would give  rise  to  a  compile  error  on the  outermost  PACK() invocation of  the  equivalent 
expression.  If this restriction were lifted, a solution would also have to be found for the unpleasant 
(and probably unwanted) side-effect that the interval-typed attribute values that are “moved inside 
an RVA”, would all be unit intervals (as a consequence of the implied UNPACK() operation that is  
carried out first).

We simply define 'R USING (ITA1, ITA2, …, ITAn) GROUP {GA1,GA2, …,GAn} AS RVA1' to be 
equivalent to precisely the expression :

• USING (ITA1, ITA2, …, ITAn) PACK ( R GROUP {GA1,GA2, …,GAn} AS RVA1 ) 10

That said, it must also be noted that the U_GROUP operator of TDATRM produces a result that 
seems inachievable without the ability to UNPACK().  With TDATRM's U_GROUP, the individual 
point values deriving from the UNPACK() operation, are a part of the “grouping key”, hence this 
influences the resulting RVA values in intricate ways : if we have a relvar R with value :

DURING  PERSON
[05-17) Hugh Darwen
[03-12) Chris Date
[07-21) Nikos Lorentzos

Then the  TDATRM expression 'USING (DURING)  ◀R GROUP {PERSON} AS PERSONS▶' 
would yield :

DURING  PERSONS
[03-05) {Chris Date}
[05-07) {Chris Date, Hugh Darwen}
[07-12) {Chris Date, Hugh Darwen, Nikos Lorentzos}
[12-17) {Hugh Darwen, Nikos Lorentzos}
[17-21) {Nikos Lorentzos}

This result is very hard to come by, definitionally, if you don't have UNPACK !  Without UNPACK, 
a “dedicated” operator definition would have to be spelled out that facilitates obtaining this result.

The least desirable form of this definition, the algorithmical one, might look somewhat like :

• Take a tuple pair t1,t2 from the relation
• Construct  tuples  t3,t4,t5 from  t1,t2 representing  the  “intersecting”  part  and  the  two 

“differential” parts from t1,t2 (discarding any “empty ranges” that might occur and doing the 
proper “unioning” for the tuple representing the “intersecting” part)

• replace t1,t2 with t3,t4,t5

• repeat recursively until no more t1,t2 pairs can be found that have a nonempty intersection.

This aspect and the definitional problem arising in our “nongranular” approach might be regarded 
as a “weakness”, but there is a “weakness” in either approach : if a type is non-granulated, then in 
the TDATRM approach the corresponding interval  type simply cannot  and does  not  exist,  and 
because of this, the TDATRM U_GROUP invocation that would produce such a result, is equally 
impossible.

10 Accepting the same (inevitable) limitation that {GA1,GA2, …,GAn} and {ITA1, ITA2, …, ITAn} must be disjoint.
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USING (ITA1, ITA2, …, ITAn) SUBSET/SUPERSET
In TDATRM, the 'USING' versions of the relational containment operators test relation values for 
“pointwise containment”, so to speak.  Again looking back at cases 1 and 2 of the “Interlude with 
visualizations” section, the following expressions would yield the indicated truth values :

• case1 SUBSETOF case2   =   FALSE
• case1 SUPERSETOF case2   =   FALSE
• USING (X,Y)  case1 SUBSETOF case2 ◀ ▶   =   TRUE
• USING (X,Y)  ◀ case1 SUPERSETOF case2 ▶   =   TRUE

In our approach, the latter two expressions would have to be written as the following equivalents :

• (case1 USING (X,Y) MINUS case2) = RELATION{}11

• (case2 USING (X,Y) MINUS case1) = RELATION{}

Or the USING (…) SUBSET/SUPERSET constructs could be defined as syntactic shorthands for 
such equivalent expressions.

USING (ITA1, ITA2, …, ITAn) UNGROUP
TDATRM defines a 'USING' version for UNGROUP12.  Its usefulness is fairly limited though, since 
the  packing  attribute  list  cannot  include  any  interval-typed  attribute  that  “originates  from  the 
ungrouping  operation”.   If  packing  is  to  be  done  on  an  attribute  that  “originates  from  the 
ungrouping operation, then the 'USING' shorthand from TDATRM is not usable, and the overall 
expression is to be written exactly as such :

• PACK ( R UNGROUP RVA1 ) ON (ITA1, ITA2, …, ITAn)

In our approach, we simply define 'USING (ITA1, ITA2, …, ITAn) UNGROUP ( R , RVA1 )' to be 
equivalent to precisely that expression :

• USING (ITA1, ITA2, …, ITAn) PACK ( UNGROUP ( R , RVA1 ) )

USING (ITA1, ITA2, …, ITAn) TCLOSE/DIVIDEBY
TDATRM does not define USING versions for these relational operators, and at least for TCLOSE 
the reason should be obvious.

The DIVIDEBY case, might be another matter though.  Relational division was invented to cater for 
any queries that include a universal quantification as a restricting predicate.  It is not unreasonable 
to imagine queries that include a predicate containing some kind of universal quantification over 
“points in time”, that are represented in the relations using interval-typed values.  “Get me all the 
players that were on the pitch throughout all the time that the match was being led by the substitute  
referee”,  or  some  such.   It  might  be  interesting  to  investigate  such  problems  in  more  detail, 
however, TDATRM hasn't done so, and neither do we.

USING (ITA1, ITA2, …, ITAn) RENAME/PROJECT
In TDATRM, the USING version for these operators amounts to nothing more than just a nested 
invocation of PACK on an invocation of the operator at hand :

• USING (ITA1, ITA2, …, ITAn) PACK (RENAME/PROJECT ( … , … ) )

11 Actually, the literal specification of the empty relation here is invalid because it lacks a specification of a heading.  
We've omitted it here for convenience and because it does not materially affect the basic idea.

12 But admits at the very start of the section where it defines this operator that the primary reason is “completeness”.
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With RENAME, in  either  approach,  attention  must  be  paid  to  the  case  where  one  of  the  ITA 
attributes also appears in the RENAME list.  Many would yield a syntactically invalid expression, 
but some intricate cases are possible, e.g.

USING (ITA1 ITA2)  ◀ R RENAME ITA1 AS ITA2, ITA2 AS ITA1 ▶
With PROJECT, in either approach, it cannot be the case that any one of the ITA attributes gets 
projected away.

USING (ITA1, ITA2, …, ITAn) RESTRICT/EXTEND
The  TDATRM  version  of  these  operators,  which  includes  an  implicit  UNPACK  of  the 
restricted/extended  expression,  has  a  peculiar  side-effect  as  a  consequence  of  this  implicit 
UNPACK.  If the restrict expression (or one of the extend expressions) include expressions that 
denote some function of one of the ITA intervals, (e.g. LENGTH(ITAx), the number of points in an 
interval  value  that  is  being  unpacked/packed  on),  then  because  of  the  UNPACK,  under  the 
TDATRM approach such expressions will only get to see unit intervals, and not the interval values 
that actually appear in the relation being U_restricted/U_extended.  This causes results that might 
be perceived as counterintuitive, such as

USING IV  RESTRICT ◀ RELATION {TUPLE{IV 5-8}} WHERE IV OVERLAPS 7-10 ▶
RELATION {TUPLE{IV 7-8}}

USING IV  ◀ EXTEND RELATION {TUPLE{IV 5-8}} ADD LENGTH(IV) AS LEN ▶
RELATION {TUPLE{IV 5-8 LEN 1}}

USING IV  ◀ RELATION {TUPLE{IV 5-8}} WHERE LENGTH(IV) > 1 ▶
RELATION {}

In such cases, the USING shorthand as per TDATRM is unusable and the user is forced to explicitly 
write out the nesting of the expressions himself, e.g. :

(PACK (RELATION {TUPLE{IV 5-8}TUPLE{IV 7-18}}) ON IV) WHERE LENGTH(IV) > 1
RELATION {TUPLE{IV 5-18}}

In our  approach without  UNPACK, we achieve  exactly that  by simply defining a  “USING … 
RESTRICT/EXTEND” to be the obvious sequence/nesting of the RESTRICT/EXTEND at hand 
within an invocation of USING … PACK :

• USING (ITA1, ITA2, …, ITAn) PACK (RESTRICT/EXTEND ( … , … ) )

USING (ITA1, ITA2, …, ITAn) SUMMARIZE
Two remarks need to be made in connection with defining a USING version of SUMMARIZE.

The  first  is  a  repetition  of  the  remark  that  applies  also  to  RESTRICT and  EXTEND.   With 
SUMMARIZE,  the  summary  expressions  can  contain  references  to  one  of  the  ITA attributes. 
Because of that, and TDATRM's implicit UNPACK(), the summary expressions will “get to see” 
unit interval values only, and that may or may not influence the result in intricate ways, meaning 
there might be a serious pitfall to stumble into for the user.

The second is a repetition of the final remark that was made in the discussion of GROUP.  Because  
just as with GROUP, SUMMARIZE … BY … and SUMMARIZE … PER … carry a notion of  
“tuple grouping” of some sort, it might be the case that therefore certain summarizations are in fact 
impossible to achieve unless the underlying ordered type is ordinal, or the “non-granular” version of 
U_GROUP is effectively defined as roughly sketched in the relevant section on USING … GROUP.
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U_constraints
TDATRM also pays attention to the support of uniqueness constraints that include interval-typed 
attributes, and on inclusion dependencies between relvars (“foreign key constraints”) that include 
such attributes.  As was the case with some of the previously discussed relational algebra operators  
such as equality and JOIN, we need to be able to distinguish between a “pointwise” and an “as-is” 
treatment of the interval values appearing in such constraints.

U_keys
Let R1 be a relvar (k1,k2,d1,d2) where {k1,k2} is the key, k2 is interval-typed but k1 is not, and {d1,d2} 
non-key attributes.

TDATRM achieves its support for “keys in pointwise modus” using what it calls “U_keys”, denoted 
by the syntactic construct 'WHEN UNPACKED ON {…} THEN KEY {…}'.  While the (usual)  
syntactic  declaration  'KEY {k1,k2}'  would  allow  different-but-overlapping  k2 interval  values  in 
distinct tuples whose key attribute values are otherwise completely equal, the WHEN UNPACKED 
ON {k2} THEN KEY {k1,k2} variant wouldn't.  The relation value { {"A", [4-8], 1, 7} {"A", [5-9], 
1, 8} } would satisfy the “as-is” key, but wouldn't satisfy the “WHEN UNPACKED” key, because 
there are two distinct tuples both covering the k2 point values 5,6,7 and 8.  Modulo any non-interval 
attributes that are also part of the key, “WHEN UNPACKED” keys ensure that each combination of 
point values in the (attributes of the) key, is associated with exactly one combination of non-key 
attribute values.

Note that the number of distinct possible WHEN UNPACKED ON … specifications is 2n 13, with n 
the  number  of  interval-typed  attributes  in  the  relvar.   This  includes  the  “degenerate”  WHEN 
UNPACKED ON {}, which is equivalent to the “regular” specification for a “plain key”, the “as-is” 
modus of treatment, that is.

Since we're proposing an approach without UNPACK, how can something equivalent be achieved ? 
Well, all we have to do is observe the equivalent longhand database constraint declaration for the 
commonly known shorthand (in our example) 'KEY {k1, k2}'.  This longhand can be constructed as 
follows :

• RENAME all the attributes that are not in the key, to a name not appearing in the relvar. 
Say, d1 to e1 and d2 to e2.

• JOIN the result of that RENAME to the relvar itself (this is thus a JOIN over the full key).
• If the key values are really unique, then this JOIN will have the property that in all its result 

tuples, the d1/e1, d2/e2, … values will be equal, pairwise.
• RESTRICT the result of this JOIN to the tuples for which any of the d1/e1, d2/e2, … values 

are not equal, pairwise.
• A relation satsifying the key will thus produce an empty relation after this fourth step, and a 

non-empty result  here  can  only come from a  relation  that  violates  the  key.   Hence  an 
equivalent database constraint expression for enforcing the very same key is :

IS_EMPTY( ( <relvar> JOIN (<relvar> RENAME …) ) WHERE … )
The “UNPACK-less” equivalent of TDATRM's 'WHEN UNPACKED ON … THEN …', should 
now be obvious : just replace the JOIN by the appropriate USING(…) JOIN, as previously defined.

13 But also note that the number of keys is not limited to this number.  There can be >1 key for the same WHEN  
UNPACKED ON … spec !
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Of course none of this is to say that this is also the way in which these USING(…) keys should be 
defined by the user (the surface language is at complete freedom to provide whatever shorthands are 
useful and appropriate), nor that this is also the way in which the enforcement algorithm must be 
implemented.

As for the declaration in the language, the “WHEN UNPACKED ON” syntax can be used as such, 
for example14.  As for the enforcement algorithm, the one for an “as-is” key is likely to boil down to  
a simple search for

<relvar> WHERE k1 = k1n AND k2 = k2n AND (d1 <> d1n OR d2 <> d2n)

and for a “pointwise” key it is likely to boil down to a search for

<relvar> WHERE k1 = k1n AND k2 OVERLAPS k2n AND (d1 <> d1n OR d2 <> d2n)15.

These implementation strategies apply completely unaltered to the non-granular approach as well.

U_foreign keys
As  for  U_foreign  keys,  it  should  be  sufficient  to  note  that  an  equivalent  longhand  database 
constraint expression for these is

IS_EMPTY ( <referencingrelvar> SEMIMINUS16

( ( <referencedrelvar> RENAME … ) {fk1, fk2, …, fkn} ) )
The RENAME is possibly needed to ensure matching between referencing/referenced attributes if 
their  names are different  between referencing and referenced relvar,  the projection is  needed if 
attributes in the referenced relvar match attributes in the referencing relvar but are not part of the 
referenced attribute set.

“Pointwise” foreign keys in our nongranular approach now amounts to nothing more than replacing 
the “plain” SEMIMINUS in there by the appropriate USING(…) SEMIMINUS.

As with unique keys, syntactic shorthands could be designed in the language to declare these things 
conveniently, e.g.

<referencingrelvar> {fk1, fk2, ..., fkn} REFERENCES <referencedrelvar> [{rfk1, rfk2, ..., rfkn}] 
[WITH {ifk1, ifk2, ..., ifkn} POINTWISE]

14 Though retaining the use of the keyword 'UNPACKED' would of course admittedly be seriously odd for interval 
types that have no notion of UNPACK.

15 Both these examples are slightly simplified to disregard the scenario of set-level inserts, when violating tuples are  
both in the set being inserted.

16 NOT MATCHING in TDATRM
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Assessing (ITA1, ITA2, …, ITAn) PNF given two tuples
Determining whether or not two distinct tuples satisfy (ITA1, ITA2, …, ITAn) PNF can be done with 
the following algorithm :
boolean isPNF(t1,t2,dimensions) {

// parameters : distinct tuples t1 and t2,
   //                belonging to the same (dimensions) equivalence class

//              a list of dimensions
// the pseudocode below “plays loosely”, somewhat, with the dimensions.
//   the dimensions are used in various ways which might not be directly
//       available in any given real programming language :

  //   (a) as an argument to obtain attribute values from t1/t2,
//   (b) in magnitude comparisons relating to their relative position in the
//       dimensions list
boolean allDimensionsOverlap = true;
boolean dimensionsRequiringSubsequentNonOverlap = false;
int firstUnequalDimension = Integer.MAX_VALUE;
for each dimension in dimensions {

intervalValue1 = t1.dimension;
intervalValue2 = t2.dimension;
if (intervalValue1 <> intervalValue2 && firstUnequalDimension > dimension) {

firstUnequalDimension = dimension;
}
boolean thisDimensionOverlaps = intervalValue1 OVERLAPS intervalValue2;
allDimensionsOverlap &= thisDimensionOverlaps;
dimensionsRequiringSubsequentNonOverlap &= thisDimensionOverlaps;

if (firstUnequalDimension == dimension) {
// if the firstUnequalDimension OVERLAPS, then a subsequent non-overlap is
//   still needed in order to make allDimensionsOverlap false.  So we don't
//   need to bother with that case here
// if the firstUnequalDimension values are completely disjoint (AFTER or BEFORE)
//   then alldimensionsOverlap is already made false, and we can in fact already
//   leave the loop here.  If the number of dimensions gets to be big,
//   it's probably a good idea to   return true;   immediately here.
// if the firstUnequalDimension MEETS, then a non-overlap in one of the
//   subsequent dimensions is still required
if (intervalValue1 MEETS intervalValue2) {

dimensionsRequiringSubsequentNonOverlap = true;
}

}
}

return !allDimensionsOverlap & !dimensionsRequiringSubsequentNonOverlap;
}

To be noted : this algorithm does not cover the case of empty packing lists (this case contradicts the  
precondition of the tuples being both distinct and belonging to the same {} equivalence class).

Variations on the theme can be, e.g., the algorithm not returning a simple boolean, but instead a 
value of some enumeration enumerating the possible PNF states and causes of violation :
PNFEnum assessPNF(t1,t2,dimensions) {

…
return computePNFState(allDimensionsOverlap,dimensionsRequiringSubsequentNonOverlap);

}
PNFEnum enum {

Satisfied, Intersectable, Rearrangeable;
}

(and  where  computePNFState()  is  the  obvious  factory  method  for  computing  the  appropriate 
PNFEnum value from the given booleans).
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Repairing violations of (ITA1, ITA2, …, ITAn) PNF
One obvious question that now comes about, is whether if in a relation we find a tuple pair that does 
not satisfy some PNF, can we re-arrange or replace those tuples by other ones, which convey the 
same information (meaning they cover the same set of points in their equivalence class), but which,  
unlike the original two tuples, are indeed (all of them pairwise) in that PNF ?  (The name we used 
for the state of being “re-arrangeable” suggests as much, of course.)

The definition of being in (ITA1, ITA2, …, ITAn) PNF said that it required the tuples t1 and t2
17 to be 

“neither intersectable nor rearrangeable”.  Hence violating the condition for being in (ITA1, ITA2, 
…, ITAn) PNF is equivalent to being “either intersectable or rearrangeable”.  And it was already 
observed that “intersectable precludes rearrangeable” (and of course vice versa).  Hence there are 
two separate cases of “violation” that we can address independently.

It will be clear that if we find two tuples to be in violation of (ITA1, ITA2, …, ITAn) PNF, there is 
nothing we can do about that by manipulating attribute values in them outside of the set of packing 
attributes {ITA1, ITA2, …, ITAn} (“moving a tuple to another equivalence class”, loosely speaking). 
Not if we want the tuples to keep conveying the same information set.   Hence any differences  
between the “original” tuples and the “replacing” tuples will only be in the {ITA1, ITA2, …, ITAn} 
attribute values.

T1 and t2 are {ITA1, ITA2, …, ITAn} intersectable
Informally, this means that there is some nonemtpy set of points (c1, c2, …, cn) in n-dimensional 
space that “are part of both the box denoted by t1 and the box denoted by t2” (that nonempty set of 
points is itself a box).

The repair tactic here is fairly obvious : 

• Compute the “USING (ITA1, ITA2, …, ITAn) intersection” between t1 and t2.  The result is a 
(singleton relation with a) tuple t3.

• Compute the “USING (ITA1, ITA2, …, ITAn) difference” between t1 (or t2)18 and t3.  The 
result is a set of tuples rts (replacing tuple set).

The set of tuples that can replace t1 and t2 is the union of :

• all the tuples in rts
• t2 (or t1, if the alternative choice for t2 was made in step 2)

This replacing set of tuples satisfies the rule of “not having any pair of tuples that are intersectable”. 
This  property  follows  from  the  definition  of  the  “USING  (ITA1,  ITA2,  …,  ITAn)  difference” 
operator.  The set of tuples resulting from this repair can, however, still have violations of (ITA1, 
ITA2, …, ITAn) PNF on account of some tuple pairs still being rearrangeable.

The computation of rts might be a comparatively expensive operation, since it involves invoking the 
“USING (ITA1,  ITA2,  …, ITAn)  difference” operator.   In the case when only one dimension is 
involved in  the  packing attribute  list  (i.e.  t1 and  t2 are  {ITA1} intersectable,  meaning the  ITA1 

attribute values OVERLAP), the repair operation can be simplified to computing just the {ITA 1} 
UNION of  t1 and t2.

17 The assumption still holds that those tuples are in the same equivalence class, which is also obvious from the fact  
that we are talking of pairs of tuples that are in violation of a PNF, and such violation can only be caused by tuples  
in the same equivalence class.

18 As the illustrations to follow will show, the choice made here can have a rather drastic effect on the overall time and 
work needed to complete the repair.  However, no effort is made here to explore the possibilities of making the 
optimal choice at this point of the process.
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Worked-out examples for “repairing” intersectable tuples
Two examples are provided, both in 2D space for purposes of visualization.  The examples will 
handle (X,Y) PNF in particular, but the difference with (Y,X) is not that great.

Example 1
+--------------+          X     Y
!              !        ----- -----
!      t1      !         1-11  1-12   (t1)
!              !         4- 8  4- 7   (t2)
!    +----+    !        
!    ! t2 !    !
!    +----+    !
!              !
+--------------+
The “USING (ITA1, ITA2, …, ITAn) intersection” between t1 and t2 is t2 itself.  The resulting tuple t3 

is thus equal to t2.

The next step is to compute the “USING (ITA1, ITA2, …, ITAn) difference” between t1 and t3.  This 
results in a four-tuple relation (subtrahend tuple t2 not displayed) :
+--------------+          X     Y     
!              !        ----- -----
!      t5      !         1-11  1- 4
!              !         1-11  7-12
+----+----+----+         1- 4  4- 7
! t6 !    ! t7 !         8-11  4- 7
+----+----+----+
!      t4      !
+--------------+
Unioning this  (straightfoward union,  not the using version)  with the tuple from the subtrahend 
relation (t2), will give a case for “repairing” tuple pairs that are rearrangeable.

Example 2
In our second example, we simply switch minuend and subtrahend of the first example :
+--------------+          X     Y   
!              !        ----- -----
!      t2      !         4- 8  4- 7   (t1)
!              !         1-11  1-12   (t2)
!    +----+    !
!    ! t1 !    !
!    +----+    !
!              !
+--------------+
The “USING (ITA1, ITA2, …, ITAn) intersection” between t1 and t2 is t1 itself.  The resulting tuple t3 

is thus equal to t1.

The next step is to compute the “USING (ITA1, ITA2, …, ITAn) difference” between t1 and t1.  This 
results  in  the  empty  relation.   Unioning  this  with  the  subtrahend  tuple  (t2),  just  gives  us  the 
subtrahend itself, and that's already the final result of the overall repair.
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T1 and t2 are (ITA1, ITA2, …, ITAn) rearrangeable
The repair  tactic for this case is more complex.  The formal properties for being rearrangeable 
imply that there is some dimension m for which t1.ITAm MEETS t2.ITAm.  They also imply that for 
all  dimensions  e,e<m,  t1.ITAe EQUALS  t2.ITAe,  and  that  for  all  dimensions  o,o>m,  t1.ITAo 

OVERLAPS t2.ITAo.

If m=n (no o dimensions – and note that this is by definition the case if n=1, i.e. only a single  
packing attribute is involved), then t1 and t2 can be replaced by the single tuple that is the result of 
computing the USING (ITA1, ITA2, …, ITAn) UNION of t1 and t2.  This is a tuple that has all but the 
ITAn attribute values taken from t1 (or t2, they're equal anyway), and as ITAn attribute value the 
range that has the minimum of the two lower bounds, and the maximum of the two upper bounds. 
Observe that the replacement being a singleton, this replacement is by definition one that satisfies 
(ITA1, ITA2, …, ITAn) PNF.

If m<n, then :

• For all o dimensions, compute the interval value that is the intersection between the two 
overlapping interval values t1.ITAo and t2.ITAo.  This yields (n-m) interval values ivco.

• Build a tuple value t1co in which all attribute values except the o dimensions are equal to t1's 
attribute values, and in which the attribute values for the o dimensions are the iv co values 
from step 1.  Build a tuple t2co in exactly the same way, but using t2.

• Compute the USING (ITA1, ITA2, …, ITAn) MINUS between t1 and t1co.  This is a set of 
tuples rts1.  Compute the USING (ITA1, ITA2, …, ITAn) MINUS between t2 and t2co.  This is 
a set of tuples rts2.

• The tuples t1co and t2co are mergeable.  Proof: all attribute values other than  (ITA1, ITA2, …, 
ITAn) are equal, because the tuples are in the same (ITA1, ITA2, …, ITAn) equivalence class. 
All attribute values for the e dimensions are also equal, because that is a required condition 
for being rearrangeable.  All the attribute values for the o dimensions are also equal, because 
that's how the tuples were built.  Hence there is exactly one attribute value between t1 co and 
t2co that differs, and that is the attribute value for the m dimension, and of that one we know 
that the values MEET.

The replacing set of tuples for t1 and t2, then, is the union of :

• all the tuples in rts1

• all the tuples in rts2

• the USING (ITA1, ITA2, …, ITAn) UNION of t1co and t2co (call this rtco).

We now show that the result of this procedure indeed satisfies (ITA1, ITA2, …, ITAn) PNF.

• rts1 by itself satisfies the PNF, being the result of a USING (ITA1, ITA2, …, ITAn) MINUS.
• rts2 by itself satisfies the PNF for the same reason.
• Likewise for rtco, observing that it must necessarily be a singleton.
• No tuple pair t1'/t2' with t1' ∈ rts1 and t2' ∈ rts2 is (ITA1, ITA2, …, ITAn) intersectable.  Proof : 

t1' and t2' cover only points from the original tuples t1 and t2, respectively.  These were known 
to be disjoint (meeting) in the m dimension, hence tuples t1' and t2' can still possibly have 
MEETing interval values for the m dimension, but never an OVERLAPping one.
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• No tuple pair t1'/t2' with t1' ∈ rts1 and t2' ∈ rts2 is (ITA1, ITA2, …, ITAn) rearrangeable.  Proof : 
from the previous bullet, we know that between t1' and t2', the ITAm value can still possibly 
MEET, but never OVERLAP (meaning those values could also be AFTER or BEFORE one 
another, in the Allen sense).  If they are effectively AFTER or BEFORE one another, then 
these tuples will not be rearrangeable because of that.  Remains to be considered, therefore, 
the case when the ITAm values do MEET between t1' and t2'.  For these two tuples to be 
rearrangeable, it would take all ITAe (e<m) attribute values to be equal, and all ITAo (o>m) 
values to overlap.  But this is impossible, because all the points covered by the resulting 
range values have been “moved into rtco”, so to speak.  It is therefore impossible for rts1 as 
well as rts2 to cover any such point.  Ergo, we can conclude that t1' and t2' are not (ITA1, ITA2, 
…, ITAn) rearrangeable.

• Rtco is not (ITA1, ITA2, …, ITAn) intersectable with any tuple in rts1 or rts2.  This is because 
rts1 covers only points not covered by t1co (by definition of MINUS) and also not covered by 
t2co (because t1 and t2 were known to be not interesectable (hence the boxes “disjoint”) as the 
very precondition for this particular repair case), and a similar reasoning applies to rts2.

• Rtco is not (ITA1, ITA2, …, ITAn) rearrangeable with any tuple in rts1/rts2.  This can be shown 
by observing two phenomena : 

1. Looking at the ITAm value in rtco, we can observe that this value will overlap with, but 
never be equal to, the ITAm value for any tuple in rts1 and rts2.  This is because the m 
dimension is exactly where t1co and t2co were mergeable, and hence the ITAm value in rtco 

will cover the entire range from the lowest of the lower bounds for m in t1/t2, to the 
highest of the upper bounds for m in t1/t2.  Meaning that the m dimension value of any 
tuple in rts1/rts2 will be properly contained in the value for the m dimension in rtco, and 
thus this means indeed that those values overlap, but certainly aren't equal.

2. m<n.  From this, it follows that the ITAn dimension had an overlap between t1/t2.  (There 
can be more such dimensions, but the point is there is at least one.)  Can it still be the 
case that for any tuple in rts1/rts2, all the original 'o' dimensions overlap with rtco ?  No, it 
can't.  For the original 'e' dimensions (ITA1, ITA2, …, ITAm-1), the values in t1, t2 and rtco 

are all equal.  Hence the range values in any tuple in rts1/rts2 can only be sub-ranges (not 
necessarily proper) of the ones in rtco.  The same holds for the original 'm' dimension, 
because the range value there in rtco is the union of those in t1/t2.  So all the original 'e' 
dimension and the 'm' dimension have only sub-ranges appearing as values in rts1/rts2. 
But since we already know that no tuple in rts1/rts2 is intersectable with rtco, there must 
therefore be at least one dimension that does not overlap between a tuple in them and 
rtco.  And since we have established that such a dimension cannot possibly be one of the 
original 'e'  or 'm' dimensions, it must therefore be one of the original 'o' dimensions. 
Combined with point 1, this establishes that between rtco and any tuple in rts1/rts2, there 
must  be some dimension that  does  not  overlap,  after  one that  does  (the original  'm' 
dimension).  This makes it impossible for any such tuple pair to still be rearrangeable.

All these observations taken together constitute proof that no pair of distinct tuples taken from any 
of the three components of the overall replacing tuple set (the result of the three-way UNION) 
violates the PNF, ergo the UNION satisfies the PNF.
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Worked-out examples for “repairing” rearrangeable tuples
The next few sections are intended to illustrate how the foregoing algorithm indeed addresses all  
possible cases of PNF violations.  We'll start with as first example, case 4 from the “case studies 
with visualizations”.   Each subsequent  example will  be the result  that  was the outcome of the 
previous  one.   The  examples  taken  individually  illustrate  how  the  cases  of  mergeable  resp. 
rearrangeable tuple pairs are handled.  The complete chaining together of the examples serves the 
purpose of illustrating how this same procedure, applied iteratively, can give us an algorithm for 
doing the PACK() operation on a complete relation.  As in the worked-out examples for “repairing” 
intersectable tuples, we'll be assuming the desired target PNF is (X,Y).

Example 1 (rearrangeable tuples)
+----+---------+          X     Y
!    !         !        ----- -----
!    !   t5    !         1- 8  1- 4   (t1)
! t2 !         !         1- 4  4-12   (t2)
!    +----+----+         4- 8  4- 7   (t3)
!    ! t3 !    !         8-11  1- 7   (t4)
+----+----+ t4 !         4-11  7-12   (t5)
!   t1    !    !
+---------+----+
As previously indicated in the “case studies with visualizations”, the tuple pair t2/t3 is not in (X,Y) 
PNF19.  The repair procedure replaces this tuple pair as follows :

The meeting dimension is X, which is not the last, hence the procedure with the four bullet points is 
applied.

The first bullet point computes the “overlap” in the Y dimension, which is 4-7.

The second bullet point uses this value to create the tuples 1-4,4-7 and 4-8,4-7.

The third bullet “subtracts” these two tuples from the original tuples, respectively, yielding a 
singleton relation 1-4,7-12 and an empty relation, respectively.

The fourth bullet point computes the union of 1-4,4-7 and 4-8,4-7, yielding 1-8,4-7.

Thus the replacing tuple set for  t2/t3 contains two tuples :  1-4,7-12  and  1-8,4-7, yielding overall :

Example 2 (mergeable tuples in Y)
+----+---------+          X     Y
!    !         !        ----- -----
!    !   t5    !         1- 8  1- 4   (t1)
! t6 !         !         1- 4  7-12   (t6)
+----+----+----+         1- 8  4- 7   (t7)
!    t7   !    !         8-11  1- 7   (t4)
+---------+ t4 !         4-11  7-12   (t5)
!   t1    !    !
+---------+----+
The tuple pair t1/t7 is not in (X,Y) PNF.  The repair procedure replaces this tuple pair as follows :

The meeting dimension is Y, which is indeed the last,  hence these tuples are replaced with the 
USING (X,Y) UNION of the two, which is 1-8,1-7, yielding overall :

19 Note that the choice for t2/t3 is essentially arbitrary.  Other pairs of rearrangeable tuples are t4/t3, t2/t5 and t4/t1.
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Example 3 (mergeable tuples in X)
+----+---------+          X     Y
!    !         !        ----- -----
!    !   t5    !         1- 8  1- 7   (t8)
! t6 !         !         1- 4  7-12   (t6)
+----+----+----+         8-11  1- 7   (t4)
!         !    !         4-11  7-12   (t5)
!    t8   ! t4 !
!         !    !
+---------+----+
The tuple pair t4/t8 is not in (X,Y) PNF.  The repair procedure replaces this tuple pair as follows :

The meeting dimension is X, which is not the last, hence the procedure with the four bullet points is 
applied.

The first bullet point computes the “overlap” in the Y dimension, which is 1-7.

The second bullet point uses this value to create the tuples 1-8,1-7 and 8-11,1-7.  Observe that these 
tuples are both identical to the original tuples.

The third bullet “subtracts” these two tuples from the original tuples, respectively, yielding an 
empty relation twice.

The fourth bullet point computes the union of 1-8,1-7 and 8-11,1-7, yielding 1-11,1-7.

The overall result after this step looks like :
+----+---------+          X     Y
!    !         !        ----- -----
!    !   t5    !         1-11  1- 7   (t9)
! t6 !         !         1- 4  7-12   (t6)
+----+---------+         4-11  7-12   (t5)
!              !
!      t9      !
!              !
+--------------+

An algorithm for re-packing relations
An algorithm for computing the unique (ITA1, ITA2, …, ITAn) PNF form of any relation r would 
then consist of the following steps :

• Partition the relation r in its (ITA1, ITA2, …, ITAn) equivalence classes
• For each equivalence class c, consider all possible pairs of distinct tuples in it and assess 

whether the tuple pair satisfies  (ITA1, ITA2, …, ITAn) PNF or not, and if not, assess the 
reason why (they must be either {ITA1, ITA2, …, ITAn} intersectable or (ITA1, ITA2, …, 
ITAn) rearrangeable – with the latter including the case of mergeable).

• If the tuple pair does not satisfy (ITA1, ITA2, …, ITAn) PNF, apply the appropriate repair 
tactic, remove the two tuples from c and add the result from applying the repair tactic to c.

• Tuples newly added to c in this fashion give rise to a new round of considering tuples from c 
pairwise.  This is repeated iteratively until no more repairs are needed.

27/36



A proof is required that this algorithm halts.  i.e. that after several rounds of applying repair tactic, 
we cannot ever end up in a situation where the result of the repair tactic creates new PNF violations 
with some other tuple in the equivalence class, and repairing that gives new violations with tuples 
that were the result from the first repair tactic, and so on ad infinitum.

Possibly related to this, another proof is needed that the order in which tuple pairs are considered, is  
immaterial.  I.e. that the “choice points” as illustrated in example 1 (where we had 4 tuple pairs that 
were all rearrangeable) does not materially affect the final outcome.

If all those proofs are delivered, then the “until no more repairs are needed” will guarantee us that 
the resulting relation satisfies the concerned PNF (because that's how PNF was initially defined – 
see “The definition we're aiming to achieve”), that the algorithm is a suitable one to implement 
PACK(),  and  the  uniqueness  proof  will  then  guarantee  us  additionally  that  the  algorithm  is 
deterministic.

A last  issue  to  be  addressed  is  the  following  “recursive  dependency”  between  the  algorithms 
suggested here :

• The suggested algorithm for PACK() depends on the repair tactic
• Some of the repair tactics depend on invocations of USING (…) MINUS
• USING (…) MINUS is required to return a relation that satisfies the PNF
• And might therefore itself be dependent on PACK() …

This is only a very basic and crude description of the algorithm, whose time complexity, in the form 
as stated, is roughly20 O(n^2) in the number of tuples per equivalence class.  Significant refinements 
and  improvements  may be  possible  and  prove  effective,  but  these  are  not  investigated  in  this 
document.

Possible further generalizations to interval types
In closed-open notation, it is sometimes impossible to denote an interval value that consists of a 
single point.  Interval values such as [5-5] would have to be denoted as [5-6), assuming 6 is the 
value that comes “NEXT()” after the value 5.  But this is impossible precisely in the cases that we 
wanted to address in this document, i.e. when there is no NEXT().

The next few sections present a possible way to address this problem, by a further generalization to 
some of our preliminary definitions.

Interval types & values
The representation of interval values so far, consisted of two components, FROM and TO, with the 
FROM bound  being  implicitly  considered  as  being  included  in  the  range,  and  the  TO bound 
implicitly considered as excluded.  The generalization is to provide 2 additional components that 
explicitly specify the inclusion or exclusion of each bound, thus giving rise to a possrep with 4 
components :

• The components FROM and TO as before,
• A component FINCL, a boolean value that is  true if the FROM bound is included in the 

range, and false otherwise,
• A component TINCL, a boolean value that is true if the TO bound is included in the range, 

and false otherwise.

20 Additional time complexity obviously derives from the number of times repair tactics have to be applied, as this 
effectively increases the total number of tuple pairs that are to be ultimately considered, overall.
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In  order  to  prevent  “empty intervals”,  a  type  constraint  might  have  to  be  imposed preventing 
interval  values  whose  FROM  and  TO  components  are  equal,  and  whose  FINCL and  TINCL 
components are not both true.

OVERLAPS
The expression 'i1 OVERLAPS i2', an invocation of the operator OVERLAPS(it,it), where i1 and i2 

are expressions denoting interval values of the same interval type it, is defined to be equivalent to 
the expression

(i1.FROM < i2.TO OR (i1.FROM = i2.TO AND i1.FINCL=true AND i2.TINCL=true ) )
AND

(i2.FROM < i1.TO OR (i2.FROM = i1.TO AND i2.FINCL=true  AND i1.TINCL=true ) )

MEETS
The expression  'i1 MEETS i2',  an  invocation  of  the  operator  MEETS(it,it),  where  i1 and  i2 are 
expressions denoting interval values of the same interval type it, is defined to be equivalent to the 
expression

(i1.FROM = i2.TO AND i1.FINCL <> i2.TINCL)
OR

(i2.FROM = i1.TO AND i2.FINCL <> i1.TINCL)

Covered points
The definitions used for a “box” must be refined to cater for the inclusion of the bounds, which is 
now variable.  We say the “box” for this tuple is the solid body in n-dimensional space consisting of 
all the points (c1, c2, …, cn) such that :

• iv1.FROM < c1 OR (iv1.FROM = c1 AND iv1.FINCL)
• c1 < iv1.TO OR (c1 = iv1.TO AND iv1.TINCL)
• iv2.FROM < c2 OR (iv2.FROM = c2 AND iv2.FINCL)
• c2 < iv2.TO OR (c2 = iv2.TO AND iv2.TINCL)
• …
• ivn.FROM < cn OR (ivn.FROM = cn AND ivn.FINCL)
• cn < ivn.TO OR (cn = ivn.TO AND ivn.TINCL)

This definition was used in the “no finite subdivision of a box can satisfy PNF” proof.  The proof  
needs to be revisited in light of this refined definition.

Consequences on our definition for PNF
Since the definition for packed normal form depends exclusively on [definitions for] OVERLAPS 
and MEETS, the two revised definitions just given for OVERLAPS and MEETS, suffice to provide 
a  way  for  defining  packed  normal  form  of  relations  that  have  interval  values  with  explicit 
components indicating the inclusion-or-not of each boundary value of the range.

The definitions of the USING (ITA1, ITA2, …, ITAn) operators
We discuss  here  the impact  on the definitions  we gave for  the  USING (ITA1,  ITA2,  …, ITAn) 
operators, of replacing the concept of intervals with 2-component possreps (implicitly assumed to 
signify closed-open) with that of intervals with 4-component possreps.
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PACK
The earlier definition of PACK was defined in terms of PNF.  This definition has already been 
revised such as to cater for our 4-component possrep, no revision is needed to the existing definition 
of USING (ITA1, ITA2, …, ITAn) PACK().

EQUALS
The earlier definition of EQUALS was defined in terms of PACK.  This definition has already been 
revised such as to cater for our 4-component possrep, no revision is needed to the existing definition 
of USING (ITA1, ITA2, …, ITAn) EQUALS().

UNION
The earlier definition of UNION was defined in terms of PACK.  This definition has already been 
revised such as to cater for our 4-component possrep, no revision is needed to the existing definition 
of USING (ITA1, ITA2, …, ITAn) UNION(), both for the “relation version” as well as for the “tuple 
version”.

MINUS
The earlier definition of MINUS was defined in terms of COVBY and PACK.  These definitions 
have both been revised such as to cater for our 4-component possrep, no revision is needed to the 
existing definition of USING (ITA1, ITA2, …, ITAn) MINUS(), both for the “relation version” as 
well as for the “tuple version”.

INTERSECT
The “USING (ITA1, ITA2, …, ITAn) INTERSECT” operator that operates on two tuples, must be 
refined (refinements are shown in blue) as follows, in order to cater for the extra 2 components in 
the 4-component approach for interval values :

For two tuples t1 and t2 that are not in the same {ITA1, ITA2, …, ITAn} equivalence class, or are not 
{ITA1, ITA2, …, ITAn} intersectable, the operator returns an empty relation.

For two tuples that are in the same {ITA1, ITA2, …, ITAn} equivalence class, and are {ITA1, ITA2, 
…, ITAn} intersectable, the operator returns a singleton relation in which the only tuple has attribute 
values as follows :

• All attribute values other than (ITA1, ITA2, …, ITAn) are as in t1 and t2.
• Attribute values for (ITA1, ITA2, …, ITAn) are interval values with its ITAx (x=1..n) 

components as follows :
FROM MAX( t1.ITAx.FROM , t2.ITAx.FROM )
TO MIN( t1.ITAx.TO , t2.ITAx.TO )
FINCL CASE t1.ITAx.FROM < t2.ITAx.FROM : t2.ITAx.FINCL

CASE t1.ITAx.FROM > t2.ITAx.FROM : t1.ITAx.FINCL
CASE t1.ITAx.FROM = t2.ITAx.FROM : AND(t1.ITAx.FINCL,t2.ITAx.FINCL)

TINCL CASE t1.ITAx.TO < t2.ITAx.TO : t1.ITAx.TINCL
CASE t1.ITAx.TO > t2.ITAx.TO : t2.ITAx.TINCL
CASE t1.ITAx.TO = t2.ITAx.TO : AND(t1.ITAx.TINCL,t2.ITAx.TINCL)

Note that these refinements amount to nothing more than a refinement to the definition of the 
“interval intersection operator” for the interval type involved.
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JOIN
The earlier definition given for JOIN relies, just like INTERSECT, on a definition for the “interval 
intersect operator” for some given interval type.  Refining the definition of this operator in the way 
already specified in this section for INTERSECT, will do the job for JOIN.

GROUP/SUMMARIZE
The  definition  of  a  “non-granular”  USING  version  of  GROUP  (and  consequently  also  of 
SUMMARIZE) that produces results that are compatible with the corresponding definition from 
TDATRM,  was  still  left  a  somewhat  open  question.   Repercussions  on  such  a  definition  of 
introducing our 4-component possrep, can only be examined if such a definition is first formulated.

All the remaining operators
All the remaining relational operators dealt with earlier, had their USING (ITA1, ITA2, …, ITAn) 
versions defined as simply being a nested invocation of PACK on an invocation of the relational  
operator at hand – modulo some specific remarks here and there which we are not reconsidering 
here.  The revision of PACK has already been provided, and the existing definitions for “all the 
remaining relational operators” can thus be retained.

The question of replacement or co-existence
At the outset, the defined goal was to find an approach to support for temporal data, that could, in 
some sense, be considered a “proper superset” of the approach outlined in TDATRM.  In other 
words,  to  find  an  approach  that  supports  all  the  use  cases  supported  by  the  UNPACK-based 
approach,  that  supports  those  in  a  100% compatible  manner,  and  that  additionally  supports  a 
number  of  use  cases  that  the  UNPACK-based  approach  cannot.   The  foregoing  sections  have 
outlined such an approach, albeit without going the full distance when it comes to formal proofs.

At first sight, this might seem to suggest that the approach described here can replace/supersede the 
one outlined in TDATRM.  But is there perhaps more than meets the eye at first sight ?  A slightly 
more detailed investigation into the matter is warranted.

First of all, there is of course the issue of usability/user-friendliness of the syntax of the language 
used by the programmer.  And then there is the issue of sheer conformance of the language with all  
of the principles laid out in the “Third Manifesto”21, the authors of which are also co-authors of the 
TDATRM book.  A survey of thoughts & objections thereto, without much of a firm statement of 
opinion about any of them.

Programmer-friendliness of the language
In programming languages, programmers are often faced with the need to write literals denoting 
constant values of the data types they are dealing with.  Hence in a language supporting interval 
types, the need will arise to write interval-value literals, preferably as concisely as possible.  An 
approach that would require programmers to spell out each interval literal using a 4-component 
value selector such as

INTINTERVAL ( FROM (1) TO (5) FINCL (true) TINCL (false) )

21 Abbreviated “TTM” for the remainder of the document
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might therefore not stand much of a chance of being welcomed with great enthusiasm.  Various 
options at the level of “syntactic sugar” exist, however, to address this.  For example, some of the  
possrep components in the value selector could be made optional, assuming default values for them 
when indeed they are omitted from a given value selector expression.  If the default for FINCL is 
defined as 'true'  and the default  for TINCL as 'false'  (not coincidentally promoting closed-open 
usage), then

INTINTERVAL ( FROM (1) TO (5) )
would denote exactly the same value as the previous expression.

Or, for example, the syntax of the language might simply support notations such as '[03-05)' and 
perhaps even '( CARTESIAN(2.0 , 3.0) - POLAR(45° , -1.414) )' and '["("-"]"]', though 
both of these perhaps illustrate some intricate grammar & parsing problems being introduced.

Aspects of “look & feel”
More  important  seems  to  be  to  look  at  certain  aspects  of  “look  &  feel”  surrounding  the 
manipulation of interval values.  TDATRM hasn't really gone into depth on this, so briefly revisiting 
TDATRM here is warranted.

Intuitive equality
TDATRM exploits the property of ordinality of the point types very neatly to :

• establish the equality between (1-5) , [2-5) , (1-4] and [2-4]  (let's call this the principle of 
Notation-Neutral Equality, NNE)

• sidestep  the  issue  of  which  notation  to  use,  because,  given that  it's  all  the  same value 
anyway, it doesn't really matter which is used.

In a manner of speaking, TDATRM achieves this by exploiting the ordinality of the point types to 
“associate” 4 different point values with each interval value (well, almost each) :

• ANTE The highest non-included value at the low end
• FROM The lowest included value
• TO The highest included value
• POST The lowest non-included value at the high end

In TTM terms of types and their possreps, and loosely speaking, these are used to make possible 4 
distinct possreps for the same interval type :

• POSSREP CLOSEDCLOSED (FROM <pointtype>, TO <pointtype>)
• POSSREP CLOSEDOPEN (FROM <pointtype>, POST <pointtype>)
• POSSREP OPENCLOSED (ANTE <pointtype>, TO <pointtype>)
• POSSREP OPENOPEN (ANTE <pointtype>, POST <pointtype>)

This way of presenting things is not entirely kosjer, however, because :

• TTM as it currently stands requires names of possrep components within a type to be unique 
for the type across all possreps of the type.

• TTM requires each possrep to be able to denote each value of the type.  This is always 
problematic for at least two of the three "OPEN" possreps whenever a FROM/TO value is 
the lowest/highest possible value of the point type.
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But let's assume for the remainder of the discussion that these are not real issues and “granular” 
interval  types  as  per  TDATRM indeed  have  these  four  possreps.   Under  this  assumption,  the 
TDATRM appraoch very neatly conforms with the principle of NNE :
OPENOPEN ( ANTE (1) POST (5) ) = CLOSEDCLOSED ( FROM (2) TO (4) )   /* true */

THE_ readonly operators as deterministic functions
As a  consequence  of  what  it  means  to  be  a  TTM possrep,  the  existence  of  the  four  possreps 
automagically  leads  to  the  existence  of  four  THE_  read-only  operators,  named  THE_ANTE, 
THE_FROM, …  These read-only operators take an interval value as an argument, and return the 
“associated”  point  value  that  is  appropriate  for  the  particular  THE_ operator  at  hand.   So  the 
following expressions are possible :

• THE_ANTE ( CLOSEDCLOSED ( FROM (2) TO (4) ) )    /* 1 */
• THE_ANTE ( OPENOPEN ( ANTE (1) POST (5) ) )      /* 1 */
• THE_TO ( CLOSEDCLOSED ( FROM (2) TO (4) ) )      /* 4 */
• THE_TO ( OPENOPEN ( ANTE (1) POST (5) ) )        /* 4 */

This  illustrates  another  important  and  indeed  desirable  property  (one  that  applies  to  read-only 
operators) namely the principle of Read Only Operators Determinacy (ROOD) :

FOR ALL v1,v2, FOR ALL f : v1=v2 IMPLIES f(v1) = f(v2)
The THE_ readonly operators introduced by the TDATRM interval possreps satisfy this property 
perfectly and completely.

THE_pseudovariables & the Assignment principle
Another consequence of the existence of a possrep, is the automatic creation of these things called 
“THE_ pseudovariables”.  Brief, they allow the syntactic THE_() construct to be used at the LHS of 
an assignment command :

VAR INTINTERVAL II1 := CLOSEDCLOSED ( FROM (2) TO (4) );
THE_ANTE ( II1 ) := 7;
? II1;           /* prints e.g. CLOSEDCLOSED ( FROM (2) TO (6) ) */
? THE_ANTE(II1); /* prints 7 */

This illustrates how THE_pseudovariables created by TTM possreps for TDATRM-style intervals 
satisfy yet another important principle, known as the Assignment Principle (AP) : after assigning 
some value to some assignment target, evaluating that assignment target yields the value that was 
assigned.

Now we examine whether & how these properties carry over to a scenario where the 4-component 
possrep described earlier on is applied to interval types whose point types are indeed ordinal22.

Intuitive equality with 4-component possrep
Knowing that the concerned point type is indeed ordinal, and on account of “both intervals being 
concerned with exactly the same set of numbers  included”,  a user  might  intuitively expect  the 
system to behave as if 

INTRV( FROM(1) TO(5) FINCL(false) TINCL(false) )
 = 

INTRV( FROM(2) TO(4) FINCL(true) TINCL(true) )

22 A brief analysis can suffice to show that there is no problem with the three stated principles for interval types over a 
point type that is non-ordinal, but we omit this analysis here.
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Some would respond to this with “the equivalence described in there is a useful operator to have 
available in the system, but it cannot be the interval type's equality operator”.  Iow, the interval  
type's equality operator does not expose those semantics, and the operator that does expose those 
semantics is not the interval type's equality operator.  The consequence of this position is that the 
equivalence semantics are not  automatically used in any operations that  build internally on the 
equality operator,  such as,  e.g.  JOIN.  This  might  really not  be problematic,  since it  might  be 
reasonably expected that the vast majority of JOINs over interval-typed attributes are likely to be 
USING(  …  )  JOINs  anyway  (which  don't  suffer  from  this  “semantic  difference  between 
equivalence/equality”).

But suppose we want the equality operator to expose these desirable equivalence semantics anyway. 
This  may be  doable,  but  we  now show why this  cannot  be  done  without  sacrificing  (at  least  
partially) at least one of the other two desirable principles, ROOD and AP.

THE_ readonly operators as deterministic functions
Suppose  we  wanted  to  uphold  ROOD  as  well  for  the  THE_  readonly  operators,  with  our  4-
component possrep, and still knowing that our point type is ordinal.

Knowing the underlying point type is ordinal, it is no problem to “canonicalize” any given interval  
value to its “closed-closed” form.  And indeed if we want to uphold ROOD, then we're forced into 
doing that canonicalization, because if we returned 5 for THE_TO() one time and 4 the other time, 
despite the interval values in both invocations comparing equal, we'd have violated the principle.

Hence by making  THE_TO(INTRV(FROM(1)TO(5)FINCL(false)TINCL(false))) return the value 
4, we've managed to sort of hack our way out of the problem.

A similar situation occurs for the read-only operator THE_TINCL, however …  If  we want to 
uphold ROOD for this operator, then we can't afford to return false one time and true another time,  
depending on which value combinations were used in a value selector (note that that value selector 
will  most  of  the  time not  even be  visible  in  the  source  text  !).   So  presumably we'd want  to 
canonicalize to closed-closed, meaning that this particular operator will always return true !

Hence, things start getting a bit questionable here (why have an operator if it always returns the 
same value regardless of its operand value ?), but formally speaking, the behaviour is still in line 
with the ROOD principle, so no problem there.

THE_pseudovariables & the Assignment principle
And then now we turn to THE_TO() and THE_TINCL() as a pseudovariable (i.e. an assignment 
target), and evaluate the look & feel of this scenario in the light of the assignment principle.

Recall from TTM that assignment to a THE_pseudovariable is shorthand for an assignment to the 
“argument” of the THE_ pseudovariable,  with additional arguments being invocations of THE_ 
readonly operators on the same variable.  In the case of, say
VAR INTINTERVAL II1 := INTRV(FROM(1)TO(5)FINCL(false)TINCL(false)) ;
THE_TO(II1) := 9;
the pseudovariable assignment gets replaced with
II1 := 
INTRV(FROM(THE_FROM(II1))TO(9)FINCL(THE_FINCL(II1))TINCL(THE_TINCL(II1)))
Observe that because of the canonicalization in the invocations of the THE_ readonly operators in 
there, this will end up like
II1 := INTRV( FROM(2) TO(9) FINCL(true) TINCL(true) );

34/36



If after this, we inspect the value of THE_TO(II1), we will indeed obtain the value 9, which is the 
value used in the assignment.

It will, however, be clear by now that this cannot possibly be maintained as well for assignment to  
THE_TINCL …  If we happen to assign the value true to that component, we will perceive no 
violation, but if we try to assign false, then we will perceive a problem, by definition of this THE_ 
readonly operator always returning true !

Also observe that the following case -admittedly silly, but it's only for purposes of illustration- :
VAR INTINTERVAL II1 := INTRV(FROM(2)TO(4)FINCL(true)TINCL(true)) ;
THE_TINCL(II1) := false;
will _not_ have the effect of making  THE_TINCL(II1) evaluate to 'false', but instead it will have 
changed the value of THE_TO(II1) (now 3) !!!

This sort of stuff is very clearly crossing the line of what is reasonable in programming language 
design and behaviour,  even if  the cases  where the  damaging effects  come to surface could be 
labeled as “somewhat pathological” …

Also note that all of these considerations apply only to “nongranular” interval types defined over 
ordinal point types.  The “behavioural changes” described here cannot and do not apply to interval 
types over point types that are not ordinal, but such interval types do still have possreps, associated 
THE_ readonly  operators  and  associated  THE_ pseudovariables.   If  we  were  to  introduce  the 
“behavioural changes” for our non-granular interval types, in the case when the underlying point 
type is ordinal, then we'd be creating a setup in which :

• The non-granular interval types over ordinal point types, and the non-granular interval types 
over non-ordinal point types, both use a syntax (for value selectors, for their possreps, …) 
that is completely identical (= identical “look”).

• But the behaviour of the associated language constructs could be different between the two, 
(= different “feel”).

This in itself is likely to be regarded as poor language design.

So, replacement or co-existence ?
The foregoing considerations seem to suggest that it might be preferable for systems implementing 
support for interval types, to let the two approaches co-exist, allowing the user to use the TDATRM 
approach, which is perhaps a better match to his intuition and a bit less quirky in the language 
department,  whenever  the  point  types  involved  are  ordinal,  and  allowing  him  to  use  our 
“nongranular” approach whenever the circumstances force him to.
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Conclusion
This paper has presented a formalism that can underpin systems for manipulation of range data, 
where support for these range values takes the form of interval types.  We regard this formalism as a 
valid alternative to the one presented in “Temporal Data & The Relational Model”, in that both 
formalisms give identical results in the use cases supported by both, but the formalism presented 
here is additionally also able to support intervals over non-ordinal point types.

Proposals have been offered about how the formal notions can be incorporated into the operators of 
the Relational Algebra.  Discussion has also been provided about how the “revised” operators of the 
Relational Algebra can be put to good use to enforce “temporal keys” and “temporal foreign keys” 
in relational databases, two important special cases of integrity enforcement.

Two algorithms relating to the core concept of “packed normal form” were presented.

Certain possible problems relating to the closed-open notation that is typically most prevalent in 
“non-granulated environments” were identified and suggestions to overcome those problems were 
briefly explored.

All in all, the conclusion seems warranted that the particular criticism of the “granular” approach 
not supporting the non-granular use cases, can feasibly be addressed, but complete replacement of 
the “granular” approach may not be entirely desirable.
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