Towards an Agreeable Model of Type Inheritance

Object Identifiers and Inheritance Don't Mix!

Hugh Darwen

Abstractl] We (the authors of [3]) contend that, to be agreeable, a model of type inheritance must embrace the concept of

specialization by constraint.
incorporate such a model, by avoiding the use of object identifiers.

| describe how we came to this conclusion and explain how we think a truly relational system can

Index TermsO Inheritance, Types, Relational Model, Object Identifiers

1 INTRODUCTION

hapter 3, The Third Manifesto, of [3] is our proposed

restatement of the Relational Model of Data ([2]). It
includes the following point in its final section, headed "OO
VERY STRONG SUGGESTIONS":

1. Some form of type inheritance should be supported (in

which case, see OO Prescriptions 2 and 3). In keeping with
this suggestion, D should not support coercions (i.e.,
implicit type conversions).
The two referenced "OO Prescriptions'
earlier in the same chapter:

2. If D permits some type 7" to be defined as a subtype of
some supertype 7, then such a capability shal be in
accordance with some clearly defined and generally agreed
model.

3. If D permits some type 7" to be defined as a subtype of
some other type 7, then 7" shall not be prevented from
additionally being defined as a subtype of some other type
that is neither T nor any supertype of T (unless the
requirements of OO Prescription 2 preclude such a
possibility).

Taken out of context as they are here, these points need
some explanation. "D" is a generic name for any database
language that conforms to our model. "Prescriptions' are
mandatory requirements. They are subdivided into RM
Prescriptions, being those derived from the Relational Model,
and OO Prescriptions, where OO stands for Other Orthogonal
and coincidentally includes prescriptions derived from object
orientation. Very Strong Suggestions, also subdivided into
RM and OO sections, are points that we think are good ideas
but not essential for conformance. The word Very isincluded
to emphasize that such sections are not intended to provide a
compendium of all relevant ideas we think are good ones.

It should now be clear that we think it highly desirable,
though not essential, for a relational DBMS to support type
inheritance (point 1), but only if it does so in accordance with
a generaly agreed model (point 2) that includes what is
commonly called "multiple inheritance" (point 3).

Our restatement of the Relational Model has the following
aims, among others:

e To clarify or remove certain points about the
Relational Model that we feel were not clear in 1970
and have remained unclear since then. For example,
we no longer have any reference to the unclear
concept of atomicity of values that was part of Codd's
definition of First Normal Form of relations.

are given a little

e To elaborate on the "domain" aspect of Codd's
model, in a theory of types formulated as rigorously
as the theory of relations.

These two aims in particular, we thought, justified the
occurrence of the term "Object/Relational” in the book's title,
for support for types of arbitrary complexity and support for
type inheritance were the two features commonly found in
object oriented languages that we strongly wished to include.
We were running with the tide, of course, because those two
features now constitute perhaps the biggest distinction
between SQL:1999 ([6]) and its predecessor, SQL:1992 ([5]);
and of course they feature strongly in the ODMG standard
([1D. Indeed, SQL:1999 is sometimes seen as SQL with
added "object" features, while the ODMG standard might be
considered to be about object oriented databases with added
"relational” features (i.e., OQL).

Early published versions of The Third Manifesto
elaborated a little on that "generally agreed model" in point 2,
asfollows:

It is our hope that such a "clearly defined and generally agreed
model" will indeed someday be found. The term "generally
agreed" is intended to imply that the authors of this Manifesto,
among others, shall be in support of the model in question. Such
support shall not be unreasonably withheld.

Because these remarks, not intended to be taken too serioudly,
were much misunderstood, we decided not to include them in
the book. However, they were based on an observation that
was generally agreed at the time, namely, that no generally
agreed model of type inheritance existed.

Rather boldly, perhaps, we decided to attempt to
formulate a model of type inheritance, with the idea of
presenting it as a"strawman proposal” for the generally agreed
one being sought. Our model made its first appearance in the
form of some preliminary proposals constituting an appendix
in an early version of The Third Manifesto. By the time the
book ([3]) was being prepared for publication, we decided that
our model had matured sufficiently to appear as Part IV,
Subtyping and Inheritance, in the main body of the book.

However, when we reflected on our completed work—
intended as a rigorous definition of a certain model of type
inheritance—we decided that it did not meet that originally
published criterion of acceptability to "the authors of this
Manifesto"! Our reasons for rejecting our own proposal are
given in Appendix C of the book, which is titled, highly
significantly, Specialization by Constraint.

Appendix C starts to point to a possible way of enhancing
our model to make it acceptable to us. We are currently
working on arevision and are cautiously optimistic about it.

The purpose of thisinformal articleisto explain:

» some of the basics that are common to our original

model and the revision that isin progress;

» what drove us to formulate a rigorous model that we

would eventually have to reject;

« why wergected it;

+ thesalient features of what will be our revised model;

e why we think SQL:1999, Java™ and ODMG do not

support this model.

2 Basics

Before you can have type inheritance, you need types. In
order to have whatever types are desired, you need not only a
judiciously chosen set of built-in types, but also a facility to
allow usersto define additional types of arbitrary complexity.

A type is a defined finite set of values and associated
operators. The associated operators consist of those defined to
operate on values or variables of that type and those that,
when invoked, return val ues of that type.

A type is defined by a named possible representation
(possrep for short) and a type constraint. We stress that there
is no prescribed relationship between possible representations
(defined in the model) and actual representations (defined in
the implementation).

A possrep consists of one or more named components,
each having, as well as aname, adeclared type.

For example, suppose type POINT consists of values
representing points in the Euclidean plane. Then the possrep
XY_POINT might be defined thus:

POSSREP XY_PA NT { X NUMERI C,
Y NUMERI C }

where NUMERIC is some previously defined (possibly built-
in) type. A particular POINT value can therefore be
considered to consist of an X component and aY component,
both numbers.

A possrep definition implies the existence of certain
operators. These operators are our proposed counterparts of
what are sometimes referred to (e.g., in SQL:1999) as
observers, mutators and constructors (terms we do not use,
partly because they have different meanings in, for example
SQL:1999 and Java™).

Analogous to SQL:1999 "observer methods' are the
operators, implied by XY_POINT, cadled THE X and
THE_Y.> Given avalue, p, of type POINT, the invocations
THE X (p)and THE_Y (p) return the X and Y coordinate,
respectively, of p.

Our counterpart of Java™ "constructor functions' is a
class of operators we call selectors. The selector implied by
XY _POINT is the operator of that name with two parameters,
both of declared type NUMERIC, corresponding to the two

L All concrete syntax is offered for purposes of illustration and
exposition only. We do not prescribe syntax to be used in
implementations.

components of XY _POINT. Thus, theinvocation XY_POINT
(0, 0) returns the point that is the origin. We cal this
operator the XY _POINT selector for values of type POINT.

THE_X, THE_Y and XY_POINT are examples of what
we call read-only operators. A read-only operator is one that,
when invoked, operates on zero or more given values
(arguments) and returns a value.

In contrast to read-only operators, we have update
operators. An update operator, when invoked, operates on at
least one variable and zero or more values, and does not return
anything.

The definition of XY_POINT implies the existence of two
update operators. One of these, given a variable, pv, of
declared type POINT and a number, x, assigns the value
XY_POINT (x, THE_Y (pv)) to pv; the other, given the
same variable and a humber, y, assigns the value XY_POINT
(THE_X (pv),y) to pv. Rather than give specific names for
these operators, we treat them merely as special forms of
assignment.

The type constraint which, in combination with possrep
XY_POINT, defines POINT, is merely true.? From thisit can
be seen that if / and / are the lowest and highest values of type
NUMERIC, then every point within a certain square of side
h--1 is representable and, indeed, the set of such values
congtitutes the type POINT. This brings me to an important
aspect of our model: given a possrep P and a constraint C, for
type T, then every value in type T can be expressed by some
invocation of the selector S implied by P, and every invocation
of S that satisfies C returns some value in 7. It follows that if
there is such a thing as a colored point (to cite an example the
like of which is commonly found in object oriented literature),
consisting of a point and a color, then that thing is not a value
of type POINT. In other words, our model puts a big question
mark on the concept of defining a subtype by extension of
representations defined for the supertype (i.e.,, "adding an
attribute™).

In case the reader is wondering, we do not insist on
exactly one possrep/constraint pair per type definition, though
the point is not germaneto this article.

Our model requires, in addition to the operators implied
by possrep definitions, several further operatorsto be available
in connection with every type—in particular, "equas'
comparison and assignment. We require that if x = y, then x
and y are indistinguishable—really are the same value—
implying that for every read-only operator /' defined for values
of thetypeof x and y, f(...x...) =f(...y...) is true. We further
require the effect of assignment of a value v to a target ¢ to
have the effect that = v is subsequently true.

3 MOTIVATION AND BASIS FOR A MODEL OF

TYPE INHERITANCE
Quite simply, our motivation was that something called type
inheritance was commonly deemed to be a characteristic
feature of object-oriented systems and was much talked about
as a strongly desired addition to relational systems. And yet,

2 An example of atype requiring anon-trivial constraint might be
ANGLE, being represented by numbersin the range 0 to 2z

time and again we encountered articles in the literature
bemoaning the lack of a commonly agreed model, and even
the lack of agreement on what is meant by a statement of the
form"every y isan x".

We decided very early on that to say that type 72 is a
subtype of type 71 isto assert that every valuein 72 isa value
in T1. We further decided that a crystal-clear example is that
of CIRCLE, being a subtype of ELLIPSE, meaning that every
value of type CIRCLE is a value of type ELLIPSE or, in
everyday parlance, every circle is an ellipse, though not every
dlipseisacircle. We say that CIRCLE is amore specific type
than ELLIPSE, and that if a value el has, for example, types
CIRCLE, ELLIPSE, PLANE_FIGURE (being a supertype of
ELLIPSE) and no other, then CIRCLE is the most specific
type of el. The most specific type of a value having only the
types ELLIPSE and PLANE_FIGURE isELLIPSE.

Because the truth of that statement about circles and
elipses is, like other similar statements concerning
geometrical plane figures, so crystal-clear to us, we very
deliberately chose to develop our model around the study of
such examples, rather than certain examples of a subtly
different kind that we found in much of the object oriented

literature. | am referring here to examples such as
MANAGER being a subtype of EMPLOYEE,
TOLL_HIGHWAY of HIGHWAY and

COLOURED_CIRCLE of CIRCLE, where a manager is an
employee with a budget, atoll highway a highway with tolls, a
colored circle a circle that has a color; employees in general
don't have budgets, highways in genera don't have tolls and
circlesin general don't have colors. We did not at the outset
have any intention to outlaw such examples, we merely
regarded them as "fuzzy" in comparison with our crystal-clear
spatial ones and we wanted to avoid any possibility of being
beguiled by the fuzziness into unwise decisions regarding the
definition of our model.

To complete our basis, we had to decide what important
conseguences would arise from CIRCLE being a subtype of
ELLIPSE. We studied [8] and discussed this text with several
people. In connection with type inheritance, the authors of [8]
posit four desiderata: substitutability, static type checking,
mutability, and "specialization via constraints’. They
conjecture that it is not possible to build a computer system
that embraces all four of these concepts, though it is possible
to build one that embraces any three of them. We were very
interested in this conjecture, for we certainly did not want to
propose a model that could not be implemented!

To understand the conjecture, we first of all had to
understand very precisely the four concepts in question—for
we imagined that we would have to decide which one to
exclude from our model. Acquiring this understanding turned
out to be remarkably difficult, which is one reason why [3]
includes six pages of discussion under the heading THE "3
OUT OF 4" RULE. | will now discuss each of the cited
desiderata and present our conclusion in each case as to
whether it should belong in our model.

4 SUBSTITUTABILITY

Subgtitutability is sometimes expressed in terms of
"instances’. For example, you might find in the literature a
statement such as this: If 72 is a subtype of T/, then it is the
case that everywhere an instance of T/ is expected, an instance
of 72 is permitted. But our model has to be a possible basis
for a computer language. In such a language, the "instances’
in question are represented by expressions denoting operands.
Some expressions denote values; others denote variables.
This particular distinction perhaps seems trite, but very early
on we were struck by (a) its fundamental importance and (b)
an apparent failure to observe it, by some of those who like to
refer just to "instances".

We therefore discussed two distinct concepts. value
substitutability and variable substitutability. We quickly
realized that value substitutability is essential. For example,
let AREA be an operator defined for ellipses such that if "E" is
an expression denoting some dlipse, then the expression
"AREA (E)" is an expression denoting the value of type
AREA that is the area of E. Now, if "C" is an expression
denoting a circle, then the expresson "AREA (C)" is
implicitly valid and denotes the area of C. My emphasisisto
indicate that we attach importance to the concept that the
operator on ellipses is not only "inherited" by circles, but also
has the same meaning for circles asit does for ellipses.

Value substitutability applies not only to invocations of
read-only operators, such as AREA, but aso to those
parameters of an update operator that are not subject to update.
To clarify what | mean here, consider ordinary assignment,
suchas"X :=Y +2". | consider the ":=" operator to have two
parameters, which we might refer to as the source (Y + 2 in
my example) and the rarget (X in the example). The target is
subject to update, whereas the source is not. Vaue
substitutability clearly applies to the source. If E isavariable
of type ELLIPSE and "C" is an expression denoting a circle,
then "E := C" isavalid assignment. The question now arises
as to whether substitutability applies to parameters that are
subject to update.

An argument substituted for a parameter that is subject to
update must be a variable. To decide whether variable
substitutability was a concept to be embraced, we considered
the simplest of all update operators, namely, assignment
involving a single target, that being denoted by a simple
variable name. It then became transparently obvious that
variable substitutability does not in general make good sense.
For consider:

(1) TYPE ELLI PSE POSSREP (A LENGTH,
B LENGTH,
C PO NT);

TYPE Cl RCLE POSSREP (R LENGTH,
C PO NT)
SUBTYPE_OF (ELLIPSE) ;

VAR E ELLI PSE ;
VAR C Cl RCLE ;

E := ELLIPSE (LENGTH (5),
LENGTH (4),

(2)

(3)
(4)
(5)

XY PONT (0, 0)
)

(6) C:= CIRCLE (LENGTH (5),
XY PONT (0, 0)
)

(7) E := CIRCLE (LENGTH (5),
XY PONT (0, 0)
)

(8) C := ELLIPSE (LENGTH (

5),
LENGTH (4),
XY_PONT (0, 0)
)
(1) defines atype called ELLIPSE and (2) defines CIRCLE as
a subtype of ELLIPSE. The constraints for these types are
both true by default.

The possrep given for ELLIPSE consists of components
representing the magjor semiaxis (A), the minor semiaxis (B)
and the center (C). Because no name is explicitly given for
this possrep, its name is by default the type name, ELLIPSE.
For simplicity we assume that al the ellipses we want to "talk
about" are ones whose major axisis parallel to the X axis.

The possrep given for CIRCLE consists of components
representing the radius (R) and the center (C). The implicitly
defined name of this possrep is CIRCLE.

(3) declares avariable, E, to be of type ELLIPSE (we say
that ELLIPSE is the declared type of E) and (4) declares a
variable, C, to be of type CIRCLE.

(5) is permitted and assigns a certain ellipse to E. (6) is
likewise permitted and assigns a certain circle to C.

(7) is permitted under value substitutability and assigns a
certain ellipse (in fact, a certain circle) to E.

(8) is not permitted. It is attempting to assign to a circle
variable a value that is not a circle. Such an attempt is an
example of aype error.

That (8) is atype error is common to many languages we
are aware of that support the concept of type inheritance,
including those specified in SQL:1999, ODMG and Java™.
We concluded that it cannot in general be the case that if 72 is
a subtype of 71, then wherever a variable of declared type T/
is expected, a variable of declared type T2 is permitted.
Looking at ssimple assignment, it might be thought that the
inverse is the case: wherever a variable of declared type 72 is
expected, a variable of declared type 77 is permitted. But this
isnot so in general, either. For consider:

(9) CR:=LENGTH (6) ;
(10) E.R:= LENGTH (6) ;

(9) is of aform commonly found in object oriented languages.
It is a redlization of invoking the update operator implied by
the declaration of the R component of CIRCLE's possrep.
This operator, recall, given a variable ¢v of declared type
CIRCLE and a length /, has the effect of assigning CIRCLE
(., THE_C(cv))tocv.

(20) is not permitted. The ELLIPSE possrep doesn't have
an R component.

In view of this observation, we discarded any notion that
a concept of variable substitutability is generally applicable.

But typical object oriented languages do seem to support
variable substitutability of a sort. Consider the following
further assignments:

(11) E A :
(12) CA:=LENGTH (6) ;

The effect of (11) is, loosely speaking, to update the A
component of the value assigned to E.

(12) is permitted in SQL:1999, ODMG and Java™
(henceforth referred to collectively as SQL:1999 ef ceteral), as
a consequence of the legality of (11). Contrast this with the
illegality of (8) in SQL:1999 et cetera. According to our
model, (12) is not permitted because there is no possrep in the
type definition of CIRCLE that has a component named A.
However, the read-only operator, THE_A, implied by the A
component of the possrep given in the type definition of
ELLIPSE, most definitely is inherited by circles, as is every
read-only operator that is defined for ellipses® in general.

We easily justify this difference between the [3] model
and the implementations found in SQL:1999 ef cetera.* To
update the A semiaxis of a circle variable, even if circle
variables are considered to have such a component, is very
likely to result in the variable in question being assigned a
value that isnot acircle. We further observe that in SQL:1999
et cetera, it is indeed possible for (12) to have the effect of
assigning to C avaue such that THE A (C)+ THE B (C)
(and who knows what the value of THE_R (C) might then
be?). We are well aware that it is commonly observed that
SQL:1999 et cetera are just not suitable for the "elipses and
circles' example; rather, they are much better suited to the
"employees and managers' example. But we want a language
that is suited to crystal-clear cases, even if to have such a
language is to sacrifice support for the fuzzy cases of
subtyping.

Our conclusion regarding subgtitutability is that without
value subgtitutability a system simply cannot be said to be
supporting type inheritance in any agreeable way.
Unconditional variable substitutability, however, even in the
restricted sense in which it is found in SQL:1999 et cetera,
seems not to make much sense.

LENGTH (6) ;

5. STATIC TYPE CHECKING

Static type checking refers to the property of a language
whereby all type checking occurs at "compile time", meaning
that all type errors can be discovered merely by inspection of
program text. If static type checking is fully supported,
possibly expensive run-time checks are not needed. Further,
applications are less likely to fail at run-time than they might
otherwise be.

3 To be precise, we mean every read-only operator that has a
parameter whose declared type is some supertype of ELLIPSE
(possibly ELLIPSE itself).

* These implementations do not appear to be based on any clearly
defined model.

We think that static type checking is a strong desideratum
for industry-strength database languages. We have
encountered much support for this position in the database
community at large, and no significant opposition to it.

Our model is very similar to SQL:1999's with respect to
static type checking. We have static type checking except in
one specific place in the language, which | will now explain.

Consider again statement (7), in which ellipse variable E
is assigned a circle. Under certain circumstances we might
want to compute the radius of this circle. However, the
following expression "THE R (E)" is not permitted, as
THE_R is not defined for ellipses in general. To get around
this problem we advocate the provision of a generic operator
which we call TREAT _DOWN_AS 7, where T is a type
name. (SQL:1999 has asimilar operator, called TREAT.) For
example, the following expression is permitted:

(13) THE_R (TREAT_DOWN_AS CIRCLE (E))

When the value of the operand of
TREAT_DOWN_AS CIRCLE happens to have type
CIRCLE, then the result of the invocation is that value;
otherwise the result of the invocation is an exception—a run-
time type error. Because every successful evaluation of
TREAT_DOWN_AS CIRCLE (E) is guaranteed to yield a
circle, the declared type of that expression is CIRCLE and so
the expression is permitted as an argument to an invocation of
THE_R.

In our view, the provision of TREAT_DOWN_AS T is
an inevitable consequence of substitutability alone. Even
though it can cause run-time type errors, it does so in a
controlled manner that allows applications to defend
themselves against those errors as easily as they can against
run-time errors in general. | will later describe an intolerable
kind of run-time type error that definitely cannot occur in our
model.

6. MUTABILITY

This desideratum, as far as we can see, refers to nothing more
than what we call update operators—primarily, assignment.
We have no reason to be opposed in principle to functional
programming languages, which manage without variables and
assignment, but we felt that departure from the imperative
style would have created too much of a diversion from our
main purpose. We do, therefore, support operators that update
the database, though, like [2], we restrict such operators to
those that update relation variables. This restriction does not
apply to operators for use on local variables in application
programs.

7. SPECIALIZATION BY CONSTRAINT

When we encountered this concept, we took it to refer to the
idea that the most specific type of the value assigned to a
variable might change as the result of some update operation
on that variable. When the most specific type changes from
ELLIPSE to CIRCLE, we have a case of speciaization. When
it changes from CIRCLE to ELLIPSE, we have
generalization, S0 the concept we are discussing realy

concerns both specialization and generalization and the term
we have chosen for it is not quite as apt as we would like.

Suppose that variable E is currently assigned a value
whose most specific typeis ELLIPSE. Clearly, assigning to E
the result of invoking the CIRCLE selector would now cause
the most specific type of E to change to something more
specific than ELLIPSE. Under the principle of value
substitutability, the most specific type of a variable can
change from time to time. The question is, can it change as
the result of an assignment of an expression that does not
explicitly specify a value of some proper subtype of
ELLIPSE? For example, consider this assignment:

(14) E := ELLIPSE (LENGTH (5),

LENGTH (5),

XY_PONT (0, 0)

)
The declared type of the source of this assignment is clearly
ELLIPSE, and by definition ELLIPSE is also the most specific
type of the value yielded by an invocation of the ELLIPSE
selector. Under specialization by constraint, we thought, the
most specific type of this result would nevertheless be
CIRCLE (more precisaly, some subtype of CIRCLE, possibly
CIRCLE itself), assuming that type CIRCLE is somehow
defined by a constraint meaning that C isacircle if and only if
THE A (C) = THEB(C). A careful reading of [8],
however, reveals that the authors there were referring merely
to what we would call type constraint enforcement, under
whichif Cisacircle, then THE_A (C) = THE_B (C), but if
THE_A (C)=THE_B (C), then Cis not necessarily acircle.
We prefer our interpretation of the phrase.

Specialization by constraint appeals so strongly to our
normal intuition as to make it apparently a sine qua non.
Human beings understand this concept so well® that, surely,
we thought, a model of type inheritance should be judged by
the extent to which it embracesiit.

Now, [8] gives a certain example, to which the following
isisomorphic, assuming statements (1) to (6) to be in effect:

(15) E:=C;
(16) E.A:= LENGTH (6) ;

The authors claim that if specialization by constraint is in
effect, then (16) gives a run-time type error. This is because
the most specific type of E is CIRCLE, but the assignment in
(16) would cause it to acquire a value that is inconsistent with
being acircle.

Now, the reader might well be a little puzzled at this
stage, as we were when we first encountered [8] and as we
remained even after a considerable amount of face to face
discussion with various experts. Why, we might ask, isn't (16)
equivalent to "E := ELLIPSE (LENGTH (6), THE B (E),
THE C(E)), asin (11)? Be that as it may, to cut a long
story short, we decided to go with the field, so to speak. Like

5 Perhaps | exaggerate. Some maintain that a squareisn't arectangle,
because increasing the width of arectangle yields another rectangle,
whereas increasing the width of a square doesn't yield another square
(but rather, | would add, yields another rectangle).

SQL:1999 et cetera, we decided to reject specialization by
constraint. The most important consequence of this decision,
to us, was that we were eventually to realize that the model of
type inheritance we had proposed in [3] was definitely not an
agreeable one, to us.

It now becomes necessary for me to distinguish between
our first model, that we now reject, and the model we will
propose in our forthcoming second edition of [3]°®. | will refer
to these two models as Model 1 and Model 2. As the reader
might have guessed by now, the most important distinguishing
feature between Model 1 and Model 2 is that Model 2
embraces specialization by constraint, whereas Model 1 does
not.

8. FEATURES OF MODEL 1

As | have dready indicated, Model 1 has value
substitutability, static type checking that does not entirely
eliminate run-time type errors, and mutability. It does not
have specialization by constraint but, unlike SQL:1999 et
cetera, it does have type constraint enforcement.

One small but crucial point that our model hasin common
with SQL:1999 et cetera is that although a value can be of
more than one type, every value has exactly one most specific
type. To recap and rephrase slightly, a most specific type of a
value v is a type such that no proper subtype of it is a type of
v. (Every typeis a subtype of itself. For that reason, we need
the term "proper subtype" to refer to atype T that is a subtype
of T other than T itself.) Further, we alow the most specific
type of a value to be a type that has one or more proper
subtypes (i.e., atype that is not aleaf type).

The following features of Model 1 are important but not
especialy germane to the present discussion:

e Multiple inheritance. A type can have more than one
immediate supertype. For example, SQUARE might
be a subtype of both RECTANGLE and RHOMBUS,
neither of which is a supertype of the other (but both
of which are possibly subtypes of
PARALLELOGRAM). We did not turn our minds to
multiple inheritance until we felt we had completely
nailed down all the details of single inheritance. We
then found, contrary to experiences reported oraly to
us by several other investigators, that multiple
inheritance presented no significant extra difficulty.

* Tuple type inheritance. Because [3] embraces the
Relational Model, it prescribes the provision of type
generators (as we call them—they are also variously
referred to as type constructors, parameterized types
and type templates) for tuple and relation types. We
therefore had to consider how type inheritance would
apply to tuple types and relation types. It was
manifestly clear to us that if CIRCLE is a subtype of
ELLIPSE, then TUPLE { E CIRCLE, C COLOUR}
isasubtype of TUPLE { E ELLIPSE, C COLOUR}.
Embracing this concept presented no significant

% Incidentally, we are proposing to take the unusual step of changing
thettitle, in this second edition, to "Foundation for Future Database
Systems: The Third Manifesto".

difficulty. It did have the interesting side effect of
proving that, in relationa systems at least, the
provision of support for single inheritance implies the
provision of support for multiple inheritance! The
types TUPLE { E1 CIRCLE, E2 ELLIPSE } and
TUPLE{ E1 ELLIPSE, E2 CIRCLE } are manifestly
both supertypes of TUPLE { E1 CIRCLE, E2
CIRCLE }; equally manifestly, neither is a supertype
of the other.

e Relation type inheritance. For every tuple type there
is a corresponding relation type having the same
attribute definitions. Clearly, if tuple type 772 is a
subtype of tuple type TTI, then the relation type
having the same attribute definitions as 772 is a
subtype of the relation type having the same attribute
definitions as 7T1. This observation did raise some
nontrivial questions. For example, consider unary
relations »/ and »2 such that declared type of the only
attribute, E, of r/ is ELLIPSE, while that of the only
attribute, E, of »2 is CIRCLE. What is the declared
type of 1 JOIN »2? At first glance, it appears to be
RELATION { E CIRCLE }, for it can be seen that
for every possibly combination of values for »/ and
r2, in every tuple of the result the value for E must be
acircle. However, we show in [3] that the declared
type of r/I JOIN r2 has to be RELATION
{ EELLIPSE}. The reasoning that leads to this
conclusion is not difficult but is beyond the scope of
this article. We note that SQL:1999 comes to a
similar conclusion.

We wondered if the most specific type of a
relation might be a proper subtype of its declared
type. For example, consider again a unary relation »/
whose only attribute, E, is of declared type ELLIPSE.
Might the most specific type of »I be some proper
subtype of RELATION { E ELLIPSE }? We decided
that if in every tuple of »1 E isin fact a circle, then
the most specific type of »I must be no less specific
than RELATION { ECIRCLE}. Suddenly the
specter of the empty relation loomed! What is the
most specific type of »1 if »I has no tuples at all?
Again, [3] has an answer and again the answer is
beyond the scope of the present article.

A feature of Model 1 that most definitely is germane to
the present discussion is the generic operator we call
TREAT UP AS T (1 have aready described
TREAT_DOWN_AS 7).

Consider again statement (14), whose effect isto assign to
the variable E an ellipse with semiaxes of equal length. Also
consider again statement (6), whose effect is to assign to the
variable C a circle whose radius is of the same length as the
semiaxes of E and whose center is the center of the ellipse
assigned to E. Assume these two statements to be in effect.
The comparison "E = C" is permitted in Model 1 and returns
false. To provide for comparison to determine if the value of
C redly is the same ellipse (intuitively) as the value of E, we
have to introduce a certain artifice, and TREAT_UP_AS Tis

that artifice. For example, the following expression returns
true under the given circumstances:

E = TREAT_UP_AS ELLIPSE (C)7

being equivaent to
E = ELLIPSE (THELR (C),
THE R (C),
THE C(C))
The expression

TREAT_DOWN_AS CIRCLE (E) = C

also returns rrue, but this latter expression might in other
circumstances result in a run-time type error, which the
expression using TREAT_UP_AS ELLIPSE is guaranteed not
to.

Now consider again statements (15) and (16). (15) is
permitted in Model 1, as already explained as a consequence
of substitutability. (16), however, might well not be
permitted, while (15) is in effect, though not exactly for the
reason given in [8]. For (16) to be permitted in Model 1, the
update operator defined for ellipses, that has the effect
depicted in (16) as assignment to E.A (not, | hasten to add, a
shorthand that we use in our examples in [3]), would have to
be defined also for circles. Recall that subtypes do not in
general inherit update operators from their supertypes.
Without going into details, | will just say here that
TREAT_UP_AS T again comes to the rescue here, but it
leads to the possibly surprising necessity to write
TREAT_UP_AS ELLIPSE (E) as part of the target of an
assignment. In case the reader isn't immediately surprised,
note that the declared type of E is ELLIPSE and yet we
apparently have to tell the system that we wish its current
value to be treated as an ellipse. What we are really saying is
that we wish it to be treated as an dlipse, indeed, but as
nothing more special than an ellipse, even if that current value
happens to be, for example, acircle.

We consider the necessity for TREAT_UP_AS T7'to be a
defect in Model 1. We aso consider the effect of statement
(14) in Model 1 to be a defect—the value being assigned to E
here most definitely is a circle, which the system should be
able see as clearly as any human being can. We consider these
defects to militate against acceptance of Model 1 as an
agreeable model of type inheritance. It follows that we also
reject the type inheritance mechanisms defined in SQL:1999
et cetera.

9. FEATURES OF MODEL 2
Model 2 is effectively Model 1 plus speciaization by
congtraint. In gaining specialization by constraint it loses
those features of Model 1 that we found obnoxious.

The generic TREAT_UP_AS T operator has gone away
altogether.

" Actualy, if it is possible that the value currently assigned to E is of
some proper subtype of ELLIPSE, TREAT_UP_AS _ELLIPSE would
be needed on both comparands: TREAT_UP_AS ELLIPSE (E) =
TREAT_UP_ASELLIPSE (C).

Value substitutability and static type checking are
retained and, in fact, improved. In particular, statement (15)
no longer has the effect of making (16) cause a run-time type
error, even though we retain the fact that update operators that
operate on variables of the supertype are not necessarily
inherited by variables of the subtype. Notethat E is avariable
of type ELLIPSE, not avariable of type CIRCLE.

At the present level of discussion, that is all that needs to
be said about Model 2. | hope, though, that the question
immediately arises in the reader's mind as to why (on eartht!),
in that case, we didn't go for Model 2 in the first place. The
answer, quite simply, is that we were given to believe it was
not feasible. On reflection, we have changed our mind about
that (and are at odds with [7]).

I now want to explain why we think Model 2 is, after all,
feasible, and why we believe such a model is not supported in
SQL:1999 ef cetera.

10. WHY MODEL 2 IS FEASIBLE

We consider the feasibility of much of Model 2 to have been
already demonstrated in implementations to date of SQL:1999
et cetera. Take what is commonly known as "run-time
binding", for example. It is true that we are dightly more
demanding in this respect, than are SQL:1999 et cetera, for we
do not accept the concept known as "the distinguished
parameter” (i.e., binding based only on the most specific type
of the first argument, or "the object to which the message is
sent”, as Smalltalk users would have it). Rather, we advocate
the approach of what we have seen referred to as
"multifunctions’, requiring the matching of the most specific
types of al of the arguments to the declared types of
corresponding parameters. Early drafts of SQL:1999 had this
feature, even though it was ultimately removed. | am reliably
informed that at least one well known DBMS vendor has
already implemented it.

Our concept of possible representations might at first
sight appear to be novel and require proof of feasibility.
SQL:1999 et cetera require representation components to be
inherited, whereas [3] does not. However, we regard the
representations in question in SQL:1999 et cetera as actual
representations, rather than mere possible ones. Actual
representation is an implementation issue, not a model issue.
The implementer of our CIRCLE type is free to use an actual
representation having A and B components instead of the R
component of our possrep, provided, of course, that the
prescribed consequences of the possrep are honored in the
implementation.

As for specialization by constraint, which we spurned in
Model 1 for fear of infeasibility, we now think thisis no rea
problem. To implement it, we must be able to compute the
most specific type of the result of evaluating an invocation of
ascalar selector, by examination of type constraints. Suppose,
for example, that type CIRCLE is defined thus (and here | am
giving an airing to syntax we are currently considering for
illustrative examples in our definition of Model 2):

TYPE Cl RCLE | SA { ELLI PSE CONSTRAI NT
(THELA (ELLIPSE) =

THE_ B (ELLIPSE)) }
POSSREP { R LENGTH, C PO NT }

(We use the term | SA to appeal to the notion that every value
in the type being defined is a value in the specified supertype.
The ISA specification is enclosed in braces to alow for
multiple inheritance.)

Now consider again statement (14):

(14) E := ELLIPSE (LENGTH (
LENGTH (
XY_PO NT
)

Like every invocation of a read-only operator, the expression
on the right-hand side of the assignment operator in (14) has
exactly one declared type, in this case ELLIPSE. The most
specific type of its result must be some subtype of ELLIPSE,
possibly ELLIPSE itself.

Our proposed method for determining the most specific
type of avalue v yielded by evaluation of an expression e is as
follows. Consider the immediate subtypes of the declared
type dt of e, taken in some arbitrary order. Test v for each of
these subtypes in turn, to see if it satisfies the type constraint
for that subtype. If v satisfies none of these constraints, then
its most specific type is dt; otherwise, stop as soon as such a
subtype st is found and repeat the process for the immediate
subtypes of st.

This algorithm does rely on an assumption that the
defining constraints are consistent with each other and with
our model. For example, if v satisfies the constraint for some
leaf type Iz, then there is no other leaf type whose constraint is
also satisfied by v. Also, if v satisfies the constraints of two
distinct types, ¢/ and 2, then its most specific type must be
some subtype of the least specific common subtype of t1 and
t2. Let [scs be that common subtype. Then the constraint that
defines Iscs in terms of ¢/ must be logically equivalent to the
one defining it in terms of 2. We are currently considering
the possibility of allowing these constraints to be implied. For
example:

TYPE SQUARE | SA { RECTANGLE, RHOWVBUS }
POSSREP ...

5),
5),
(0, 0)

might be sufficient—the constraints IS RHOMBUS
(RECTANGLE) and IS RECTANGLE (RHOMBUS),
where IS RHOMBUS and IS RECTANGLE are truth-valued
operators implicitly defined for parallelograms in general, are
implied by the pairing of RHOMBUS and RECTANGLE in
the ISA specification. The meanings of IS RHOMBUS and
IS RECTANGLE are given by the type constraints that define
RHOMBUS and RECTANGLE, respectively, in terms of
PARALLELOGRAM. The reader can perhaps easily confirm
that this idea generalizes to the case where three or more
immediate supertypes are specified.

11. WHY MODEL 2
SQL:1999 ET CETERA

The reason is strongly indicated by the subtitle of this article,

"Object Identifiers and Inheritance Don't Mix!". Consider

IS NoT FEASIBLE IN

again statements (15) and (16), in the guise in which they
appear in thefollowing Java’ fragment:

Ellipse e ;
Crcle c ;
(17) ¢ =newCircle (5,

new Point (0, 0)) ;
(18) e =c ;
(19) e.a = 6 ;

There is a subtle difference between on the one hand the pair
of statements (15) and (16) and on the other the pair of
statements (18) and (19). This difference is crucialy
important, as | will now explain.

Consider (17), ostensibly an assignment of a value of type
Circl e to avariable of that type. In fact, it is no such thing,
and c isnot avariableof typeCi rcl e! InJava™, El | i pse
and Ci r cl e would be what are called reference types. This
means that (17) in fact assignsto ¢ not acircle, but instead the
object identifier (0id) of a certain circle object. TheCircl e
object in question comes into existence as a side effect of the
given invocation of new, which returns the oid of that object.

Now consider (18). The effect of thisisto assign to e the
oid that is the current value of c. As a result, we note that e
and c are both referencing, or, in jargon of long ago, pointing
at the same object. Also in jargon of long ago, we would say
that the object in question is a shared variable (and so, for that
matter, is the object created by the invocation of new Poi nt
given as the second argument to the invocation of new
Circle).

It's crunch time at last! The specified effect of (19) is to
assign the length 6 to the a component of the object pointed at
by the oid that is the current value of e. If Java" were to
embrace specialization by consraint, then the most specific
type of that object would now have to be recomputed, and the
system would discover that type to be El i pse. As a
conseguence, the "circle variable" ¢ now points to an object
that is not a circle. This would have to be a run-time type
error, and atype error of the very worst kind—the kind against
which an application has no self-defense. Note that it is not
possible to predict the occurrence of such an error merely by
examination of the text of the statement whose invocation
causes it. Note also that in an object-oriented database, that
variable, ¢, might be a persistent variable anywhere in some
large and widely distributed database. Unable to defend
themselves against such situations, database applications could
no longer meet the commonly required standards of
robustness, given the possibility that such errors might arise.

And yet in Model 2 we propose to embrace specialization
by constraint.

Our reason is simple. There is no concept of object
identifier in our model. We have no pointers, no shared
variables. We did not omit these things in order to be able to
embrace an agreeable model of type inheritance. We omitted
them simply because we continue to hold to the wisdom
expressed in [2]. The reason Codd gave for spurning pointers
in his Relationa Model of Data was just that pointers are
difficult to understand, confusing. He gave that reason at a

time when type inheritance was not even being thought about
(in a database context, at least). If Codd was right then, can
we not claim to be even more right now?

12. SUMMARY AND CONCLUSION

| have described our motivation for formulating and proposing
a rigorous type theory, incorporating the concept of type
inheritance. | have described in outline the process by which
we arrived at our first attempt, Model 1, published in [3] but
later deprecated. Specifically, | related our close study of [8]'s
"3 out of 4 rule" and our decision to follow othersin favor of
rejecting specialization by constraint in favor of keeping value
substitutability, static type checking and mutability.

| have described Model 1 in outline and | have given our
reasons for wanting to improve it. | have given notice of our
intention to publish Model 2, which we claim successfully
does embrace specialization by constraint, without, after all,
sacrificing any of the other three desiderata. | have indicated
the respects in which Model 2 will differ from Model 1 and
with what favorable consequences.

We contend that, unlike Model 1 and the model(s) of
SQL:1999, ODMG and Java™, Model 2 is an agreeable
model, in that it conforms to normal human intuition about
categorization of objectsinto types.

We have shown that Model 2 would be broken if the
object identifier concept and its consequences were added to
that model. We have recalled that object identifiers, being
pointers of a kind, were shunned by Codd in his Relational
Model of Data for reasons, not connected with type theory,
that we gtill find to be sufficient reason for shunning them.
We claim that because SQL:1999, ODMG and Java™ do
support object identifiers, they cannot support an agreeable
model of type inheritance, such as Model 2.

We conclude:

1. that the "3 out of 4" rule might more appropriately
be replaced by a "4 out of 5" rule, with object
identifiers as the fifth desideratum in the list from
which any four but not all five can be chosen;

2. that our choice was effectively made for usin 1970;

3. that if azruly relational database language were to be
devised and implemented, then that would be an
opportunity for implementation of a well-defined and
agreeable model of type inheritance.

ACKNOWLEDGMENTS

My thanks go to Tom Pledger of Peace Software, New
Zealand, for his careful review and suggestions. Likewise to
my coauthor, friend and fellow wanderer in Relationland,
Chris Date.

REFERENCES

[1] R.G.G. Cattell and Douglas K. Barry (eds.): The
Object Database Standard: ODMG 2.0. San
Francisco, Cdlif.: Morgan Kauffman (1997).

[2] E.F. Codd: "A Relational Model of Data for Large
Shared Data Banks', CACM 13, No. 6 (June 1970).
Republished in "Milestones of Research", CACM 26,
No. 1 (January 1982).

[3] CJ. Dae and Hugh Darwen: "Foundation for
Object/Relational Databases: The Third Manifesto”.
Reading, Mass.: Addison-Wesey (1998). (A 2™
edition isto appear in 2000).

[4] James Godling, Bill Joy, Guy Steele: "The Java'
Language Specification". Reading, Mass.: Addison-
Wesley (1996).

[5] International Organization for Standardization (1SO):
Database Language SQL. Document [ISO/IEC
9075:1992.

[6] Jm Melton (ed.): "ISO Fina Draft International
Standard (FDIS) Database Language SQL — Part
2:Foundation (SQL/Foundation)* ISO/IEC FDIS
9075-2:1999.

[7] James Rumbaugh: "A Matter of Intent: How to Define
Superclasses', Journal of Object-Oriented

Programming (September 1996).

[8] Stanley B. Zdonik and David Maier: "Fundamentals of
Object-Oriented Databases", in Stanley B. Zdonik and
David Maier: Readings in Object-Oriented Database

Systems.
(1990).

San Francisco, Cdif.: Morgan Kauffman

Hugh Darwen is a database specialist
working in Warwick, England for
IBM United Kingdom Limited, for
whom he has been involved in
software development since 1967. He
has been active in the relational
database arena since 1978, from which
date until 1982 he was one of the chief
architects and developers of an IBM
W relational product called Business
System 12—a DBMS that faithfully embraced the principles of
therelational model. His writings include notable contributions
to Date's Relational Database Writings series (Addison-
Wedley, 1990, 1992), A Guide to the SQL Standard (4th edition,
Addison-Wesley, 1997), and Foundation for Object/Relational
Databases: The Third Manifesto (Addison-Wesley, 1998). He
has been an active participant in the development of SQL
international standards since 1988. One of his current special
interests is in temporal databases. In his spare time he is a
consultant to database course developers at the Open
University, from whom he recently received the honorary
degree of Master of the University, and he is a tutor to students
on these courses. He is a visiting lecturer at several other
British universities, one of whom, Wolverhampton University,
in 1998, awarded him the honorary degree of Doctor of
Technology. E-mail: Hugh Darwen@uk.ibm.com.

