next up previous contents
Next: RMI 7: Server Interfaces Up: Java Notes Previous: RMI Example: Client Program

RMI Example: Client Program

Task Implementation
package client;

import compute.*;
import java.math.*;

public class Pi implements Task{

  /** constants used in pi computation */
  private static final BigDecimal ZERO = 
    BigDecimal.valueOf(0);
  private static final BigDecimal  ONE = 
    BigDecimal.valueOf(1);
  private static final BigDecimal FOUR = 
    BigDecimal.valueOf(4);

  /** rounding mode to use during pi computation */
  private static final int roundingMode = 
    BigDecimal.ROUND_HALF_EVEN;

  /** digits of precision after the decimal point */
  private int digits;
  
  /**
   * Construct a task to calculate pi to the specified
   * precision.
   */
  public Pi(int digits){
    this.digits = digits;
  }

  /**
   * Calculate pi.
   */
  public Object execute(){
    return computePi(digits);
  }

  /**
   * Compute the value of pi to the specified number of 
   * digits after the decimal point.  The value is 
   * computed using Machin's formula:
   *
   *      pi/4 = 4*arctan(1/5) - arctan(1/239)
   *
   * and a power series expansion of arctan(x) to 
   * sufficient precision.
   */
  public static BigDecimal computePi(int digits){
    int scale = digits + 5;
    BigDecimal arctan1_5 = arctan(5, scale);
    BigDecimal arctan1_239 = arctan(239, scale);
    BigDecimal pi = arctan1_5.multiply(FOUR).subtract(
                    arctan1_239).multiply(FOUR);
    return pi.setScale(digits, 
                   BigDecimal.ROUND_HALF_UP);
  }
  /**
   * Compute the value, in radians, of the arctangent of 
   * the inverse of the supplied integer to the speficied
   * number of digits after the decimal point.  The value
   * is computed using the power series expansion for the
   * arc tangent:
   *
   * arctan(x) = x - (x^3)/3 + (x^5)/5 - (x^7)/7 + 
   *   (x^9)/9 ...
   */   
  public static BigDecimal arctan(int inverseX, 
                          int scale){
    BigDecimal result, numer, term;
    BigDecimal invX = BigDecimal.valueOf(inverseX);
    BigDecimal invX2 = 
      BigDecimal.valueOf(inverseX * inverseX);

    numer = ONE.divide(invX, scale, roundingMode);

    result = numer;
    int i = 1;
    do{
      numer = 
        numer.divide(invX2, scale, roundingMode);
      int denom = 2 * i + 1;
      term = 
        numer.divide(BigDecimal.valueOf(denom),
                     scale, roundingMode);
      if ((i % 2) != 0){
        result = result.subtract(term);
      } else{
        result = result.add(term);
      }
      i++;
    } while (term.compareTo(ZERO) != 0);
    return result;
  }
}


Ananda Amatya
9/15/1999