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Contributions

* ML methodology for performance portability
- Transfer learning based on Bayesian optimization

«  Up to 46% faster than conventional Bayesian optimization, up to
86% faster than exhaustive search

- Tested on a TDDFT workload, but with broader applicability

«  DFTuning: a workflow for DFT performance portability

« Correlation metric for assessing the quality of Transfer
Learning
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Motivation

- Density Functional Theory: a workhorse of chemistry and materials science.

+ Objective: Target to new generations of DOE exascale machines.
Performance portability challenge.
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* The challenge is not new, but on the exascale era it is imperative to reduce
the number of evaluations during the search.
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Application Motivation

One application ... ... different portability scenarios.

DFT Application
* One Node of Cori (MPI)

* One Node of Perimutter (MPI, CUDA)
*  Multiple Nodes of Perimutter (MPI, CUDA)

*  One Node of Frontier (MPI, HIP)
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Some ML Concepts
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Autotuning

Empirical_Search (shapes, strides):

Auto-tuning can help with this: o kPt s

° Emp|r|Ca| SearCh b* < argmin, .z MeasureTime(a,b, c)
return b~
*  Predictive search

Predictive_Search (shapes, strides)

EénegrljlcCha | S;tiar;aarrtees finding Very slow a < TaskFeatures(shapes, strides)
¢ « PlatformFeatures()
* Results depends f + TimingModel()
Analytical Model Erflgl.JceS the search ?nnozjheelz quality of b* « argmin,z f(a,b,c)
Predictive « Complex return b*
Search Reduces the search

, , : The search process is
W ETD IHEETTIng (102, still infeasible
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Bayesian optimization

Random
P gl nitial Samples Batch
Space T’ Configurations §
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Bayesian optimization

Random
SYNSRPOIl Initial Samples Batch Evaluate [SCEEIEIEIN,
- their performance
Space —’o Configurations _’e p,:etﬁc
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Bayesian optimization

Random
SYNSRPOIl Initial Samples Batch Evaluate [SCEEIEIEIN,
- their performance
Space —’0 Configurations _’e p,:etric

° \ Append

Training Set
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Bayesian optimization

Random

SYNSRPOIl Initial Samples Batch Evaluate [SCEEIEIEIN,
- their performance
Space —’0 Configurations _’e p,:etric

e \ Append

Training Set

a \ Train

Surrogate
Model
EEEEEEEEEEEE | Office of

Bl BERKELEY LAB ENERGY  scionce

Bringing Science Solutions to the World




Bayesian optimization

Random
Parameter Initial Samples Evaluate
Space snmmsmmmndl Configurations s

Give candidates

Acquisition
function

Configurations +

their performance
metric

e Append

Training Set

° Train

Surrogate
Model
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Bayesian optimization

Random

Parameter Initial Samples
Space >

Evaluate Configurations +
their performance
metric

Configurations g

2
4 e Append

Give candidates Training Set

o Train

ulx*]

Acquisition Surrogate
function Model
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Bayesian optimization

Random

Parameter Initial Samples
Space >

Evaluate Configurations +
their performance
metric

Configurations g

2
4 e Append

Give candidates Training Set

o Train

Acquisition Surrogate
function Model
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Bayesian optimization

Parameter

Space

NEeRsSC

Random
Initial Samples

>

Give candidates

Acquisition
function

Evaluate

Configurations g

Configurations +

their performance
metric

e Append

Training Set

o Train

Surrogate
Model
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Bayesian optimization

Random

Parameter Initial Samples
Space >

Evaluate Configurations +
their performance
metric

Configurations g

2
4 e Append

Give candidates Training Set

o Train

oS AV

Acquisition Surrogate
function Model
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Transfer Learning ()

Running the search on Cori:

Random
[PPSR  Initial Samples Batch Evaluate [eCIUiCIICHELEIES
3 9 their performance
Space maeammmmn Configurations jusund F:netric

° \ Append

Give candidates Training Set

Train

—

Acquisition e

Surrogate
. —
function

Model

63 sample evaluations
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Transfer Learning (lI)

Running the search on Cori: Running the search on Perimutter:

Random

Random . n
Parameter Initial Samples Batch Evaluate Configurations + Parameter Initial Samples Batch Evaluate Copflguratlons +
. . their performance Space —— o R their performance

Space —’a Configurations —'e metric P P gu o metric

° \ Append o \ Append

Give candidates Training Set Give candidates Training Set

o \ Train o \ Train
Acquisition e Surrogate Acquisition e Surrogate
function Model function Model

63 sample evaluations

71 sample evaluations
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Transfer Learning (and IlI)

Running the search on Cori: Running the search on Perimutter:

Random . p
Parameter Initial Samples Batch Evaluate Configurations + Batch Evaluate Copflguratlons +
. . their performance Confi . their performance

Space T’ Configurations 7 metric onfigurations o metric

° \ Append o \ Append

Give candidates Training Set Give candgates Training Set

o Train o

v
function Model function Model
63 sample evaluations 30 sample evaluations
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DF Tuning: Decoupling workflow from GPTune

1- Portability Support:
. Supports Transfer Learning for learning tuning parameters

|

_ for a new input on the same platform

‘ 2- Convergence:

J . Insufficient converge criteria
Read 1 sample from DB 3- Search Efficiency:
J . Initial samples evaluated sequentially

. Acquisition function provides 1 candidate at a time

. MPI spawning based on OpenMPI

il

DFTuning

|
Write sample result to DB

.

|
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* The RT-TDDFT Mini-App
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RT-TDDFT MiniApp Analysis

. RT-TDDFT MiniApp using QBox framework

. Tuning parameters define the MPI grid dimensionality

Seconds Seconds
. Wide range of exec. times depending on tuning 77922 8.55
parameters 192
. Communication bounded
75%
Q
=
H
8 50%
=
Q
Q
>
o
R 25%
PW
~1M 0%
Baseline Tuned
KPoints \ I Computation [ MPI_Allreduce B MPI_alltoallv
~10-100
Bands
~1k
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ML Methodology

- Task/Input description (argument shapes, data layout)
- Implementation description (auto-tuning parameters)
- Platform description (capabilities, micro-benchmarks)

Given an input task and a platform: find an optimal
tuning configuration

Predictive_Search (shapes, strides):

a < TaskFeatures(shapes, strides)
¢ + PlatformFeatures()
[« TimingModel()

b* < argmin, z f(a,b,c)

return b*
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ML Methodology

- Task/Input description (argument shapes, data layout)
- Implementation description (auto-tuning parameters)
- Platform description (capabilities, micro-benchmarks)

Given an input task and a platform: find an optimal
tuning configuration

Input Parameters

| 9]

| The name of the input task. In this case ’Si_222’

| €— Task Description

Performance Parameters

<4— Platform Description

Number of ranks working on Spin dimension. It can
P be 1 or 2
k Number of ranks on the KPoint dimension. Any
P power-of-2 number from 1 to cores*nodes
b Number of ranks on the Band dimension. Any
5 power-of-2 number from 1 to cores*nodes
ranks Total number of ranks to be used. Any power-of-2
number from 2 to cores*nodes
Constants
Number of cores per node in the target platform,
cores which is a power-of-two number.
nodes Number of allowed nodes to use in the target plat-
form
Constraints
Constraint] | ranks < cores X nodes
Constraint2 | sp X kb X sb < ranks

NE&RSC
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and they are constants.
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ML Methodology

- Task/Input description (argument shapes, data layout)
- Implementation description (auto-tuning parameters)
- Platform description (capabilities, micro-benchmarks)

Given an input task and a platform: find an optimal
tuning configuration

What if a new input task on the same platform?
Run a new search from scratch

X U.S. DEPARTMENT OF Ofﬁce of
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ML Methodology

- Task/Input description (argument shapes, data layout)
- Implementation description (auto-tuning parameters)
- Platform description (capabilities, micro-benchmarks)

Given an input task and a platform: find an optimal
tuning configuration

Knowledge from the source task is shared
during the learning of the new task

What if a new input task on the same platform?

Run a new search from scratch If new and source tasks are similar,
- or - the model will learn correlations among them,
Using the Transfer Learning Autotuning accelerating the search or
feature of GPTune finding better optimal values.

Rd, U.S. DEPARTMENT OF Office of
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ML Methodology

- Task/Input description (argument shapes, data layout)
- Implementation description (auto-tuning parameters)
- Platform description (capabilities, micro-benchmarks)

Given an input task and a platform: find an optimal
tuning configuration

But this is not performance portability between
platforms.

What if a new input task on the same platform?

Run a new search from scratch
- Or -
Using the Transfer Learning Autotuning
feature of GPTune
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Using BO+TL search for performance portability

Platform Description

Task Description

Implementation Description

Input Parameters

Peak theoretical bandwidth of the target platform in

bandwidth GB/s, From 1 to 1000
cores Number of cores per node in the target platform,
which is a power-of-two number. From 1 to 256.
Number of allowed nodes to use in the target plat-
nodes
form. From 1 to 3
C The name of the input task. In this case ’Si_222’

Performance Parameters

Number of ranks working on Spin dimension. It can

sp
be 1 or2
k Number of ranks on the KPoint dimension. Any
P power-of-2 number from 1 to cores*nodes
b Number of ranks on the Band dimension. Any
power-of-2 number from 1 to cores*nodes
Total number of ranks to be used. Any power-of-2
ranks
number from 2 to cores*nodes
Constraints
Constraintl | ranks < cores X nodes
Constraint2 | sp X kb x sb < ranks

+  Embedding the Platform description parameters as Input Parameter variables (not constants anymore).
+ Modifying the metadata to enable the execution.
« Choosing Platform features that can explain the objective function: communication-bounded
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Test Platforms at NERSC

Cori Perlmutter
CPU 2x Intel Xeon AMD EPYC 7763
E5-2698 v3 2.3 GHz 2450 GHz
# cores per Node 32 64
Node M 128 GB DDR4 256 GB DDR4
ode Viemoty 2133 MHz 3200 MHz
Node Peak
Mem. Bandwidth < 110 GB/s 204.8 GB/s
Interconnection Cray Aries DragonFly | HPE Cray Slingshot 11

« Si 222 input task: 8 k-points, 4 bands, 40K PWs.

Office of
Science
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Portability scenarios

One application ... ... different portability scenarios.

DET Application * One Node of Cori (MPI)

« One Node of Perlmutter (MPl) <—— Cross-Platform

* Multiple Nodes of Perimutter (MPl) «— Intra-Platform
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Transfer-Learning Results

(sp, kp, sb, ranks)

4

Scenario Found Execut. Optimal Eval.
at Eval. Config. Time

| BO Perlmutter, 1 node | #47 | 70 (1,8,4,64) | 1.36s |

— An exhaustive search would explore
204 valid combinations.

A reduction of 66% in the number of
evaluations.

| NERSC | 35
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Transfer-Learning Results: Intra-Platform

(sp, kp, sb, ranks) Now using 2 Nodes of Perimutter.
Scenario Found Execut. Optimal Eval.
at Eval. _ Config. Time Exhaustive search would explore 285

| BO Perlmutter, 1 node | #47 | 70 | (1,8,4,64) [ 1.36s |

Intra-Platform Portability
Without TL #3 | 70 | (1,8,2,128) | 1.12s
With TL #40 | 60 | (1,8,4,128) | 0.91s

combinations

From 70 to 60 : 14.3% reduction
From 285 to 60: 79% reduction
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Transfer-Learning Results: Cross-Platform

(sp, kp, sb, ranks)

Scenario Found Execut. Optimal Eval.

at Eval. Config. Time

| BO Perlmutter, 1 node | #47 | 70 | (1,8,4,64) | 1.36s
Intra-Platform Portability

Without TL #43 70 (1,8,2,128) | 1.12s

With TL #40 60 (1,8,4,128) | 091s
Cross-Platform Portability

Without TL #7 40 (1,8,2,32) | 6.76s

With TL #40 60 (1,8,4,32) /9 4.68s

Without TL stops earlier, but optimal is worse.

\
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Now moving to 1 Node in Cori:
92 valid combinations
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Assessing quality with metrics

* |Intra-Platform results: 0.9498
« Cross-Platform results: 0.834

A metric for measuring correlation among tasks in Transfer learning:

~ Magnitudes near 1 indicate high correlation, close to 0 mean no relation between tasks.

: Evaluations
Platform (sp, kp, sb,ranks)  Efficiency Frecuted
| Perlmutter, 1 node | (1,8,4,64) 100% | 70 |

Without transfer learning
Perlmutter, 2 nodes (1,8,2,128) 81.39% 70 _

Cori, 1 node (1,8,2,32) 69.23% 20 ©= 07492
With transfer learning
Perlmutter, 2 nodes (1,8,4,128) 100% 60 P =1

Cori, 1 node (1,8,4,32) 100% 60

s 38 B BERKELEY LAB @ ENERGY oo
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More details in the paper...

Conversion-stopping criteria

How to re-use DFTuning for more applications
Avoid OpenMPI nested parallelism (MPI spawning)
Evaluate in parallel the initial candidates

Enabling compile-time performance parameters
Correlation metric for tasks in the TL learned model
Pennycook metric calculation

 nERsC | 40 %l BERKELEY LAB ?
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Conclusions

We present a novel ML-based Autotuning Methodology, based on BO +
TL, for addressing the performance portability problem in TDDFT workload.

The methodology has a broader applicability to other apps and tuning
frameworks.

We show promising results with TL on performance portability:

- Saves up to 46.7% of app evaluations compared to a BO search in NERSC
platforms.

*  We demonstrate with a new metric why TL worked here.
- Pennycook performance portability metric shows the highest portability.
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Future work

- Target GPU platforms.
«  Study the importance of the Task/Platform parameters.
* Focus on large scale executions.
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Thank you
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