
ML-based Performance Portability for
Time-Dependent Density Functional

Theory in HPC Environments
Adrián P. Diéguez, Min Choi, Xinran Zhu, Bryan M. Wong and Khaled Z. Ibrahim

PMBS'22, held in conjunction with SC’22
Nov. 14, 2022

2

Outline

• Contributions & Motivation
• Some ML Concepts
• DFTuning
• The RT-TDDFT Mini-App
• ML Methodology
• Experimental Results
• Conclusions

3

Outline

• Contributions & Motivation
• Some ML Concepts
• DFTuning
• The RT-TDDFT Mini-App
• ML Methodology
• Experimental Results
• Conclusions

4

Contributions

• ML methodology for performance portability
• Transfer learning based on Bayesian optimization
• Up to 46% faster than conventional Bayesian optimization, up to

86% faster than exhaustive search
• Tested on a TDDFT workload, but with broader applicability

• DFTuning: a workflow for DFT performance portability
• Correlation metric for assessing the quality of Transfer

Learning

5

Motivation
• Density Functional Theory: a workhorse of chemistry and materials science.

• Objective: Target to new generations of DOE exascale machines.
Performance portability challenge.

• The challenge is not new, but on the exascale era it is imperative to reduce
the number of evaluations during the search.

6

Application Motivation

• One Node of Cori (MPI)

• One Node of Perlmutter (MPI, CUDA)

• Multiple Nodes of Perlmutter (MPI, CUDA)

• One Node of Frontier (MPI, HIP)

… different portability scenarios.

C++ MPI

CUDA

DFT Application

HIPHost

One application …

MPI

Task

Ngb

Nstb
Nkpb

7

Outline

• Contributions & Motivation
• Some ML Concepts
• DFTuning
• The RT-TDDFT Mini-App
• ML Methodology
• Experimental Results
• Conclusions

8

Autotuning

Auto-tuning can help with this:
• Empirical search
• Predictive search

Empirical
Search

Predictive
Search

Analytical Model Reduces the search
time.

• Results depends
on the quality of
model

• Complex

Machine Learning
Reduces the search
time.
Black Box.

The search process is
still infeasible

Guarantees finding
optimal Very slow

9

Bayesian optimization

10

Bayesian optimization

11

Bayesian optimization

12

Bayesian optimization

13

Bayesian optimization

14

Bayesian optimization

15

Bayesian optimization

16

Bayesian optimization

17

Bayesian optimization

18

Transfer Learning (I)

63 sample evaluations

Running the search on Cori:

19

Transfer Learning (II)

63 sample evaluations

Running the search on Cori:

71 sample evaluations

Running the search on Perlmutter:

20

Transfer Learning (and III)

63 sample evaluations 30 sample evaluations

Running the search on Cori: Running the search on Perlmutter:

21

Outline

• Contributions & Motivation
• Some ML Concepts
• DFTuning
• The RT-TDDFT Mini-App
• ML Methodology
• Experimental Results
• Conclusions

22

DFTuning: Decoupling workflow from GPTune

DFTunin

GPTuneDriver.py

While
#samples < NS

Read 1 sample from DB

Wrapper_in.py

Run APP Launcher

Wrapper_out.py

While
samples in DB

Write sample result to DB

DB
Empty?

1- Portability Support:

• Supports Transfer Learning for learning tuning parameters
for a new input on the same platform

2- Convergence:

• Insufficient converge criteria

3- Search Efficiency:

• Initial samples evaluated sequentially

• Acquisition function provides 1 candidate at a time

• MPI spawning based on OpenMPI

Launcher

Python Bash

Wrapper
 GPTune

C++ CUDA

Application

DFTuning

HIP

23

Outline

• Contributions & Motivation
• Some ML Concepts
• DFTuning
• The RT-TDDFT Mini-App
• ML Methodology
• Experimental Results
• Conclusions

24

RT-TDDFT MiniApp Analysis
• RT-TDDFT MiniApp using QBox framework

• Tuning parameters define the MPI grid dimensionality

• Wide range of exec. times depending on tuning
parameters

• Communication bounded

Seconds Seconds

PW

~1M

Bands

~1k

KPoints

~10-100

MPI

Task

Ngb

Nstb
Nkpb Baseline Tuned

25

Outline

• Contributions & Motivation
• Some ML Concepts
• DFTuning
• The RT-TDDFT Mini-App
• ML Methodology
• Experimental Results
• Conclusions

26

ML Methodology

- Task/Input description (argument shapes, data layout)

- Implementation description (auto-tuning parameters)

- Platform description (capabilities, micro-benchmarks)

Given an input task and a platform: find an optimal
tuning configuration

27

ML Methodology

Task Description

Implementation Description

Platform Description
 and they are constants.

- Task/Input description (argument shapes, data layout)

- Implementation description (auto-tuning parameters)

- Platform description (capabilities, micro-benchmarks)

Given an input task and a platform: find an optimal
tuning configuration

28

ML Methodology

What if a new input task on the same platform?
Run a new search from scratch

- Task/Input description (argument shapes, data layout)

- Implementation description (auto-tuning parameters)

- Platform description (capabilities, micro-benchmarks)

Given an input task and a platform: find an optimal
tuning configuration

29

ML Methodology

What if a new input task on the same platform?
Run a new search from scratch

- or -
Using the Transfer Learning Autotuning

feature of GPTune

Knowledge from the source task is shared
during the learning of the new task

If new and source tasks are similar,
the model will learn correlations among them,
accelerating the search or
finding better optimal values.

- Task/Input description (argument shapes, data layout)

- Implementation description (auto-tuning parameters)

- Platform description (capabilities, micro-benchmarks)

Given an input task and a platform: find an optimal
tuning configuration

30

ML Methodology

But this is not performance portability between
platforms.

What if a new input task on the same platform?

Run a new search from scratch
- or -

Using the Transfer Learning Autotuning
feature of GPTune

- Task/Input description (argument shapes, data layout)

- Implementation description (auto-tuning parameters)

- Platform description (capabilities, micro-benchmarks)

Given an input task and a platform: find an optimal
tuning configuration

31

Using BO+TL search for performance portability

Task Description

Platform Description

Implementation Description

• Embedding the Platform description parameters as Input Parameter variables (not constants anymore).
• Modifying the metadata to enable the execution.
• Choosing Platform features that can explain the objective function: communication-bounded

32

Outline

• Contributions & Motivation
• Some ML Concepts
• DFTuning
• The RT-TDDFT Mini-App
• ML Methodology
• Experimental Results
• Conclusions

33

Test Platforms at NERSC

• Si_222 input task: 8 k-points, 4 bands, 40K PWs.

34

Portability scenarios

One application … … different portability scenarios.

• One Node of Cori (MPI)

• One Node of Perlmutter (MPI)

• Multiple Nodes of Perlmutter (MPI) Intra-Platform

Cross-PlatformC++ MPI

CUDA

DFT Application

HIPHost

35

Transfer-Learning Results
(sp, kp, sb, ranks)

An exhaustive search would explore
204 valid combinations.

A reduction of 66% in the number of
evaluations.

36

Transfer-Learning Results: Intra-Platform

(sp, kp, sb, ranks)

From 70 to 60 : 14.3% reduction
From 285 to 60: 79% reduction

Now using 2 Nodes of Perlmutter.

Exhaustive search would explore 285
combinations

37

Transfer-Learning Results: Cross-Platform

(sp, kp, sb, ranks)
Now moving to 1 Node in Cori:
92 valid combinations

Without TL stops earlier, but optimal is worse.

A metric for measuring correlation among tasks in Transfer learning:

Magnitudes near 1 indicate high correlation, close to 0 mean no relation between tasks.

• Intra-Platform results: 0.9498
• Cross-Platform results: 0.834

38

Assessing quality with metrics

= 0.7492

= 1

39

Outline

• Contributions & Motivation
• Some ML Concepts
• DFTuning
• The RT-TDDFT Mini-App
• ML Methodology
• Experimental Results
• Conclusions

40

More details in the paper…

• Conversion-stopping criteria
• How to re-use DFTuning for more applications
• Avoid OpenMPI nested parallelism (MPI spawning)
• Evaluate in parallel the initial candidates
• Enabling compile-time performance parameters
• Correlation metric for tasks in the TL learned model
• Pennycook metric calculation
• …

41

Conclusions
• We present a novel ML-based Autotuning Methodology, based on BO +

TL, for addressing the performance portability problem in TDDFT workload.

• The methodology has a broader applicability to other apps and tuning
frameworks.

• We show promising results with TL on performance portability:
• Saves up to 46.7% of app evaluations compared to a BO search in NERSC

platforms.
• We demonstrate with a new metric why TL worked here.
• Pennycook performance portability metric shows the highest portability.

42

Future work

• Target GPU platforms.
• Study the importance of the Task/Platform parameters.
• Focus on large scale executions.

43

Thank you

aperezdieguez@lbl.gov

mailto:aperezdieguez@lbl.gov

