

ML-based Performance Portability for Time-Dependent Density Functional Theory in HPC Environments

Adrián P. Diéguez, Min Choi, Xinran Zhu, Bryan M. Wong and Khaled Z. Ibrahim

PMBS'22, held in conjunction with SC'22 Nov. 14, 2022

Outline

- Contributions & Motivation
- Some ML Concepts
- DFTuning
- The RT-TDDFT Mini-App
- ML Methodology
- Experimental Results
- Conclusions

Outline

- Contributions & Motivation
- Some ML Concepts
- DFTuning
- The RT-TDDFT Mini-App
- ML Methodology
- Experimental Results
- Conclusions

Contributions

- ML methodology for performance portability
 - Transfer learning based on Bayesian optimization
 - Up to 46% faster than conventional Bayesian optimization, up to 86% faster than exhaustive search
 - Tested on a TDDFT workload, but with **broader applicability**
- DFTuning: a workflow for DFT performance portability
- Correlation metric for assessing the quality of Transfer Learning

4

Motivation

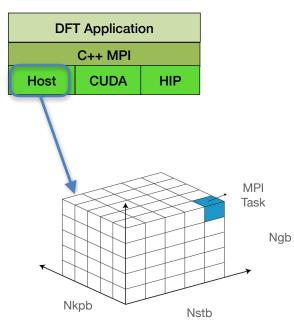
- Density Functional Theory: a workhorse of chemistry and materials science.
- Objective: Target to new generations of DOE exascale machines.
 Performance portability challenge.

• The challenge is not new, but on the exascale era it is imperative to reduce the number of evaluations during the search.

5

Application Motivation

One application ...



... different portability scenarios.

- One Node of Cori (MPI)
- One Node of Perlmutter (MPI, CUDA)
- Multiple Nodes of Perlmutter (MPI, CUDA)
- One Node of Frontier (MPI, HIP)

 $\operatorname{cov}\{u_q(x),u_q(x')\}=k_q(x,x')$

Outline

- Contributions & Motivation
- Some ML Concepts
- DFTuning
- The RT-TDDFT Mini-App
- ML Methodology
- Experimental Results
- Conclusions

7

Autotuning

Auto-tuning can help with this:

- Empirical search
- Predictive search

Empirical_Search (shapes, strides):

 $a \leftarrow TaskFeatures(shapes, strides)$

 $c \leftarrow PlatformFeatures()$

 $b^* \gets \operatorname{argmin}_{b \in \mathcal{B}} MeasureTime(a, b, c)$ return b^{*}

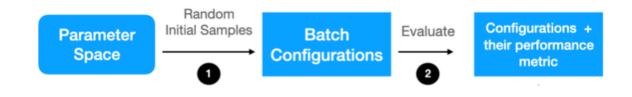
Empirical Search		Guarantees finding optimal	Very slow
Predictive Search	Analytical Model	Reduces the search time.	 Results depends on the quality of model Complex
	Machine Learning	Reduces the search time. Black Box.	The search process is still infeasible

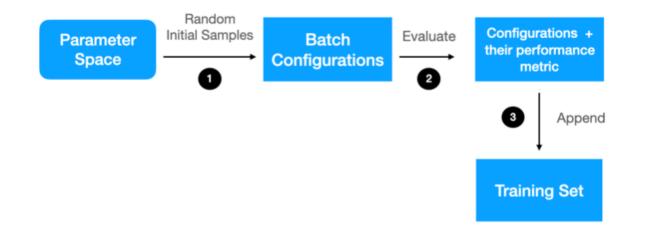
 $\exp\{u_q(x),u_q(x')\}=k_q(x,x')$

Predictive_Search (shapes, strides):					
$a \leftarrow TaskFeatures(shapes, strides)$					
$c \leftarrow PlatformFeatures()$					
$f \leftarrow TimingModel()$					
$b^* \leftarrow \operatorname{argmin}_{b \in \mathcal{B}} f(a, b, c)$					
return b*					

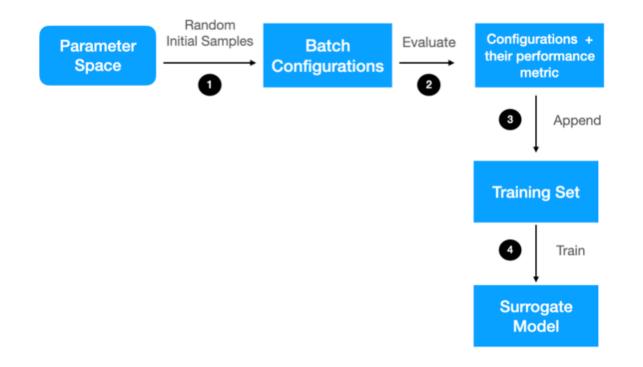
Office of

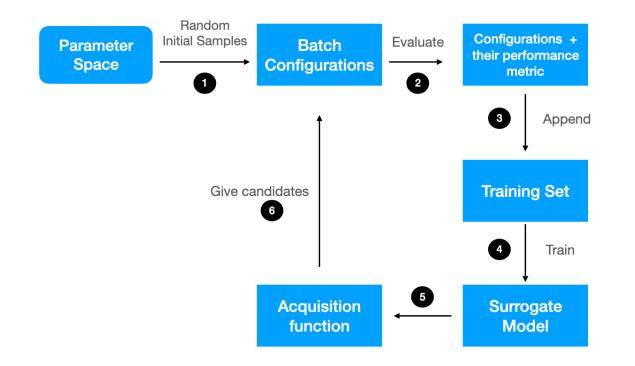
Science

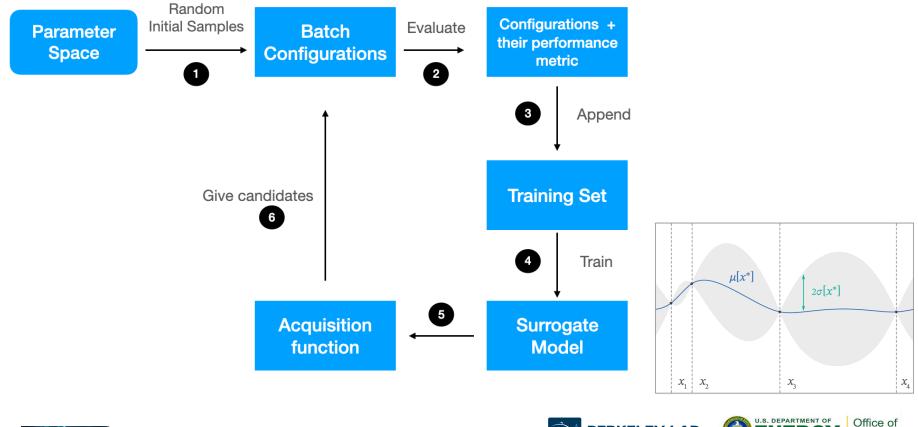


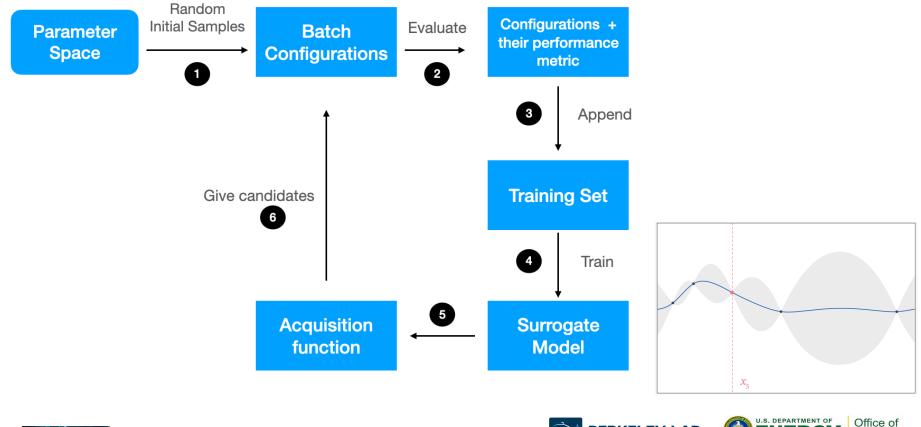


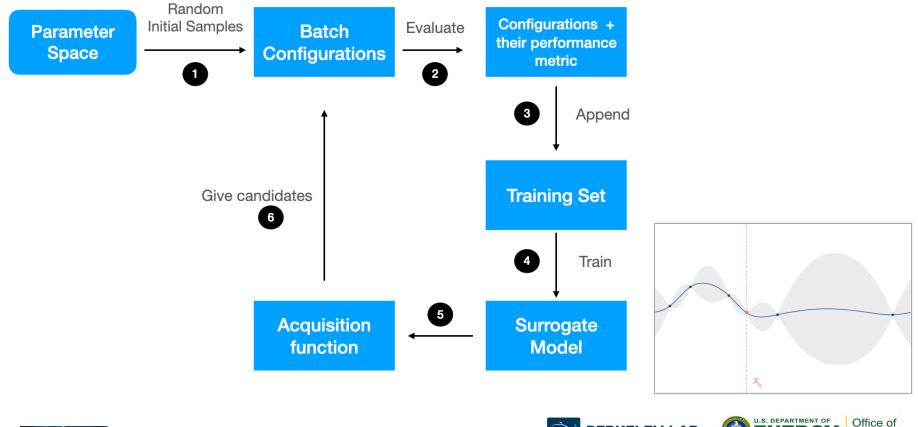
11

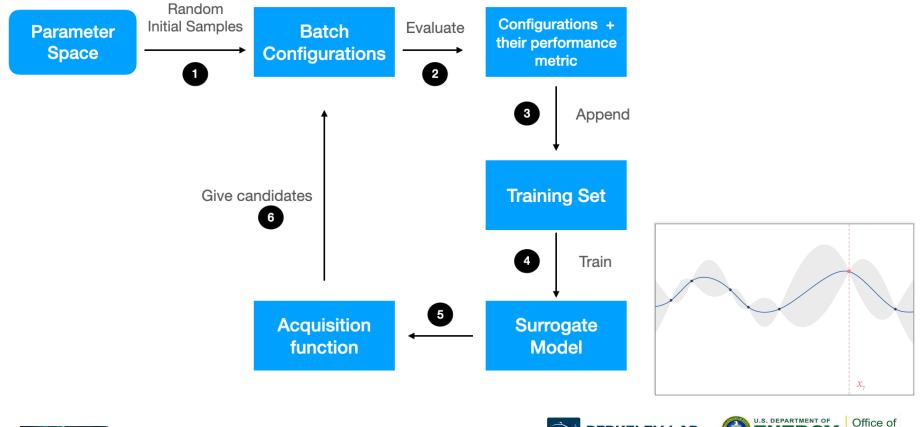










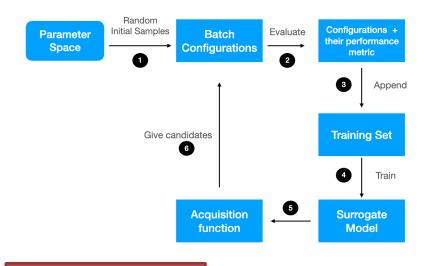


 $\cos\{u_q(x),u_q(x')\}=k_q(x,x')$

Science

Transfer Learning (I)

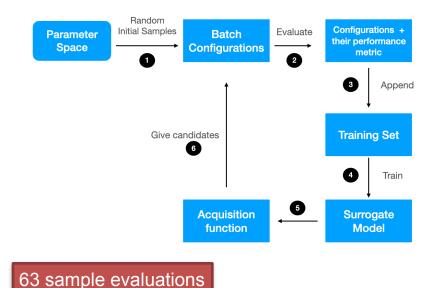
Running the search on Cori:



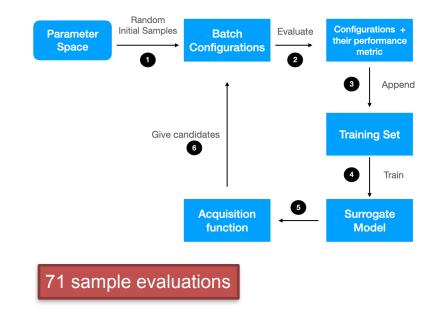
63 sample evaluations

Transfer Learning (II)

Running the search on Cori:



Running the search on Perlmutter:



Transfer Learning (and III)

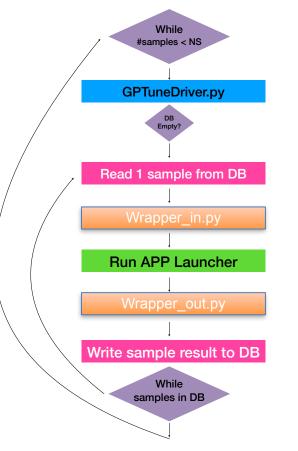
Running the search on Cori:

Random Configurations + Evaluate Configurations + Initial Samples Evaluate Batch Batch Parameter their performance their performance Configurations Space Configurations metric metric 2 2 3 3 Append Append Give candidates **Training Set Training Set** Give candidates 6 6 4 Train 4 Train 5 6 Acquisition Surrogate Acquisition Surrogate function Model function Model 30 sample evaluations 63 sample evaluations

Outline

- Contributions & Motivation
- Some ML Concepts
- DFTuning
- The RT-TDDFT Mini-App
- ML Methodology
- Experimental Results
- Conclusions

DFTuning: Decoupling workflow from GPTune



1- Portability Support:

Supports Transfer Learning for learning tuning parameters for a new input on the same platform

2- Convergence:

Insufficient converge criteria

3- Search Efficiency:

- Initial samples evaluated sequentially ٠
- Acquisition function provides 1 candidate at a time
- MPI spawning based on OpenMPI

Bringing Science Solutions to the World

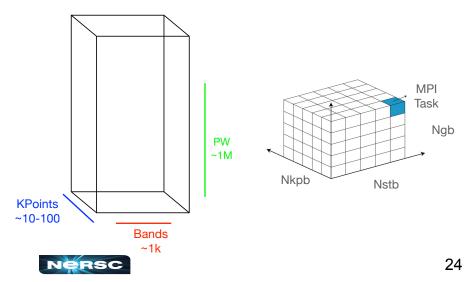
Science

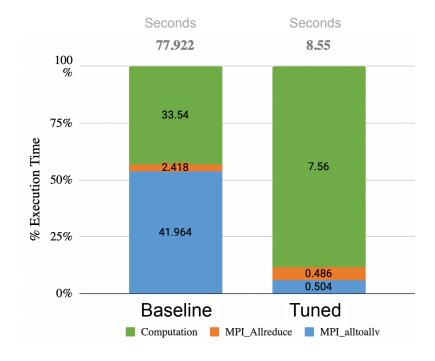
Outline

- Contributions & Motivation
- Some ML Concepts
- DFTuning
- The RT-TDDFT Mini-App
- ML Methodology
- Experimental Results
- Conclusions

RT-TDDFT MiniApp Analysis

- RT-TDDFT MiniApp using QBox framework
- Tuning parameters define the MPI grid dimensionality
- Wide range of exec. times depending on tuning parameters
- Communication bounded





Outline

- Contributions & Motivation
- Some ML Concepts
- DFTuning
- The RT-TDDFT Mini-App
- ML Methodology
- Experimental Results
- Conclusions

- Task/Input description (argument shapes, data layout)
- Implementation description (auto-tuning parameters)
- Platform description (capabilities, micro-benchmarks)

Given an *input task* and a *platform*: find an optimal *tuning configuration*

Predictive_Search (shapes, strides):				
$a \gets TaskFeatures(shapes, strides)$				
$c \leftarrow PlatformFeatures()$				
$f \leftarrow TimingModel()$	-			
$b^* \leftarrow \operatorname{argmin}_{b \in \mathcal{B}} f(a, b, c)$				
return b*				

- Task/Input description (argument shapes, data layout)
- Implementation description (auto-tuning parameters)
- Platform description (capabilities, micro-benchmarks)

Given an *input task* and a *platform*: find an optimal *tuning configuration*

Input Param	neters		
C	The name of the input task. In this case 'Si_222'		Task Description
Performance		-	•
sp	Number of ranks working on Spin dimension. It can]	
<i></i>	be 1 or 2 Number of ranks on the KPoint dimension. Any		
kp			
··· F	power-of-2 number from 1 to cores*nodes		Implementation Description
sb	Number of ranks on the Band dimension. Any		Implementation Description
	power-of-2 number from 1 to cores*nodes	-	
ranks	Total number of ranks to be used. Any power-of-2		
Constants	number from 2 to cores*nodes]	
Constants		٦	
cores	Number of cores per node in the target platform,		
00100	which is a power-of-two number.		Platform Description
nodes	Number of allowed nodes to use in the target plat-		
	form.]	and they are constants .
Constraints			-
Constraint1	$ranks \leq cores \times nodes$]	
Constraint2	$sp imes kb imes sb \le ranks$]	

- Task/Input description (argument shapes, data layout)
- Implementation description (auto-tuning parameters)
- Platform description (capabilities, micro-benchmarks)

Given an *input task* and a *platform*: find an optimal *tuning configuration*

What if a new *input task* on the <u>same</u> platform?

Run a new search from scratch

- Task/Input description (argument shapes, data layout)
- **Implementation description** (auto-tuning parameters)
- Platform description (capabilities, micro-benchmarks)

Given an *input task* and a *platform*: find an optimal tuning configuration

What if a new *input task* on the <u>same</u> platform?

Run a new search from scratch - or -Using the Transfer Learning Autotuning feature of GPTune

Knowledge from the *source* task is shared during the learning of the *new* task

If new and source tasks are similar, the model will learn correlations among them, accelerating the search or finding better optimal values.

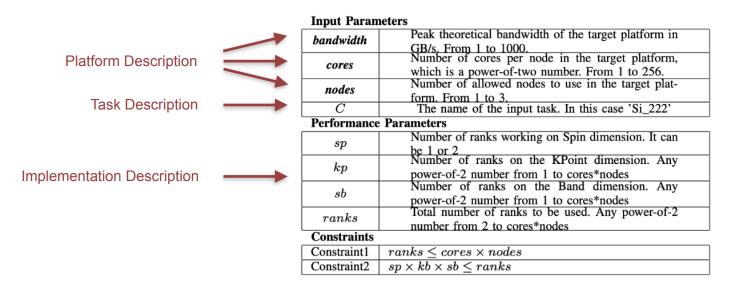
- Task/Input description (argument shapes, data layout)
- Implementation description (auto-tuning parameters)
- Platform description (capabilities, micro-benchmarks)

Given an *input task* and a *platform*: find an optimal *tuning configuration*

What if a new input task on the same platform?

Run a new search from scratch - or -Using the Transfer Learning Autotuning feature of GPTune But **this is not performance portability** between platforms.

Using BO+TL search for performance portability



- Embedding the Platform description parameters as Input Parameter variables (not constants anymore).
- Modifying the metadata to enable the execution.
- Choosing Platform features that can explain the objective function: communication-bounded

31

Outline

- Contributions & Motivation
- Some ML Concepts
- DFTuning
- The RT-TDDFT Mini-App
- ML Methodology
- Experimental Results
- Conclusions

Test Platforms at NERSC

	Cori	Perlmutter
CPU	2x Intel Xeon E5-2698 v3 2.3 GHz	AMD EPYC 7763 2450 GHz
# cores per Node	32	64
Node Memory	128 GB DDR4 2133 MHz	256 GB DDR4 3200 MHz
Node Peak Mem. Bandwidth	< 110 GB/s	204.8 GB/s
Interconnection	Cray Aries DragonFly	HPE Cray Slingshot 11

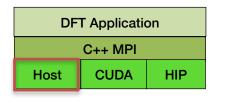
33

• *Si_222* input task: 8 k-points, 4 bands, 40K PWs.

Portability scenarios

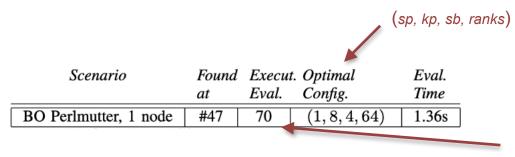
One application ...

... different portability scenarios.



- One Node of Cori (MPI)
- One Node of Perlmutter (MPI)
 Cross-Platform
- Multiple Nodes of Perlmutter (MPI)
 Intra-Platform

Transfer-Learning Results



An exhaustive search would explore 204 valid combinations.

A reduction of **66%** in the number of evaluations.

Transfer-Learning Results: Intra-Platform

	(sp, kp, sb, ranks)				
Scenario	Found	Execut	t. Optimal	Eval.	
	at	Eval.	Config.	Time	
BO Perlmutter, 1 node	#47	70	(1, 8, 4, 64)	1.36s	
Intra-Platform Portability					
Without TL	#43	70	(1, 8, 2, 128)	1.12s	
With TL	#40	60	(1, 8, 4, 128)	0.91s	

Now using 2 Nodes of Perlmutter.

Exhaustive search would explore 285 combinations

From 70 to 60 : **14.3%** reduction From 285 to 60: **79%** reduction

Transfer-Learning Results: Cross-Platform

	(sp, kp, sb, ranks)				
Scenario	Found	Execut. Optimal		Eval.	
	at	Eval.	Config.	Time	
BO Perlmutter, 1 node	#47	70	(1, 8, 4, 64)	1.36s	
Intra-Platform Portability					
Without TL	#43	70	(1, 8, 2, 128)	1.12s	
With TL	#40	60	(1, 8, 4, 128)	0.91s	
Cross-Platform Portability					
Without TL	#7	40	(1, 8, 2, 32)	6.76s	
With TL	#40	60	(1, 8, 4, 32)	4.68s	

Without TL stops earlier, but optimal is worse.

Now moving to 1 Node in Cori: 92 valid combinations

Assessing quality with metrics

A metric for measuring correlation among tasks in Transfer learning:

Magnitudes near 1 indicate high correlation, close to 0 mean no relation between tasks.

- Intra-Platform results: **0.9498**
- Cross-Platform results: 0.834

Platform	(sp, kp, sb, ranks)	Efficiency	Evaluations Executed	_			
Perlmutter, 1 node	(1, 8, 4, 64)	100%	70]			
Without transfer lea	Without transfer learning						
Perlmutter, 2 nodes	(1, 8, 2, 128)	81.39%	70	$\Phi = 0.7492$			
Cori, 1 node	(1,8,2,32)	69.23%	40	$\Psi = 0.7492$			
With transfer learning							
Perlmutter, 2 nodes	(1, 8, 4, 128)	100%	60	$\Phi = 1$			
Cori, 1 node	(1,8,4,32)	100%	60] * - 1			

Outline

- Contributions & Motivation
- Some ML Concepts
- DFTuning
- The RT-TDDFT Mini-App
- ML Methodology
- Experimental Results
- Conclusions

More details in the paper...

- Conversion-stopping criteria
- How to re-use DFTuning for more applications
- Avoid OpenMPI nested parallelism (MPI spawning)
- Evaluate in parallel the initial candidates
- Enabling compile-time performance parameters
- Correlation metric for tasks in the TL learned model
- Pennycook metric calculation

Conclusions

- We present a novel ML-based Autotuning Methodology, based on BO + TL, for addressing the performance portability problem in TDDFT workload.
- The methodology has a broader applicability to other apps and tuning frameworks.
- We show promising results with TL on performance portability:
 - Saves up to 46.7% of app evaluations compared to a BO search in NERSC platforms.
 - We demonstrate with a new metric why TL worked here.
 - Pennycook performance portability metric shows the highest portability.

41

Future work

- Target GPU platforms.
- Study the importance of the Task/Platform parameters.
- Focus on large scale executions.

Thank you

aperezdieguez@lbl.gov

