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Contributions

• ML methodology for performance portability

• Transfer learning based on Bayesian optimization

• Up to 46% faster than conventional Bayesian optimization, up to 

86% faster than exhaustive search

• Tested on a TDDFT workload, but with broader applicability


• DFTuning: a workflow for DFT performance portability

• Correlation metric for assessing the quality of Transfer 

Learning
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Motivation
• Density Functional Theory: a workhorse of chemistry and materials science.


• Objective: Target to new generations of DOE exascale machines. 
Performance portability challenge.


• The challenge is not new, but on the exascale era it is imperative to reduce 
the number of evaluations during the search.
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Application Motivation

• One Node of Cori (MPI)


• One Node of Perlmutter (MPI, CUDA)


• Multiple Nodes of Perlmutter (MPI, CUDA)


• One Node of Frontier (MPI, HIP)

… different portability scenarios.

C++ MPI

CUDA

DFT Application

HIPHost

One application …

MPI

Task

Ngb


Nstb
Nkpb 
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Autotuning

Auto-tuning can help with this:

• Empirical search

• Predictive search

Empirical 
Search

Predictive 
Search

Analytical Model Reduces the search 
time.

• Results depends 
on the quality of 
model


• Complex

Machine Learning
Reduces the search 
time.

Black Box.

The search process is 
still infeasible

Guarantees finding 
optimal Very slow
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Bayesian optimization



10

Bayesian optimization



11

Bayesian optimization



12

Bayesian optimization



13

Bayesian optimization



14

Bayesian optimization



15

Bayesian optimization



16

Bayesian optimization



17

Bayesian optimization
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Transfer Learning (I) 

63 sample evaluations

Running the search on Cori:
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Transfer Learning (II)

63 sample evaluations

Running the search on Cori:

71 sample evaluations

Running the search on Perlmutter:
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Transfer Learning (and III)

63 sample evaluations 30 sample evaluations

Running the search on Cori: Running the search on Perlmutter:
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DFTuning: Decoupling workflow from GPTune

DFTunin

GPTuneDriver.py

While 
#samples < NS

Read 1 sample from DB

Wrapper_in.py

Run APP Launcher

Wrapper_out.py

While 
samples in DB

Write sample result to DB

DB 
Empty?

1- Portability Support:


• Supports Transfer Learning for learning tuning parameters 
for a new input on the same platform


2- Convergence:


• Insufficient converge criteria


3- Search Efficiency: 


• Initial samples evaluated sequentially


• Acquisition function provides 1 candidate at a time


• MPI spawning based on OpenMPI

Launcher

Python Bash

Wrapper
      GPTune

C++ CUDA

Application

DFTuning

HIP
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RT-TDDFT MiniApp Analysis
• RT-TDDFT MiniApp using QBox framework


• Tuning parameters define the MPI grid dimensionality


• Wide range of exec. times depending on tuning 
parameters


• Communication bounded 

Seconds Seconds

 

PW

~1M


Bands

~1k


KPoints 

~10-100

MPI

Task

Ngb


Nstb
Nkpb Baseline Tuned
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ML Methodology

- Task/Input description (argument shapes, data layout)

- Implementation description (auto-tuning parameters)

- Platform description (capabilities, micro-benchmarks)

Given an input task and a platform:  find an optimal 
tuning configuration 
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ML Methodology

Task Description

Implementation Description

Platform Description

 and they are constants.

- Task/Input description (argument shapes, data layout)

- Implementation description (auto-tuning parameters)

- Platform description (capabilities, micro-benchmarks)

Given an input task and a platform:  find an optimal 
tuning configuration 
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ML Methodology

What if a new input task on the same platform?
Run a new search from scratch


- Task/Input description (argument shapes, data layout)

- Implementation description (auto-tuning parameters)

- Platform description (capabilities, micro-benchmarks)

Given an input task and a platform:  find an optimal 
tuning configuration 
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ML Methodology

What if a new input task on the same platform?
Run a new search from scratch


- or -

Using the Transfer Learning Autotuning 


feature of GPTune

Knowledge from the source task is shared 
during the learning of the new task

If new and source tasks are similar, 

the model will learn correlations among them,

accelerating the search or

finding better optimal values.

- Task/Input description (argument shapes, data layout)

- Implementation description (auto-tuning parameters)

- Platform description (capabilities, micro-benchmarks)

Given an input task and a platform:  find an optimal 
tuning configuration 
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ML Methodology

But this is not performance portability between

platforms.

What if a new input task on the same platform?

Run a new search from scratch

- or -


Using the Transfer Learning Autotuning 

feature of GPTune

- Task/Input description (argument shapes, data layout)

- Implementation description (auto-tuning parameters)

- Platform description (capabilities, micro-benchmarks)

Given an input task and a platform:  find an optimal 
tuning configuration 
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Using BO+TL search for performance portability

Task Description

Platform Description

Implementation Description

• Embedding the Platform description parameters as Input Parameter variables (not constants anymore).

• Modifying the metadata to enable the execution.

• Choosing Platform features that can explain the objective function: communication-bounded
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Test Platforms at NERSC

• Si_222 input task: 8 k-points, 4 bands, 40K PWs. 
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Portability scenarios

One application … … different portability scenarios.

• One Node of Cori (MPI)


• One Node of Perlmutter (MPI)


• Multiple Nodes of Perlmutter (MPI) Intra-Platform

Cross-PlatformC++ MPI

CUDA

DFT Application

HIPHost
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Transfer-Learning Results
(sp, kp, sb, ranks)

An exhaustive search would explore 

204 valid combinations.


A reduction of 66% in the number of 

evaluations.
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Transfer-Learning Results: Intra-Platform

(sp, kp, sb, ranks)

From 70 to 60 : 14.3% reduction

From 285 to 60: 79% reduction

Now using 2 Nodes of Perlmutter.


Exhaustive search would explore 285 
combinations
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Transfer-Learning Results: Cross-Platform

(sp, kp, sb, ranks)
Now moving to 1 Node in Cori: 

92 valid combinations

Without TL stops earlier, but optimal is worse.



A metric for measuring correlation among tasks in Transfer learning: 


Magnitudes near 1 indicate high correlation, close to 0 mean no relation between tasks.


• Intra-Platform results: 0.9498

• Cross-Platform results: 0.834
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Assessing quality with metrics

= 0.7492

= 1
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More details in the paper…

• Conversion-stopping criteria

• How to re-use DFTuning for more applications

• Avoid OpenMPI nested parallelism (MPI spawning)

• Evaluate in parallel the initial candidates

• Enabling compile-time performance parameters

• Correlation metric for tasks in the TL learned model

• Pennycook metric calculation

• …
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Conclusions
• We present a novel ML-based Autotuning Methodology, based on BO + 

TL, for addressing the performance portability problem in TDDFT workload.


• The methodology has a broader applicability to other apps and tuning 
frameworks.


• We show promising results with TL on performance portability:

• Saves up to 46.7% of app evaluations compared to a BO search in NERSC 

platforms. 

• We demonstrate with a new metric why TL worked here.

• Pennycook performance portability metric shows the highest portability.
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Future work

• Target GPU platforms.

• Study the importance of the Task/Platform parameters.

• Focus on large scale executions.
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Thank you

aperezdieguez@lbl.gov
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