

## A Comprehensive Evaluation of Novel AI Accelerators for Deep Learning Workloads

Murali Emani ALCF, Argonne National Laboratory memani@anl.gov

13th IEEE International Workshop on Performance Modeling, Benchmarking and Simulation of High Performance Computer Systems (PMBS) 2022

## Work of many

#### Collaboration between Argonne, Cerebras, SambaNova, Graphcore, and Groq

| Murali Emani*                | Zhen Xie*         | Siddhisanket Raska            | r* Varuni Sastry*              | William Arnold*               | Bruce Wilson*               |
|------------------------------|-------------------|-------------------------------|--------------------------------|-------------------------------|-----------------------------|
| memani@anl.gov               | zhen.xie@anl.gov  | sraskar@anl.gov               | vsastry@anl.gov                | arnoldw@anl.gov               | wilsonb@anl.gov             |
| Rajeev Thakur* Ve            | enkatram Vishwana | th* Zhengchun I               | Liu* Michael E. I              | Papka <sup>*  </sup> Cindy Or | ozco Bohorquez <sup>†</sup> |
| thakur@anl.gov               | venkat@anl.gov    | zhengchun.liu@a               | anl.gov papka@an               | l.gov cindy                   | @cerebras.net               |
| Rick Weisner <sup>‡</sup>    | ]                 | Karen Li <sup>‡</sup>         | Yongning She                   | eng <sup>‡</sup>              | Yun Du <sup>‡</sup>         |
| rick.weisner@samban          | ova.ai xiaoyan    | .li@sambanova.ai              | yongning.sheng@sar             | nbanova.ai yun                | .du@sambanova.ai            |
| Jian Zhang <sup>‡</sup>      | Alexander Ts      | yplikhin <sup>§</sup> Gurdama | n Khaira <sup>§</sup> Jeremy F | Fowers <sup>¶</sup> Ramakrisl | hnan Sivakumar <sup>¶</sup> |
| jian.zhang@sambanov          | va.ai alext@graph | core.ai damank@g              | raphcore.ai jfowers@g          | groq.com rsivaku              | mar@groq.com                |
| Victoria Godsoe <sup>¶</sup> | Adrian            | Macias¶                       | Chetan Tekur <sup>¶</sup>      | Matthew Bo                    | oyd¶                        |
| vgodsoe@groq.com             | am@gi             | oq.com                        | ctekur@groq.com                | matt@groq.                    | com                         |
| *Argonne Nation              | nal Laboratory Le | mont II 60/130 US             | A <sup>†</sup> Cerebras System | s Sunnyvale CA                | 05085 USA                   |

\*Argonne National Laboratory, Lemont, IL 60439, USA, <sup>†</sup>Cerebras Systems, Sunnyvale, CA 95085, USA, <sup>‡</sup>SambaNova Systems Inc., Palo Alto, CA 94303, USA, <sup>§</sup>Graphcore Inc., Palo Alto, CA 94301, USA, <sup>¶</sup>Groq Inc., Mountain View, CA 94041, USA, <sup>∥</sup>University of Illinois, Chicago, IL 60637, USA



## **Surge of Scientific Machine Learning**

- Simulations/ surrogate models
   Replace, in part, or guide simulations with Al-driven surrogate models
- Data-driven models
  - Use data to build models without simulations
- Co-design of experiments Al-driven experiments



Protein-folding





**Galaxy Classification** 

#### Design infrastructure to facilitate and accelerate AI for Science (AI4S) applications



## **Integrating AI Systems in Facilities**



Simulations

Data-driven Models



### **ALCF AI Testbed**

https://www.alcf.anl.gov/alcf-ai-testbed



- Infrastructure of nextgeneration machines with AI hardware accelerators
- Provide a platform to evaluate usability and performance of AI4S applications
- Understand how to integrate AI systems with supercomputers to accelerate science



|                           | Cerebras<br>CS-2       | SambaNova<br>Cardinal<br>SN10    | Groq<br>GroqCard                 | GraphCore<br>GC200 IPU            | Habana<br>Gaudi1                         | NVIDIA A100                 |
|---------------------------|------------------------|----------------------------------|----------------------------------|-----------------------------------|------------------------------------------|-----------------------------|
| Compute Units             | 850,000 Cores          | 640 PCUs                         | 5120 vector<br>ALUs              | 1472 IPUs                         | 8 TPC +<br>GEMM engine                   | 6912 Cuda<br>Cores          |
| On-Chip<br>Memory         | 40 GB                  | >300MB                           | 230MB                            | 900MB                             | 24 MB                                    | 192KB L1<br>40MB L2         |
| Process                   | 7nm                    | 7nm                              | 14nm                             | 7nm                               | 7nm                                      | 7nm                         |
| System Size               | 2 Nodes                | 2 nodes<br>(8 cards per<br>node) | 4 nodes<br>(8 cards per<br>node) | 1 node<br>(8 cards per<br>node)   | 2 nodes<br>(8 cards per<br>node)         | Several<br>systems          |
| Software<br>Stack Support | Tensorflow,<br>Pytorch | SambaFlow,<br>Pytorch            | GroqAPI,<br>ONNX                 | Tensorflow,<br>Pytorch,<br>PopArt | Synapse AI,<br>TensorFlow<br>and PyTorch | Tensorflow,<br>Pytorch, etc |
| Interconnect              | Ethernet-based         | Infiniband                       | RealScale <sup>™</sup>           | IPU Link                          | Ethernet-based                           | NVLink                      |



## Challenges

- Understand how these systems perform for different workloads given diverse hardware and software characteristics
- What are the unique capabilities of each evaluated system
- Opportunities and potential for integrating AI accelerators with HPC computing facilities



## Approach

- Perform a comprehensive evaluation with a diverse set of Deep Learning (DL) models:
  - DL primitives: GEMM, Conv2D, ReLU, and RNN
  - Benchmarks: U-Net, BERT-Large, ResNet-50
  - AI4S applications: BraggNN and Uno
  - Scalability and Collective communications



## Approach

- Perform a comprehensive evaluation with a diverse set of Deep Learning (DL) models:
  - DL primitives: GEMM, Conv2D, ReLU, and RNN
  - Benchmarks: U-Net, BERT-Large, ResNet-50
  - AI4S applications: BraggNN and Uno
  - Scalability and Collective communications
- Evaluated SambaNova, Cerebras, Graphcore, Groq systems and Nvidia A100 as a baseline\*

\* run out-of-box.

9 Argonne Leadership Computing Facility



















## **DL primitives - GEMM Scaling**



- Increase matrix sizes to saturate on-chip memory
- SN can run larger matrix sizes due to highest memory capacity



A100 (tf32)
 GC200 IPU (fp32)
 SN10-RDU (fp32)
 SN10-RDU (fp32)
 SN10-RDU (bf16)
 A100 (bf16)



Kernels conv\_k1\_fw and conv\_k2\_fw are memory-bound, whereas conv\_k3\_fw and conv\_k4\_fw are compute-bound



□ A100 (tf32)
 □ GC200 IPU (fp32)
 □ SN10-RDU (fp32)
 □ SN10-RDU (bf16)
 □ A100 (bf16)



- A100 accelerates computeintensive convolution operations better
- GC200 IPU is more sensitive to the data format in the Conv2D kernel



□ A100 (tf32)
 □ GC200 IPU (fp32)
 □ SN10-RDU (fp32)
 □ SN10-RDU (bf16)
 □ A100 (bf16)



- A100 accelerates computeintensive convolution operations better
- GC200 IPU fares better with half-precision run



A100 (tf32)
A100 (fp16)
A100 (bf16)

GC200 IPU (fp32)
 SN10-RDU (fp32)
 SN10-RDU (bf16)
 SN10-RDU (bf16)



For the backward pass in training mode, A100 performs best on conv\_k2\_bw and conv\_k3\_bw, SN10 RDU performs best on conv\_k1\_bw and conv\_k4\_bw kernels.



## **DL Primitives – Conv2D (Inference)**



- GroqCard reported at least 2.8x, upto two orders lower latency than A100
- Dedicated MXM planes for matrix multiplications and the VXM for bitwise multiplications
- Dataflow pipelines avoid write-backs to memory and allow for optimized performance.





- 256x256 image size BrainMRI image dataset
- All evaluated AI systems can run U-Net with much larger image sizes
- A100, SN10-RDU -PyTorch,
- IPU-M2000 -TensorFlow
- CS-2 TF Estimator





0.7x\*

3.3x

3.1x

\*2.1x in latest sw release

21 Argonne Leadership Computing Facility

256







Scale across 1, 2, 4, and 8 devices with two batch sizes (BS) GraphCore uses data-prefetching optimization, CS-2 uses 1 wafer-scale engine

|                      | Batch size | A100  | SN10-RDUs | GC200 IPUs |
|----------------------|------------|-------|-----------|------------|
| Scaling efficiencies | 32         | 18.8% | 42%       | 79.6%      |
|                      | 256        | 52%   | 28%       | 79.5%      |

22 Argonne Leadership Computing Facility



#### **BERT Large**

#### Scaling plot of BERT Large

SN10-RDU (bf16) SN10-RDU (bf16) IPU-M2000 (fp16) A100 (fp16)



GC200 needs atleast 4 IPUs and CS-2 uses 1 wafer-scale engine



#### **BERT Large**

#### Scaling plot of BERT Large

SN10-RDU (bf16) SN10-RDU (bf16) IPU-M2000 (fp16) A100 (fp16)



24 Argonne Leadership Computing Facility



#### **BERT Large**

Scaling plot of BERT Large

SN10-RDU (bf16) SN10-RDU (bf16) IPU-M2000 (fp16) SN10-RDU (bf16) SN10-RDU (bf



Scaling efficiencies

GC200 needs atleast 4 IPUs and CS-2 uses 1 wafer-scale erBatch sizeA100SN10-RDUsGC200 IPUs

100%

93%

25 Argonne Leadership Computing Facility

256

97%



#### BERT

For inference mode runs (DistilBERT)

| Latency improvement | Batch size | GC200 IPU | GroqCard |
|---------------------|------------|-----------|----------|
| <u>Over A100</u>    | 1          | 9x        | 13x      |



## Fast X-Ray Bragg Peak Analysis

<u>**Goal:**</u> Enable rapid analysis and real-time feedback during an in-situ experiment with complex detector technologies

**Proposed Approach:** Deep learning-based method, BraggNN, for massive extraction of precise Bragg peak locations from far-field high energy diffraction microscopy data. BraggNN has achieved 200X improvement over conventional pseudo-Voight profiling

<u>Challenges:</u> Model training capability is limited by the hardware



Application of the BraggNN deep neural network to an input patch yields a peak center position (y, z). All convolutions are 2D of size  $3 \times 3$ , with rectifier as activation function. Each fully connected layer, except for the output layer, also has a rectifier activation function.



A comparison of BraggNN, pseudo-Voigt FF-HEDM and NF-HEDM. (a) Grain positions from NF-HEDM (black squares), pseudo-Voigt FF-HEDM (red circles) and BraggNN FF-HEDM (blue triangles) overlaid on NF-HEDM confidence map

Courtesy: Z. Liu et al. BraggNN: Fast X-ray Bragg Peak Analysis Using Deep Learning. International Union of Crystallography (IUCrJ), Vol. 9, No. 1, 2022



## Fast X-Ray Bragg Peak Analysis

End-to-End Execution time (lower is better)

Fixed Time (compile, I/O and pre-processing)



TABLE II: BraggNN Throughput (in order of 1k samples/sec) with various batch sizes (BS)

| System           | BS=512 | BS=1024 | BS=2048 |
|------------------|--------|---------|---------|
| CS-2 (FP16)      | 1365.4 | 2463    | 2787.9  |
| GC200 IPU (FP16) | 478.0  | 350.6   | 219.9   |
| SN10 RDU (BF16)  | 369.7  | 449.8   | 518     |
| A100 (FP16)      | 53.9   | 65.5    | 73.7    |

- SambaNova and Graphcore achieve lowest time to solution and achieve up to 1.55x and 1.46x speedup in comparison to Nvidia A100 respectively.
- Cerebras achieves up to 37.8x throughput improvement over A100.



## **Drug Discovery - Uno**

- CANDLE: Exascale Deep Learning and Simulation Enabled Precision Medicine for Cancer
- Implement deep learning architectures that are relevant to problems in cancer.
- Focus on "Uno" application which aims to predict the drug response based on molecular features of tumor cells and drug descriptors.





## **Drug Discovery - Uno**

• Model has small memory footprint, however, the large data set stresses the I/O

| System           | #Units    | Batch size | Throughput<br>(samples/sec) |
|------------------|-----------|------------|-----------------------------|
| CS-2 (mp)        | 1 CS2 WSE | 2000       | 872258.7                    |
| GC200 IPU (FP16) | 1 IPU     | 512        | 46123                       |
| SN10-8 (BF16)    | 2 RDUs    | 16         | 31958                       |
| A100 (TF32)      | 1 GPU     | 512        | 7567                        |

TABLE III: Uno Performance Evaluation with Full Dataset

| Throughput improvement | SN10-8 | IPU-M2000 | CS-2 |
|------------------------|--------|-----------|------|
| <u>Over 1 A100s</u>    | 4.2x   | 6x        | 115x |

- Evaluation with same hyper-parameters is work in progress



## **Collective Communication Bandwidth**



DeepBench and OSU MPI Benchmarks used for the <u>all\_reduce</u> communication evaluation and we scale the number of devices to 16. We use up to 8 devices for Groq and SambaNova

Nvidia DGX3 achieves higher All Reduce performance in comparison to other Al systems



### **Observations, Challenges and Insights**

- Significant speedup achieved for a wide-gamut of scientific ML applications
  - Easier to deal with larger resolution data and to scale to multi-chip systems
- Room for improvement exists
  - Porting efforts and compilation times
  - Coverage of DL frameworks, support for performance analysis tools, debuggers
- Good progress made in integration of AI accelerators, in production, at a national user facility and significant more work is needed for effective coupling
- Training and Outreach is critical to educate users to effectively use AI systems
- Close collaboration with vendors is necessary to realize the vision of AI for science



## Thank You

- This research was funded in part and used resources of the Argonne Leadership Computing Facility (ALCF), a DOE Office of Science User Facility supported under Contract DE-AC02-06CH11357.
- Venkatram Vishwanath, Michael Papka, William Arnold, Bruce Wilson, Varuni Sastry, Sid Raskar, Corey Adams, Rajeev Thakur, Anthony Avarca, Arvind Ramanathan, Alex Brace, Zhengchun Liu, Hyunseung (Harry) Yoo, Ryan Aydelott, Sid Raskar, Zhen Xie, Kyle Felker, Craig Stacey, Tom Brettin, Rick Stevens, and many others have contributed to this material.
- Our current AI testbed system vendors Cerebras, Graphcore, Groq, Intel Habana and SambaNova. There are ongoing engagements with other vendors.

Please reach out for further details Murali Emani, memani@anl.gov

