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Work of many
Collaboration between Argonne, Cerebras, SambaNova, Graphcore, and Groq
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Surge of Scientific Machine Learning

• Simulations/ surrogate models
Replace, in part, or guide simulations 
with AI-driven surrogate models

• Data-driven models
Use data to build models without 
simulations

• Co-design of experiments
AI-driven experiments

Protein-folding

Braggs Peak

Galaxy Classification
Design infrastructure to facilitate and accelerate 
AI for Science (AI4S) applications

shows that the error is normally distributed around zero, which means that the model is not biased

thus the error is not systematic. As quantified using Euclidean distance in Figure 4c, most peaks

deviate little (e.g., 75% of peaks deviate less than 0.3 pixel) from the position identified by using the

conventional Voigt profiling. In comparison, the Maxima position (has resolution of one pixel) shown

in Figure 4d deviated much more than BraggNN from the truth (i.e., pseudo Voigt profiling).

4.2 Reconstruction Error Analysis

§4.1 discussed the direct model performance on peak localization. Since the 3D reconstruction is

our final goal, we also do reconstruction using peaks position located by the proposed BraggNN and

the conventional Voigt profiling separately. Figure 5 compares the positions of about 400 grains

reconstructed separately using Bragg peaks localized by BraggNN and conventional 2D pseudo-Voigt

profiling. The fact that the deviation directions are uniformly distributed indicates that BraggNN is

Figure 5: A comparison of grains in 3D space. Each ball represents one grain reconstructed by using

the conventional method, with color indicating the grain size(µm). An arrow indicates a deviation

from a grain to the corresponding grain reconstructed by using the BraggNN estimated peak.
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Integrating AI Systems in Facilities

AI-Accelerators

Experimental Facility
Supercomputers

Simulations

AI-Edge accelerator

SambaNova

Cerebras

Computing Facility

Data-driven Models
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ALCF AI Testbed
• Infrastructure of next-

generation machines with AI 
hardware accelerators

• Provide a platform to 
evaluate usability and 
performance of AI4S 
applications

• Understand how to integrate 
AI systems with 
supercomputers to 
accelerate science

Cerebras (CS-2) SambaNova

Graphcore GroqHabana

https://www.alcf.anl.gov/alcf-ai-testbed
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Cerebras 
CS-2

SambaNova
Cardinal 

SN10

Groq
GroqCard

GraphCore
GC200 IPU

Habana
Gaudi1

NVIDIA A100

Compute Units 850,000 Cores 640 PCUs 5120 vector 
ALUs 1472 IPUs 8 TPC + 

GEMM engine
6912 Cuda

Cores

On-Chip 
Memory

40 GB >300MB 230MB 900MB 24 MB 192KB L1
40MB L2

Process 7nm 7nm 14nm 7nm 7nm 7nm

System Size 2 Nodes
2 nodes 

(8 cards per 
node)

4 nodes 
(8 cards per 

node)

1 node 
(8 cards per 

node)

2 nodes
(8 cards per 

node)

Several 
systems

Software 
Stack Support

Tensorflow, 
Pytorch

SambaFlow, 
Pytorch

GroqAPI, 
ONNX

Tensorflow, 
Pytorch, 
PopArt

Synapse AI, 
TensorFlow 
and PyTorch

Tensorflow, 
Pytorch, etc

Interconnect Ethernet-based Infiniband RealScale TM IPU Link Ethernet-based NVLink
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Challenges
• Understand how these systems perform for different workloads given diverse 

hardware and software characteristics
• What are the unique capabilities of each evaluated system
• Opportunities and potential for integrating AI accelerators with HPC computing 

facilities 
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Approach

• Perform a comprehensive evaluation with a diverse set of Deep Learning (DL) 
models:
§ DL primitives: GEMM, Conv2D, ReLU, and RNN
§ Benchmarks: U-Net, BERT-Large, ResNet-50
§ AI4S applications: BraggNN and Uno
§ Scalability and Collective communications
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Approach

• Perform a comprehensive evaluation with a diverse set of Deep Learning (DL) 
models:
§ DL primitives: GEMM, Conv2D, ReLU, and RNN
§ Benchmarks: U-Net, BERT-Large, ResNet-50
§ AI4S applications: BraggNN and Uno
§ Scalability and Collective communications

• Evaluated SambaNova, Cerebras, Graphcore, Groq systems and Nvidia 
A100 as a baseline*

* run out-of-box.
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DL primitives - GEMM
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Kernels chosen from 
DeepBench
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DL primitives - GEMM
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• A100 reported 
highest FLOPS for 
full precision
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DL primitives - GEMM
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• A100 reported 
highest FLOPS for 
half precision (fp16)
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DL primitives - GEMM
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• SN reported highest 
TFLOPS for bf16 
except for large 
matrix sizes 
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DL primitives - GEMM Scaling
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• Increase matrix sizes to 
saturate on-chip 
memory

• SN can run larger 
matrix sizes due to 
highest memory 
capacity
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DL Primitives – Conv2D (Training)
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Kernels conv_k1_fw and 
conv_k2_fw are memory-bound, 
whereas conv_k3_fw and 
conv_k4_fw are compute-bound
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DL Primitives – Conv2D (Training)
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• A100 accelerates compute-
intensive convolution 
operations better

• GC200 IPU is more sensitive to 
the data format in the Conv2D 
kernel
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DL Primitives – Conv2D (Training)
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• A100 accelerates compute-
intensive convolution 
operations better

• GC200 IPU fares better with 
half-precision run
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DL Primitives – Conv2D (Training)
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A100 (bf16) For the backward pass

in training mode, A100 performs 
best on conv_k2_bw and
conv_k3_bw, SN10 RDU performs 
best on conv_k1_bw
and conv_k4_bw kernels.



Argonne Leadership Computing Facility19

DL Primitives – Conv2D (Inference)
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• GroqCard reported at least 2.8x, upto
two orders lower latency than A100

• Dedicated MXM planes for matrix 
multiplications and the VXM for 
bitwise multiplications

• Dataflow pipelines avoid write-backs 
to memory and allow for optimized 
performance.
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Scale across 1, 2, 4, and 8 devices with two batch sizes (BS)
GraphCore uses data-prefetching optimization, CS-2 uses 1 wafer-scale engine

Scaling plot of U-Net  

CS-2 (mp) IPU-M2000 (fp16) A100 (fp16) SN10-RDU (bf16)UNet-2D • 256x256 image 
size BrainMRI
image dataset

• All evaluated AI 
systems can run 
U-Net with much 
larger image sizes

• A100, SN10-RDU -
PyTorch, 

• IPU-M2000 -
TensorFlow          

• CS-2 - TF 
Estimator
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Scale across 1, 2, 4, and 8 devices with two batch sizes (BS)
GraphCore uses data-prefetching optimization, CS-2 uses 1 wafer-scale engine

Scaling plot of U-Net  

CS-2 (mp) IPU-M2000 (fp16) A100 (fp16) SN10-RDU (bf16)UNet-2D

Batch size 8 SN10-RDUs 1 CS-2 8 GC 200 IPUs
32 2.1x 4.9x 10x
256 0.7x* 3.1x 3.3x

Throughput improvement 
Over 8 A100s

*2.1x in latest sw release
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Scale across 1, 2, 4, and 8 devices with two batch sizes (BS)
GraphCore uses data-prefetching optimization, CS-2 uses 1 wafer-scale engine

Scaling plot of U-Net  

CS-2 (mp) IPU-M2000 (fp16) A100 (fp16) SN10-RDU (bf16)UNet-2D

Scaling efficiencies
Batch size A100 SN10-RDUs GC200 IPUs

32 18.8% 42% 79.6%
256 52% 28% 79.5%
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pretraining phase of the 
BERT-Large
model with Wikipedia 
and BookCorpus
datasets. 

global batch size = 256,
maxim sequence length 
(MSL) = 128
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GC200 needs atleast 4 IPUs and CS-2 uses 1 wafer-scale engine

Scaling plot of BERT Large  

CS-2 (mp) A100 (fp16) SN10-RDU (bf16) IPU-M2000 (fp16)

BERT Large
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Batch size 8 SN10-RDUs 1 CS-2 8 GC 200 IPUs
256 0.67x 2.37x 0.61x

Throughput improvement 
Over 8 A100s
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Batch size A100 SN10-RDUs GC200 IPUs

256 97% 93% 100%

Scaling efficiencies
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BERT

Batch size GC200 IPU GroqCard

1 9x 13x
Latency improvement
Over A100

For inference mode runs (DistilBERT)
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Goal:  Enable rapid analysis and real-time 
feedback during an in-situ experiment with 
complex  detector technologies

Proposed Approach: Deep learning-based 
method, BraggNN,  for massive  extraction of 
precise  Bragg peak locations from far-field 
high energy diffraction  microscopy data. 
BraggNN has achieved 200X improvement over 
conventional pseudo-Voight profiling

Challenges: Model training capability is limited 
by the hardware

Application of the BraggNN deep neural network to an input patch yields a peak center 
position (y, z). All convolutions are 2D of size 3 × 3, with rectifier as activation function. Each 
fully connected layer, except for the output layer, also has a rectifier activation function. 

BraggNN: Fast X-ray Bragg Peak Analysis Using Deep Learning A PREPRINT

(c)

(b)

(a)

Figure 6: A comparison of BraggNN, pseudo-Voigt FF-HEDM and NF-HEDM. (a) Grain positions from NF-HEDM
(black squares), pseudo-Voigt FF-HEDM (red circles) and BraggNN FF-HEDM (blue triangles) overlaid on NF-HEDM
confidence map. (b-c) Difference in position of grains between pseudo-Voigt FF-HEDM (b), BraggNN (c) and NF-
HEDM as a function of Grain Size. Color of markers in (b-c) represent the mean difference in position of expected and
observed diffraction spots. Size of markers in (b-c) represent the mean Internal Angle (see text).

CNN layers better extract feature representation in the latent space for fully-connected layers to better approximate its
center [Wang et al., 2018]. Here, we conduct an ablation study to show its effectiveness. We train two models, one with
attention block one without, using the same datasets, i.e., attention block is the only difference, and then we evaluate
their estimation accuracy. Fig. 7 shows the distribution of deviations. It is clear that both the 50th and 75th percentile
deviations are more than 20% worse than Fig. 4(c) where BraggNN has the non-local self-attention block, the 95th
percentile is about 15% worse.

4.2 Data Augmentation

We presented a novel data augmentation method to prevent model over-fitting and to address inaccurate patch cropping
using the connect component in the model inference phase. In order to study its effectiveness, we trained BraggNN on a
simulation dataset with and without augmentation. When trained with augmentation, we use an interval of [�1, 1] for
both m and n. Fig. 8 demonstrates three arbitrarily selected cases in our test dataset where the computed peak location
deviated from the corresponding patch’s geometric center (i.e., (5, 5) for a 11⇥ 11 pixel patch) in different directions.
We can see from the demonstration that BraggNN is able to locate the peak values precisely even when the peak is
deviated from the geometric center.

In order to quantitatively evaluate the effectiveness of data augmentation, we sample m and n independently from {-1,
0, 1} when preparing our test dataset to mimic imperfect patch cropping. That is, only 1/3⇥ 1/3 = 1/9 of the patches
have maxima at the geometric center.

Fig. 9 compares the prediction error on the test dataset in a statistical way. Comparing Fig. 9(a) with Fig. 9(b), we see
clear improvement when augmentation is applied for model training. The 50th, 75th, and 95th percentile errors are all
reduced to about 20% of those obtained when BraggNN is trained without data augmentation: a five times improvement.

5 Conclusions and Future work

We have described BraggNN, the first machine learning-based method for precisely characterizing Bragg diffraction
peaks in HEDM images. When compared with conventional 2D pseudo-Voigt fitting and higher resolution nf-HEDM,

9

Courtesy: Z. Liu et al. BraggNN: Fast X-ray Bragg Peak Analysis Using Deep 
Learning. International Union of Crystallography (IUCrJ), Vol. 9, No. 1, 2022

A comparison of BraggNN, 
pseudo-Voigt FF-HEDM and NF-
HEDM. (a) Grain positions from 
NF-HEDM (black squares), 
pseudo-Voigt FF-HEDM (red 
circles) and BraggNN FF-HEDM 
(blue triangles) overlaid on NF-
HEDM confidence map 

Fast X-Ray Bragg Peak Analysis

https://doi.org/10.1107/S2052252521011258
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Fast X-Ray Bragg Peak Analysis
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• SambaNova and Graphcore achieve lowest time to solution and achieve up to 
1.55x and 1.46x speedup in comparison to Nvidia A100 respectively. 

• Cerebras achieves up to 37.8x throughput improvement over A100. 
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Drug Discovery - Uno
• CANDLE: Exascale Deep Learning and 

Simulation Enabled Precision Medicine for 
Cancer

• Implement deep learning architectures that are 
relevant to problems in cancer. 

• Focus on “Uno” application which aims to 
predict the drug response based on molecular 
features of tumor cells and drug descriptors.
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Drug Discovery - Uno
• Model has small memory footprint, however, the large data set stresses the I/O

SN10-8 IPU-M2000 CS-2
4.2x 6x 115x

Throughput improvement 
Over 1 A100s

- Evaluation with same hyper-parameters is work in progress
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Collective Communication Bandwidth
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DeepBench and OSU MPI Benchmarks used for the all_reduce communication evaluation and we scale 
the number of devices to 16. We use up to 8 devices for Groq and SambaNova 

Nvidia DGX3 achieves higher All Reduce performance in comparison to other AI systems
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Observations, Challenges and Insights
• Significant speedup achieved for a wide-gamut of scientific ML applications

- Easier to deal with larger resolution data and to scale to multi-chip systems

• Room for improvement exists

- Porting efforts and compilation times 
- Coverage of DL frameworks, support for performance analysis tools, debuggers

• Good progress made in integration of AI accelerators, in production, at a national 
user facility and significant more work is needed for effective coupling

• Training and Outreach is critical to educate users to effectively use AI systems

• Close collaboration with vendors is necessary to realize the vision of AI for science 
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Thank You

• This research was funded in part and used resources of the Argonne Leadership Computing 
Facility (ALCF), a DOE Office of Science User Facility supported under Contract DE-AC02-
06CH11357.

• Venkatram Vishwanath, Michael Papka, William Arnold, Bruce Wilson, Varuni Sastry, Sid 
Raskar, Corey Adams, Rajeev Thakur, Anthony Avarca, Arvind Ramanathan, Alex Brace, 
Zhengchun Liu, Hyunseung (Harry) Yoo, Ryan Aydelott, Sid Raskar, Zhen Xie, Kyle Felker, Craig 
Stacey, Tom Brettin, Rick Stevens, and many others have contributed to this material. 

• Our current AI testbed system vendors – Cerebras, Graphcore, Groq, Intel Habana and 
SambaNova. There are ongoing engagements with other vendors.

Please reach out for further details
Murali Emani, memani@anl.gov


