

LAMMPS Heartbeats Data

Heartbeat Durations

—— LAMMPS_NS::NPairHalfBinAtomonlyNewton::build()
—— LAMMPS NS::PairlJCut::compute()
—— LAMMPS NS::Velocity::create()

Average Time (milisecond)

200 300
Time (sec)

g
\ "TX | hpc accelerates. ‘e ° 11/14/22

LAMMPS Heartbeats Data

Heartbeat Durations Heartbeat Durations, BAD Run

—— LAMMPS_NS::NPairHalfBinAtomonlyNewton::build()

—— LAMMPS _NS::PairlJCut::compute()
—— LAMMPS_NS::Velocity::create()

—— LAMMPS_NS::NPairHalfBinAtomonlyNewton::build()
—— LAMMPS NS::PairlJCut::compute()
—— LAMMPS NS::Velocity::create()

=)]
c c
o] o]
v} v}
v Q
I “
£ £
Q v
: £
= —~

)
@ .
m rU
= | .
O v
> >
I <

400 600
Time (sec)

200 300
Time (sec)

.-~
':fﬁ- SC22 | Dallas, TX | hpc accelerates. - °® 11/14/22 3

AppEKG: A Heartbeat Framework

 The main goal of this research is to observe the application
performance in production at the phase level.

* AppEKG collects heartbeat data (counts and average durations) from
the representative phases.

* AppEKG writes out heartbeat data per process (rank) and per thread.

* Collected heartbeat data can be used to analyze and understand
application performance in production.

Y ° \ 11/14/22 4

APPEKG Macro Interface

EKG_BEGIN_HEARTBEAT(id, rateFactor)

EKG_END HEARTBEAT(id)

EKG_PULSE_HEARTBEAT(id, rateFactor)

EKG_INITIALIZE(numHeartbeats, samplinginterval, appid, jobid, rank, silent)
EKG_FINALIZE()

EKG_DISABLE()

EKG_ENABLE()

EKG_NAME_HEARTBEAT(id, name)

EKG_IDOF_HEARTBEAT(name)

EKG_NAMEOF_HEARTBEAT(id)

EEEEE—— ., |

Controlling Overhead: Sampling Interval

* AppeKG must limit I/O in order to control overhead.

* AppEKG accumulates heartbeat data internally over a pre-defined interval.

Only writes out heartbeat counts and average durations per interval.

The sampled data still captures the dynamic behavior of the applications.

° \ 11/14/22

Controlling Overhead: Rate Factor

* |nstrumenting a piece of code that has a high execution rate may produce
high overhead.

* To control such overhead, a per-heartbeat rate factor is used to limit how
often a heartbeat is produced.

* Implemented in the macro interface to avoid function call overhead.

AppEKG vs Caliper

* AppEKG and Caliper instrumentation
overheads for three instrumented
applications.

e APPEKG overhead is near to 1%.

* Caliper reports low overhead with
simple reporting, but extremely high
overhead with more detailed
reporting.

APPEKG AND CALIPER OVERHEADS.

Max
AppEKG | Rate Caliper Overhead
overhead | Factor | Summary | Detailed

LAMMPS | 462 0.60% 500K
MiniAMR | 720 0.55% l
MiniFE 844 [.18% 2

400-1200%
00 n/a
M 40-350%

11/14/22 8

Heartbeat Analyses

* AppEKG is still in very early exploratory development, we do not have large
and sophisticated heartbeat analyses developed.

* AppEKG can be used to create historical heartbeat data of applications that
can be utilized to build a ML module to:

» Detect anomalous future runs that deviate from the normal pattern.

‘ 11/14/22

Examplel: Heartbeat Data Presentations (Visual)
MiniAMR

Heartbeat Counts, input 1 Heartbeat Counts, input 2

. allocate()
— allocate() : stencil_calc()

— stencil _calc() deallocate()
:" | .
0 200 400 6C

L MH

4
cC
-
O

@)

-
©
Q

Q

rw}
o
©
]

I
©
>
-
@

4
c

Interval Heartbeat Count

— deallocate() refine()
refine()

200 300 400 500 600 600 800 1000 1200 1400

Time (sec) Time (sec)

3 SC22 | Dallas, TX | hpc accelerates. 11/14/22

.
':f . SC22 | Dallas, TX | hpc accelerates. Ve [
B ik

Example2: Heartbeat Data Presentations (Statistical)
MiniAMR

FULL EXECUTION MINIAMR HEARTBEAT DESCRIPTIVE STATISTICS

* Descriptive statistics for each

kaaeeuns of al

processes.

* Such statistics can be also
generated per process and per
thread.

* Analyze the variance between
processes or threads.

11/14/22 11

Example3: Heartbeat Data Presentations (Statistical)
MiniFE

—— miniFE::cg_solve()
miniFE::perform_elem_loop()

* Lines are all-processes ; Ry i, v
average hea rtbeat Count. : | W miniFE::imp_ose_dirichlet()

- miniFE::make local matrix()

400
Time (sec)

* Min/Max values form the
shaded area around the
average line.

+J
c
3
(o]
O
-
s}
)
Q
-t
| 9
©
)
i
o
>
|
[}
-
=

 Min and Max values are
extremely close to the
average value.

=
o
o

:-'3"“‘.'-.'-‘..
fﬁs SC22 | Dallas, TX | hpc accelerates. \e) 11/14/22 12
Tt

Conclusion

 AppEKG is a novel approach to providing better insight into how HPC
applications behave in production.

* |t collects heartbeat data from most representative application phases.

* The main goal of AppEKG is to evaluating application performance in
production.

 Many possible uses for heartbeat data — we are exploring some, would like to
see others do so as well!

° \ 11/14/22

13

Thank Youl!

AppEK How healthy [m]

is your
HPC app
in
production? E-:‘ -

https://github.com/NMSU-PLEASE-Lab/AppEKG

D .
ﬁ”&allas TX | hpc accelerates

11/14/22 14

