


LAMMPS Heartbeats Data

Heartbeat Durations

—— LAMMPS_NS::NPairHalfBinAtomonlyNewton::build()
—— LAMMPS NS::PairlJCut::compute()
—— LAMMPS NS::Velocity::create()
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LAMMPS Heartbeats Data

Heartbeat Durations Heartbeat Durations, BAD Run

—— LAMMPS_NS::NPairHalfBinAtomonlyNewton::build()

—— LAMMPS _NS::PairlJCut::compute()
—— LAMMPS_NS::Velocity::create()

—— LAMMPS_NS::NPairHalfBinAtomonlyNewton::build()
—— LAMMPS NS::PairlJCut::compute()
—— LAMMPS NS::Velocity::create()
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AppEKG: A Heartbeat Framework

 The main goal of this research is to observe the application
performance in production at the phase level.

* AppEKG collects heartbeat data (counts and average durations) from
the representative phases.

* AppEKG writes out heartbeat data per process (rank) and per thread.

* Collected heartbeat data can be used to analyze and understand
application performance in production.
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APPEKG Macro Interface

EKG_BEGIN_HEARTBEAT(id, rateFactor)

EKG_END HEARTBEAT(id)

EKG_PULSE_HEARTBEAT(id, rateFactor)

EKG_INITIALIZE(numHeartbeats, samplinginterval, appid, jobid, rank, silent)
EKG_FINALIZE()

EKG_DISABLE()

EKG_ENABLE()

EKG_NAME_HEARTBEAT(id, name)

EKG_IDOF_HEARTBEAT(name)

EKG_NAMEOF_HEARTBEAT(id)
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Controlling Overhead: Sampling Interval

* AppeKG must limit I/O in order to control overhead.

* AppEKG accumulates heartbeat data internally over a pre-defined interval.

Only writes out heartbeat counts and average durations per interval.

The sampled data still captures the dynamic behavior of the applications.
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Controlling Overhead: Rate Factor

* |nstrumenting a piece of code that has a high execution rate may produce
high overhead.

* To control such overhead, a per-heartbeat rate factor is used to limit how
often a heartbeat is produced.

* Implemented in the macro interface to avoid function call overhead.




AppEKG vs Caliper

* AppEKG and Caliper instrumentation
overheads for three instrumented
applications.

e APPEKG overhead is near to 1%.

* Caliper reports low overhead with
simple reporting, but extremely high
overhead with more detailed
reporting.

APPEKG AND CALIPER OVERHEADS.

Max
AppEKG | Rate Caliper Overhead
overhead | Factor | Summary | Detailed

LAMMPS | 462 0.60% 500K
MiniAMR | 720 0.55% l
MiniFE 844 [.18% 2

400-1200%
00 n/a
M 40-350%
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Heartbeat Analyses

* AppEKG is still in very early exploratory development, we do not have large
and sophisticated heartbeat analyses developed.

* AppEKG can be used to create historical heartbeat data of applications that
can be utilized to build a ML module to:

» Detect anomalous future runs that deviate from the normal pattern.
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Examplel: Heartbeat Data Presentations (Visual)
MiniAMR

Heartbeat Counts, input 1 Heartbeat Counts, input 2

. allocate()
— allocate() : stencil_calc()

— stencil _calc() deallocate()
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Interval Heartbeat Count

— deallocate() refine()
refine()
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Example2: Heartbeat Data Presentations (Statistical)
MiniAMR

FULL EXECUTION MINIAMR HEARTBEAT DESCRIPTIVE STATISTICS

* Descriptive statistics for each

kaaeeuns of al

processes.

* Such statistics can be also
generated per process and per
thread.

* Analyze the variance between
processes or threads.
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Example3: Heartbeat Data Presentations (Statistical)
MiniFE

—— miniFE::cg_solve()
miniFE::perform_elem_loop()

* Lines are all-processes ; Ry i, v
average hea rtbeat Count. : | W miniFE::imp_ose_dirichlet()

- miniFE::make local matrix()

400
Time (sec)

* Min/Max values form the
shaded area around the
average line.
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 Min and Max values are
extremely close to the
average value.
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Conclusion

 AppEKG is a novel approach to providing better insight into how HPC
applications behave in production.

* |t collects heartbeat data from most representative application phases.

* The main goal of AppEKG is to evaluating application performance in
production.

 Many possible uses for heartbeat data — we are exploring some, would like to
see others do so as well!
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Thank Youl!

AppEK How healthy [m]

is your
HPC app
in
production? E-:‘ -

https://github.com/NMSU-PLEASE-Lab/AppEKG
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