
AppEKG: A Simple Unifying View of HPC
Applications in Production

Authors

Mohammad Al-Tahat Strahinja Trecakov Jonathan Cook

LAMMPS Heartbeats Data

11/14/22SC22 | Dallas, TX | hpc accelerates. 2

LAMMPS Heartbeats Data

11/14/22SC22 | Dallas, TX | hpc accelerates. 3

AppEKG: A Heartbeat Framework

11/14/22SC22 | Dallas, TX | hpc accelerates. 4

• The main goal of this research is to observe the application
performance in production at the phase level.

• AppEKG collects heartbeat data (counts and average durations) from
the representative phases.

• AppEKG writes out heartbeat data per process (rank) and per thread.

• Collected heartbeat data can be used to analyze and understand
application performance in production.

APPEKG Macro Interface

EKG_BEGIN_HEARTBEAT(id, rateFactor)

EKG_END_HEARTBEAT(id)
EKG_PULSE_HEARTBEAT(id, rateFactor)

EKG_INITIALIZE(numHeartbeats, samplingInterval, appid, jobid, rank, silent)

EKG_FINALIZE()

EKG_DISABLE()

EKG_ENABLE()

EKG_NAME_HEARTBEAT(id, name)

EKG_IDOF_HEARTBEAT(name)

EKG_NAMEOF_HEARTBEAT(id)

11/14/22SC22 | Dallas, TX | hpc accelerates. 5

Controlling Overhead: Sampling Interval

• AppeKG must limit I/O in order to control overhead.

• AppEKG accumulates heartbeat data internally over a pre-defined interval.

• Only writes out heartbeat counts and average durations per interval.

• The sampled data still captures the dynamic behavior of the applications.

11/14/22SC22 | Dallas, TX | hpc accelerates. 6

Controlling Overhead: Rate Factor

• Instrumenting a piece of code that has a high execution rate may produce
high overhead.

• To control such overhead, a per-heartbeat rate factor is used to limit how
often a heartbeat is produced.

• Implemented in the macro interface to avoid function call overhead.

11/14/22SC22 | Dallas, TX | hpc accelerates. 7

#define EKG_BEGIN_HEARTBEAT(id, rateFactor)
…

if ((_ekgHBCount[tid]++) % (rateFactor) == 0) {
_ekgBeginHeartbeat((id));

…

AppEKG vs Caliper

11/14/22SC22 | Dallas, TX | hpc accelerates. 8

• AppEKG and Caliper instrumentation
overheads for three instrumented
applications.

• APPEKG overhead is near to 1%.

• Caliper reports low overhead with
simple reporting, but extremely high
overhead with more detailed
reporting.

Heartbeat Analyses

• AppEKG is still in very early exploratory development, we do not have large
and sophisticated heartbeat analyses developed.

• AppEKG can be used to create historical heartbeat data of applications that
can be utilized to build a ML module to:

ØDetect anomalous future runs that deviate from the normal pattern.

11/14/22SC22 | Dallas, TX | hpc accelerates. 9

Example1: Heartbeat Data Presentations (Visual)
MiniAMR

11/14/22SC22 | Dallas, TX | hpc accelerates. 10

Example2: Heartbeat Data Presentations (Statistical)
MiniAMR

11/14/22SC22 | Dallas, TX | hpc accelerates. 11

• Descriptive statistics for each
heartbeat counts of all
processes.

• Such statistics can be also
generated per process and per
thread.

• Analyze the variance between
processes or threads.

Example3: Heartbeat Data Presentations (Statistical)
MiniFE

11/14/22SC22 | Dallas, TX | hpc accelerates. 12

• Lines are all-processes
average heartbeat count.

• Min/Max values form the
shaded area around the
average line.

• Min and Max values are
extremely close to the
average value.

Conclusion

• AppEKG is a novel approach to providing better insight into how HPC
applications behave in production.

• It collects heartbeat data from most representative application phases.

• The main goal of AppEKG is to evaluating application performance in
production.

• Many possible uses for heartbeat data – we are exploring some, would like to
see others do so as well!

11/14/22SC22 | Dallas, TX | hpc accelerates. 13

Thank You!

11/14/22SC22 | Dallas, TX | hpc accelerates. 14

