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MPI Collectives: A Very Brief Introduction

MPI - Message Passing Interface

• specification of a communication
interface

• all operations defined as functions

• all functions have defined semantics

• Several MPI libraries: OpenMPI,
MVAPICH, Intel MPI, Cray MPI, . . .

Collective Communication Operations

• Communication that involves a group
of processes

• Collection of pre-defined optimized
routines (common tasks)

Examples

• MPI_Allreduce

• MPI_Alltoall

• MPI_Bcast5.1. INTRODUCTION AND OVERVIEW 143
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Figure 5.1: Collective move functions illustrated for a group of six processes. In each case,
each row of boxes represents data locations in one process. Thus, in the broadcast, initially
just the first process contains the data A0, but after the broadcast all processes contain it.
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MPI Collectives under the Hood

• MPI collectives
• defined semantics
• possibly different implementations

• MPI libraries provide significant number of different
algorithms for individual collectives such as MPI_Bcast
or MPI_Allreduce

Algorithms for MPI_Bcast
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• parameterized MPI algorithms
• example chain algorithm: 2 parameters in OpenMPI

• fan-out, how many chains?
• segment size (for pipelining)
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The Problem



Problem Statement: Algorithm Selection and Configuration

Input
An instance of a collective communication problem P:

• a collective (e.g., MPI_Bcast),

• a message size (e.g., 1 MiB),

• a number of compute nodes, and

• a number of processor per compute node.

Output
Return the fastest algorithm that solves the problem P.

Two problems to solve (selection and configuration):

1. Determine the best algorithm from the set of possible algorithms.

2. Determine the best parameters to configure this algorithm.
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Status Quo: Machine Learning Based Collective Tuning

General Strategy

Algorithm Selection
(using Regression 

Models)

(MPI collective c, 
message size m, 

number of nodes n, 
processes per node ppn)

Algorithm ID 
for MPI collective c

Set of Problem Instances
(e.g. ,  Allgather,

n=16,ppn=8,m=128B)

Machine Learning 
Task

Benchmarking
Task

Performance Dataset (e.g.,  
Allgather,n=16, 
ppn=8,m=128B,
algid=1,84µs)

S. Hunold and A. Carpen-Amarie. “Algorithm Selection of MPI
Collectives Using Machine Learning Techniques”. In: PMBS@SC.
2018

Classification by Regression

Algorithm ID

Regression Model 
for Algorithm 0

Regression Model 
for Algorithm 1

Regression Model 
for Algorithm k

Runtime Predictions

 A0:T0
 A1:T1
 ..
 Ak:Tk

input

output

(MPI collective F,
message size m,
number of nodes n,
processes per node N) ArgMin(Runtime)

S. Hunold, A. Bhatele, G. Bosilca, and P. Knees. “Predicting MPI
Collective Communication Performance Using Machine Learning”.
In: IEEE CLUSTER. 2020, pp. 259–269

Important Related Work
• M. Wilkins, Y. Guo, R. Thakur, P. Dinda, and N. Hardavellas. “ACCLAiM: Advancing the Practicality of MPI Collective

Communication Autotuning Using Machine Learning”. In: IEEE CLUSTER. 2022
• J. Pjesivac-Grbovic, G. Bosilca, G. E. Fagg, T. Angskun, and J. Dongarra. “MPI collective algorithm selection and quadtree

encoding”. In: Parallel Computing 33.9 (2007), pp. 613–623

• A. Faraj, X. Yuan, and D. K. Lowenthal. “STAR-MPI: self tuned adaptive routines for MPI collective operations”. In: ICS. ACM,
2006, pp. 199–208

The Problem

• Which cases to benchmark?

• case: (collective, number of
compute nodes, processes per node,
message size)

• some cases very slow and perhaps
irrelevant, MPI_Alltoall with
large messages

The Idea
Let’s build a model with the runtimes of col-
lectives that we measure while executing HPC
applications.
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Goals of this Work



Our Goals

Question
How to build a model to predict the best algorithm for specific collective communication
problem

1. with low overhead and

2. with a high accuracy?

Hypothesis
An efficient prediction model for collectives can be built from running HPC applications on a
production system by

1. algorithm sampling
• give every algorithm a chance, but perhaps not the same

2. process sampling
• not all processes will have to participate (save storage)
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Contribution: OMPICollTune



OMPICollTune: Online Tuning of MPI Collectives

• Extension of OpenMPI 4.1.x (fork)

• Intercepting MPI collectives (tracing) during
application runtime

• collect performance measurements

• Algorithm selection by probability distribution
• probabilities updated with new performance data

(after each srun, once per hour, once per day, . . . )
• slow algorithms get a smaller probability to be

selected

• Very low overhead
• sampling of performance stats can be bounded

• e.g., record only the first 100 calls to
MPI_Allreduce

• e.g., record only on 16 of 10 000 processes

https://github.com/sebastian-steiner/

ompi_pmbs
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Approach



Performance Model

• 3D model: msize, nodes, ppn

• predefined dimensional cuts
• e.g., message size in Bytes 1-10, 11-100,

101-1000

• each block holds a probability distribution
for each collective (see illustration)

• prediction model across the 3D blocks

• whenever we get new data for a specific
3D block, the dataset and the prediction
model are updated
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Online Tuning Approach

miniAMR
miniFE

AMG
ExaMiniMD

Laghos
MPI Library 
(Open MPI)

OMPICollTune

MPI Application in 
Execution (SLURM, etc.)

Collective Selection 
Probabilities 

pid callid alg_id runtime
0 Allreduce 2 0.3
1 Allreduce 2 0.4

Collective Performance 
Traces

Collective Performance Models

Collective Algorithm 
Selection

1024    # comm size
7       # alg id (e.g. Allreduce)
3       # nb of message sizes
0  1 0 0  # alg 1 from 0 to 4 Bytes
4  2 0 0  # alg 2 from 4 Bytes
128  5 1024 0  # alg 5 (1k segments) 
               # from 128 Bytes

1

2

3

4
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OpenMPI: MPI_Allreduce

• querying prediction model and conversion to Open MPI algorithm

• recording time stamps

• ompi/mca/coll/tuned/coll_tuned_allreduce_decision.c

if( AT_is_collective_sampling_enabled(MPI_ALLREDUCE) ) {
// randomly select algorithm (incl. alg configuration)
our_alg_id = AT_get_allreduce_selection_id(bufsize, commsize, operator)

// translate algorithm and its configuration into OpenMPI
AT_col_t our_alg = AT_get_allreduce_our_alg(our_alg_id );
algorithm = our_alg.ompi_alg_id;
segsize = our_alg.seg_size;

AT_record_start_timestamp(MPI_ALLREDUCE, our_alg_id,
count * type_size, comm_size);

}

switch (algorithm) {
// ..
case (2):
res = ompi_coll_base_allreduce_intra_nonoverlapping (..);
break;

case (3):
res = ompi_coll_base_allreduce_intra_recursivedoubling (..);
break;

case (4):
res = ompi_coll_base_allreduce_intra_ring (..);
break;

// ..
}
if(AT_is_collective_sampling_enabled(MPI_ALLREDUCE))

AT_record_end_timestamp(MPI_ALLREDUCE);
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Experimental Results



Iterative Improvement: miniAMR

• run miniAMR with 32 × 32 processes
• same problem instance

• trace MPI_Allreduce and update
probability distribution based on recorded
performance

• Algorithms 0 and 7 fade out
• basic_linear and rabenseifner

• highest selection probability: Algorithm 2

Progress of selection probabilities of each
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Compare Tuned Algorithms in Benchmark

Comparing ECDF of MPI_Allreduce

• query performance model with unseen
instance: 24 × 32 processes

• OMPICollTune Alg ID 2 maps to Open
MPI algorithm 3

• recursive_doubling (no segmentation)

• default decision logic in Open MPI 4.1.x
• OpenMPI algorithm 2
• nonoverlapping (internally

Reduce+Bcast)

• ReproMPI benchmark to compare
runtimes of 100 calls to MPI_Allreduce

S. Hunold and A. Carpen-Amarie. “Reproducible MPI Benchmarking is
Still Not as Easy as You Think”. In: IEEE Trans. Parallel Distrib. Syst.
27.12 (2016), pp. 3617–3630. DOI: 10.1109/TPDS.2016.2539167
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Incremental Online Learning

Overhead Analysis

• per iteration: 20 different runs of
miniAMR

• Default: using default Open MPI selection
logic

• Tuned[x]: runtime after x updates of the
model

• uses probability distribution to select
algorithm

• Tuned[x*]: runtime after x updates of
the model

• select only the algorithm that has
highest probability
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Thank you
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