- SC22

Dallas, |hpc
TX|accelerates.

ectives by

MPI Collectives: A Very Brief Introduction

MPI - Message Passing Interface Examples
e specification of a communication e MPI_Allreduce
interface e MPI_Alltoall
e all operations defined as functions e MPI_Bcast
e all functions have defined semantics e
e Several MPI libraries: Open MPI, 4 i
s broadcast
MVAPICH, Intel MPI, Cray MPI, ... T Ao
Ao
Ao
Collective Communication Operations "o
e Communication that involves a group source: MPI: A Message-Passing Interface Standard

of processes Version 3.1

e Collection of pre-defined optimized
routines (common tasks) 1

MPI Collectives under the Hood

Algorithms for MPI_Bcast

e MPI collectives
e defined semantics (1)
e possibly different implementations) (& () (o
e MPI libraries provide significant number of different @
algorithms for individual collectives such as MPI_Bcast
or MPI_Allreduce

e parameterized MPI algorithms O @—’@
e example chain algorithm: 2 parameters in Open MPI o @@@

e fan-out, how many chains?

e segment size (for pipelining) e

chain algorithm

binary tree algorithm

The Problem

Problem Statement: Algorithm Selection and Configuration

Input

An instance of a P:
® 2a (e.g., MPI_Bcast),
e a (e.g., 1MiB),
e a number of , and

e a number of

Output
Return the that solves the problem P.
(selection and configuration):
1. Determine the from the set of possible algorithms.
2. Determine the to configure this algorithm.

Status Quo: Machine Learning Based Collective Tuning

General Strategy Classification by Regression

Regression Model Runtime Predictions
5 for Algorithm 0
input AOTO
(MPI collective F, Ree o Model ALTI
message size m, for Algorithm 1 AKTK
number of nodes 7, i T

Task processes per node N) 1 ArgMin(Runtime)

Performance Dataset (e.g.,
Allgather,n=16,
Pppn=8,m=128E,
algid-1,84ps)

Set of Problem Instances Benchmarking

Task

-8, m=1288)

Machine Learning

l Regression Model ¥
!0\' Algorithm k
Algorithm ID
(MPI collective c, Algorithm Selection I
message size m, 8 " output
number of nodes n, (using Regression
processes per node ppn) Models)

S. Hunold, A. Bhatele, G. Bosilca, and P. Knees. "“Predicting MPI

o .) Collective Communication Performance Using Machine Learning”.
S. Hunold and A. Carpen-Amarie. “Algorithm Selection of MPI In: IEEE CLUSTER. 2020, pp. 259—-269

Collectives Using Machine Learning Techniques”. In: PMBS@SC.
018

Important Related Work

e M. Wilkins, Y. Guo, R. Thakur, P. Dinda, and N. Hardavellas. “ACCLAiIM: Advancing the Practicality of MPI Collective
Communication Autotunmg Usmg Machine Learning”. In: IEEE CLUSTER. 202

o J. Pjeswac—Grbowc G. Bosilca, G. E. Fagg, T. Angskun, and J. Dongarra. “MPI collective algorithm selection and quadtree
encoding”. In: Parallel Computmg 33.9 (2007), pp. 613-62

e A. Faraj, X. Yuan, and D. K. Lowenthal. “STAR-MPI: self tuned adaptive routines for MPI collective operations”. In: ICS. ACM,
2006, pp. 199-208

Status Quo: Machine Learning Based Collective Tuning

Geiieral Strategy Classification by Regression

Performance Dataset (e.g, f ! f
Allgather,n=16,

zee | The Problem

e Which cases to benchmark?

Benchmarking
Task

Machine Learning
Task

e case: (collective, number of }
(MPI collective c, orithm Selection
e (g i @ compute nodes, processes per node, |
processes per node ppn) odels)
message size) (S

S. Hunold and A. Carpen-Amarie. “Algorithm Selection of
Collectives Using Machine Learning Techniques”. In: PME
018

e some cases very slow and perhaps

Important Related Work irrelevant, MPI_Alltoall with
. Wilkins, Y. , R. Thakur, P. Dinda, and
S o Ao Ui Mathane Laar large messages

o J. Pjeswac Grbovic, G. Bosilca, G. E. Fagg, T. Angskun, anu J. wongarra. iviri CONECLIVE aIgoriLim SEIECUON dilu quauLree
encoding”. In: Parallel Computmg 33.9 (2007) pp. 613-623

e A. Faraj, X. Yuan, and D. K. Lowenthal. “STAR-MPI: self tuned adaptive routines for MPI collective operations”. In: ICS. ACM,
2006, pp. 199-208

Status Quo: Machine Learning Based Collective Tuning

Geiieral Strategy Classification by Regression

Performance Dataset (e.g. s
Allgather,n=16,

zee | The Problem

Set of Problem Instances
(eg., Allgather,
n=16, ppn=8,m=1288)

Benchmarking
Task

e Which cases to benchmark?

Machine Learning
Task

e case: (collective, number of }
MPI collective ¢, N .
e g Regosson [—{ o griom >) compute nodes, processes per node, |
processes per node ppn) Models) ng MPI
s. hunold | The Idea rming”.
Collective
¢ Let's build a model with the runtimes of col- | *ry slow and perhaps

IME || tives that we measure while executing HPC | *I-Alltoall with
* |applications. 5
° CONELLIVE dIgUTILITT SEISTLION allu quduLree

encoding”. In: Parallel Computing 33.9 (2007), pp. 613-623

e A. Faraj, X. Yuan, and D. K. Lowenthal. “STAR-MPI: self tuned adaptive routines for MPI collective operations”. In: ICS. ACM,
2006, pp. 199-208

Goals of this Work

Question

How to build a for specific collective communication
problem

1. with and

2. with a ?

Question
How to build a for specific collective communication
problem

1. with and
2. with a ?

Hypothesis
An efficient prediction model for collectives can be built from running HPC applications on a
production system by

1.

e give every algorithm a chance, but perhaps not the same

e not all processes will have to participate (save storage)

Contribution: OMPICollTune

OMPICollTune: Online Tuning of MPI Collectives

Extension of Open MPI 4.1 .x (fork)

Intercepting MPI collectives (tracing) during
application runtime

e collect performance measurements

Algorithm selection by probability distribution

e probabilities updated with new performance data

(after each srun, once per hour, once per day, ...)

e slow algorithms get a smaller probability to be

seleeted https://github.com/sebastian-steiner/

ompi_pmbs

Very low overhead
e sampling of performance stats can be bounded

e e.g., record only the first 100 calls to
MPI_Allreduce
e e.g., record only on 16 of 10000 processes

https://github.com/sebastian-steiner/ompi_pmbs
https://github.com/sebastian-steiner/ompi_pmbs

Approach

Performance Model

unbounded
e 3D model: msize, nodes, ppn K‘

e predefined dimensional cuts » ‘ ‘

» j
e e.g., message size in Bytes 1-10, 11-100, 2
nodes
101-1000 b

1217

e each block holds a probability distribution 8

i

I
16

128 512 ppn
message size [Byte]

2

for each collective (see illustration) 5

e prediction model across the 3D blocks

AlgID OMPIID SegSize Prob

o r 0.1

e whenever we get new data for a specific ! ! o 03
. . 0.05

3D block, the dataset and the prediction : : o o

5 5 IKB 0.1

model are updated s s v 01

7 5 SMB 0.1

8 6 0 0.1

Online Tuning Approach

Collective Performance Models
MPI Application in

Execution (SLURM, etc.)

MPI Library
(Open MPI)

OMPICollTune

Collective Selection
Probabilities

pid callid alg_id runtime
] 0 Allreduce 2 03
1 Allreduce 2 04

Collective Algorithm
Selection

1024 # comm size
alg id (e.g. Allreduce)
nb of message sizes
100 #algl from 0 to 4 Bytes
2 00 # alg 2 from 4 Bytes
51024 © # alg 5 (1k segments)
from 128 Bytes

Collective Performance
Traces

OpenMPI: MPI_Allreduce

e querying prediction model and conversion to Open MPI algorithm

e recording time stamps

e ompi/mca/coll/tuned/coll_tuned_allreduce_decision.c

if (AT_is_collective_sampling_enabled (MPI_ALLREDUCE)) {
// randomly select algorithm (incl. alg configuration)
our_alg_id = AT_get_allreduce_selection_id(bufsize, commsize, operator)

// translate algorithm and its configuration into OpenMPI
AT_col_t our_alg = AT_get_allreduce_our_alg(our_alg_id);
algorithm = our_alg.ompi_alg_id;

segsize = our_alg size;

AT_record_start_timestamp(MPI_ALLREDUCE, our_alg_id,
count * type_size, comm_size);

switch (algorithm) {
7 o

case (2):

res = ompi_coll_base_allreduce_intra_nonoverlapping(..);
break;

case (3):

res = ompi_coll_base_allreduce_intra_recursivedoubling(..);
break;

case (4):

res = ompi_coll_base_allreduce_intra_ring(..);
break;

0 oo

}
if (AT_is_collective_sampling_enabled (MPI_ALLREDUCE))
AT_record_end_timestamp (MPI_ALLREDUCE) ;

Experimental Results

Iterative Improvement: miniAMR

e run miniAMR with 32 x 32 processes Progress of selection probabilities of each

e same problem instance algorithm
1.00

e trace MPI_Allreduce and update
probability distribution based on recorded
performance

[

e Algorithms 0 and 7 fade out

Cumulative probability

e basic_linear and rabenseifner

A
[|
[|
[|
[|
[]
| |
[]
|

~NOUAWNRO

e highest selection probability: Algorithm 2 o 10 % %

Iteration

MPI_Allreduce; 32 x 32 processes

10

Compare Tuned Algorithms in Benchmark

Comparing ECDF of MPI_Allreduce 1.00

e query performance model with unseen

o
~
o1

instance: 24 x 32 processes

e OMPICollTune Alg ID 2 maps to Open
MPI algorithm 3

e recursive_doubling (no segmentation)

Fraction of Data
o
o1
o

e default decision logic in Open MPI 4.1.x

e Open MPI algorithm 2 OpenMPI
e nonoverlapping (internally

o
)
&

— OpenMPI Eautotuned)

default)

0.00
Reduce+Bcast) 20 o 60 80
e ReproMPI benchmark to compare Execution Time [us]
runtimes of 100 calls to MPI_Allreduce 48_Byte messages

S. Hunold and A. Carpen-Amarie. “Reproducible MPI Benchmarking is
Still Not as Easy as You Think". In: IEEE Trans. Parallel Distrib. Syst.
27.12 (2016), pp. 3617—3630. DOI: 10.1109/TPDS.2016.2539167 11

https://doi.org/10.1109/TPDS.2016.2539167

Incremental Online Learning

Overhead Analysis

e per iteration: 20 different runs of 20

miniAMR %
e Default: using default Open MPI selection El9

logic 5
e Tuned[x]: runtime after x updates of the 15; 18

model E

e uses probability distribution to select
algorithm > b\Q\ \Q\ \Q*\ QQ\ {19*\
. Q¢ & e,b b\ Zb b\

e Tuned[x*]: runtime after x updates of < & &

the model

e select only the algorithm that has
highest probability

12

Thank you

References (1)

References

[1] A. Faraj, X. Yuan, and D. K. Lowenthal. “STAR-MPI: self tuned adaptive routines for MPI
collective operations”. In: /CS. ACM, 2006, pp. 199-208.

[2] S. Hunold, A. Bhatele, G. Bosilca, and P. Knees. “Predicting MPI Collective
Communication Performance Using Machine Learning”. In: [EEE CLUSTER. 2020,
pp. 259-269.

[3] S. Hunold and A. Carpen-Amarie. “Algorithm Selection of MPI Collectives Using Machine
Learning Techniques”. In: PMBS@SC. 2018.

[4] S. Hunold and A. Carpen-Amarie. “Reproducible MPI Benchmarking is Still Not as Easy
as You Think". In: IEEE Trans. Parallel Distrib. Syst. 27.12 (2016), pp. 3617-3630. DOI:
10.1109/TPDS.2016.2539167.

13

https://doi.org/10.1109/TPDS.2016.2539167

References (2)

[5] J. Pjesivac-Grbovic, G. Bosilca, G. E. Fagg, T. Angskun, and J. Dongarra. “MPI collective

algorithm selection and quadtree encoding”. In: Parallel Computing 33.9 (2007),
pp. 613-623.

[6] M. Wilkins, Y. Guo, R. Thakur, P. Dinda, and N. Hardavellas. “ACCLAiIM: Advancing the

Practicality of MPI Collective Communication Autotuning Using Machine Learning”. In:
IEEE CLUSTER. 2022.

14

	References

