
OMPICollTune: Autotuning MPI Collectives by
Incremental Online Learning
Sascha Hunold and Sebastian Steiner

Research Group for Parallel Computing, Faculty of Informatics
TU Wien (Vienna University of Technology)
Vienna, Austria

MPI Collectives: A Very Brief Introduction

MPI - Message Passing Interface

• specification of a communication
interface

• all operations defined as functions

• all functions have defined semantics

• Several MPI libraries: OpenMPI,
MVAPICH, Intel MPI, Cray MPI, . . .

Collective Communication Operations

• Communication that involves a group
of processes

• Collection of pre-defined optimized
routines (common tasks)

Examples

• MPI_Allreduce

• MPI_Alltoall

• MPI_Bcast5.1. INTRODUCTION AND OVERVIEW 143

A0 A1 A2 A3 A4 A5 scatter

gather

A0

A1

A2

A3

A4

A5

A0 A1 A2 A3 A4 A5

B0 B1 B2 B3 B4 B5

C0 C1 C2 C3 C4 C5

D0 D1 D2 D3 D4 D5

E0 E1 E2 E3 E4 E5

F0 F1 F2 F3 F4 F5

A0 B0 C0 D0 E0 F0

A1 B1 C1 D1 E1 F1

A2 B2 C2 D2 E2 F2

A3 B3 C3 D3 E3 F3

A4 B4 C4 D4 E4 F4

A5 B5 C5 D5 E5 F5

complete
exchange

A0

B0

C0

D0

E0

F0

allgather

A0 B0 C0 D0 E0 F0

A0 B0 C0 D0 E0 F0

A0 B0 C0 D0 E0 F0

A0 B0 C0 D0 E0 F0

A0 B0 C0 D0 E0 F0

A0 B0 C0 D0 E0 F0

A0

data

broadcast

pr
oc

es
se

s

A0

A0

A0

A0

A0

A0

Figure 5.1: Collective move functions illustrated for a group of six processes. In each case,
each row of boxes represents data locations in one process. Thus, in the broadcast, initially
just the first process contains the data A0, but after the broadcast all processes contain it.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

source: MPI: A Message-Passing Interface Standard
Version 3.1

1

MPI Collectives under the Hood

• MPI collectives
• defined semantics
• possibly different implementations

• MPI libraries provide significant number of different
algorithms for individual collectives such as MPI_Bcast
or MPI_Allreduce

Algorithms for MPI_Bcast
0

1 2

3 4 5 6

7 8

binary tree algorithm

• parameterized MPI algorithms
• example chain algorithm: 2 parameters in OpenMPI

• fan-out, how many chains?
• segment size (for pipelining)

0

1 2 3

4 5 6

7 8

chain algorithm

2

The Problem

Problem Statement: Algorithm Selection and Configuration

Input
An instance of a collective communication problem P:

• a collective (e.g., MPI_Bcast),

• a message size (e.g., 1 MiB),

• a number of compute nodes, and

• a number of processor per compute node.

Output
Return the fastest algorithm that solves the problem P.

Two problems to solve (selection and configuration):

1. Determine the best algorithm from the set of possible algorithms.

2. Determine the best parameters to configure this algorithm.

3

Status Quo: Machine Learning Based Collective Tuning

General Strategy

Algorithm Selection
(using Regression

Models)

(MPI collective c,
message size m,

number of nodes n,
processes per node ppn)

Algorithm ID
for MPI collective c

Set of Problem Instances
(e.g. , Allgather,

n=16,ppn=8,m=128B)

Machine Learning
Task

Benchmarking
Task

Performance Dataset (e.g.,
Allgather,n=16,
ppn=8,m=128B,
algid=1,84µs)

S. Hunold and A. Carpen-Amarie. “Algorithm Selection of MPI
Collectives Using Machine Learning Techniques”. In: PMBS@SC.
2018

Classification by Regression

Algorithm ID

Regression Model
for Algorithm 0

Regression Model
for Algorithm 1

Regression Model
for Algorithm k

Runtime Predictions

 A0:T0
 A1:T1
 ..
 Ak:Tk

input

output

(MPI collective F,
message size m,
number of nodes n,
processes per node N) ArgMin(Runtime)

S. Hunold, A. Bhatele, G. Bosilca, and P. Knees. “Predicting MPI
Collective Communication Performance Using Machine Learning”.
In: IEEE CLUSTER. 2020, pp. 259–269

Important Related Work
• M. Wilkins, Y. Guo, R. Thakur, P. Dinda, and N. Hardavellas. “ACCLAiM: Advancing the Practicality of MPI Collective

Communication Autotuning Using Machine Learning”. In: IEEE CLUSTER. 2022
• J. Pjesivac-Grbovic, G. Bosilca, G. E. Fagg, T. Angskun, and J. Dongarra. “MPI collective algorithm selection and quadtree

encoding”. In: Parallel Computing 33.9 (2007), pp. 613–623

• A. Faraj, X. Yuan, and D. K. Lowenthal. “STAR-MPI: self tuned adaptive routines for MPI collective operations”. In: ICS. ACM,
2006, pp. 199–208

The Problem

• Which cases to benchmark?

• case: (collective, number of
compute nodes, processes per node,
message size)

• some cases very slow and perhaps
irrelevant, MPI_Alltoall with
large messages

The Idea
Let’s build a model with the runtimes of col-
lectives that we measure while executing HPC
applications.

4

Status Quo: Machine Learning Based Collective Tuning

General Strategy

Algorithm Selection
(using Regression

Models)

(MPI collective c,
message size m,

number of nodes n,
processes per node ppn)

Algorithm ID
for MPI collective c

Set of Problem Instances
(e.g. , Allgather,

n=16,ppn=8,m=128B)

Machine Learning
Task

Benchmarking
Task

Performance Dataset (e.g.,
Allgather,n=16,
ppn=8,m=128B,
algid=1,84µs)

S. Hunold and A. Carpen-Amarie. “Algorithm Selection of MPI
Collectives Using Machine Learning Techniques”. In: PMBS@SC.
2018

Classification by Regression

Algorithm ID

Regression Model
for Algorithm 0

Regression Model
for Algorithm 1

Regression Model
for Algorithm k

Runtime Predictions

 A0:T0
 A1:T1
 ..
 Ak:Tk

input

output

(MPI collective F,
message size m,
number of nodes n,
processes per node N) ArgMin(Runtime)

S. Hunold, A. Bhatele, G. Bosilca, and P. Knees. “Predicting MPI
Collective Communication Performance Using Machine Learning”.
In: IEEE CLUSTER. 2020, pp. 259–269

Important Related Work
• M. Wilkins, Y. Guo, R. Thakur, P. Dinda, and N. Hardavellas. “ACCLAiM: Advancing the Practicality of MPI Collective

Communication Autotuning Using Machine Learning”. In: IEEE CLUSTER. 2022
• J. Pjesivac-Grbovic, G. Bosilca, G. E. Fagg, T. Angskun, and J. Dongarra. “MPI collective algorithm selection and quadtree

encoding”. In: Parallel Computing 33.9 (2007), pp. 613–623

• A. Faraj, X. Yuan, and D. K. Lowenthal. “STAR-MPI: self tuned adaptive routines for MPI collective operations”. In: ICS. ACM,
2006, pp. 199–208

The Problem

• Which cases to benchmark?

• case: (collective, number of
compute nodes, processes per node,
message size)

• some cases very slow and perhaps
irrelevant, MPI_Alltoall with
large messages

The Idea
Let’s build a model with the runtimes of col-
lectives that we measure while executing HPC
applications.

4

Status Quo: Machine Learning Based Collective Tuning

General Strategy

Algorithm Selection
(using Regression

Models)

(MPI collective c,
message size m,

number of nodes n,
processes per node ppn)

Algorithm ID
for MPI collective c

Set of Problem Instances
(e.g. , Allgather,

n=16,ppn=8,m=128B)

Machine Learning
Task

Benchmarking
Task

Performance Dataset (e.g.,
Allgather,n=16,
ppn=8,m=128B,
algid=1,84µs)

S. Hunold and A. Carpen-Amarie. “Algorithm Selection of MPI
Collectives Using Machine Learning Techniques”. In: PMBS@SC.
2018

Classification by Regression

Algorithm ID

Regression Model
for Algorithm 0

Regression Model
for Algorithm 1

Regression Model
for Algorithm k

Runtime Predictions

 A0:T0
 A1:T1
 ..
 Ak:Tk

input

output

(MPI collective F,
message size m,
number of nodes n,
processes per node N) ArgMin(Runtime)

S. Hunold, A. Bhatele, G. Bosilca, and P. Knees. “Predicting MPI
Collective Communication Performance Using Machine Learning”.
In: IEEE CLUSTER. 2020, pp. 259–269

Important Related Work
• M. Wilkins, Y. Guo, R. Thakur, P. Dinda, and N. Hardavellas. “ACCLAiM: Advancing the Practicality of MPI Collective

Communication Autotuning Using Machine Learning”. In: IEEE CLUSTER. 2022
• J. Pjesivac-Grbovic, G. Bosilca, G. E. Fagg, T. Angskun, and J. Dongarra. “MPI collective algorithm selection and quadtree

encoding”. In: Parallel Computing 33.9 (2007), pp. 613–623

• A. Faraj, X. Yuan, and D. K. Lowenthal. “STAR-MPI: self tuned adaptive routines for MPI collective operations”. In: ICS. ACM,
2006, pp. 199–208

The Problem

• Which cases to benchmark?

• case: (collective, number of
compute nodes, processes per node,
message size)

• some cases very slow and perhaps
irrelevant, MPI_Alltoall with
large messages

The Idea
Let’s build a model with the runtimes of col-
lectives that we measure while executing HPC
applications.

4

Goals of this Work

Our Goals

Question
How to build a model to predict the best algorithm for specific collective communication
problem

1. with low overhead and

2. with a high accuracy?

Hypothesis
An efficient prediction model for collectives can be built from running HPC applications on a
production system by

1. algorithm sampling
• give every algorithm a chance, but perhaps not the same

2. process sampling
• not all processes will have to participate (save storage)

5

Our Goals

Question
How to build a model to predict the best algorithm for specific collective communication
problem

1. with low overhead and

2. with a high accuracy?

Hypothesis
An efficient prediction model for collectives can be built from running HPC applications on a
production system by

1. algorithm sampling
• give every algorithm a chance, but perhaps not the same

2. process sampling
• not all processes will have to participate (save storage)

5

Contribution: OMPICollTune

OMPICollTune: Online Tuning of MPI Collectives

• Extension of OpenMPI 4.1.x (fork)

• Intercepting MPI collectives (tracing) during
application runtime

• collect performance measurements

• Algorithm selection by probability distribution
• probabilities updated with new performance data

(after each srun, once per hour, once per day, . . .)
• slow algorithms get a smaller probability to be

selected

• Very low overhead
• sampling of performance stats can be bounded

• e.g., record only the first 100 calls to
MPI_Allreduce

• e.g., record only on 16 of 10 000 processes

https://github.com/sebastian-steiner/

ompi_pmbs

6

https://github.com/sebastian-steiner/ompi_pmbs
https://github.com/sebastian-steiner/ompi_pmbs

Approach

Performance Model

• 3D model: msize, nodes, ppn

• predefined dimensional cuts
• e.g., message size in Bytes 1-10, 11-100,

101-1000

• each block holds a probability distribution
for each collective (see illustration)

• prediction model across the 3D blocks

• whenever we get new data for a specific
3D block, the dataset and the prediction
model are updated

4 16 64 128 512 4 164
8

12
16
20
24
28
32

ppn
message size [Byte]

nodes

AlgID OMPI ID SegSize

1
2
3
4
5
6
7
8

1
2
3
4
5
5
5
6

0
0
0
0

1KB
1MB
8MB

0

Prob
0.1
0.3

0.05
0.15
0.1
0.1
0.1
0.1

unbounded

7

Online Tuning Approach

miniAMR
miniFE

AMG
ExaMiniMD

Laghos
MPI Library
(Open MPI)

OMPICollTune

MPI Application in
Execution (SLURM, etc.)

Collective Selection
Probabilities

pid callid alg_id runtime
0 Allreduce 2 0.3
1 Allreduce 2 0.4

Collective Performance
Traces

Collective Performance Models

Collective Algorithm
Selection

1024 # comm size
7 # alg id (e.g. Allreduce)
3 # nb of message sizes
0 1 0 0 # alg 1 from 0 to 4 Bytes
4 2 0 0 # alg 2 from 4 Bytes
128 5 1024 0 # alg 5 (1k segments)
 # from 128 Bytes

1

2

3

4

8

OpenMPI: MPI_Allreduce

• querying prediction model and conversion to Open MPI algorithm

• recording time stamps

• ompi/mca/coll/tuned/coll_tuned_allreduce_decision.c

if(AT_is_collective_sampling_enabled(MPI_ALLREDUCE)) {
// randomly select algorithm (incl. alg configuration)
our_alg_id = AT_get_allreduce_selection_id(bufsize, commsize, operator)

// translate algorithm and its configuration into OpenMPI
AT_col_t our_alg = AT_get_allreduce_our_alg(our_alg_id);
algorithm = our_alg.ompi_alg_id;
segsize = our_alg.seg_size;

AT_record_start_timestamp(MPI_ALLREDUCE, our_alg_id,
count * type_size, comm_size);

}

switch (algorithm) {
// ..
case (2):
res = ompi_coll_base_allreduce_intra_nonoverlapping (..);
break;

case (3):
res = ompi_coll_base_allreduce_intra_recursivedoubling (..);
break;

case (4):
res = ompi_coll_base_allreduce_intra_ring (..);
break;

// ..
}
if(AT_is_collective_sampling_enabled(MPI_ALLREDUCE))

AT_record_end_timestamp(MPI_ALLREDUCE);

9

Experimental Results

Iterative Improvement: miniAMR

• run miniAMR with 32 × 32 processes
• same problem instance

• trace MPI_Allreduce and update
probability distribution based on recorded
performance

• Algorithms 0 and 7 fade out
• basic_linear and rabenseifner

• highest selection probability: Algorithm 2

Progress of selection probabilities of each
algorithm

0.00

0.25

0.50

0.75

1.00

0 10 20 30
Iteration

C
um

ul
at

iv
e

pr
ob

ab
ili

ty

AlgID
0
1
2
3
4
5
6
7

MPI_Allreduce; 32 × 32 processes

10

Compare Tuned Algorithms in Benchmark

Comparing ECDF of MPI_Allreduce

• query performance model with unseen
instance: 24 × 32 processes

• OMPICollTune Alg ID 2 maps to Open
MPI algorithm 3

• recursive_doubling (no segmentation)

• default decision logic in Open MPI 4.1.x
• OpenMPI algorithm 2
• nonoverlapping (internally

Reduce+Bcast)

• ReproMPI benchmark to compare
runtimes of 100 calls to MPI_Allreduce

S. Hunold and A. Carpen-Amarie. “Reproducible MPI Benchmarking is
Still Not as Easy as You Think”. In: IEEE Trans. Parallel Distrib. Syst.
27.12 (2016), pp. 3617–3630. DOI: 10.1109/TPDS.2016.2539167

0.00

0.25

0.50

0.75

1.00

20 40 60 80
Execution Time [µs]

Fr
ac

tio
n

of
D

at
a

OpenMPI (autotuned)
OpenMPI (default)

48-Byte messages

11

https://doi.org/10.1109/TPDS.2016.2539167

Incremental Online Learning

Overhead Analysis

• per iteration: 20 different runs of
miniAMR

• Default: using default Open MPI selection
logic

• Tuned[x]: runtime after x updates of the
model

• uses probability distribution to select
algorithm

• Tuned[x*]: runtime after x updates of
the model

• select only the algorithm that has
highest probability

18

19

20

Defa
ult

Tu
ne

d [0]

Tu
ne

d [10
]

Tu
ne

d [10
*]

Tu
ne

d [20
]

Tu
ne

d [20
*]

Ex
ec

ut
io

n
T

im
e

[s
]

12

Thank you

References (1)

References

[1] A. Faraj, X. Yuan, and D. K. Lowenthal. “STAR-MPI: self tuned adaptive routines for MPI
collective operations”. In: ICS. ACM, 2006, pp. 199–208.

[2] S. Hunold, A. Bhatele, G. Bosilca, and P. Knees. “Predicting MPI Collective
Communication Performance Using Machine Learning”. In: IEEE CLUSTER. 2020,
pp. 259–269.

[3] S. Hunold and A. Carpen-Amarie. “Algorithm Selection of MPI Collectives Using Machine
Learning Techniques”. In: PMBS@SC. 2018.

[4] S. Hunold and A. Carpen-Amarie. “Reproducible MPI Benchmarking is Still Not as Easy
as You Think”. In: IEEE Trans. Parallel Distrib. Syst. 27.12 (2016), pp. 3617–3630. DOI:
10.1109/TPDS.2016.2539167.

13

https://doi.org/10.1109/TPDS.2016.2539167

References (2)

[5] J. Pjesivac-Grbovic, G. Bosilca, G. E. Fagg, T. Angskun, and J. Dongarra. “MPI collective
algorithm selection and quadtree encoding”. In: Parallel Computing 33.9 (2007),
pp. 613–623.

[6] M. Wilkins, Y. Guo, R. Thakur, P. Dinda, and N. Hardavellas. “ACCLAiM: Advancing the
Practicality of MPI Collective Communication Autotuning Using Machine Learning”. In:
IEEE CLUSTER. 2022.

14

	References

