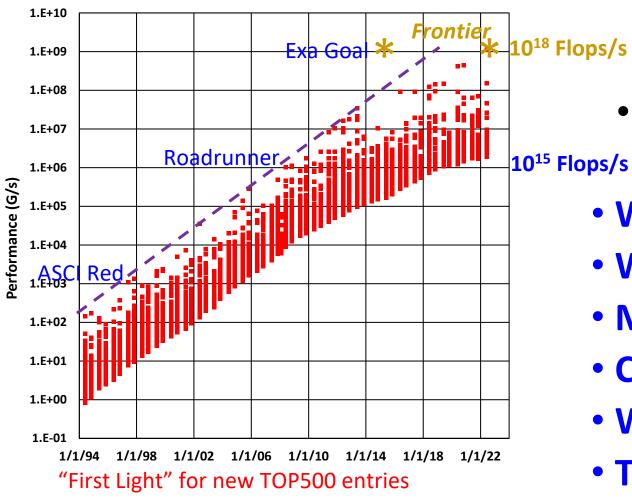


Frontier vs the Exascale Report:
Why so long?
and Are We Really There Yet?Peter M. KoggeWilliam J. DallyUniv. of Notre DameNVIDIA Corp.

The HPL World in 2008



[•] Roadrunner: 1+ PF/s

- DARPA (Bill Harrod): Exa by 2015?
- 2008 Exascale Report: Yes, but...

The HPL World in 2022

- 2022: Frontier Cracks 1EF/s
 - 7 years after Report Goal
 - 4 years after extrapolating curve
- Bounding Curve Changed in 2013

Obvious Questions

- What Is/Was Exascale?
- What Did 2008 Report Predict?
- More on the Historical Trail
- Comparison to Frontier
- What did Report get Right/Wrong?
- To Zettascale and Beyond

The Exascale Study

- What should "Exascale" Mean?
- The 2008 state of the art
 - Architectures, Runtimes, **Programming**, Metrics
- 2008 Application Characteristics
 - Computation vs Memory intensive Apps, Scaling, Concurrency
- Technology Roadmaps
 - Logic: Silicon and Non, Memory, Storage, Interconnect, Packaging, **Resiliency**, **Programming Models**

Strawman Designs

 Subsystem projections, **Evolutionary designs (Heavy and** lightweight), Aggressive design

Challenges & Research Areas

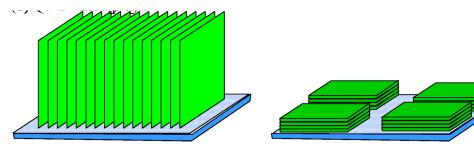
- Power, power, power, & powerMemory capacity & bandwidth - Remain
- Programmability
- Reliability

Practically Solved

What Was/Is Exascale?

- Report Emphasis: *Try* to change focus from flops
- Goal: overall 1000x capability over "Petascale" by 2015
 - In Same Footprint for Supercomputer at max 20MW
 - 1000X in a rack (peta scale)
 - 1000X in a module (tera scale)
- Not just flops but
 - Memory
 - Memory Bandwidth
 - Network Bandwidth

•


• Plus ability to program massive concurrency

Technologies Investigated

- Logic: power, area, energy, clock
 - CMOS: hi perf/low voltage
 - Options: hybrid, superconducting
 - Voltage scaling
- Main Memory
 - SRAM, DRAM, NAND, Alternatives
 - Reliability, packaging, power
- Storage Memory
 - Disk, Holographical, Archival

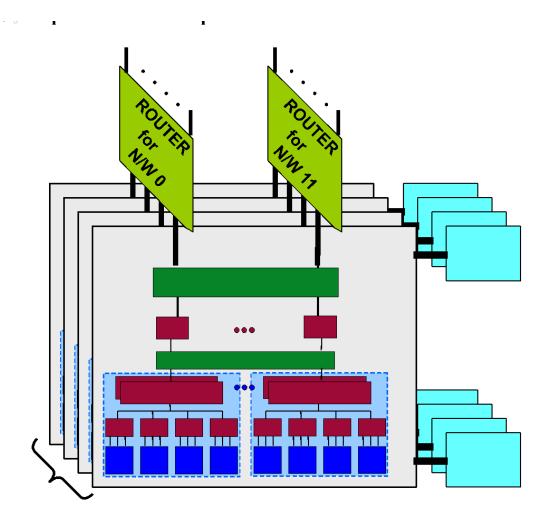
- Interconnect: esp. energy
 - On chip
 - DRAM to Processor (Stacking)
 - Intra/inter module
 - Rack to rack
 - Electrical vs optical
- Packaging and Cooling
- Resiliency & Checkpointing
- Programming Models

2015 Aggressive Strawman Design (2013 Tech)

Node: 742 simple cores/chip with 4 FPUs @ 1.5GHz

- 32nm CMOS with 30Gb/s SERDES
- 16 Memory channels: each 1 GB *Stacked* DRAM
- 150 Watts w'o routing chip

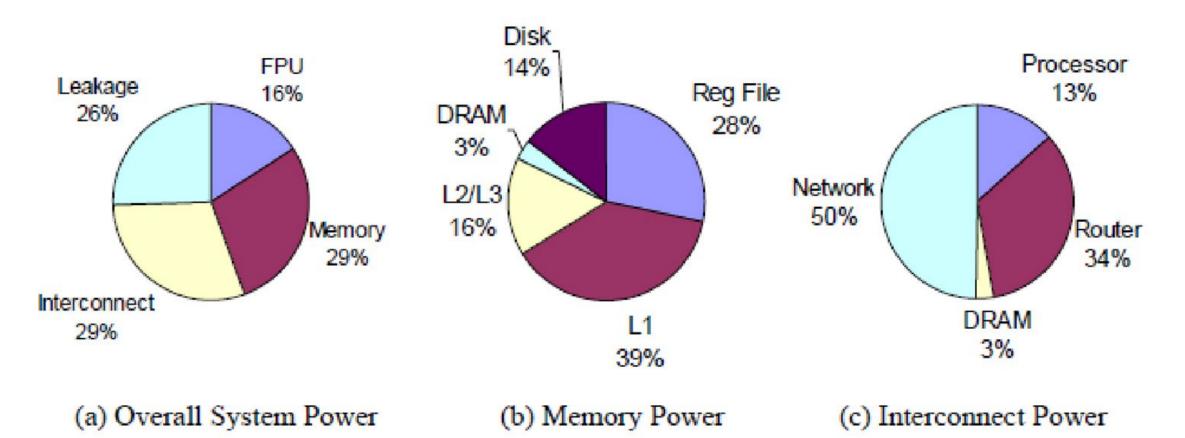
Group: 12 nodes with 12 64-radix router chips


Includes 16 12GB SATA drives for checkpointing

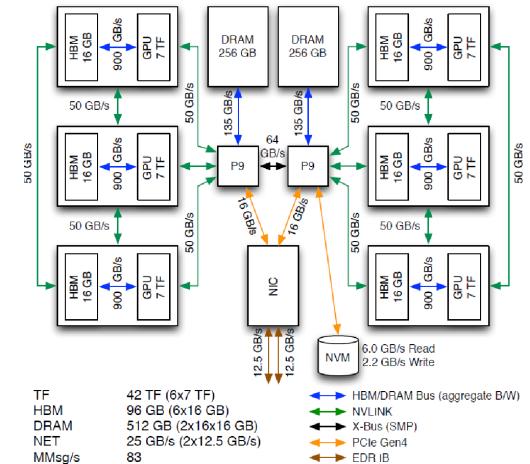
Cabinet: 32 Groups = 384 nodes

Assumed max power of 120KW

System: 583 Cabinets, 67MW


- 3-hop Dragonfly interconnect
- 166 million cores with 664 million FPUs
 SC 22 | Dallas TX

Est. 14.9 GF/W


7

Where Did the Energy Go?

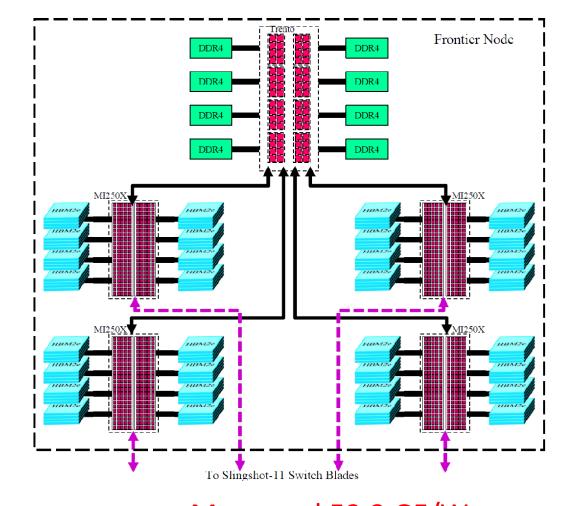
2018: Summit – An Exascale "Could Have Been"

- Nodes:
 - Dual 22 core Power 9
 - Hex NVIDIA GV100
 - Mixed DRAM/HBM (Stacked)
- Cabinet: 18 Nodes, 55KW
- System: 256 compute, 9.8 MW
 - Interesting Observation: 6.7X expansion of Summit
 - ~1+ EF/s sustained
 - At about 67 MW!

HBM & DRAM speeds are aggregate (Read+Write). All other speeds (X-Bus, NVLink, PCIe, IB) are bi-directional.

Summit System Overview, T. Papatheodore,

Strawman vs. Summit


	RR	Strawman	Summit	
Year	6/2008	2015	11/2018	
Best Tech	65nm	32nm	16nm	Ī
Peak (PF/s)	1.38	2,000	201	İ
Sustained (PF/s)	1.04	1,000 6.7×	110	
Power (MW)	2.35	67.7 ^{6.7X}	9.8	1
Efficiency (GF/W)	0.44	14.9	14.7	1
Memory (PB)	0.04	3.5	2.8	
Bandwidth/flop (B/F)	0.28	0.08	0.13	6
Mem BW (PB/s)	0.38	158	27	
Bisection(TB/s)	0.192	210 ^{2x}	105	
FPUs (M)	0.464	664	144	
Cabinets	296	583	256	1
Floorspace (m^2)	557	1195	520]

Summit: Could have matched Strawman if scaled up ~6.7X

63% better

2022 Frontier Node

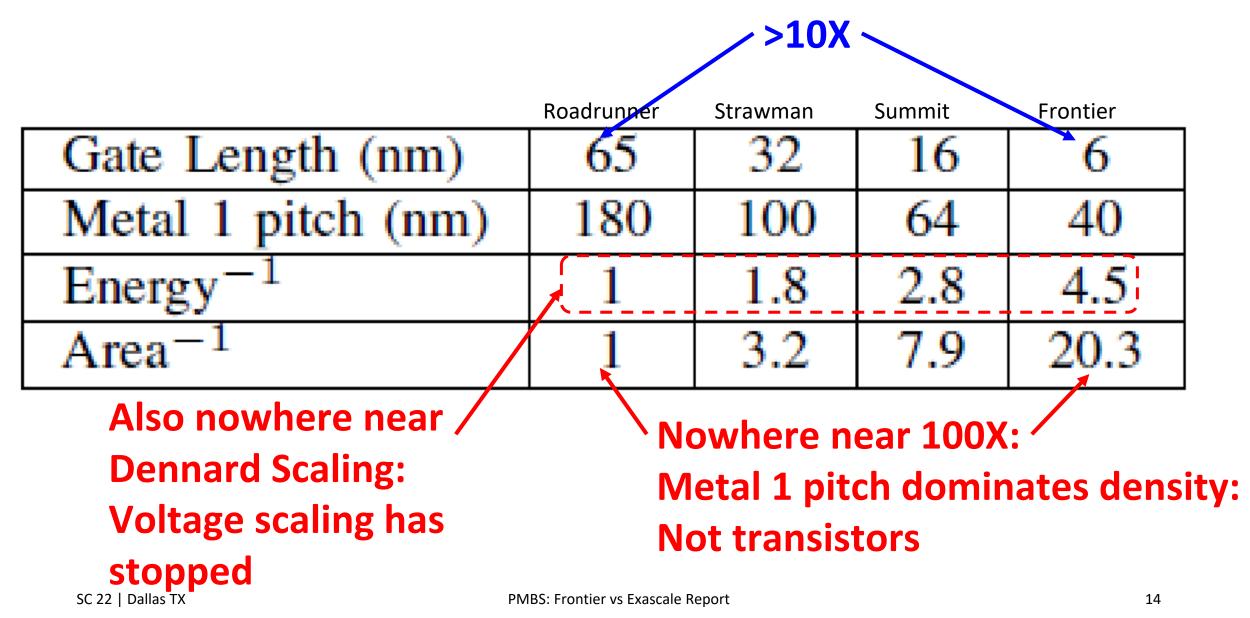
- Heterogeneous Processors
 - 64-core 2GHz CPUs
 - Quad GPUs: closer to Strawman
 - But more FPUs/core
 - And slightly faster
- Chiplet design
- Mixed memory hierarchy
 - 8 DDR4 DRAM Channels
 - 8 HBM2e stacks/GPU
- Quad network ports

PMK

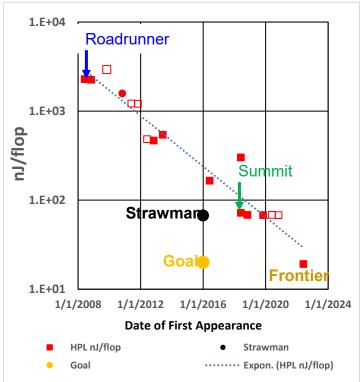
2022 Frontier System

- Blade: 2 nodes
- Chassis: 8 Processor Blades
 - With up to 8 Router Blade
 - Arranged perpendicularly
- Cabinet: 8 Chassis = 128 nodes
 - Water cooled up to 400KW
 - Over 2X footprint of Strawman
- System: 74 compute cabinets
 - With additional Cooling Units
 - Again Dragonfly topology

By OLCF at ORNL - https://www.flickr.com/photos/olcf/52117623843/, CC BY 2.0, https://commons.www.edia.org/w/index.php?curid=119231238

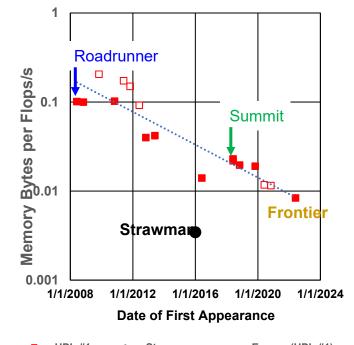

More Detailed Comparison

	RR	Strawman	Summit	Frontier
Year	6/2008	2015	11/2018	6/2022
Best Tech	65nm	32nm	16nm	6nm
Peak (PF/s)	1.38	2,000 6.78	201	1,686
Sustained (PF/s)	1.04	1,000	L 148	1102
Power (MW)	2.35	67.7 ^{6.7X}	9.8	21.1
Efficiency (GF/W)	0.44	14.9	14.7	52.2
Memory (PB)	0.04	3.5	2.8	9.4
: Bandwidth/flop (B/F)	0.28	0.08	0.13	0.07
: Mem BW (PB/s)	0.38	158	27	125
·. Bisection(TB/s)	0.192	210	105	540
FPUs (M)	0.464	664	144	534
Cabinets	296	583	256	74
Floorspace (m^2)	557	1195	520	678


Summit: Could have matched Strawman if scaled up ~6.7X

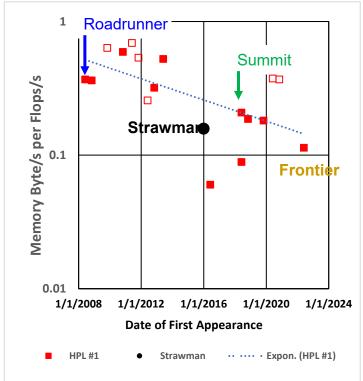
Frontier: not even close to 1000X over Roadrunner in other categories

Technology Changes from Then to Now



Changes in System Characteristics

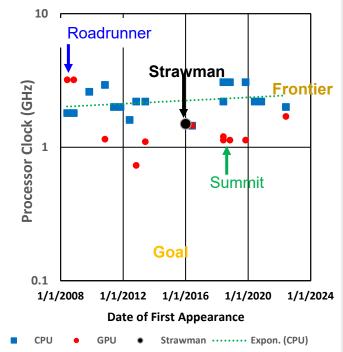
Energy/Flop:


- Declined >100X since 2008
- Summit matched Strawman in 2018

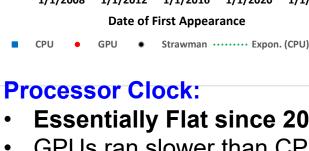
HPL #1 Strawman ······· Expon. (HPL #1)

Memory Capacity vs Flops/s:

- Declined >10X since 2008
- Strawman was even worse

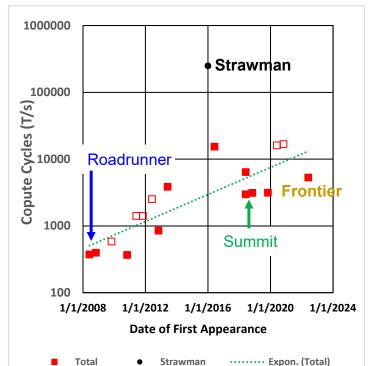

Memory Bandwidth vs Flops/s:

- Declined >3X since 2008
- Strawman was down 2X

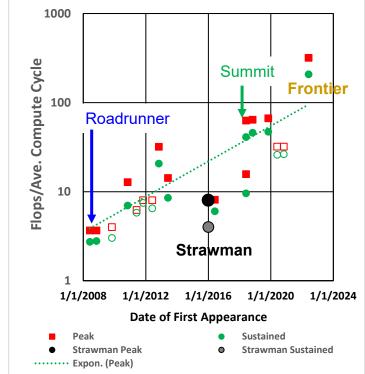

Homogeneous Processor Architecture

Heterogeneous Processor Architecture

Changes in Architecture Characteristics



- **Essentially Flat since 2008**
- GPUs ran slower than CPUs



Heterogeneous Processor Architecture

Aggregate Compute Cycles:

- Increased >14X since 2008
- Strawman had huge # of cores ٠
 - But only 4 FPU wide each ٠
 - Homogeneous Processor Architecture

Flops per Cycle:

- Exploded with Advent of GPU ٠
- Strawman didn't go far enough ٠

Frontier vs Strawman

	Road-	2008			
	Runner	Strawman	Frontier		
System Counts					
Nodes/Blade	1	12	2		
Blades/Chassis	4	1	8		
Chassis/Cabinet	3	32	8		
Nodes/Cabinet	12	384	128		
Total Nodes	3060	223,872	9,408		
Cores/Node	40	742	944		
MACs/Node	76	2,968	56,832		
Total MACs	232K	665M	535M		
Mem	ory Metrics	5			
Total Memory (TB)	36	3,498	9,408		
Total Memory BW (TB/s)	378	157,605	125,239		
Network Bandwidth Metrics					
Network ports/node	1	12	4		
Total Network ports	3,060	2.7M	37,632		
Switch Chips/Cabinet		<u>3</u> 84	64*		
Switch Radix	24	64	64		
Total Switch Chips	900	223,872	4,736*		
Signal Rates (Gb/s)	4	30	56		
Inj. B/W/Node (GB/s)	2	180	<u> 100 </u>		
Bisection B/W (TB/s)	0.192	210	540		
* Assuming 8 switch cards/chassis					

• Strawman's huge #s of nodes

- Exploded # of Network ports
- And thus huge switching costs
- Frontier had fewer, bigger nodes
 - Reduced network ports
- Comparable Memory Bandwidth
 - Use of wide stacked memory
 - But only 3X capacity
- Essentially same N/W topology
 - But 2X better SERDES
 - And 2+X better bisection B/W

Frontier vs Roadrunner: Did We Get 1000X?

	Road-		Growth	
	Runner	Frontier	Ratio	
GFlops/s/core	8.4	126	15	
GFlops/s/chip	56	23,426	419	
TFlops/s/node	0.34	117	349	
TFlops/s/cabinet	4	14,993	3,726	
TFlops/s/sq. ft.	0.17	151	882	
Flops/core/cycle	2.74	208	75	
Flops/cycle ¹	3.2E5	6.7E8	2,022	
Flops/Mem byte	9.9	119	12.1	
Flops/Mem BW byte	2.7	8.8	3.25	
Flops/Inj. byte	168	1,171	2,	
GFlops/watt	0.44	52.2	119	
Watts/core	19.24	2.4	1/8	
Watts/chip	128	449	3.5	
Watts/node	766	2,243	2.9	
All cores and all chips included				
¹ Using clock for major compute core.				

• Flops/s exceeded 1000X / cabinet

- But huge cabinets
- Within 3X for chip & node
- >100X in flops/s per watt
 - And flops/cycle
- Miserable increase in Memory, Memory Bandwidth. N/W Injection Bandwidth

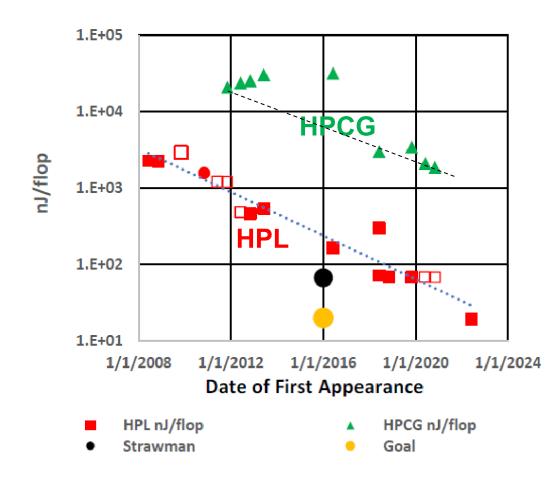
Report Card

What We Got Right

- CMOS, flat clocks
- Large # of wide simple cores
- Aggressive memory hierarchy
- Stacked memory
- Near reticle-limited dies
- Energy of movement predominates
- Near billion-way concurrency
- Memory concerns were valid
- Dragonfly with hi radix switches
- N/W signaling rate would improve

What We Missed

- Heterogeneous designs
- SIMD width much larger
- Stacked memory: more ports/lower transfer rate
- Machine Learning & short FP
- Massive 500W chips coolable
- Reliability not a show-stopper
- New programming models


"Zettascale" in 2036?

- Zettascale HPL (10²¹ flops/s) not feasible
 - 64bit FPU might go from today's 10pJ to 2-3pJ
 - Just math path of ZettaFLOPS HPL machine would consume 2-3GW
- Better: 1000X for today's critical apps in same footprint
 - Multi-physics esp. Climate modeling; Molecular dynamics; ...
 - Machine Learning; Bioinformatics; ...
- Non-starter: Technology scaling
 - Effective gate lengths may drop 3+X to 1-2nm
 - But metal pitch unlikely to improve significantly
 - 3D stacking might give 8X, but costly & little energy improvement

Bridges to Zettascale

- Efficiency via Specialization
 - Reduced precision & specialized data types & operators
 - Memory system specialized to minimize data movement
 - E.g. 15,000X for bioinformatics accelerator
- Reduce design costs via chiplets
 - Design just the accelerator core, not the whole system
- Growth of AI into Scientific Computation
 - Orders of magnitude improvement on some problems
- Explicit Support for Sparsity
 - Fine grain memory to avoid overfetch
 - Finer-grained transfer on networks for better small-message traffic
 - Efficient scatter/gather, pointer walkers

Example HPCG: Same App as HPL but Sparse Data

- Far less energy efficient
 - H/W resources underutilized
- Insufficient memory B/W
 - Need 8-10 memory bytes/flop
- Rate of improvement not as much Clearly "Flops at all costs" not long term general solution

Conclusions

- 2008 Study nailed need for SIMD many-core, stacked memory, networks based on high radix switches
- But 2013 technology was insufficient
 - Too many endpoints, too much power lost to movement
- Frontier leveraged better technology
 - With wider SIMD, multi-die packaging, better networks & cooling
- More nuanced answer to "Did Frontier achieve *exascale* goals?"
 - Yes if flop-intensive
 - Not if memory or bandwidth-intensive
- Zettascale in 2036?
 - FLOPS on HPL not the question, and not feasible at reasonable energy.
 - 1000x on real applications may be possible
 - Specialization of operations and memory systems
 - Al for science

Thank You!

Esp. Bill Harrod for all the Exascale studies And to DOE for pushing to fruition