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What is performance analysis?

How does an application 
make use of the 
Supercomputer?

And how can we make it 
run faster?
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Hardware Counter Analysis

• Counters in CPUs
• Collect counts of various events 
• Provide insight into the performance

• Different between each vendor
• Tied to microarchitecture features
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Current Counter Challenges

• Sometimes tied to specific CPUs
• Microarchitecture features
• Available Counters

• Difficulty applying information to application
• Idealized peaks can be misleading
• Measurements of specific CPU features
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Hardware Counter Analysis

• Example measuring Main Memory accesses

• A64FX – measured on each core
L2D_CACHE_REFILL
L2D_CACHE_WB

• Cascadelake – measured on each memory controller
skx_unc_imc[0...6]::UNC_M_CAS_COUNT:RD:cpu=[0,25]
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Main hypothesis

Hardware counters from different CPU types can be used 
to measure consistent performance metrics which provide 

information about how a computational kernel uses the 
CPU microarchitecture. 
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Additional Hardware Counter Metrics

• Are there additional metrics to provide more performance 
information to the user?

• Metrics that:
• Provide information about common architecture features
• Inform the user about application performance
• Can be measured on both systems
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Overall performance metrics

• Time – execution time of the kernel

• flops/s – floating point operations per second

• IPC – Instructions per cycle
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Data movement metrics

• LS Bytes – Bytes moved based on the count of load and 
store instructions

• [L2, L3] Bytes – Bytes moved by cache misses

• Mem Bytes – Bytes moved to and from main memory
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Cache Efficiency

• [L1, L2, L3] Miss Rates – Cache misses per total accesses

• [L2, L3] Bytes / LS Bytes – Bytes moved at a cache layer 
per LS Bytes

• Mem Bytes / LS Bytes – Bytes moved to and from the 
main memory per LS Bytes

• LD Ins / ST ins – loads per stores
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Computation

• flops – number of floating point operations used

• flops / fp ins – flops per floating point instruction to 
measure the amount of SIMD use
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Computation Data Rates

• Arithmetic Intensity – flops per LS Bytes

• flops / [LD, ST] Bytes – total flops per just the load bytes or 
just the store bytes

• flops / [LD, ST] Ins – total flops per the load instructions or 
the store instructions
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Examples

• Nbody Kernel
• “textbook” algorithm
• Scalar vs SIMD operations

• XS Bench – mini-application
• With and without sorting

• VPIC – particle in cell simulation

• Fujitsu A64FX and Intel Cascadelake
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Systems

• Fujitsu A64FX 
• ARM CPU with 512 bit SVE
• 48 Cores, 32 GB of HBM

• Intel Cascade Lake Xeon
• x86 CPU with AVX 512 bit SIMD
• 48 Cores, 188 GB of DDR
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NBody

• Fewer bytes moved -> higher AI
• More exaggerated with stores

• Increased L1 Miss Rate
• Use of SIMD operations

A64FX Scalar A64FX SIMD CLake Scalar CLake SIMD
LS Bytes (GB) 20,170 2,202 16,191 2,581
L1 Miss Rate (%) 0.159 3.12 0.098 50.0
Load ins / Store ins 5.65 3750 2.26 80.8
AI (flops / LS Bytes) 0.068 4.56 0.085 0.53
flops / load bytes 0.08 4.56 0.12 0.54
flops / store bytes 0.45 32,700 0.28 43.56
flops / fp ins 0.95 6.08 2.26 7.9997
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XSBench

• LS Bytes stays within  ~5%
• Cache miss rates fall dramatically
• L2 Bytes/ LS Bytes doesn’t change much
• L3 and Mem Bytes/ LS Bytes do change

LS Bytes (GB) 201 190 194 234 226 230
L1 Miss Rate (%) 1.7 1.8 1.9 24.1 16 18
L2 Miss Rate (%) 43 2.0 0.98 88 9.0 9.1
L2 Bytes / LS Bytes 4.54 3.29 3.61 0.92 0.61 0.66
L3 Bytes / LS Bytes NA NA NA 0.80 0.055 0.60
Mem Bytes / LS Bytes 3.49 0.066 0.036 0.55 0.050 0.032
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VPIC

• Significant reduction in amount of data moved
• Cache performance appear to be worse

AoS A64FX AoSoA cell A64FX AoS CLake AoSoA cell CLake
Time (s) 23.5 9.55 21.1 15.3
IPC 0.71 0.55 0.43 0.20
LS Bytes (GB) 13,800 5,220 22,400 3,900
flops / fp ins 23.4 23.4 15.9… 15.9…
L1 Miss Rate (%) 4.1 9.7 9.1 41.0
L2 Miss Rate (%) 26 27 134 165
L2 Bytes / LS Bytes 0.49 1.84 0.091 0.41
L3 Bytes / LS Bytes NA NA 0.12 0.69
Mem Bytes / LS Bytes 0.33 1.13 0.18 0.75



11/14/22 |   19Los Alamos National Laboratory

Conclusions

ü Counter metrics can be unified across systems

ü Metrics can provide information which users can reason 
about in conjunction with application changes
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Future research questions

• Are there portable metrics for instruction mix?

• Is this method portable to other CPUs?

• Is this method portable to GPUs and other accelerators?
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Questions?

Over 70 years at the forefront of supercomputing

Contact: Brian J Gravelle, gravelle@lanl.gov
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Data Movement – LS Bytes

• LS Bytes are computed from load store instructions

• A64FX has counters for different data sizes

• Cascadelake doesn’t differentiate sizes
• We assume same ratio as floating point instructions
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Data Movement – Cache and Memory

• Cache Level bytes
• Based on misses from the level above
• Multiply number of misses by the cache size

• Memory Bytes
• A64FX – reads and writes from L2 multiplied by cache line
• Cascadelake – sum of counters on the memory controllers
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Cache Efficiency Metrics

• Miss Rates

𝐴𝐼 =
𝐴𝑐𝑐𝑐𝑒𝑠𝑠𝑒𝑠 𝑡𝑜 𝐶𝑎𝑐ℎ𝑒 𝐿𝑒𝑣𝑒𝑙
𝑀𝑖𝑠𝑠𝑒𝑠 𝑎𝑡 𝑡ℎ𝑎𝑡 𝐿𝑒𝑣𝑒𝑙

• L1 accesses are load and store instructions
• Other levels are misses from the level above

• Byte ratios are calculated as written
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Arithmetic Intensity

• Ratio of FLOPs to Bytes

𝐴𝐼 =
𝐹𝐿𝑂𝑃𝑠
𝐿𝑆 𝐵𝑦𝑡𝑒𝑠

• Can be main memory or other Byte metrics

• Other computation data rates are similar
• Change denominator to appropriate value
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Over 70 years at the forefront of supercomputing


