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In the (Not-quite) Beginning We Were Given CPUs

However, it had limited
parallelism and FLOPS
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Sometime Later People Added GPUs

Lots of parallelism,
but still need to be
managed by the CPU
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PCle Connected the CPU and GPU (discrete)

Offload Strategy...

: “And they saw the GPU was
use the GPU if you have good and separated the GPU
enough SIMD work to from the CPU.”

pay the costs of:
« GPU memory
allocation
* PCle data transfer
* Kernel launch




For over a decade PCle
connected the GPU to the CPU,
but two opposing trends have
emerged:

(1) Disaggregation and
(2) Tighter coupling

Science



ldea 1: Loosely-coupled GPU (disaggregated)

Separate the CPU and GPU further across a network.
Composable architecture, GPU shared with CPUs on the network
Save money, but this adds overheads to the data transfer.

- But maybe the added cost isn’t too bad?

~2 Js latency

Office of

i"f;}“\a(? U.S. DEPARTMENT OF
ENERGY cience




ldea 2. Tightly Coupled GPU and CPU

FLOPS per Watt and GPU
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ldea 2a. Replace PCle With Something Faster

(On-board)

* ngh bandwidth and Typically an order of magnitude
low Iatency higher bandwid’fh than PCle
interconnect

» Greatly reduces data
transfer overheads

 Still maintains two
separate memories
(e.g. HBM and DDR)
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ldea 2b. Put the GPU + CPU on the Same
Package (APU)

- Shares a single memory — CPU
eliminates data transfer!

4

- Enables acceleration of
small kernels that aren’t G PU
otherwise offloaded =

- CPU and GPU must share APU
limited space and power
budget
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Our Idea: Use a General Model to Evaluate

These Designs

Keep it simple.
Overheads:

- Init. (malloc, kernel launch)
- Data transfer in
- Data transfer out

Benefits
«  Speedup of GPU computation

m

Focus is CPU-to-GPU coupling
(i.e. data transfers)
We use the LogGP model

- latency

- overhead

* gap (1 / bandwidth)

« Gap (msg size / bandwidth)

Computation model: peak FLOPS
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Measuring Accelerator Overheads and
Transfer Times

Study the model parameters Overheads and Transfer Times for DGEMM
for well understood DGEMM @® Kernel Launch Avg (us) @ Device Malloc Max (us) HtoD Avg (us)
(N3 FLOPS : N2 data xfer) @® DtoH Avg (us) @ Ideal Data Xfer (us)

Mallocs are expensive, but
potentially amortized.

« Derive LogGP from the +9904
recorded data transfer time.

- For matrix size > 5122, data
transfer dominates vs.

kernel launch W S o
a — —l

~
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How to Capture Complex Behavior?

Multi-phase application with Runtime vs Kernel Window in
varying patterns of compute summary statistics.

Data transfers may overlap with Derive LogGP parameters of
computation data transfers at varying size?
Multi-tier accelerator networks Can we amortize memory
(e.g. NVlink) allocations? How many times

do they occur?
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Need Insights Without App. Expertise: Nvidia
Nsight Systems

Fantastic profiler featuring:
» timelines for CPU and GPU
* PCle data transfer
* NVLink (peer to peer) transfers
* memory allocation
» supports Mellanox NICs

However, we still don’t have
everything we need to study
CPU-GPU coupling

(https://developer.nvidia.com/nsight-systems)
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Where Do We Need to Extend the Features?

Multi-phase application with
varying patterns of compute

Data transfers may overlap with
computation

Multi-tier accelerator networks
(e.g. NVlink)

 NERSC| 1

Runtime vs Kernel Window in
summary statistics.

Derive LogGP parameters of
data transfers at varying size?

Can we amortize memory
allocations? How many times
do they occur?
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Introducing NEthing (nttps://gitlab.com/NERSC/nething)

NEthlng takeS eXiSting Sq“te Description Time (ns) % Kernel of Window % of Runtime
profiles and extends Nsight e - eserto o o0
Systems Capabi”ties_ Kerl?el window . 2.29e+10 100 59
. . Active kernel time 6.30e+09 27 16
° MergeS Of dlﬂ:erent time Median kernel launch time 4.61e+03 0 0
. Mean kernel launch time 5.05e+03 0 0
series to calculate SEPTHL CPU T 1.02e+10 83 49
H Parallel CPU time 3.85e+09 16 10
Comprtatlon land data Host to dev. 2.39e+09 10 6
tran r over Dev. to host 2.33e+09 10 6
anster overiap, PCIe 4.72e+09 20 12
* Generates the parameters for  rcie-kernet non-overtap 1.65¢+09 7 4
a LogGP based model and
* Provides useful summary — = iy
statistics and visualizations 7 “wf%‘\ o EE N
. (@ / & % Y
for both kernel window and AR . 1 e \\i __________
runtime o =
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NEthing to Examine CPU-GPU Coupling

Three apps: DGEMM, MILC and LAMMPS-SNAP

Running across (4) A100 GPUs (NERSC Perimutter)
Increasing problem size:
- 2-8GB GPU memory

CPU assumed to be 1/8th FLOPS of GPU

Adjust CPU-GPU connectivity for 2022 and 2026 architecture
design points.
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ldea 1: Loosely-coupled GPU
(disaggregated in 2022)
- Use Average Transfer Size and Kernel Duration from profiles

* Insert an additional 2 us delay per transfer
* Impact on performance?

~2 Js latency
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Yellow area
signifies a
disaggregation
penalty of < 1%

LAMMPS-
SNAP
Large MILC
problems

Mean Kernel Duration A100 (ns)
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ldea 1: Loosely-coupled GPU (disaggregated)

The workloads evaluated (DGEMM, MILC, LAMMPS-SNAP) seem
amenable to disaggregation for today’s systems...

But what about for future architectures?

~2 Js latency
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Develop Four Future Design Points

x FLOPS GPU FP64 GPU CPU « GPU CPU «+ GPU

Archit. (2026)|(vs. A100) TFLOPS Power Bandwidth Latency
Disagg. GPU 5.1 102 350W  121GB/s 4us
Discrete GPU 5.1 102 350W  121GB/s 2us
On-board GPU 6.7 133 700W, 900GB/s lus
APU 5.1 102 350W N/A N/A

Assumptions made

e 5.1-6.7XIincrease in FLOPS of A100

e For APU, GPU uses 50% of package power (700W)

e 50% power results in 76% FLOPS
Many areas where we could shift the design parameters of each architecture.
These are reasonable and illustrative of the modeling approaches.

m
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2026 CPU-GPU Coupling Comparison (DGEMM)

Normalized Time vs A100

(lower is better)

0.30
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On-board Data Xfer
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2026 CPU-GPU Coupling Comparison (DGEMM)

APU greatly benefits Once computation scales up
small DGEMMs and sufficiently On-board GPU
short-lived kernels sees beneflts of higher FLOPS

0.30

B Kernel Launch
EEm APU Kernel

APU Data Xfer
On-board Kernel
On-board Data Xfer
Discrete Kernel.
Discrete Data Xfer
Disagg. Kernel
Disagg. Data Xfer

Normalized Time vs A100
(lower is better)
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2026 CPU-GPU Coupling Comparison (DGEMM)

The relatively large data transfers of DGEMM are all
benefited by tighter coupling of CPU and GPU
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2026 CPU-GPU Coupling Comparison (MILC)

For codes with regular data transfers, APU is competitive with On-board GPU,
(up to 17% slower with assumed 350 vs 700 W)
/)

Normalized Time vs A100

(lower is better)
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2026 CPU-GPU Coupling Comparison (MILC)

Discrete or Disaggregated twice as slow due to data transfers in MILC
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2026 CPU-GPU Coupling Comparison (MILC)

Kernel launches (which were < 1% for A100) are of growing importance.

B Kernel Launch

- [l APU Kernel

EE APU Data Xfer
On-board Kernel
On-board Data Xfer
Discrete Kernel.
Discrete Data Xfer
Disagg. Kernel
Disagg. Data Xfer
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2026 CPU-GPU Coupling Comparison

(LAMMPS-SNAP)

LAMMPS-SNAP has minimal data transfers and is FLOPS limited.

* Discrete and Disaggregated and APU
solutions are only limited by the 0.30
available power.

* On-board is ~25% faster (700W vs 350W)
* For similar workloads, dependent on price,
system architects could build a scale-out

system of cheaper components
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Conclusions

Choices of GPU and accelerator options are increasing as time goes on.
* APU present new opportunities for codes that were overlooked as poor
performers on current generation GPUs.
* Crucial to understand power limitations of GPU components on APU

Options for tighter coupling limit opportunities for disaggregation
« Higher bandwidth connectivity (e.g. optics) for disaggregation could help

Understanding the workload of a HPC center is increasingly important
- If GPU prices increase, performance to $ becomes increasingly relevant.
» Tradeoffs between scale-up vs. scale out system
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What can our offload model tell us about DGEMM?

Assume, that our CPU computes
8X slower than our A100 GPU

For three different DGEMM sizes
(10242, 20482, 40962)

What is the performance impact of:

* increasing or decreasing the
launch time, and

* increasing the CPU-to-GPU
bandwidth?

DGE
102472

Launch Time (us)

DAY QQ 00

Latency bound
data xfer. (Not

worth offloading.)
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Example Usage of NEthing: MILC

Lattice QCD generation problem (su3 rhmd hisq)
* Nvidia QUDA backend

. 1-node, 4-GPU per 4-node 1-GPU per node
° FOUI’ prOblem SiIZes node configuration configuration
evaluated
* Four A100 GPUs
» Two configurations to Host Host Host Host Host
measure NVLink and
Slingshot usage @ ﬁﬂﬁﬁ ﬁﬂﬁﬁ ﬁﬂﬁﬁj ﬁﬂﬁ@
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Example Usage of NEthing: MILC Summary

Four Problem Sizes Compared on Four
A100’s with fairly similar profiles.
*  15-20% time in PCle Xfer
«  35-50% of the transfers are
overlapping
* <1% time in kernel Launch
« Kernel is active ~30% of the kernel
window
«  CPU active 60-80% of the time in
serial and 40-20% of time in parallel

MILC 4-Node

% Time Spent Relative to Kernel Window
Kernel Active

Parallel CPU

— MILC32"3x32.4

— MILC32"3x64.4

— MILC32"3x96.4

PCle-Kernel Xfer P2p MILC36"3x72.4
Non-Overlap
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Example Usage of NEthing: MILC Memory
Usage

~5 Memory Allocations

1e9
1 =—— 32" 3x64.4node

=-]

- 32" 3x96.4node

= B f— 32”~3x32.4node /

E % 36~ 3x72.4node V
2-8 GB of GPU memory & 1 %

a=
depending on problem  °: r~|-=r—' l

) I
1 2 3 4 5 6 7
9 Time (ns) Y 1lel0
Y

Runtime of ~35-70 seconds depending on problem size
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Time per byte (ns)

Example Usage of NEthing: MILC Data

Transfers

We parameterize our LogGP model by plotting the time per byte for varying

message sizes.
* Host to Device PCle
* Device to Host PCle
*  NVLink

Host to Device

Performance
100 4
o
1071
104 10° 106 107 108
Transfer Size (B)
NG

y = ax + b of each curve

* b (y-intercept)isL+ 0
« X is transfer size (bytes)
« ais the time per byte (Gap)

Device to Host NVLink
Performance Performance
-2
i 6x10 observed
100 4 L
4%10-2 i fit curvg LQGP
' —-= Theor. limit
3x1072 .
2 %1072
10—1 4
o =i
e )
__' _____________ ,____. ............ 10—2 ; ——— — —— — — — c—— — — i e i i
104 10° 106 107 108 108 107
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Transfer Size (B)

Transfer Size (B)

&l BERKELEY LAB

Science Solutions to the World

A B>, U.S. DEPARTMENT OF
A ey )
&) ENERGY

Office of
Science




