
A Methodology for Evaluating
Tightly-integrated and Disaggregated
Accelerated Architectures

Taylor Groves, Chris Daley, Rahulkumar
Gayatri, Hai Ah Nam, Nan Ding, Lenny
Oliker, Nicholas J. Wright, Samuel Williams

Lawrence Berkeley National Laboratory

2

In the (Not-quite) Beginning We Were Given CPUs

However, it had limited
parallelism and FLOPS

3

Sometime Later People Added GPUs

Lots of parallelism,
but still need to be
managed by the CPU

4

PCIe Connected the CPU and GPU (discrete)

 “And they saw the GPU was
good and separated the GPU

from the CPU.”

Offload Strategy…
use the GPU if you have
enough SIMD work to
pay the costs of:
• GPU memory

allocation
• PCIe data transfer
• Kernel launch

5

For over a decade PCIe
connected the GPU to the CPU,

but two opposing trends have
emerged:

(1) Disaggregation and
(2) Tighter coupling

6

Idea 1: Loosely-coupled GPU (disaggregated)

Separate the CPU and GPU further across a network.
Composable architecture, GPU shared with CPUs on the network
Save money, but this adds overheads to the data transfer.
• But maybe the added cost isn’t too bad?

~2 μs latency

7

Idea 2. Tightly Coupled GPU and CPU

FLOPS per Watt and GPU
power are increasing.

SIMD work time shrinking
faster than data transfer
time.

Amdahl’s Law means
data transfer time is
becoming increasingly
important.

700W

300 -
400W

300W

8

Idea 2a. Replace PCIe With Something Faster
(On-board)
• High bandwidth and

low latency
interconnect

• Greatly reduces data
transfer overheads

• Still maintains two
separate memories
(e.g. HBM and DDR)

Typically an order of magnitude
higher bandwidth than PCIe

9

Idea 2b. Put the GPU + CPU on the Same
Package (APU)

• Shares a single memory –
eliminates data transfer!

• Enables acceleration of
small kernels that aren’t
otherwise offloaded

• CPU and GPU must share
limited space and power
budget

10

Our Idea: Use a General Model to Evaluate
These Designs
Keep it simple.
Overheads:
• Init. (malloc, kernel launch)
• Data transfer in
• Data transfer out

Benefits
• Speedup of GPU computation

Focus is CPU-to-GPU coupling
(i.e. data transfers)
We use the LogGP model
• latency
• overhead
• gap (1 / bandwidth)
• Gap (msg size / bandwidth)

Computation model: peak FLOPS

11

Measuring Accelerator Overheads and
Transfer Times

Study the model parameters
for well understood DGEMM
(N3 FLOPS : N2 data xfer)

• Mallocs are expensive, but
potentially amortized.

• Derive LogGP from the
recorded data transfer time.

• For matrix size > 5122, data
transfer dominates vs.
kernel launch

Measured on NERSC Perlmutter
Nvidia A100 GPU

12

How to Capture Complex Behavior?
Multi-phase application with
varying patterns of compute

Data transfers may overlap with
computation

Multi-tier accelerator networks
(e.g. NVlink)

Runtime vs Kernel Window in
summary statistics.

Derive LogGP parameters of
data transfers at varying size?

Can we amortize memory
allocations? How many times
do they occur?

13

Fantastic profiler featuring:
• timelines for CPU and GPU
• PCIe data transfer
• NVLink (peer to peer) transfers
• memory allocation
• supports Mellanox NICs

However, we still don’t have
everything we need to study
CPU-GPU coupling

(https://developer.nvidia.com/nsight-systems)

Need Insights Without App. Expertise: Nvidia
Nsight Systems

14

Where Do We Need to Extend the Features?
Multi-phase application with
varying patterns of compute

Data transfers may overlap with
computation

Multi-tier accelerator networks
(e.g. NVlink)

Runtime vs Kernel Window in
summary statistics.

Derive LogGP parameters of
data transfers at varying size?

Can we amortize memory
allocations? How many times
do they occur?

15

Introducing NEthing (https://gitlab.com/NERSC/nething)

NEthing takes existing sqlite
profiles and extends Nsight
Systems capabilities.

• Merges of different time
series to calculate
computation and data
transfer overlap,

• Generates the parameters for
a LogGP based model and

• Provides useful summary
statistics and visualizations
for both kernel window and
runtime

16

NEthing to Examine CPU-GPU Coupling

Three apps: DGEMM, MILC and LAMMPS-SNAP

Running across (4) A100 GPUs (NERSC Perlmutter)
Increasing problem size:
• 2-8GB GPU memory

CPU assumed to be 1/8th FLOPS of GPU

Adjust CPU-GPU connectivity for 2022 and 2026 architecture
design points.

17

Idea 1: Loosely-coupled GPU
(disaggregated in 2022)
• Use Average Transfer Size and Kernel Duration from profiles
• Insert an additional 2 μs delay per transfer
• Impact on performance?

~2 μs latency

18Mean Kernel Data Transfer Time A100 (ns)

M
ea

n
K

er
ne

l D
ur

at
io

n
A

10
0

(n
s)

High Data Transfer
Costs with Low
Opportunities for
Speedup

Lots of GPU Time
and Low Data
Transfer

Low Data Transfer Time Low
and Low Kernel Duration
(sensitive to overheads)

19

Grey area signifies
codes that do not
have a performance
benefit on the GPU

Yellow area
signifies a
disaggregation
penalty of < 1%

● LAMMPS-
SNAP

● Large MILC
problems

Data Transfer Time

M
ea

n
K

er
ne

l D
ur

at
io

n
A

10
0

(n
s)

Mean Kernel Data Transfer Time A100 (ns)

Large DGEMM
compute scales N3
data xfer scales N2

Small DGEMM

20

Idea 1: Loosely-coupled GPU (disaggregated)

The workloads evaluated (DGEMM, MILC, LAMMPS-SNAP) seem
amenable to disaggregation for today’s systems…

But what about for future architectures?

~2 μs latency

21

Develop Four Future Design Points

Assumptions made
● 5.1 - 6.7X increase in FLOPS of A100
● For APU, GPU uses 50% of package power (700W)
● 50% power results in 76% FLOPS

Many areas where we could shift the design parameters of each architecture.
These are reasonable and illustrative of the modeling approaches.

22

2026 CPU-GPU Coupling Comparison (DGEMM)

N
or

m
al

iz
ed

 T
im

e
vs

 A
10

0
(lo

w
er

 is
 b

et
te

r)

DGEMM 51
22

DGEMM 20
48

2

DGEMM 81
92

2

DGEMM 32
76

82

23

2026 CPU-GPU Coupling Comparison (DGEMM)

N
or

m
al

iz
ed

 T
im

e
vs

 A
10

0
(lo

w
er

 is
 b

et
te

r)

DGEMM 51
22

DGEMM 20
48

2

DGEMM 81
92

2

DGEMM 32
76

82

APU greatly benefits
small DGEMMs and
short-lived kernels

Once computation scales up
sufficiently On-board GPU

sees benefits of higher FLOPS

24

2026 CPU-GPU Coupling Comparison (DGEMM)

N
or

m
al

iz
ed

 T
im

e
vs

 A
10

0
(lo

w
er

 is
 b

et
te

r)

DGEMM 51
22

DGEMM 20
48

2

DGEMM 81
92

2

DGEMM 32
76

82

The relatively large data transfers of DGEMM are all
benefited by tighter coupling of CPU and GPU

up
 to

 10
X sp

ee
du

p

ov
er

dis
ag

gre
ga

ted

an
d d

isc
ret

e

25

2026 CPU-GPU Coupling Comparison (MILC)

N
or

m
al

iz
ed

 T
im

e
vs

 A
10

0
(lo

w
er

 is
 b

et
te

r)

MILC 32
3 x3

2

MILC 32
3 x6

4

MILC 32
3 x9

6

MILC 36
3 x7

2

For codes with regular data transfers, APU is competitive with On-board GPU,
(up to 17% slower with assumed 350 vs 700 W)

26

2026 CPU-GPU Coupling Comparison (MILC)

N
or

m
al

iz
ed

 T
im

e
vs

 A
10

0
(lo

w
er

 is
 b

et
te

r)

MILC 32
3 x3

2

MILC 32
3 x6

4

MILC 32
3 x9

6

MILC 36
3 x7

2

Discrete or Disaggregated twice as slow due to data transfers in MILC

27

2026 CPU-GPU Coupling Comparison (MILC)

N
or

m
al

iz
ed

 T
im

e
vs

 A
10

0
(lo

w
er

 is
 b

et
te

r)

MILC 32
3 x3

2

MILC 32
3 x6

4

MILC 32
3 x9

6

MILC 36
3 x7

2

Kernel launches (which were < 1% for A100) are of growing importance.

28

2026 CPU-GPU Coupling Comparison
(LAMMPS-SNAP)

LAMMPS-SNAP has minimal data transfers and is FLOPS limited.
• Discrete and Disaggregated and APU

solutions are only limited by the
available power.

• On-board is ~25% faster (700W vs 350W)
• For similar workloads, dependent on price,

system architects could build a scale-out
system of cheaper components

N
or

m
al

iz
ed

 T
im

e
vs

 A
10

0
(lo

w
er

 is
 b

et
te

r)

LAMMPS
(SNAP)

29

Conclusions

Choices of GPU and accelerator options are increasing as time goes on.
• APU present new opportunities for codes that were overlooked as poor

performers on current generation GPUs.
• Crucial to understand power limitations of GPU components on APU

Options for tighter coupling limit opportunities for disaggregation
• Higher bandwidth connectivity (e.g. optics) for disaggregation could help

Understanding the workload of a HPC center is increasingly important
• If GPU prices increase, performance to $ becomes increasingly relevant.
• Tradeoffs between scale-up vs. scale out system

30

Questions?
tgroves@lbl.gov

31

What can our offload model tell us about DGEMM?

Assume, that our CPU computes
8X slower than our A100 GPU

For three different DGEMM sizes
(10242, 20482, 40962)

What is the performance impact of:
• increasing or decreasing the

launch time, and
• increasing the CPU-to-GPU

bandwidth?
Latency bound
data xfer. (Not
worth offloading.)

Work (N3) grows
faster than data
transfer (N2).

32

Example Usage of NEthing: MILC

Lattice QCD generation problem (su3 rhmd hisq)
• Nvidia QUDA backend
• Four problem sizes

evaluated
• Four A100 GPUs
• Two configurations to

measure NVLink and
Slingshot usage

33

Example Usage of NEthing: MILC Summary

Four Problem Sizes Compared on Four
A100’s with fairly similar profiles.

• 15-20% time in PCIe Xfer
• 35-50% of the transfers are

overlapping
• <1% time in kernel Launch
• Kernel is active ~30% of the kernel

window
• CPU active 60-80% of the time in

serial and 40-20% of time in parallel

34

Example Usage of NEthing: MILC Memory
Usage

~5 Memory Allocations

2-8 GB of GPU memory
depending on problem

Runtime of ~35-70 seconds depending on problem size

35

Example Usage of NEthing: MILC Data
Transfers

We parameterize our LogGP model by plotting the time per byte for varying
message sizes.

• Host to Device PCIe
• Device to Host PCIe
• NVLink

y = ax + b of each curve
• b (y-intercept) is L + o
• x is transfer size (bytes)
• a is the time per byte (Gap)

