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In the (Not-quite) Beginning We Were Given CPUs

However, it had limited 
parallelism and FLOPS
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Sometime Later People Added GPUs

Lots of parallelism, 
but still need to be 
managed by the CPU
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PCIe Connected the CPU and GPU (discrete)

 “And they saw the GPU was 
good and separated the GPU 

from the CPU.”

Offload Strategy…
use the GPU if you have 
enough SIMD work to 
pay the costs of:
• GPU memory 

allocation
• PCIe data transfer
• Kernel launch
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For over a decade PCIe 
connected the GPU to the CPU, 

but two opposing trends have 
emerged:  

(1) Disaggregation and 
(2) Tighter coupling
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Idea 1: Loosely-coupled GPU (disaggregated)

Separate the CPU and GPU further across a network.
Composable architecture, GPU shared with CPUs on the network  
Save money, but this adds overheads to the data transfer.
• But maybe the added cost isn’t too bad?

~2 μs latency
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Idea 2. Tightly Coupled GPU and CPU

FLOPS per Watt and GPU 
power are increasing.

SIMD work time shrinking 
faster than data transfer 
time.

Amdahl’s Law means
data transfer time is 
becoming increasingly 
important.

700W

300 - 
400W

300W
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Idea 2a. Replace PCIe With Something Faster 
(On-board)
• High bandwidth and 

low latency 
interconnect

• Greatly reduces data 
transfer overheads

• Still maintains two 
separate memories 
(e.g. HBM and DDR)

Typically an order of magnitude 
higher bandwidth than PCIe
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Idea 2b.  Put the GPU + CPU on the Same 
Package (APU)

• Shares a single memory – 
eliminates data transfer!

• Enables acceleration of 
small kernels that aren’t 
otherwise offloaded

• CPU and GPU must share 
limited space and power 
budget
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Our Idea: Use a General Model to Evaluate 
These Designs
Keep it simple.
Overheads:
• Init. (malloc, kernel launch)
• Data transfer in
• Data transfer out

Benefits
• Speedup of GPU computation

Focus is CPU-to-GPU coupling 
(i.e. data transfers)
We use the LogGP model
• latency
• overhead
• gap (1 / bandwidth)
• Gap (msg size / bandwidth)

Computation model: peak FLOPS
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Measuring Accelerator Overheads and 
Transfer Times

Study the model parameters 
for well understood DGEMM
(N3 FLOPS : N2 data xfer)

• Mallocs are expensive, but 
potentially amortized.

• Derive LogGP from the 
recorded data transfer time.

• For matrix size > 5122, data 
transfer dominates vs. 
kernel launch

Measured on NERSC Perlmutter 
Nvidia A100 GPU
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How to Capture Complex Behavior?
Multi-phase application with 
varying patterns of compute

Data transfers may overlap with 
computation

Multi-tier accelerator networks 
(e.g. NVlink)

Runtime vs Kernel Window in 
summary statistics.
 
Derive LogGP parameters of 
data transfers at varying size?

Can we amortize memory 
allocations?  How many times 
do they occur?
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Fantastic profiler featuring:
• timelines for CPU and GPU
• PCIe data transfer
• NVLink (peer to peer) transfers
• memory allocation
• supports Mellanox NICs 

However, we still don’t have 
everything we need to study 
CPU-GPU coupling

(https://developer.nvidia.com/nsight-systems)

Need Insights Without App. Expertise: Nvidia 
Nsight Systems
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Where Do We Need to Extend the Features?
Multi-phase application with 
varying patterns of compute

Data transfers may overlap with 
computation

Multi-tier accelerator networks 
(e.g. NVlink)

Runtime vs Kernel Window in 
summary statistics.
 
Derive LogGP parameters of 
data transfers at varying size?

Can we amortize memory 
allocations?  How many times 
do they occur?
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Introducing NEthing (https://gitlab.com/NERSC/nething)

NEthing takes existing sqlite 
profiles and extends Nsight 
Systems capabilities.

• Merges of different time 
series to calculate 
computation and data 
transfer overlap, 

• Generates the parameters for 
a LogGP based model and 

• Provides useful summary 
statistics and visualizations 
for both kernel window and 
runtime
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NEthing to Examine CPU-GPU Coupling

Three apps: DGEMM, MILC and LAMMPS-SNAP

Running across (4) A100 GPUs (NERSC Perlmutter)
Increasing problem size:
• 2-8GB GPU memory

CPU assumed to be 1/8th FLOPS of GPU

Adjust CPU-GPU connectivity for 2022 and 2026 architecture 
design points.
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Idea 1: Loosely-coupled GPU 
(disaggregated in 2022)
• Use Average Transfer Size and Kernel Duration from profiles
• Insert an additional 2 μs delay per transfer 
• Impact on performance?

~2 μs latency
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Grey area signifies 
codes that do not 
have a performance 
benefit on the GPU 

Yellow area 
signifies a  
disaggregation 
penalty of < 1%

● LAMMPS-
SNAP

● Large MILC 
problems
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Idea 1: Loosely-coupled GPU (disaggregated)

The workloads evaluated (DGEMM, MILC, LAMMPS-SNAP) seem 
amenable to disaggregation for today’s systems… 

But what about for future architectures?

~2 μs latency
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Develop Four Future Design Points

Assumptions made
● 5.1 - 6.7X increase in FLOPS of A100
● For APU, GPU uses 50% of package power (700W)
● 50% power results in 76% FLOPS

Many areas where we could shift the design parameters of each architecture.  
These are reasonable and illustrative of the modeling approaches.
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2026 CPU-GPU Coupling Comparison (DGEMM)
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2026 CPU-GPU Coupling Comparison (DGEMM)
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APU greatly benefits 
small DGEMMs and 
short-lived kernels

Once computation scales up 
sufficiently On-board GPU 

sees benefits of higher FLOPS
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2026 CPU-GPU Coupling Comparison (DGEMM)
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2026 CPU-GPU Coupling Comparison (MILC)
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For codes with regular data transfers, APU is competitive with On-board GPU, 
(up to 17% slower with assumed 350 vs 700 W)
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2026 CPU-GPU Coupling Comparison (MILC)
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Discrete or Disaggregated twice as slow due to data transfers in MILC



27

2026 CPU-GPU Coupling Comparison (MILC)
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Kernel launches (which were < 1% for A100) are of growing importance.
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2026 CPU-GPU Coupling Comparison 
(LAMMPS-SNAP)

LAMMPS-SNAP has minimal data transfers and is FLOPS limited.
• Discrete and Disaggregated and APU

solutions are only limited by the 
available power.

• On-board is ~25% faster (700W vs 350W)
• For similar workloads, dependent on price,

system architects could build a scale-out 
system of cheaper components 
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Conclusions

Choices of GPU and accelerator options are increasing as time goes on.
• APU present new opportunities for codes that were overlooked as poor 

performers on current generation GPUs.
• Crucial to understand power limitations of GPU components on APU

Options for tighter coupling limit opportunities for disaggregation
• Higher bandwidth connectivity (e.g. optics) for disaggregation could help

Understanding the workload of a HPC center is increasingly important
• If GPU prices increase, performance to $ becomes increasingly relevant.
• Tradeoffs between scale-up vs. scale out system



30

Questions?
tgroves@lbl.gov
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What can our offload model tell us about DGEMM?

Assume, that our CPU computes 
8X slower than our A100 GPU

For three different DGEMM sizes
(10242, 20482, 40962)

What is the performance impact of:
• increasing or decreasing the 

launch time, and
• increasing the CPU-to-GPU 

bandwidth?
Latency bound 
data xfer. (Not 
worth offloading.)

Work (N3) grows 
faster than data 
transfer (N2).
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Example Usage of NEthing:  MILC

Lattice QCD generation problem (su3 rhmd hisq)
• Nvidia QUDA backend 
• Four problem sizes 

evaluated
• Four A100 GPUs
• Two configurations to 

measure NVLink and 
Slingshot usage



33

Example Usage of NEthing: MILC Summary

Four Problem Sizes Compared on Four 
A100’s with fairly similar profiles.

• 15-20% time in PCIe Xfer
• 35-50% of the transfers are 

overlapping
• <1% time in kernel Launch
• Kernel is active ~30% of the kernel 

window
• CPU active 60-80% of the time in 

serial and 40-20% of time in parallel
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Example Usage of NEthing: MILC Memory 
Usage

~5 Memory Allocations

2-8 GB of GPU memory
depending on problem 

Runtime of ~35-70 seconds depending on problem size
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Example Usage of NEthing: MILC Data 
Transfers

We parameterize our LogGP model by plotting the time per byte for varying 
message sizes.

• Host to Device PCIe
• Device to Host PCIe
• NVLink

y = ax + b of each curve
• b (y-intercept) is L + o
• x is transfer size (bytes)
• a is the time per byte (Gap)


