
An Initial Evaluation of Arm’s Scalable Matrix
Extension
Finn Wilkinson & Prof. Simon McIntosh-Smith

University of Bristol
(fw17231@bristol.ac.uk, s.mcintosh-smith@bristol.ac.uk)

Background

• BLAS operations form a large part of many HPC applications

• Whether this is Level 1 vector-vector operations, or Level 3 matrix-matrix operations

• Whilst GPUs & DSAs tend to provide the best performance for these workloads, only 34% of systems[1]

use any form of accelerator

• Typically requires additional work from the programmer to target an accelerator

• An additional memory transfer overhead from CPU -> accelerator

• Developing new in-CPU BLAS acceleration techniques is still a relevant area to pursue

• Additional performance gains without extra work for programmers

• Additional performance gains without additional hardware

11/14/22SC22 | Dallas, TX | hpc accelerates. 2

[1] - June 2022 Top500

• SIMD and Vector Extensions :

• Arm’s NEON and SVE extensions

• X86’s AVX-512

• RISC-V’s RVV

• Matrix Extensions :

• Apple’s AMX

• Intel’s AMX-512

• IBM Power10’s MMA

• Arm’s SME

Background – CPU BLAS Acceleration

11/14/22SC22 | Dallas, TX | hpc accelerates. 3

Background - Arm’s Scalable Matrix Extension

• Builds upon Arm’s SVE

• Utilises SVE Z registers and P registers as source operands

• A single matrix register is introduced - ZA

• Introduces two new processing modes :

• PSTATE.SM - SVE Streaming-Mode; provides a context switch to enable SME instructions

• PSTATE.ZA - Enables access to the SME matrix register ZA

• SME has its own vector length – the Streaming Vector Length (SVL)

• When PSTATE.SM is enabled, SVE instructions will use SVL rather than VL

• SVL = {128, 256, 512, 1024, 2048}-bits

11/14/22SC22 | Dallas, TX | hpc accelerates. 4

Background – SME’s Matrix Register

• ZA is a 2D matrix with dimensions [SVLB x SVLB]

• SVLB = number of bytes in SVL

• Number of available rows fixed to SVLB

• Number of available columns (elements-per-row) can change with the
size of each element

• 1 byte per element = SVLB columns

• 4 bytes per element = SVLB/4 columns (i.e. FP32)

• Accessed via individual rows or columns, or via tiles

• A tile is a Square 2D sub-array of ZA

• The number of tiles available is dictated by the element size

11/14/22SC22 | Dallas, TX | hpc accelerates. 5

The ZA register - Image from Arm [2]

[2] - https://developer.arm.com/documentation/ddi0616/latest

Evaluation Methodology – Simulation Environment

• Used the Simulation Engine (SimEng) cycle-level architectural simulator

• Easy to modify & configure core models

• Fast simulation speed (~1MIPS)

• Accurate to read-world scenarios

• Implemented support for SME (+ SVE2) within SimEng via Capstone-Engine update

• SME support within SimEng to be included in next release (before end of year)

• Used a core model of Fujitsu’s A64FX as the basis of a hypothetical core with SME support

• Native SVE support removes some guess work with SME configuration details

11/14/22SC22 | Dallas, TX | hpc accelerates. 6

https://github.com/UoB-HPC/SimEng

Evaluation Methodology – Hypothetical Core Model

11/14/22SC22 | Dallas, TX | hpc accelerates. 7

• Infinite L1$ modelled as
this study focuses on
compute only

• A64FX’s SVE single core
throughput = 64 FP32
FLOPs/cycle (FMLA)
• Has 2x512-bit SVE EU’s

• In-core SME Accelerator’s
throughput = 512 FP32
FLOPs/cycle (FMOPA)
• While SVL = 512-bit

• An optimized FP32 Matrix Multiplication kernel C=AB

• Lack of compiler & library support for SME limits workloads

• Two versions of the workload; one utilising SVE, another utilising SME

• SVE kernel is adapted from Arm’s SVE documentation, SME kernel is adapted from assembly provided by Arm

• Both MatMul function versions self verify against a naïve MatMul implementation

• The SME version involves a pre-processing step to transpose input matrix A

• SME MatMul is calculated as sum of outer products, transposing allows for row-major access of A and B

Evaluation Methodology – Target Workload

•

11/14/22SC22 | Dallas, TX | hpc accelerates. 8

Where A, B, C are matrices of dimensions (M x K), (K x N), (M x N) respectively;
ai is column i of A, bi is row i of B

Results – SVE vs. SME

11/14/22SC22 | Dallas, TX | hpc accelerates. 9

VL = SVL = 512-bit; For each input, the result is calculated 200 times per run. Lower is better.
1.

1X

1.
7X

4.
0X

1.
9X

4.
9X

5.
5X

2.
2X

6.
2X

2.
3X

6.
4X 6.
0X

9.
2X

11
.0

X

12
.1

X

13
.5

X

14
.4

X

2.
2X 2.

1X

Results – Comparing SVL Values

11/14/22SC22 | Dallas, TX | hpc accelerates. 10

Physical Reg. Count = 2xSVLB ; For each input, the result is calculated 200 times per run. Lower is better.

• As SVL increases, perf. gain
plateaus

• Step-like drops due to SVL
not being divisor of input
size

• Gradual increase in cycles
between some SVL values is
due to increasing amount of
redundant instructions as
SVL grows

Summary

• We have provided first-of-a-kind performance results for Arm’s Scalable Matrix Extension

• For dense MatMul, our hypothetical core saw up to a 6.4X* speedup when utilising SME

• Perhaps somewhat unsurprising…

• Provides a good starting point for further evaluation

• A greater SVL does not guarantee a performance improvement, especially for smaller input sizes

• Our SME MatMul implementation is susceptible to performing redundant work

11/14/22SC22 | Dallas, TX | hpc accelerates. 11

*Max speedup quoted in paper is 9.8x due to a bug in the simulator discovered after submission.

Thank you for listening!
Finn Wilkinson

University of Bristol HPC Group

fw17231@bristol.ac.uk

https://github.com/UoB-HPC/SimEng

11/14/22SC22 | Dallas, TX | hpc accelerates. 12

