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Background

• BLAS operations form a large part of many HPC applications

• Whether this is Level 1 vector-vector operations, or Level 3 matrix-matrix operations

• Whilst GPUs & DSAs tend to provide the best performance for these workloads, only 34% of systems[1] 

use any form of accelerator

• Typically requires additional work from the programmer to target an accelerator

• An additional memory transfer overhead from CPU -> accelerator

• Developing new in-CPU BLAS acceleration techniques is still a relevant area to pursue

• Additional performance gains without extra work for programmers

• Additional performance gains without additional hardware
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[1] - June 2022 Top500



• SIMD and Vector Extensions :

• Arm’s NEON and SVE extensions

• X86’s AVX-512

• RISC-V’s RVV

• Matrix Extensions :

• Apple’s AMX

• Intel’s AMX-512

• IBM Power10’s MMA

• Arm’s SME

Background – CPU BLAS Acceleration
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Background - Arm’s Scalable Matrix Extension

• Builds upon Arm’s SVE

• Utilises SVE Z registers and P registers as source operands

• A single matrix register is introduced - ZA

• Introduces two new processing modes  :

• PSTATE.SM - SVE Streaming-Mode; provides a context switch to enable SME instructions

• PSTATE.ZA - Enables access to the SME matrix register ZA

• SME has its own vector length – the Streaming Vector Length (SVL)

• When PSTATE.SM is enabled, SVE instructions will use SVL rather than VL

• SVL = {128, 256, 512, 1024, 2048}-bits
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Background – SME’s Matrix Register

• ZA is a 2D matrix with dimensions [SVLB x SVLB] 

• SVLB = number of bytes in SVL

• Number of available rows fixed to SVLB

• Number of available columns (elements-per-row) can change with the 
size of each element

• 1 byte per element = SVLB columns

• 4 bytes per element = SVLB/4 columns (i.e. FP32)

• Accessed via individual rows or columns, or via tiles

• A tile is a Square 2D sub-array of ZA

• The number of tiles available is dictated by the element size
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The ZA register - Image from Arm [2]

[2] - https://developer.arm.com/documentation/ddi0616/latest



Evaluation Methodology – Simulation Environment

• Used the Simulation Engine (SimEng) cycle-level architectural simulator

• Easy to modify & configure core models

• Fast simulation speed (~1MIPS)

• Accurate to read-world scenarios

• Implemented support for SME (+ SVE2) within SimEng via Capstone-Engine update

• SME support within SimEng to be included in next release (before end of year)

• Used a core model of Fujitsu’s A64FX as the basis of a hypothetical core with SME support

• Native SVE support removes some guess work with SME configuration details
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https://github.com/UoB-HPC/SimEng



Evaluation Methodology – Hypothetical Core Model
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• Infinite L1$ modelled as 
this study focuses on 
compute only

• A64FX’s SVE single core 
throughput = 64 FP32 
FLOPs/cycle (FMLA)
• Has 2x512-bit SVE EU’s

• In-core SME Accelerator’s 
throughput = 512 FP32 
FLOPs/cycle (FMOPA)
• While SVL = 512-bit



• An optimized FP32 Matrix Multiplication kernel C=AB

• Lack of compiler & library support for SME limits workloads

• Two versions of the workload; one utilising SVE, another utilising SME

• SVE kernel is adapted from Arm’s SVE documentation, SME kernel is adapted from assembly provided by Arm

• Both MatMul function versions self verify against a naïve MatMul implementation

• The SME version involves a pre-processing step to transpose input matrix A

• SME MatMul is calculated as sum of outer products, transposing allows for row-major access of A and B

Evaluation Methodology – Target Workload

•
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Where A, B, C are matrices of dimensions (M x K), (K x N), (M x N) respectively;
ai is column i of A, bi is row i of B



Results – SVE vs. SME
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VL = SVL = 512-bit; For each input, the result is calculated 200 times per run. Lower is better.
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Results – Comparing SVL Values
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Physical Reg. Count = 2xSVLB ; For each input, the result is calculated 200 times per run. Lower is better.

• As SVL increases, perf. gain  
plateaus

• Step-like drops due to SVL 
not being divisor of input 
size

• Gradual increase in cycles 
between some SVL values is 
due to increasing amount of 
redundant instructions as 
SVL grows



Summary

• We have provided first-of-a-kind performance results for Arm’s Scalable Matrix Extension

• For dense MatMul, our hypothetical core saw up to a 6.4X* speedup when utilising SME

• Perhaps somewhat unsurprising…

• Provides a good starting point for further evaluation

• A greater SVL does not guarantee a performance improvement, especially for smaller input sizes

• Our SME MatMul implementation is susceptible to performing redundant work
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*Max speedup quoted in paper is 9.8x due to a bug in the simulator discovered  after submission.



Thank you for listening!
Finn Wilkinson

University of Bristol HPC Group

fw17231@bristol.ac.uk

https://github.com/UoB-HPC/SimEng
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