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Neuron-inverter problem
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‘Natural’ problem
given conductances
solve PDE for cell spiking 
(aka action potential) 

Inverse problem
given spikes 
infere conductances

Cell morphology modeled by lumped circuit representation 
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Neuron-inverter ML approach
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Inferring the mechanisms of neuronal 
input-output functions

ML Input: Neuron simulated spikes 
measured at multiple location as 1D 
time-series

ML objective: regression
INPUT     shape (N,1600,4) float
OUTPUT shape (N,15) float
Loss:  MSE 

ML model: CNN+FC, 2M params
N=500k training samples

Simulated data 
→ ground truth is known

Output: Electrical properties 
(conductances) determined for 
different compartments of neuron
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● Dataset: 
○ simulated spikes (as time series) measured for random conductances

○  7M training and 700k  validations samples

● ML-model : 3M trainable parameters, PyTorch implementation
○ ML-layers: 3 convolutional, 1 batch normalization, 5 fully connected

○  regression loss: MSE 

○ optimizer: AdamW 

● Training schedule:  fixed training data, same number of epochs

○ training data distributed in CPUs RAM  to avoid any disc-CPU IO cost

○ constant  local batch size when scaling number of accelerators

○ val-loss used to reduce LR on plateau

■ for GC pseudo-validation loss used instead to avoid graph 

switching cost

■ true val-loss computed once at the end the whole training

( not included in the time-budget)

● Benchmark criteria: end-loss, training time, used energy

Neuron-inverter ML benchmark
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Systems architecture
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Convergence of one-accelerator training 
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Convergence of 128-accelerators training 
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End-loss  scaling
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Weak scaling
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Power consumption profiles
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16 accelerators straining

host
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Energy per training  usage scaling
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Conclusions

• ML is being applied into variety of research projects 

•  finding optimal HW is a research topic by itself

• The inversion of PDE has no analytical solution but ML can find the inverse multivalued function

• Neuron-inverter derived from a real neuroscience research project  was used as ML benchmark 

• The criteria of benchmark were:  

• quality of solution, time to solution, energy consumed until solution was found

• ML benchmark executed on 1 - 256 accelerators from Nvidia (A100) and Graphcore (IPU)

• Results, consisten for any number of accelerators up to 256

• end-loss achieved on A100s and IPUs were the same within 10-20%

• total training time was the same within 15%

• Graphcore chips needed 2.5x less power and used 2x less energy to deliver the above results
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