

Time-series ML-regression on Graphcore IPU-M2000 and Nvidia A100

 $J.Balewski¹$, Z. Liu² , A.Tsyplikhin² , M. L. Roland² , K. Bouchard^{3,4,5}

NERSC¹ , SD³ and BSE⁴ Divisions, Lawrence Berkeley National Laboratory Graphcore² , Palo Alto, CA Redwood Center for Theoretical Neuroscience⁵ , UC Berkeley

Neuron-inverter problem

Extracellular Fluid Soma **Dendrites** $I_{\text{GABA,A}}$ $I_{\text{Na}}I_{\text{Ca,T}}$ $I_{\text{Ca,N}}$ $I_{\text{Ca,L}}$ $|$ _{K,DR} $|$ _{K,SK} $|$ _{K,A} $|$ _L I_{CaP} I_{NaP} $I_{AMPA}I_{NMDA}I_{Na}$ $I_{K,DR}I_{K,A}$ I_LI_{NAP} C_{M} C_{M} $E_{\mathsf{AMPA}}|E_{\mathsf{NMDA}}|E_{\mathsf{Na}}|$ E_{K} E_{Na} Eca E. Er. E_{Cl} Eĸ **Intracellular Fluid 'Natural' problem Inverse problem** given conductances given spikes solve PDE for cell spiking infere conductances (aka action potential) 50 50 stim0 ampl, 2org -50 -100 $-$ stim0 -100 0 2000 4000 6000 8000 100001200014000 2000 4000 6000 8000 100001200014000 Ω time bins time bins

Cell morphology modeled by **lumped circuit representation**

ampl,2org

Neuron-inverter ML approach

Inferring the mechanisms of neuronal input-output functions

ML Input: Neuron simulated spikes measured at multiple location as 1D time-series

ML objective: regression INPUT shape (N,1600,4) float OUTPUT shape (N,15) float Loss: MSF

ML model: CNN+FC, 2M params N=500k training samples

Simulated data \rightarrow ground truth is known

Output: Electrical properties (conductances) determined for different compartments of neuron

Neuron-inverter ML benchmark

● **Datase**t:

- simulated spikes (as time series) measured for random conductances
- 7M training and 700k validations samples
- ML-model: 3M trainable parameters, PyTorch implementation
	- ML-layers: 3 convolutional, 1 batch normalization, 5 fully connected
	- regression loss: MSE
	- optimizer: AdamW
- Training schedule: **fixed** training data, same number of epochs
	- training data distributed in CPUs RAM to avoid any disc-CPU IO cost
	- **constant** local batch size when scaling number of accelerators
	- val-loss used to reduce LR on plateau
		- for GC pseudo-validation loss used instead to avoid graph switching cost
		- true val-loss computed once at the end the whole training (not included in the time-budget)
- Benchmark criteria: end-loss, training time, used energy

4

Systems architecture

Convergence of **one**-accelerator training

Convergence of **128**-accelerators training

End-loss scaling

Weak scaling

Power consumption profiles

NERSC worker node

Graphcore POD-16

16 accelerators straining

Energy per training usage scaling

Conclusions

- ML is being applied into variety of research projects
	- finding optimal HW is a research topic by itself
- The inversion of PDE has no analytical solution but ML can find the inverse multivalued function
- Neuron-inverter derived from a real neuroscience research project was used as ML benchmark
- The criteria of benchmark were:
	- quality of solution, time to solution, energy consumed until solution was found
- ML benchmark executed on 1 256 accelerators from Nvidia (A100) and Graphcore (IPU)
- Results, consisten for any number of accelerators up to 256
	- end-loss achieved on A100s and IPUs were the same within 10-20%
	- total training time was the same within 15%
	- Graphcore chips needed 2.5x less power and used 2x less energy to deliver the above results

