

Time-series ML-regression on Graphcore IPU-M2000 and Nvidia A100

J.Balewski¹, Z. Liu², A.Tsyplikhin², M. L. Roland², K. Bouchard^{3,4,5}

NERSC¹, SD³ and BSE⁴ Divisions, Lawrence Berkeley National Laboratory Graphcore², Palo Alto, CA Redwood Center for Theoretical Neuroscience⁵, UC Berkeley

Neuron-inverter problem

Cell morphology modeled by lumped circuit representation

ML-regression on Graphcore IPU-M2000 and Nvidia A100

50

-50

-100

ampl,2org

Neuron-inverter ML approach

Inferring the mechanisms of neuronal input-output functions

ML Input: Neuron simulated spikes measured at multiple location as 1D time-series

ML objective: regression INPUT shape (N,1600,4) float OUTPUT shape (N,15) float Loss: MSE

ML model: CNN+FC, 2M params N=500k training samples

Simulated data \rightarrow ground truth is known

Output: Electrical properties (conductances) determined for different compartments of neuron

Neuron-inverter ML benchmark

• Dataset:

- simulated spikes (as time series) measured for random conductances
- 7M training and 700k validations samples
- ML-model : 3M trainable parameters, PyTorch implementation
 - ML-layers: 3 convolutional, 1 batch normalization, 5 fully connected
 - regression loss: MSE
 - optimizer: AdamW
- Training schedule: **fixed** training data, same number of epochs
 - training data distributed in CPUs RAM to avoid any disc-CPU IO cost
 - **constant** local batch size when scaling number of accelerators
 - val-loss used to reduce LR on plateau
 - for GC pseudo-validation loss used instead to avoid graph switching cost
 - true val-loss computed once at the end the whole training (not included in the time-budget)
- Benchmark criteria: end-loss, training time, used energy

Systems architecture

Convergence of one-accelerator training

Convergence of 128-accelerators training

End-loss scaling

Weak scaling

Power consumption profiles

NERSC worker node

NVIDIA.

Graphcore POD-16

16 accelerators straining

Energy per training usage scaling

Conclusions

- ML is being applied into variety of research projects
 - finding optimal HW is a research topic by itself
- The inversion of PDE has no analytical solution but ML can find the inverse multivalued function
- Neuron-inverter derived from a real neuroscience research project was used as ML benchmark
- The criteria of benchmark were:
 - quality of solution, time to solution, energy consumed until solution was found
- ML benchmark executed on 1 256 accelerators from Nvidia (A100) and Graphcore (IPU)
- Results, consisten for any number of accelerators up to 256
 - end-loss achieved on A100s and IPUs were the same within 10-20%
 - total training time was the same within 15%
 - Graphcore chips needed 2.5x less power and used 2x less energy to deliver the above results

