
WfBench: Automated Generation of
Scientific Workflow Benchmarks

Tainã Coleman1

Henri Casanova2

Ketan Maheshwari3
Loïc Pottier1

Sean R. Wilkinson3

Justin Wozniak4

Frédéric Suter3

Mallikarjun Shankar3

Rafael Ferreira da Silva1,3

1 USC Information Sciences Institute, 2 University of Hawai’i at Mãnoa, 3 Oak Ridge National Laboratory, 4 Argonne National Laboratory

WfCommons

2

https://wfcommons.org

WfCommons is a framework
that provides a collection of
tools for analyzing workflow
execution traces, producing
realistic synthetic workflow
traces, and benchmarking /
simulating workflow
executions.

Scientific Workflows

Task

Dependency

A task represents a computation
with inputs and outputs (often a
program or script)

Dependencies typically represent data
flow but also conditions, exceptions,
user triggered action, etc.

DAGdirected acyclic graph

Example of Workflows-Enabled Research

Example of Workflows-Enabled Research

Motivation

Workflows are becoming more complex and require
more sophisticated management capabilities

Workflows can now have millions of tasks and analyze
terabyte-scale datasets that can take milliseconds to hours on

distributed heterogeneous systems.

Large variety of WMS were created to accommodate these feature
demands and to meet the specific needs of a domain

The few existing benchmarks for workflows detect some but not all
of the important features of production workflows

● Same amount of compute work
● #tasks: 500, 5000
● Data: 1, 50, 100GB
● CPU-bound, memory-bound, balanced
● Ratio: Skylake/Cascadelake

Results differ
significantly across
configurations

Very difficult to
explain or predict,
workflow (relative)
makespans based
on platform and
configuration

WfBench

Representative task benchmarks

Representative workflow
benchmarks with multiple tasks

Representative workflow task benchmark
● Read input
● Compute

○ Inputs:
■ cpuwork
■ memwork
■ n cores
■ non-mem computation (f)

○ CPU-intensive: Calculates π up to
cpuwork

○ Mem-intensive: Access random positions
in array adding one unit to it up until
memwork

● Write output

 Validation

Is it possible to configure our workflow task benchmark so that its performance
behavior is similar to that of each of these real workflow tasks?

● Automatic generator of realistic synthetic
workflow instances

● Inputs
○ Set of real world workflow instances
○ Desired instance size (number of

tasks)
● Analyzes the instances
● Records common patterns
● Creates a recipe
● Replicate patterns

Representative Workflow Benchmark

WfChef

Representative Workflow Benchmark

● Input:
○ Desired # tasks
○ WfChef workflow recipe

● Generation:
○ Uses the recipe to generate task

graph
○ For each task user can specify:

■ (n, cpuwork, memwork, f)
■ Data volume/task or total data

footprint
● Output:

○ JSON object that fully describes
workflow

● JSON + Tasks benchmarks = Workflow
Benchmark

Experimental Evaluation - Set up

● 40 instances:
○ 1k, 10k, 50k and 100k tasks
○ Total data footprint: 100GB, 1TB

● Run on ORNL’s Summit
○ Swift/T workflow system
○ 40 CPU cores per compute node
○ Total # nodes = (0.1 × #tasks)/40
○ All tasks:

■ cpuwork = 500
■ memwork = 0

Experimental Evaluation

Workflow throughput
(#tasks/sec)

↑ data footprint ↓ throughput

↑ #tasks ↑ throughput

Experimental Evaluation

Average write throughput
(MB/s) - overlapping area
chart

Dashed lines are the
#concurrent running tasks

Blast vs Epigenomics

↑ #tasks ↓throughput

Causes:
- Small files
- 2x number of files

Benchmark Usefulness

Single macro-task-no-overlap

Per-level

Models

Montage 1TB data footprint

Single macro-task-overlap

Next Steps

Support workflows that tasks are MPI-based parallel program

Support GPU workflow task benchmark

Extend WfBench to benchmarks that perform in-situ executions

THANK YOU

Tainã Coleman
tgcolema@usc.edu

https://tainacoleman.com/
https://wfcommons.org/

mailto:tgcolema@usc.edu
https://tainacoleman.com/
https://wfcommons.org/

