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Goal & Motivations
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• New benchmark is designed to

• capture typical performance of “real” applications

• allow the use of mixed precision arithmetic

• Some current & emerging HP computers provide 
higher performance for lower precision arithmetic

• Some emerging accelerators may not support double precision

• Lower precision reduces the data transfer volume and 
may improve application performance

• Application performance is often limited by communication
(latency or bandwidth)

GPU Peak Performance (Tflop/s)

System GPU FP64 FP32 FP16

Frontier (ORNL) AMD MI250X 26.5 26.5 191.0

Fugaku (Riken) Fujitsu A64 FX 3.4 6.7 13.5

Summit (ORNL) NVIDIA  V100 7.5 19.5 N/A

Perlmutter (NERSC) NVIIDIA A100 9.7 19.5 312.0

Sierra (LLNL) AMD MI100 11.5 23.1 184.0

Selena (NVIDIA) AMD MI250X 26.5 26.5 191.0



Goal & Motivations
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• Growing interests in utilizing lower-precision for “real” applications

• ECP xSDK multi-precision project funded by US DOE

• New benchmark could have wide impacts

• Capture the computers capabilities for applications 
by allowing mixed-precision operations

• Algorithmic & software efforts to utilize lower-precision

• Motivate hardware vendors to design future HP computers 
that can obtain high application performance,  
with mixed-precision arithmetic

GPU Peak Performance (Tflop/s)

System GPU FP64 FP32 FP16

Frontier (ORNL) AMD MI250X 26.5 26.5 191.0

Fugaku (Riken) Fujitsu A64 FX 3.4 6.7 13.5

Summit (ORNL) NVIDIA  V100 7.5 19.5 N/A

Perlmutter (NERSC) NVIIDIA A100 9.7 19.5 312.0

Sierra (LLNL) AMD MI100 11.5 23.1 184.0

Selena (NVIDIA) AMD MI250X 26.5 26.5 191.0



Related HP Benchmark 1/3 : High Performance Linpack (HPL)

Dense Problem
Compute Intensive

Sparse Problem
Compute/Comm pattern in 

“Real” Appls

Uniform Precision HPL HPCG

Mixed Precision HPL-AL
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• HPL measures performance of solving dense linear system in 
double precision

• It is based on exact dense LU factorization

• Its performance is dominated by dense matrix-matrix multiply, 
with a proper implementation.

• Its performance is close to the peak double-precision compute
performance of the target machine.

• It is used to rank HP computers for Top500 list, 
providing historical data

Image source : top500.org



Related HP Benchmark 2/3 : High Performance Conjugate Gradient (HPCG)

Dense Problem
Compute Intensive

Sparse Problem
Compute/Comm pattern in 

“Real” Appls

Uniform Precision HPL HPCG

Mixed Precision HPL-AL
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• HPCG is designed to reflect the application performance

• It solves a sparse linear system using CG with GMG 
preconditioner (GS smoother).

• Composed of computation & communication tasks
common in real applications

• Its performance is more limited by communication
latency or bandwidth.

• It is meant to motivate the future HP computers 
that can achieve high application performance

Data source : top500.org (Nov, 2021)

HPCG
Rank

HPL
Rank System

HPCG
(Pflop/s)

HPL
(Pflop/s)

1 1 Fugaku (Riken) 16.0 442.0

2 2 Summit (ORNL) 2.9 148.6

3 5 Perlmutter (NERSC) 1.9 70.8

4 3 Sierra (LLNL) 1.8 94.6

5 6 Selena (NVIDIA) 1.6 63.5



Related HP Benchmark 3/3 : HPL - Accelerator Introspection (HPL-AI)

Dense Problem
Compute Intensive

Sparse Problem
Compute/Comm pattern in 

“Real” Appls

Uniform Precision HPL HPCG

Mixed Precision HPL-AL
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• HPL-AI solves the same dense linear system as HPL, 
but allows the use of lower-precision

• It uses lower-precision for the compute-intensive LU 
factorization, which dominated the benchmark time.

• Iterative refinement is used to obtain the solution with 
double precision accuracy.

• It achieves much higher performance than HPL on machines 
that provide lower-precision arithmetic at higher performance

• It measures the computer’s capability to perform 
compute intensive tasks

Data source : top500.org (Nov, 2021)

HPCG
Rank

HPL
Rank System

HPL-AI
(Pflop/s)

HPL
(Pflop/s)

1 1 Fugaku (Riken) 2.00 0.44

2 2 Summit (ORNL) 1.41 0.15

3 6 Selena (NVIDIA) 0.63 0.06

3 5 Perlmutter (NERSC) 0.59 0.07

5 8 Juwels BM (FZJ) 0.47 0.04



New HP Benchmark : HP GMRES mixed-precision (HPGMP)

Dense Problem
Compute Intensive

Sparse Problem
Compute/Comm pattern in 

“Real” Appls

Uniform Precision HPL HPCG

Mixed Precision HPL-AL HPGMP
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• The new benchmark

• performs computation & communication common
in real applications

• allows lower-precision

• Iterative refinement for solving a sparse linear system

• Lower-precision may be used to compute the correction

• Sparse iterative solver, which typically dominates benchmark time

• Double-precision is used to update the solution and to compute 
the new residual vector

• We think this new benchmark could have wide impacts

Initialization for solving Ax = b:
x = 0 and r = b - Ax
While not converged
1. Approximately solve

(potentially in mixed lower precision)
Ae = r

for correction e ≈ A-1r
2. Update approximate solution

(in double precision)
x = x + e and r = b - Ax

Majority of time 
spent in 1.



Mixed-precision GMRES – Iterative Refinement
for solving sparse non-symmetric linear system

• Generalized Minimum Residual (GMRES)

• A popular Krylov method for solving a non-symmetric system

• It computes an approximate solution minimizes the residual norm 
in the computed Krylov projection subspace

• Mixed-precision variant 

• is also a well-established algorithm

• Growing interests, with lots of numerical theories 
and performance studies, in recent years
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1) P. Amestoy, A. Bu0ari, N. Higham, J. L’Excellent, T. Mary, and B. Vieuble. Five-precision GMRES- based 
iteraLve refinement. 2021. 
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mulLprecision strategies for GMRES on gpus. In 2021 IEEE InternaLonal Parallel and Distributed 
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7) K. Turner and H. Walker. Efficient high accuracy solu;ons with GMRES(m). SIAM J. Sci. Stat. Comput., 
13(3):815–825, 1992.

8) Etc. etc.

Also, mixed-precigion MG:

1) S. McCormick, J. Benzaken, and R. Tamstorf. Algebraic error analysis for mixed-precision mulLgrid 
solvers. SIAM J. Sci. Comp., 43(5):S392–S419, 2021. 



HPGMP: Problem description
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• Regular 3D grid with 27-points stencil

• Same as in HPCG

• Parameterized for non-symmetric numerical values

• Represents finite difference discretization of an advection-diffusion problem

• Right-hand-side vector b = A*ones, and initial approximate solution x=zeros.

• MPI processes are arranged into a 3D process grid (px, py, pz)

• Participant specifies the dimension of the local subdomain (nx, ny, nz) on each MPI

• the global matrix size is (nxpx, nypy, nzpz)

refinement

-1+ 𝜷

-1- 𝜷



HPGMP: Main task 1/3
for GMRES, potentially in lower precision
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1. Sparse Matrix Vector Multiply (SpMV)

• Point-to-point neighborhood communication (halo exchange)

• Exchange 1, nx, or nx2 elements with 7 ~ 26 neighbors

• Local SpMV with 27-pts stencil

• 54nm Flops / restart

Same components as HPCG, 
except for CGS2

Irregular access to input vector entries,
but update output vector entries in parallel
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2. Orthogonalization based on Classical Gram Schmidt with 
reorthogonalization (CGS2) based on 

• Blas-2 matrix-vector multiply (GEMV)

• dot-product, local atomic multiply-add, followed by global reduce

• Total of 2n(1+m)m Flops / Restart

• vector update, embarrassingly parallel

• Total of 2n(1+m)m Flops / Restart

• Blas-1 vector operation

• Vector norm & Vector scale

Same components as HPCG, 
except for CGS2

Local atomic/global reduce

Parallel vector update
803 rows

1 ~ 30 cols

HPGMP: Main task 2/3
for GMRES, potentially in lower precision
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3. Geometric Multi Grid (GMG)

• One forward-sweep of Gauss-Seidel (GS) as 
pre & post smoother

• Halo-exchange, Local SpTRSV

• Total of 2*(54*73)/64 nm Flops / Restart 

• Residual vector computation

• Halo-exchange, Local SpMV

• Total of 2*(54*73)/64 nm Flops / Restart 

• Restriction & Prolongation operators

• No communication, Local SpMV with a rectangular 
matrix, 
e.g., one nonzero per row

• One forward sweep of GS at the final coarse level.

• Halo-exchange, Local SpTRSV

• Total 81 / 512 nm Flops / Restart

Same components as HPCG, 
except for CGS2

Level-set scheduling
(with coloring) needed

HPGMP: Main task 3/3
for GMRES, potentially in lower precision



HPGMP: Other tasks
for iterative refinement
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• A small least-square problem needs to be solved 
(31-by-30 on CPU, redundantly by all MPIs)

• Approximate solution needs to be updated in double precision (BLAS-1 AXPY)

• New residual vector needs to be also computed in double precision (SpMV)



HPGMP: Main tasks
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1. Sparse Matrix Vector Multiply (SpMV)

• Point-to-point neighborhood communication (halo exchange)

• Exchange 1, nx, or nx
2 elements with 7 ~ 26 neighbors

• Local SpMV with 27-pts stencil

• 54nm Flops / restart

2. Orthogonalization based on Classical Gram Schmidt with 
reorthogonalization (CGS2)

• Blas-2 dense vector dot-product, local atomic and global reduce

• Total of 2n(1+m)m Flops / Restart

• Blas-2 vector update, embarrassingly parallel

• Total of 2n(1+m)m Flops / Restart

3. Geometric Multi Grid (GMG)

• One forward-sweep of Gauss-Seidel (GS) as 
pre & post smoother

• Halo-exchange, Local SpTRSV

• Total of 2*(54*73)/64 nm Flops / Restart 

• Residual vector computation

• Halo-exchange, Local SpMV

• Total of 2*(54*73)/64 nm Flops / Restart 

• Restriction & Prolongation operators

• No communication, Local SpMV with a 
rectangular matrix, 
e.g., one nonzero per row

• One forward sweep of GS at the final 
coarse level.

• Halo-exchange, Local SpTRSV

• Total 81 / 512 nm Flops / Restart

Mixture of sparse and dense operations,
commonly found in real applications
• With m = 30, about same number of flops for GMG and CGS2



Q1 : How much flexibility to allow in term of precision?
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• Current benchmark specification allows any precision for the GMRES 
iteration.

• The benchmark is not meant to be a robust or scalable solver.

• It is designed to capture application performance

• Iteration count increases with MPI count

• It may converge slower, or faster, using lower precision 

• We need verification and validation!!

• The solver should achieve the double precision accuracy

• If the solver requires more iterations, then the benchmark results should 
be appropriately penalized

solid     = Fp64
dotted = Fp64+Fp32

More iterations with more MPIs 



HPGMP benchmark : two steps
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• The benchmark is designed

• To allow the use of mixed-precision

• To penalize if the lower-precision results in the loss 
of accuracy (convergence rate

• Note: we cannot run to double precision accuracy 
for the large benchmark runs (iteration count 
increases with # of MPIs)

1. Verification step:

• Run both reference & optimized solver

• Using a fixed problem size on a fixed # of MPI processes

• To reach double-precision accuracy

• Record # of iteration needed by both

• Failure if optimized code did not converge

• Compute penalty factor
ip = min(1.0, # of optimized iterations / # of reference iteration)

2. Benchmark step:

• Run optimized solver for a fixed number of iterations

• Using user-specified problem size and # of MPI processes

• Until reaching a minimum # of solves or time

• Compute benchmark Gflop/s

• Ip x (# of Gflops / Optimized benchmark time)



HPGMP reference implementation
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• The reference implementaYon (solver & benchmark suite) is available

• hbps://github.com/iyamazaki/hpcg

• It is meant to be opdmized by pardcipants

• It reuses many of HPCG components

• It is based on C++ template

• To make it easier to use various precision

• It also provides CUDA/HIP backends

• It uses GPUs to generate basis vectors, 
while the dny least square problem is solved redundantly on each CPU.

• It uses MPI for data exchange, while solely rely on vendor libraries for the GPU computadon

• CuBLAS for CGS2, CuSparse SpMV & SpTRSV for GS and restricfon/prolongafon, and 
CUDA library for memory management

• No custom CUDA/HIP code

• MPI message communicafon is through CPUs

• If the vector needs to be casted, then it is done on a CPU

https://github.com/iyamazaki/hpcg


HPGMP: Allowed optimizations
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• Hardware specific optimization are allowed

• Data structures, communication schemes, etc.

• Matrix may be permuted for GS smoother to expose parallelism

• If the permutation increases the iteration count, benchmark performance is penalized (validation step)

• Algorithm changes are not allowed

• s-step (communication-avoiding), pipelined, or randomized variant of GMRES

• Low-synchronous/single-reduce orthogonalization

• Iterative-variant of GS smoother

• Knowledge of matrix structure cannot be used

• The matrix should be treated as a general matrix for SpMV

• Any precision(s) may be used for the sparse solver

• Need to pass the verification, and will be penalized on any increase in iteration count

• Matrix scaling is not allowed

• The matrix may not be scaled to fit in the numerical range of lower precision

• It can be used to improve the conditioning of the matrix

Similar to HPCG



Performance studies of reference implementation : Experimental setups
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• OLCF machines

• Summit 

• Each node with 2×22-core Power9 CPUs and six NVIDIA V100 GPUs

• Spock

• Each node with 1×64-core AMD EPYC 7662 CPU and four AMD MI100 GPUs

• Crusher

• Each node with 1×64-core AMD EPYC 7A53 CPU and four AMD MI250X GPUs

• Weak-scaling

• a fixed problem size per MPI (one MPI / CPU core or GPU)

• Using single-precision for GMRES iterations

• 1.6x reduction in sparse matrix storage 

• Performance of the reference implementation

• Meant to motivate interests

Some of the parameter values are 
selected for convenience.



Performance of reference implementation on Summit 
IBM Power9 CPUs + NVIDIA V100 GPUs
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• Speedup of 1.2x using a non-optimized reference

• Most of the solver time is spent in SpTRSV

• It has limited parallelism, and
its performance may be more dominated by latency 

• it is harder to get speedup using lower precision

• Reference implementation uses CuSparse SpMV &
SpTRSV (no coloring)

Time in seconds with GPUs TFlop/s with GPUs

GMG SpMV CGS2 Total GMG SpMV CGS2 Total

Uniform 51.5 3.8 2.5 60.2 0.30 1.20 4.13 0.50

Mixed 44.5 2.4 1.8 50.1 0.35 1.87 5.73 0.61

Speedup 1.16 1.56 1.39 1.20 1.15 1.56 1.39 1.20

Performance on 8 Summit nodes with GPUs
(about same total # of flops for GMG or CGS2)



Performance of reference implementation on Spock & Crusher
AMD EPYC CPUs + AMD MI100/250X GPUs
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• ..

• Speedups, similar to those on Summit

• AMD MI250X GPUs on Crusher have same peak performance using double and single

Spock Crusher



Potential of 16-bit float precisions
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• Current specification allows any precisions

• Though, reference implementation is templated with 
two precision

• As long as it passes verifications

• May be penalized for the increased number of iterations

• GMRES may converge, using FP16 for majority of 
iterations

• Need careful accumulation for dot-products, e.g.,
into single precision

• Under investigation !!

Numerical studies using plain Kokkos-Kernel GMRES
on NERSC Perlmutter (NVIDIA A100 GPU)



Final remarks
• Proposing a new benchmarks

• Captures the performance of applications

• Allows the use of mixed lower precision arithmetic

• Reference implementation is publicly available

• Running on other current HP computers, and beyond, at larger-scale

• Working on Kokkos/Kokkos-Kernels backend, for numerical & performance tests
(some results in the paper) 

• More discussions

• Validation 

• Choice of smoothers

• Speedup compared to HPCG

• Etc.

Open for feedbacks & collaborations !!
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HPGMP: Algorithm description
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• Generalized Minimum Residual (GMRES)

• A popular Krylov method to solve a non-symmetric linear system

• Each iteration performs SpMV, and then orthogonalize

• Approximate solution minimizes the residual norm 
in the computed Krylov projection subspace, span(r, Ar, A2r, …, Amr)

• Classical Gram Schmidt with reorthogonalization (CGS2)

• Orthogonalization, mostly BLAS2 dense operations
but with three global reduces

• Geometric Multi Grid to accelerate the convergence

• Restriction operator halves the number of point in each direction

• 8x smaller coarse space, three levels of coarsening

• One forward-sweep of Gauss-Seidel (GS) smoother on each level

• Local sparse-triangular solve (SpTRSV) 

• One forward sweep of GS is used at the final coarse level.

Refinement in double precision

GMRES in lower precision

Same components as HPCG, 
except for CGS2


