DoNal.D: a line-drawing system
based on definitive principles

Meurig Beynon
David Angier
Tim Bissell
Steve Hunt

Department of Computer Science
University of Warwick
COVENTRY CV4 7AL

ABSTRACT

The DoNaLD line-drawing system has been designed to illustrate how a
generalised spreadsheet (or "definitive notation") can provide a simple me-
dium for interactive graphics. Novel features of DoNaLD are: the use of
variables based upon the recursive specification of a line-drawing as a union
of points, lines and subdrawings, and a complementary user interface based
upon windows of definitions.

A definitive notation for line drawing

Meurig Beynon,

Dept of Computer Science,
University of Warwick,
Coventry CV4 7AL

ABSTRACT

The merits of "definitive" (definition-based) notations for interaction were first set out
by the author in [1]. Further development of the ideas, and solutions to the technical
problems in dealing with complex data types considered in [1], are discussed with par-
ticular reference to the design of DoNaLD: a Definitive Notation for Line Drawing.
Features of DoNaLD are: the use of a recursive data type shape to represent line draw-
ings, and an unusual user interface based upon a hierarchy of "context windows" for
describing line drawings at different levels of abstraction.

Background

The notion of using definitive (definition-based) notations for interaction was first
described in [1]. The essential principle in developing such a notation is to devise an "un-
derlying algebra" of data types and operators which reflects the universe of discourse,
and to introduce appropriate variables to represent values in the underlying algebra, ei-
ther explicitly or implicitly through a defining formula. In such a system, a program - or
dialogue - essentially consists of a sequence of variable definitions and evaluations. Per-
haps the simplest example of such a notation is obtained by choosing the underlying al-
gebra to be traditional arithmetic, when the dialogue resembles the use of a spreadsheet,

stripped of its tabular interface.

As explained in [1], definitive notations appear to be very well-suited for dialogue.
They make it possible to represent the state of a dialogue effectively, since the combina-
tion of implicit and explicit definitions allows both persistent relationships, and transient
values, to be recorded. An important feature of a dialogue over a definitive notation is
that all the information needed to determine the current state of the dialogue is automat-

ically stored, and can be recovered by interrogating the variables to obtain their current

definitions.

The focus in [1] was upon describing the advantages which the development of
"generalised spreadsheets" might offer in interactive applications. The illustrations in the
paper were based upon the definitive notation ARCA, for the display and manipulation
of combinatorial graphs. In this paper, which is complementary to [1], some of the devel-
opments arising from subsequent research into definitive programming principles are il-
lustrated with particular reference to another example of a definitive notation for
interactive graphics - DoNaLLD: a Definitive Notation for Line Drawings. The contrasting
characteristics of ARCA and DoNaLD reflect quite different abstractions of geometric
structure: for instance, the edge of a combinatorial graph is viewed in ARCA as "defined
by a pair of vertex indices", and in DoNaLD as "the line segment between two geometric
points". In effect, the DoNaLD notation gives a less abstract representation for a planar
diagram, and is aimed at less specialised graphical applications than ARCA. Two other
features of this work of especial interest are: the development, both in ARCA and
DoNaLD, of more satisfactory solutions to the problems of dealing with complex data
types in the underlying algebra (cf [1]), and the novel user-interface for DoNaLD, which

is based upon sets of definitions within "context windows".

The author is much indebted to several students who graduated from the University

of Warwick in 1986 for their assistance: David Angier, Tim Bissell and Steve Hunt, for

contributions to the design of DoNaLLD, and Kevin Murray for complementary work on

ARCA.

DoNaLD: basic principles

The DoNaLD notation (a "Definitive Notation for Line Drawings") is intended for

the interactive display and manipulation of planar diagrams comprising points and lines.
As a definitive notation, it is based upon an underlying algebra comprising five data
types: integers, reals, points, lines and shapes, and a variety of simple geometric oper-
ators. In contrast with ARCA, a definitive notation for describing combinatorial graphs
used for illustrative purposes in [1], the data types in DoNaLD represent geometric data
in a concrete fashion. Scalar values are represented by integer or real variables, points
in the plane by point variables, directed line segments (that is, lines defined by an appro-
priate pair of endpoints) by line variables, and line drawings comprising a multiset of
points and lines, together with a set of real and integer attributes by shape variables.
Following the usual pattern, a DoNaLD dialogue then consists of a sequence of declara-
tions of variables, definitions of variables of the form:

variable = formula
specifications of user-defined operators, and evaluations of variables. For this purpose,
realising the line drawing represented by a shape variable is viewed as a special kind of

evaluation.

The full details of the operators in the underlying algebra appear in [2]. In brief,
there are standard arithmetic operators, vector operators acting upon points viewed as 2-
dimensional vectors, and a variety of operators on points and lines. The latter include
constructors to synthesise a point in the plane from its component coordinates, and a line
segment from its endpoints, and selectors to extract coordinates from points and end-
points from lines in the usual fashion. There are also geometric operators for rotating and
scaling shapes, and an operator for combining two or more shapes. Explicitly, if X1, X2,
..., XN are shapes, their union is denoted by

X1 +X2+...+XN.

It comprises the multiset union of the sets of points in X1,...,XN, and the multiset union

of the sets of lines, together with the union of the sets of attribute values.

The underlying algebra also incorporates an arithmetic "if ... then ... else ..." oper-
ator, which can be used to define the value of a variable so that it depends upon a predi-
cate. This is useful for instance when the size of the drawing represented by a shape
variable falls below a critical value, and some simplification is required for purposes of

display.

It is convenient for the user to be able to define non-standard operators, and a
means of extending the underlying algebra is provided. It should be noted that, when
specifying such an operator, an appropriate programming paradigm for defining a func-
tion is required, rather than a medium for dialogue. Ideally, a functional programming
language might be used for this purpose, but this would require a major extension of
DoNaLD in respect of both design and implementation. In the current design, a simple
procedural programming notation is employed for the definition of new operators. This
takes the traditional form, comprising procedural variables to represent explicit real, in-
teger, point, line and shape values, together with a for-loop, and a simple alternative (if

...then { ...} else {... }) construct.

In the design of DoNaLD, the medium used for dialogue is deliberately separated
from that used to specify new operators, and there is no provision for the declaration of
procedural variables, or the use of the for-loop and alternative constructs outside the
body of a user-defined operator. The syntax used to specify user-defined operators is in
any case of peripheral relevance; what is of primary importance is that such operators

should be pure functions. (For more details, see [2].)

DoNaLD includes typed variables of several different kinds. These comprise inte-

ger, real, point and line variables, and two kinds of shape variables (to be described be-

low), together with indexed variables defining arrays of variables of each sort. An
indexed variable v with type T and dimension N represents an array of variables
v[1],...,v[N] of type T. Each component of an indexed variable can appear as an /-value
provided that it is referenced using an explicit index, so that a valid /-value associated
with v must be of the form " v[E] ", where E is an integer expression containing no un-

evaluated variables defining an index in the range 1 to N.

The problems associated with the complex data types vertex and colour which
arise in ARCA are circumvented in DoNaLD (see [1]), since both points and lines have
but two components. However, designing the variables to be used for representing values
of the complex data type shape in DoNaLD poses similar problems to those described in
connection with ARCA diagram variables in [1]. The essential issue is the mode of ab-
straction by which a shape variable represents a line drawing: whether for instance a
shape variable S is to be defined by a single expression of type shape (eg as the union of
two other shapes) or, in a composite fashion, by defining its constituent points, lines and
scalar attributes via expressions of the appropriate type. As explained in [1], it is seman-
tically indesirable to use these two modes of definition simultaneously in connection with
the same shape variable, and the naive solution proposed in [1] is that shape variables
should be respectively declared as abstract or explicit accordingly. More effective alter-

native solutions are described below.

In DoNaLD, the design of shape variables is further complicated by the difficulties
of providing a satisfactory means of reference to constituent points and lines within a
shape, and in particular by the need to identify those expressions which can denote /-val-
ues. It is essential to be able to refer to the constituents of an abstractly defined shape
variable, for instance, but inappropriate to treat such a constituent as an /-value. It is

tempting to suppose that the points and lines asssociated with a shape value X are best

referenced by introducing selection operators of the appropriate types. However, there is
no satisfactory way of introducing such operators into the underlying algebra unless the
component points and lines in a shape value have an intrinsic means of reference asso-
ciated with their geometric values. In other words, the values in the underlying algebra
would no longer be simply "line-drawings", but labelled line drawings, and the definition
of operators acting upon shapes would be accordingly more complex. In order to avoid
complicating the semantics of shape values in this manner, syntactic mechanisms for ref-
erencing all points and lines of the shape value specified by a particular shape expression
are provided. This depends upon associating a set of valid labels with shape expressions

in a manner sketchily described below: for full details, see [2].

Dealing with complex data types

The solution to the reference problem for shapes adopted in DoNaLD is based
upon a representation of a line drawing by a shape variable resembling that of a file sys-
tem directory as a union of files and subdirectories. Such a representation corresponds to
an abstract view of a line drawing as a union of points, lines and sub-drawings. In effect,
it is based upon a recursive specification of the shape data type, viz:

shape = set of real / integer attributes + set of points + set of lines + set of shapes.
There are two kinds of variable of type shape; these are declared as "shape" and "open-
shape" variables, and are broadly analogous to "abstract" and "explicit" variables as de-
scribed in [1]. The value of a shape variable is to be defined implicitly by means of an
expression of type shape. An openshape variable, which resembles a directory, is com-
posed of constituent real, integer, point, line, shape and openshape variables, and its
value is defined componentwise by associating values with its constituent scalar at-

tributes, points, lines and subshapes.

Each variable is either declared globally, or denotes a constituent of an openshape
variable, which may itself be a variable of type shape. The value of a shape or open-
shape variable which is declared as a constituent of an openshape variable X is a sub-
shape of the value of X, comprising a subset of the set of points and lines associated with
X. The authentic variable name is that used to reference the variable from the global con-
text, and is in general specified by a sequence of openshape variable names separated by
'/"s to identify the enclosing openshape, followed by a local name to identify the appro-
priate constituent. (The syntax resembles filenames in UNIX directories.) A variable dec-
laration thus takes the form

type var_name
where type is integer, real, point, line, shape or openshape, and var_name is of the
form
context loc_var_name
where context 1s a concatenation
(loc_var_name 'I')*

in which each loc_var_name references an openshape variable, possibly indexed.

The semantics of integer, real, point and line variables is straightforward. A dec-

laration of the form
openshape S
identifies S as an explicit shape variable, which is not itself an /-value, but enables the
subsequent declaration of attributes and components of S, as in
integer S/i; point S/p, S/P[4]; line S/t; shape S/V; openshape S/Z[3].
The subshape S can then be defined componentwise according to the normal semantic
rules. In contrast, a declaration of the form
shape V

identifies V as a virtual shape variable, whose value and component structure must be

defined by means of a shape expression, and, in particular, cannot be defined compo-

nentwise.

The introduction of openshape variables helps to alleviate the problems of refer-
encing the components of line drawings, enabling components of distinct openshape
variables to have identical names. The identifiers declared within an openshape variable
V are referred to as the valid labels of V: if V is an openshape, and t is a valid label for
V, then V/t can serve both as an /- and r-value. Referring to the constituent parts of a
shape value defined by a virtual shape variable is a more vexing problem, and is solved
by recursively defining the set of valid labels for any shape expression in an appropriate
way. For instance, if p and q are valid labels in the shape expressions S and T respective-
ly, they are in general both valid labels for the union S+T, though a special convention

for disambiguation is required if p and q are identical (see [2] for details).

The hierarchical approach to the definition of shapes used in DoNaLLD provides
one solution to the problem of referencing complex data types in a definitive notation,
and may be contrasted with the solution which has been adopted in ARCA. The essential
principle used in ARCA to give maximum flexibility in defining and manipulating ver-
tex and colour expressions (representing vectors and permutations with integer compo-
nents), and diagrams (comprising lists of component colours and vertices), is to devise
an auxiliary definitive notation for declaring the mode of abstraction through which a
variable represents a value. From this perspective, the introduction of openshape vari-
ables represents an alternative mechanism for manipulating the mode of a shape variable

in the sense of [4]. For example, the sequence of mode declarations

mode D = 'abc'- diagram
mode a_D = abst col
mode b_D = col 4

10

mode c_D = mode b_D
mode D!4 = vert 2
withint:1=1..3 do
mode D! I = abst vert
od

might be used in ARCA to declare a diagram variable in which the constituent colours
b_D and c_D and the vertex D!4 were to be specified component by component, and the
remaining vertices and colours were to be specified abstractly. The effect of such a mode
declaration can be conveniently depicted diagrammatically, as in Figure 1, where the
types tagging the leaves of the tree indicate the type of the formulae to be used in defining
the value of the variable D. Figure 2 depicts the "mode" of the openshape variable S de-

fined by the sequence of DoNaLD declarations:

openshape S, S/T, S/R, S/T/X

shape S/V, S/T/W

point S/p, S/q, S/T/a, S/T/b, S/R/c, S/T/X/d
line S/1, S/m, S/T/n, S/T/X/z

using a similar convention.

Extensions to the basic syntax

The description of the DoNaLLD notation above contains all the essential concepts
underlying the practical system as envisaged. That is to say, any user action can be inter-
preted as declaring, defining or evaluating variables, or as introducing new operators into
the underlying algebra. The rudimentary notation so far introduced can be tedious to use
directly, however, and it remains to explain how to develop an effective interface to the
user. It will be convenient to describe this development in two stages, by first considering
syntactic extensions to the basic notation (essentially the addition of some simple mac-

ros), and then indicating how these can be incorporated into a window-based interface.

11

The natural first step towards a simpler interface is the introduction of an analogue
of "changing the directory" in a file system; the hierarchical view of a line drawing as
incorporating sub-drawings can then be reflected in the manner in which it is defined and

referenced.

Formally, the set of variables associated with the openshape variable V consists
of the points and lines of V, together with local scalar variables and all variables associ-
ated with subshapes of V. Definitions of the constituents of openshape variables are gov-
erned by a single scope rule: each subshape V/S of V, and all variables associated with
V/S must be defined in terms of variables associated with V. Conceptually, the actions in
a DoNaLD dialogue can be viewed as taking place in the context of a single universal
openshape variable, whose constituents are the point, line, shape and openshape vari-

ables not contained in any user specified openshape variable.

The construct used to specialise the dialogue to a particular context, and provide
for all references to variables to be interpreted relative to an openshape other than € is:
within context { }
where a general sequence of actions, possibly including further within-clauses, is speci-

fied between the braces.

Reference to the scope rules reveals a feature which causes inconvenience here: a
variable v within the openshape S (and necessarily not within any openshape subshape
of S) can be defined in terms of variables defined in the enclosing context for S, rather
than within S itself. To avoid having to leave the context of S in order to make such a
definition, each variable associated with the enclosing context for S in the expression de-
fining v can be prefixed by an escape symbol "\", to indicate that it is to be interpreted

with reference to the enclosing context for S.

12

The central virtue of the definitive programming paradigm - as explained in detail
in [1] - is that it allows the state of a suspended dialogue to be described solely in terms
of variable definitions which can subsequently be determined for resumption. A potential
disadvantage of using a definitive notation is that the process of making definitions one
at a time can be tedious, and some way of enhancing the notation to allow definitions to
be introduced more conveniently and efficiently is required. From a design perspective,
there is a problem of ensuring that any procedural variables introduced to this end are
clearly distinguished syntactically from the authentic variables in the dialogue. On the
other hand, since the state of dialogue described by a set of definitions is independent of
the manner in which those definitions are generated, relatively unsophisticated devices -
essentially simple macro facilities - are acceptable. There is also another pretext for
avoiding verbose syntactic forms: as explained below, the user input is ultimately to be

entered in dialogue boxes associated with windows of definitions.

Multiple definition is based upon a simple syntactic device:
vl,v2,....,vN =fl(al,bl,...,z1), f2(a2,b2,..., z2) ,...., f{N(aN,bN,...,zZN)
being synonymous with
vl=fl(al,bl,...,z1); v2=f2(a2,b2,..., z2) ;....; vN=fN(aN,bN,...,zZN),

subject to the semantic correctness of this sequence of definitions.

Parametrised expressions - essentially macros - can also be used to specify se-
quences of definitions. In such expressions, the parameters may represent values of type
real, int, point, line or shape, but can only be defined explicitly. A lexical convention
whereby all parameter names begin with the symbol '$' is adopted, to avoid potential con-

fusion with variable names.

13

The syntax of DoNaLD includes a method of specifying a list of expressions in an
abbreviated form; this can be used as a macro generating facility in definitions, aliases,
parameters or expressions etc as required. In the simplest non-trivial cases, such an ab-
breviation for a list is given by a range-specifier such as

over fype parl in rangel , ... , type parN in rangeN range f(parl,par2,, parN)
in which the {() is an expression in the formal parameters par/ ..., parN, and each param-
eter parl is constrained to range over the values specified by a range specifier rangel .
Explicit range expression are used as the basis of this recursive definition; these may be
explicit lists of expressions separated by commas, or can be represented indirectly by
special notations. In particular, an interval of integers can be described the form
I_expl .. 1 _exp2
where the integer expressions /_exp/ and I_exp2 represent constant values cl and c2
respectively, and cl < c2. If V is a shape expression, the lists of real, int, point, line and
shape labels associated with V are respectively denoted by
reals(V), ints(V), points(V), lines(V) and subshapes(V).

It should be noted that range expressions do not represent variables of list type, but are
simply used as an abbreviation for a list of expressions. A general range specifier then
consists of a list of range specifiers separated by commas, to be interpreted as a linear list

of expressions in the obvious fashion.

To illustrate the use of range specifiers in conjunction with multiple definition:
over int $1 in 1..7 range a[$1] =f, over int $1 in 1..3, int $2 in 1..2 range g($1,$2)
is an abbreviated - even cryptic - form denoting the sequence of definitions:
a[1]=f; a[2]=g(1,1); a[3]=g(1,2); a[4]=g(2,1); a[5]=g(2,2); a[6]=g(3,1); a[7]=g(3,2).
This example also illustrates the significance of being able to determine the effect of si-
multaneously introducing many definitions upon a dialogue without needing to consider

the way in which these definitions were generated.

14

The user interface

A typical DoNaLD dialogue includes many definitions, not all of which can be
conveniently displayed at once, reflecting different levels of abstraction in the descrip-
tion of a picture. For instance, a particular openshape variable R to describe a room lay-
out may incorporate subshapes to represent furniture within the room. These subshapes
might include an openshape variable R/C to describe a chair, and additional shape vari-
ables to represent other chairs defined on the same pattern as R/C. The user-interface for
DoNaLD is designed to reflect the way in which relationships at each level of abstraction
are captured by a set of definitions, and is based upon a family of windows associated

with openshape variables.

With each openshape variable, there is an associated context window, in which the
appropriate local definitions are displayed together with the names of any local open-
shape variables, and through which the relationships within that context can be viewed
and manipulated. The context windows are organised in a tree structure reflecting the hi-
erarchical relationships between contexts. At the highest level of abstraction, and the
root of the tree, there is a global window, in which all the declarations and definitions of
variables at the outermost level are displayed. Each openshape variable in the global
context defines a subcontext at the next level of abstraction, and its associated window is

a child of the global window.

The global window is effectively organised as a subcontext list comprising a list of
openshape variables declared within the global context, and a body consisting of the set
of current definitions of remaining variables declared within the global context, ordered

in such a way as to reflect the dependencies between variables. Note that the body may

15

include definitions of component integer, real, point or line variables of an openshape
which are externally defined. The subcontext list consists of the keyword openshape fol-
lowed by the appropriate list of openshape variable names. In the body, the format for
each variable definition is
var_type var_name | = current_defining_formula]

where the optional defining formula is omitted for variables which have been declared
but not yet defined. In this context, the var_type is int, real, point, line or shape. The
ordering of definitions within the body is such that the definition of a variable always fol-
lows the definitions of those variables upon which its value depends, and the initial seg-
ment of the body comprises variables which have been declared but not yet defined,
followed by variables whose values are defined explicitly. For example, a global window

display might take the form:

openshape AB CD
point p

line |

shape E

inti=3

point O = {0,0}

real x =14 *1

point q = {i,k}

line r = [rot (p, q, x), O]
shape S = A+B

shape T =rot (S, O, x+1)

For each openshape context there is a context window which is organised in a similar
fashion, so that the entire set of context windows forms a tree. As mentioned above, in
any definition, a reference to an external variable - necessarily a variable which is de-
clared within the enclosing context - is preceded by a '\'. For instance, the context window

for the subshape A above might include an integer attribute y defined as " y =\i-1".

16

At any given stage in a DoNaLD dialogue, a number of windows can be open, but
only one window is currently active. In general this is the window associated with the
current context. In effect, all declarations and definitions made whilst a particular context
window is active are interpreted as being in the scope of a within current_context clause.
Each context window has a header to specify the openshape variable name relative to the
universal context, and a footer comprising a set of "buttons" which are used for interro-
gation of variables or to change the current context, together with a dialogue box in which

new declarations and definitions can be entered.

Declaration, definition and evaluation

A typical action in specifying a DoNaLD line drawing is the entry of a declaration
or definition of a simple variable within a context via the dialogue box. The effect of such
an action will be to modify the associated context window, either by introducing a new
identifier into the openshape list, or by declaring a new variable, or by altering or aug-
menting the current set of definitions. The actions which can be specified in the dialogue
box of a particular context are confined to declarations and definitions valid within that

context, but may include multiple actions specified by means of the range construct.

The buttons in a particular context are used for all forms of interrogation of local
variables , and for context switching. These are identified by the keywords:
dep eval draw open close
and are generally to be used in conjunction with an appropriately selected identifier from

the context window.

The dep(endency) button is used to display the set of definitions upon which the

17

value of a int, real, point, line or shape (but not openshape) variable currently depends.
It should be noted that the defining formula of a variable V in general includes operands
whose definitions are not within the current context, such as S/a or S/T/p, where S is a
shape or openshape variable. If S is a shape variable, these operands can be interpreted
with reference to the current definition of S, which belongs to the dependency list of V.
If S is an openshape variable, its value is not defined by a single formula, and cannot
conveniently be displayed alongside the other definitions of variables upon which the
value of V depends. To overcome this problem, the names of the openshape variables
upon which V depends are displayed, together with the complete definitions of all vari-
ables on the dependency list for V in the current context. This can be implemented simply
by highlighting the relevant definitions and openshape names in the current context win-
dow, or creating a temporary (read-only) window, similar in format to a context window,

to display this information.

For an openshape variable, the function of the dependency button is served by the
open button. The effect of this button is to change the current context to that of the se-
lected openshape variable, and the current window changes accordingly. When a sub-
context is entered in this way, the window associated with the original context remains
open, but the context window for the appropriate subshape is opened, and is currently ac-
tive. In this way, the set of context windows which is open at any stage defines a prefix
of the tree of context windows. At any given stage in a dialogue, any open context win-
dow can be selected as the active window. The close button is used to close the window;
the effect is to remove this window, together with any of its descendants in the context

window tree, from the display, and to make the parent context window active.

The eval(uation) button is used to display the current values associated with vari-

ables. The effect of evaluation is to create an image of the current context window which

18

corresponds to replacing every formal definition by an explicit one. The virtual context
window thus created resembles a context window in that it includes a subcontext list and
a body. The body is the result of transforming the definitions of all int, real, point and
line variables in the active context window by replacing the defining formula on each
RHS by its evaluation (denoted by @ if this is undefined), and the subcontext list is the
result of replacing the list of openshape variable names by the list of all shape variable
names in the current context. The virtual context window is read-only, and has no dia-
logue box. It has two buttons: open and close; these can be used to display the explicit
values of the shape variables as if the virtual context window had been defined explicitly,
and all subshapes within the context were defined by openshape variables. The names
for components of the openshape image of a shape variable are determined by its valid
labels. In this way - at the discretion of the user - evaluation can create a tree of virtual
context windows which is rooted on the virtual context window created by the initial
evaluation. Whilst the user is inspecting the evaluation, only the virtual context windows
within this tree can be active; the evaluation then terminates when the user closes the vir-
tual context window at the root of the tree. At this point, the state of the dialogue is as it

was when evaluation was invoked.

Some method of inspecting and modifying the definitions of user-defined opera-
tors 1s also required: for consistency, this could be implemented by providing a window
in which the names of user-defined functions were displayed, together with a button for

opening an operator definition for editing.

For point, line and shape variables within the active context, the draw button pro-
vides an alternative method of returning a value, viz by display in a graphics window
which is conceptually open throughout the dialogue, and is a read-only screen. By de-

fault, the screen is cleared prior to each draw request, but it is possible to select a set of

19

point, line and shape variables for simultaneous display.

Further directions

The design of DoNaLD as described above is currently being used as the basis for

an implementation, and it is impossible to evaluate the interface at this early stage.

Several extensions of the basic interface described above might be considered. A
means of directly editing definitions in a context window might offer an alternative to the
use of a dialogue box. It might also be desirable to allow geometric information to be en-
tered through the graphics screen: referencing, redefining or interrogating points as ap-

propriate.

Additional facilities associated with displaying shapes will also be required. The
attributes of a diagram are intended to have a role here, and might supply parameters to

a shape drawing routine eg to specify colour.

It is to be hoped that the principles outlined in this paper can be successfully ap-
plied to more ambitious applications in due course. Further discussion of possible appli-

cations in connection with computer-aided design is to be found in [4].

References

1. Meurig Beynon "Definitive notations for interaction" in hci'85, CUP Sept 1985

2. Meurig Beynon, David Angier, Tim Bissell, Steve Hunt

"DoNal.D: a line-drawing system based on definitive principles"

University of Warwick CS Research Report 86 (October 1986)

20

3. Meurig Beynon
"ARCA: a notation for displaying and manipulating combinatorial diagrams"
University of Warwick CS Research Report 78 (July 1986)
4. Meurig Beynon
" Definitive principles for interactive graphics"
Proc. Nato ASI "Theoretical Foundations of Computer Graphics and CAD", July
1987
5. Meurig Beynon, Kevin Murray

" The revised ARCA definition " <in preparation>

21

