
Reducing the blocking in two-phase commit protocol employing backup sites

P.Krishna Reddy and Masaru Kitsuregawa
Institute of Industrial Science

The University of Tokyo
7-22-1, Roppongi, Minato-ku

Tokyo 106, Japan
freddy, kitsureg@tkl.iis.u-tokyo.ac.jp

Abstract

In distributed data base systems (DDBSs), a transaction
blocks during two-phase commit (2PC) processing if the
coordinator site fails and at the same time some participant
site has declared itself ready to commit the transaction.
The blocking phenomena reduces availability of the system
since the blocked transactions keep all the resources until
they receive the final command from the coordinator after
its recovery. To remove the blocking problem in 2PC pro-
tocol, three phase commit (3PC) protocol was proposed.
Although 3PC protocol eliminates the blocking problem,
it involves an extra round of message transmission, which
further degrades the performance of DDBSs. In this paper,
we propose a backup commit (BC) protocol by including
backup phase to 2PC protocol. In this, one backup site is
attached to each coordinator site. After receiving responses
from all participants in the first phase, the coordinator com-
municates its decision only to its backup site in the backup
phase. Afterwards, it sends final decision to participants.
When blocking occurs due to the failure of the coordinator
site, the participant sites consult coordinator’s backup site
and follow termination protocols. In this way, BC protocol
achieves non-blocking property in most of the coordinator
site failures. However, in the worst case, the blocking
can occur in BC protocol when both the coordinator and
its backup site fail simultaneously. If such a rare case
occurs, the participants wait until the recovery of either the
coordinator site or the backup site. BC protocol suits best
for DDBS environments in which sites fail frequently and
messages take longer delivery time. Through simulation
experiments it has been shown that BC protocol exhibits
superior throughput and response time performance over
3PC protocol and performs closely with 2PC protocol.

Keywords atomicity, reliability, recovery, distributed
databases, distributed algorithms, non-blocking protocols.

1. Introduction

In distributed database systems (DDBSs), a transaction
blocks during two-phase commit (2PC) processing [8] if the
coordinator site fails and at the same time some participant
site has declared itself ready to commit the transaction. In
this situation, to terminate the blocked transaction, the par-
ticipant site must wait for the recovery of the coordinator.
The blocked transactions keep all the resources until they
receive the final command from the coordinator after its re-
covery. Thus, blocking phenomena reduces the availability
of the system. To eliminate this inconvenience, three-phase
commit (3PC) protocol [14, 15] was proposed. However,
3PC protocol involves an additional round of message trans-
mission to achieve non-blocking property. If 3PC protocol is
employed to eliminate the blocking problem, an extra round
of message transmission further reduces the system’s perfor-
mance as compared to 2PC protocol. Especially in DDBS
environments, in which frequent site failures and longer
message transmission times occur, neither 2PC protocol
with blocking problem nor 3PC protocol with performance
degradation problem is suitable for the commit processing.
In this paper, we propose backup commit (BC) protocol
by including backup phase to 2PC protocol. In this, one
backup site is attached to each coordinator. After getting the
responses from all participants in the first phase, the coor-
dinator communicates the final decision only to backup site
in the backup phase. Afterwards, it sends the final decision
to participants. When the blocking occurs due to a failure of
coordinator site, the participant sites consult coordinator’s
backup site and then follow termination protocols. Having
small amount of overhead (the time required to communi-
cate with the backup site) over 2PC protocol, BC protocol
resolves the blocking in most of the coordinator’s failures.
As compared to 3PC protocol, it reduces both the number of
messages and the latency that occurs during second phase,
thus exhibits superior performance. However, in the worst
case, blocking still occurs in BC protocol if both coordinator

and its backup site fail simultaneously. If such a rare case
happens, the participants wait until the recovery of either
coordinator or its backup site. The BC protocol suits best
for DDBS environments in which the longer transmission
delays and frequent site failures occur.

Recently commit processing has attracted strong atten-
tion due to its effect on the performance of the transaction
processing. In [11], using simulation model, it has been
shown that distributed commit processing can have more
influence than distributed data processing on the throughput
performance. It has been shown in [13] that the time to
commit accounts for one third of transaction duration in
a general purpose database. In [3], experimental studies
have been reported on the behavior of concurrency control
and commit algorithms in the wide area network environ-
ments. It has been shown that the time to commit can be
as high as 80 percent of the transaction time in the wide
area network (Internet) environments. In [11, 3] it has been
reported that as compared to 2PC protocol, the performance
is further degraded with 3PC protocol due to an extra round
of message transmission. To reduce the extent of blocking,
quorum-based 3PC protocol [15] was proposed that main-
tains the consistency in spite of network partitions. In [9],
enhanced 3PC protocol is proposed which is more resilient
to network partitioning failures than quorum based 3PC
protocol. In order to deal with the failure of the coordinator,
backup processes are used in SDD-1[7]. These processes
are initiated by the coordinator before initiating the commit
protocol and substitute the coordinator in case of its failure.
In order to ensure that only one process will substitute for
the coordinator, backups are linearly ordered, so that the
first one ‘‘looks’’ at the coordinator, the second ‘‘looks’’ at
the first one, and so on. If one backup fails, say k, backup
k+1 starts looking at backup k-1. ‘‘Looking’’ in this means
periodically sending control messages. In this, the commit
protocol with backups consists of four phases. In first phase,
the coordinator establishes n linearly ordered backups and
each backup is informed of participants identity. In second
phase, the coordinator sends the updates to participants.
In third phase, the coordinator communicates its decision
to backups. And in fourth phase the coordinator sends its
decision to participants.

In this paper we use the notion of backup site similar to
the notion of backup process in [7]. However, in BC proto-
col, in case of coordinator’s failure the backup site does not
assume the role of coordinator. Also, there is no periodic
exchange of control messages between the coordinator and
corresponding backup site. Instead, the sites themselves
resolve the blocking by contacting the backup site. Both
coordinator and corresponding backup site are failure in-
dependent. The work is motivated by the fact that 2PC

protocol is widely applied protocol in commercial database
systems. Even though 3PC protocol eliminates blocking, it
has not entered into commercial database systems. In this
situation, we have made an effort to resolve the blocking
problem of 2PC protocol by employing extra hardware. In
addition, the proposed protocol can easily be integrated with
existing 2PC protocol implementations.

The paper is organized as follows. In section 2, we
explain the system model. In section 3, we briefly explain
both 2PC and 3PC protocols. In section 4, we propose
BC protocol. In section 5, we discuss the performance
issues. In section 6, we present the results of simulation
experiments. The last section finally consists of summary
and conclusions.

2. System model

The DDBS consists of a set of data objects. A data object
is the smallest accessible unit of data. Each data object is
stored at one site only. Transactions are represented by T

i

,
T

j

,....; and sites are represented by S

i

, S
j

,: : : ; where, i, j
: : : are integer values. The data objects are stored at database
sites connected by a computer network. Each database site
S

i

has the backup site and is represented by BS

i

. The
originating site of T

i

acts as a coordinator in T

i

’s commit
processing. The sites which are involved in the processing
of T

i

, are called participants of T
i

. The coordinator site of
T

i

acts also as a participant site.

Each site works as both transaction manager and a data
manager. The transaction manager supervises the processing
of transactions, while the data managers manage individual
databases. We assume that the network is prone to both
link and site failures. When a site fails, it simply stops
running and other sites detect this fact. Also, we assume
that the network partitioning can occur. That is, in the event
of network partitioning failure, the operational sites are
divided into two or more groups where every two sites with
in a group can communicate with each other, but the sites
in different groups can not. The communication medium is
assumed to provide the facility of message transfer between
sites. When a site has to send a message to some other site,
it hands over the message to the communication medium,
which delivers it to the destination site in finite time.
We assume that, for any pair of sites S

i

and S

j

, the
communication medium always delivers the messages to S

j

in the same order in which they were handed to the medium
by S

i

.

3. Distributed commit protocols : 2PC and
quorum based 3PC

In the literature, a variety of commit protocols have been
proposed, most of which are based on 2PC protocol. The
most popular variants of 2PC protocol are presumed abort
and presumed commit protocols [10]. The other protocols
include early prepare [13], coordinator log [17], and implicit
yes vote [2] protocols. Also, different communication
paradigms can be used to implement the 2PC protocol.
The one described below is called the centralized 2PC,
since the communication is between the coordinator and the
participants only. In this process, the participants do not
communicate among themselves. In this paper, we do not
discuss other protocols since these are not concerned with
the blocking problem.

The detailed explanation of termination and recovery
protocols for both 2PC and 3PC protocols against failures
such as coordinator timeouts, participant timeouts, and
participant failures can be found in references [18, 5, 4]. In
this section, we briefly explain 2PC and quorum based 3PC
protocols.

3.1. Two-phase commit protocol

In DDBSs, 2PC protocol extends the affects of local
atomic commit actions to distributed transactions by insist-
ing that all sites involved in the execution of a distributed
transaction agree to commit the transaction before its ef-
fects are made permanent. A brief description of the
2PC protocol that does not consider failures is as follows.
Initially, the coordinator (originating site of a transac-
tion) writes a begin-commit record in the log, sends a
PREPARE message to all participating sites, and enters
the wait state. When a participant receives PREPARE
message, it checks if it can commit the transaction. If
so, the participant writes a ready record in the log, sends
a V OTE COMMIT message to the coordinator, and
enters the ready state. Otherwise, the participant writes
an abort record and sends a V OTE ABORT message to
the coordinator. If the decision of the site is to abort, it
can forget about that transaction. The coordinator aborts
the transaction globally, even it receives V OTE ABORT

message from one participant. Then, it writes an abort
record, sends a GLOBAL ABORT message to all partic-
ipant sites, and enters the abort state; Otherwise, it writes
a commit record, sends a GLOBAL COMMIT message
to all participants, and enters the commit state. The partici-
pants either commit or abort the transaction according to the
coordinators’ instructions and sends back ACK (acknowl-
edgment) message at which point the coordinator terminates
the transaction by writing an end-of-transaction record in
the log.

Blocking problem

In 2PC protocol, consider a situation that a participant
has sent V OTE COMMIT message to the coordina-
tor and has not received either GLOBAL COMMIT or
GLOBAL ABORT message due to the coordinator’s fail-
ure. In this case, all such participants are blocked until the
recovery of the coordinator to get the termination decision.

Partitioning failure

Consider that a simple partition occurs, dividing the sites
into two groups; the group which contains the coordinator
is called coordinator group; the other is participant group.
In 2PC protocol, for the coordinator this case is equivalent
to the participants’ failure. After the time-out period,
the coordinator terminates the transactions by following
termination protocols. However, for the participants in
the participant group it is equivalent to the coordinator’s
failure. So, they wait until the partition is repaired to know
the termination decision. Thus, 2PC protocol terminates the
transactions consistently in case of partitioning failure.

3.2. Quorum based 3PC protocol

The blocking problem is eliminated in 3PC protocol.
The brief description of quorum based 3PC protocol is as
follows.

Every site in the system is assigned a vote V

i

. Let us
assume that the total number of votes in the system is V,
and abort and commit quorum are V

a

and V
c

, respectively.
The following rules must be obeyed by the protocol.

1. V
a

+ V

c

> V , where V
a

> 0, V
c

> 0.

2. Before a transaction commits, it must obtain a Commit
quorum V

c

.

3. Before a transaction aborts, it must obtain an Abort
quorum V

a

.

The abort case is similar to 2PC protocol; the coordina-
tor aborts the transaction globally, even if the coordinator
receives V OTE ABORT message from one participant.
However, the commit case is different. If the coordina-
tor receives all V OTE COMMIT messages, it writes a
prepare to commit record, sends
PREPARE TO COMMIT message to all the partici-
pants, and enters a new pre commit state. On receiving
this message, the participant writes a prepare to commit
record, sends READY TO COMMIT message, and en-
ters pre commit state. Finally, when the coordinator re-
ceives READY TO COMMIT messages, if the sum of
the votes of responding sites equals to or exceeds V

c

, after

writing a commit record, it sends GLOBAL COMMIT

message to all participants, and enters the commit state.

Elimination of blocking

We briefly explain how 3PC protocol eliminates block-
ing problem by dividing the situation into two cases. First,
a participant has sent the V OTE COMMIT message but
has not received PREPARE TO COMMIT message
due to the coordinator’s failure. Second, a participant has
received PREPARE TO COMMIT message but has
not received GLOBAL COMMIT message due to the
coordinator’s failure.

In both cases, the operational participants elect a new
coordinator. The new coordinator collects the states from
all the sites, and tries to resolve the transaction. If any
site has previously committed or aborted, the transaction
is immediately committed or aborted accordingly. Oth-
erwise, the coordinator tries to establish a quorum. The
coordinator commits the transaction if at least one site is
in the pre commit state and the group of sites in the wait
state together with the sites in the pre commit state form a
Commit quorum. The coordinator aborts the transaction if
the group of sites in the wait state together with the sites in
the pre abort state form an Abort quorum.

Network partitioning

Quorum based 3PC protocol is resilient to partitioning
failure. When a network partitioning occurs, each partition
elects a new coordinator assuming that other sites are down.
In order to ensure that the same decision is reached by
all coordinators, a coordinator must explicitly establish a
Commit quorum (V

c

) to commit, or an Abort quorum (V
a

)
to abort. Otherwise, they wait until the merger of partitions.
In this way consistency is achieved.

4. Backup commit protocol

In this section, we first propose BC protocol. For
BC protocol, same termination and recovery protocols of
2PC protocol against different types of failures (coordinator
timeouts, participant timeouts, and participant failures) can
be employed. However, the blocking case is different.
In next two subsections, we explain the termination and
recovery protocols in case of blocking. Subsequently, we
discuss the behavior of BC protocol in case of partitioning
failures.

4.1. Protocol

Suppose there are n sites in DDBS. In this approach, for
each site S

i

, the backup site BS
i

is attached. Both should
be failure independent. Let backup set be a set of identity
of all backup sites. Backup set is stored at each S

i

. The
first and third phases of BC protocol are similar to first
and second phases of 2PC protocol, respectively. The BC
protocol is as follows.

� First phase

Coordinator : Initially, the coordinator writes
a begin-commit record in the log, sends
PREPARE messages to all participating sites,
and enters the wait state.

Participant : When a participant receives
PREPARE message, it checks if it can
commit the transaction. If so, the partici-
pant writes a ready record in the log, sends
V OTE COMMIT message to the coordina-
tor, and enters ready state. Otherwise, the
participant writes an abort record and sends a
V OTE ABORT message to the coordinator.

� Second phase

Coordinator : If the coordinator (S
i

) receives
V OTE COMMIT messages from all par-
ticipants, after writing decided to commit

record on its stable storage, sends
DECIDED TO COMMIT message to cor-
responding backup site (BS

i

). Otherwise, even
if it receives V OTE ABORT message from
one participant, it writes an abort record on the
stable storage and sends GLOBAL ABORT

message to all participants.

Backup site :
On receiving DECIDED TO COMMIT

message, BS

i

writes decided to commit

record on the stable storage, sends back
RECORDED COMMIT message to S

i

.

� Third phase

Coordinator : On receiving
RECORDED COMMIT message from the
backup site, the coordinator writes com-
mit record on the stable storage and sends
GLOBAL COMMIT message to all partici-
pants.

Participant : The participant follows the coordina-
tor’s instructions, and sends back acknowledg-
ment message to the coordinator.

Coordinator : After receiving acknowledgment
messages from all participants, the coordina-
tor writes end of transaction record on the
stable storage.

4.2. Termination protocol

If blocking occurs due to the failure of the coordinator
site (S

i

), the blocked participant checks the identity of BS
i

in its backup set.

1. If BS
i

2 backup set, the participant contacts BS
i

.
If no information exists at BS

i

about the transaction,
the participant aborts the transaction. The coordinator
will abort the transaction at restart. Otherwise, if
the participant finds decided to commit record at
BS

i

, it commits the transaction. The coordinator
will commit the transaction at restart. Otherwise, if
the participant site is unable to contact BS

i

due to
its failure, it waits until the recovery of either the
coordinator or the backup site.

2. If BS
i

62 backup set, the participant waits until the
recovery of the coordinator.

4.3. Recovery protocol

When coordinator recovers from failure, it may be in one
of the following states.

I The coordinator finds begin commit record but no
decided to commit record
In this case, it can safely abort the transaction without
contacting participants. Because, the participants ei-
ther might have aborted the transaction by contacting
the backup site or are in the ready state.

II The coordinator finds decided to commit record but
no commit record
In this case, there exist three possibilities. First,
the backup site might have failed before receiv-
ingDECIDED TO COMMIT message from the
coordinator. Second, the coordinator might have
failed after writing decided to commit record but
before sending DECIDED TO COMMIT mes-
sage to backup site. And third, the coordinator
might have failed after the backup site has received
DECIDED TO COMMIT message.

After recovery, the coordinator contacts the backup
site. If no information exists about the transaction, the
coordinator sends GLOBAL ABORT messages to
all the participants. At most a participant either might
have aborted the transaction by contacting the backup

site or is in the ready state. Otherwise, if the coordi-
nator finds decided to commit record at the backup
site, it sends GLOBAL COMMIT messages to all
the participants. At most, a participant either might
have committed the transaction by contacting backup
site or is in the ready state.

After recovery, if the coordinator is unable to contact
the backup site, there exist two options. First, it
waits for the recovery of the backup site and follow
the above recovery protocol. Second, it will ask all
the participants to report the transaction’s state. In
this case, we assume that the participant distinguishes
the recovery messages from normal messages. That
is, after responding to recovery messages of coor-
dinator, the participant will not contact the backup
site in future about corresponding transaction. Thus,
even though the coordinator fails during recovery,
the re-execution of the recovery protocol makes no
difference.

1. If at least one participant has aborted the trans-
action, the coordinator aborts the transaction.

2. If at least one participant has committed the
transaction, the coordinator commits the trans-
action.

3. If all the participants are in ready state, the
coordinator aborts the transaction. 1

III The coordinator finds commit record but no
end of transaction record
In this case, it can safely re-send
GLOBAL COMMIT message to all participants.
Because, at most, the participants either might have
committed the transaction by contacting the backup
site or are in the ready state.

4.4. Backup site failure and network partitioning

As an option, to minimize the latency we choose the near-
est site to the coordinator as corresponding backup site. For
example, both coordinator site and backup site are connected
to same local area network (Ethernet). When partition fail-
ure occurs in wide area network, both the coordinator and
corresponding backup site fall in same partitioning group.
As a result, the participants of other groups wait until the
connection is repaired. In this way, BC protocol ensures
consistent termination of transactions in case of partitioning
failures.

Now, we explain termination protocols by considering a
generalized case where the coordinator and the backup site

1Since the backup site is down, we conservatively abort the transaction

are separated due to partition failure.

Consider a situation that the partition has occurred af-
ter sending the DECIDED TO COMMIT message to
backup site. As a result, the coordinator does not receive
the reply to DECIDED TO COMMIT message from
its backup site. In this case, there exist two possibilities:
either the backup site may be down or the network has
partitioned such that the backup site and the coordinator
fall in different groups. In this case, if coordinator unilater-
ally either aborts or commits the transaction, inconsistency
may occur. Because, if partition occurs after receiving
DECIDED TO COMMIT message by backup site, the
participants in the backup site group commit the transaction
by contacting the backup site. Otherwise, if the partition
occurs before receiving the DECIDED TO COMMIT

message by backup site, participants in the backup site
group abort the transaction by contacting backup site.
Therefore, when the coordinator fails to get response to
DECIDED TO COMMIT message from backup site,
it asks the participants and backup site to report the transac-
tion’s state. (In this case also, we assume that the participant
distinguishes the recovery messages from normal messages.
That is, after responding to recovery messages of the co-
ordinator, the participant will not contact the backup site
in future. Thus, even though the coordinator fails during
recovery, the re-execution of the recovery protocol makes
no difference.) Based on the responses received, the coor-
dinator proceeds as follows.

1. If the coordinator receives response from the backup
site, it can terminate the transaction as follows. If no
information exist about the transaction at the backup
site, the coordinator aborts the transaction by send-
ing GOBAL ABORT messages to all participants.
Otherwise, if decided to commit record exist at the
backup site, the coordinator commits the transaction
by sending GLOBAL COMMIT messages to all
participants.

2. If at least one participant has aborted the transaction,
the coordinator aborts the transaction.

3. If at least one participant has committed the transac-
tion, the coordinator commits the transaction.

4. If all the participants are in ready state, the coordina-
tor aborts the transaction.

After terminating the transaction, if the backup site is
down, the coordinator can follow one of the following
options.

i The coordinator suspends the processing of transac-
tions until the backup site is up.

ii The coordinator selects another backup site and
updates the backup set. Next, it sends the new
backup set information to all the backup sites.
On receiving this information, the site updates its
backup set. Next, the coordinator follows BC proto-
col for the commit processing.

iii If the coordinator is unable to select a new backup site,
it deletes the identity of its backup site information
from the backup set and sends this information to
all the sites. On receiving this information, the site
updates its backup set. Next, the coordinator can
follow 2PC protocol at the risk of blocking.

5. Performance discussion

In this section, we first analyze the non-blocking behavior
of BC protocol. Next, we discuss overheads and benefits of
BC protocol.

5.1. Failure probability of backup site while coor-
dinator is down

Reliability of a module is statistically quantified as
mean-time-to-failure (MTTF). The service interruption of
a module is statistically quantified as mean-time-to-repair
(MTTR). The module availability is statistically quantified
as

MTTF

MTTF +MTTR

.
Let MTTF

c

and MTTR

c

represent MTTF and MTTR
of the coordinator site respectively. Also, MTTF

b

rep-
resents MTTF of corresponding backup site. Since the
backup site and the coordinator are failure independent, the
probability that backup site fails when the corresponding
coordinator is down is calculated as below.

The probability that the coordinator site is unavailable
is:

P

c

=

MTTR

c

MTTF

c

+MTTR

c

'

MTTR

c

MTTF

c

since MTTR

c

�MTTF

c

The probability that the backup site fails is:

P

b

=

1
MTTF

b

The probability that backup site fails and the correspond-
ing coordinator is down is:

P

b

� P

c

=

1
MTTF

b

�

MTTR

c

MTTF

c

=

MTTR

c

MTTF

b

�MTTF

c

From above equation, it can be observed that the proba-
bility that backup site fails while corresponding coordinator
is down is reduced significantly. Thus, in case of coordi-
nator site failure, with the introduction of the backup site,
blocking probability is considerably reduced as compared
to 2PC protocol. Further, it can be observed that the purpose
of the backup site is to terminate the blocked transactions
at the participant sites when the corresponding coordinator
is down. After the termination of the blocked transactions,
even though the backup site fails, it does not effect the con-
sistency of the database. Let term time be the time duration
required to terminate the blocked transactions by contacting
the backup site when the coordinator is down. The above
equation denotes the probability that the backup site fails
during the entire period (MTTR

c

) when the coordinator is
down. However, in the worst case the blocked transactions
are consistently terminated even if the backup site is up
only during term time and then fails. As term time (few
minutes) is much less than the down time (few hours) of the
coordinator, the probability that the backup site fails during
the term time while the coordinator is down is further
reduced.

5.2. Message overhead, latency and failures

As compared to 2PC protocol, to commit a transaction,
BC protocol requires extra messages and time duration (to
communicate with the backup site). However, as compared
to 3PC protocol, independent of number of participants, BC
protocol requires only two messages and fixed time duration
during the second phase. In BC protocol the latency during
the second phase is considerably reduced as compared to
3PC protocol. Also, by making the nearby site to the co-
ordinator as the backup site, the latency can be minimized.
This brings the performance of BC protocol close to 2PC
protocol by achieving non-blocking property in most of the
coordinator failures.

Also, in BC protocol, the overhead during the recovery
is considerably reduced. Because, after recovery, the co-
ordinator terminates the transactions consistently by only
contacting the backup site. However, in a rare case, if it is
unsuccessful in contacting the backup site, it has to demand
the state information from all the participants. Also, in case
of partition failures, BC protocol terminates the transactions
consistently with blocking problem, similar to 2PC and 3PC
protocols.

6. Simulation experiments

We have carried out the simulation experiments to com-
pare the performance of BC protocol with 2PC and 3PC
protocols.

Parameter Meaning Value
db size Number of objects 1000

in the database objects
num sites Number of sites 5 sites

in the system
trans size Mean size of 8 objects

transaction
max size Size of largest 12 objects

transaction
min size Size of smallest 4 objects

transaction
write prob Pr (write X/read X) 1
local to total local requests / 0.6

total requests
res cpu CPU time 15 msec
res io I/O time 35 msec
MPL Multiprogramming Simulation

level variable
trans time Transmission time Simulation

between two sites variable
backup trans Trans time to 0
time contact backup site

Table 1. Model parameters with settings

The meaning of each model parameter for simulation
is given in Table 1. The size of the database is assumed
to be db size data objects. The database is uniformly
distributed across the all num sites sites. The new trans-
action is assigned the arrival site which is chosen randomly
over num sites. The parameter trans size is the average
number of data objects requested by the transaction. It is
computed as the mean of a uniform distribution between
max size andmin size (inclusive). The probability that an
object read by a transaction will also be written is determined
by the parameter write prob. The parameter trans time
is the time required to transmit a message between sites.
The parameter backup trans time is the time required to
transmit a message between the coordinator and the cor-
responding backup site. The parameter local to total is
the ratio of the number of local requests to the number of
total requests for a transaction. The parameter res io is
the amount of time taken to carry out i/o request and the
parameter res cpu is the amount of time taken to carry
out CPU request. Accessing a data object requires res cpu
and res io. Also, each message of 2PC protocol requires
res cpu and res io for processing. The total number of

concurrent transactions active in the system at any time is
specified by the multiprogramming level (MPL).

The communication network is simply modeled as a
fully-connected network. Any site can send messages to all
the sites at the same time. The wide area network behavior
is realized by varying trans time. This is true because,
in DDBSs, even though the difference in the delay to re-
ceive responses for remote requests varies considerably,
the transaction does not complete its execution, unless it
receives responses from all the remote sites. We employ
static distributed two-phase locking algorithm for concur-
rency control.

The setting of res io, res cpu, db size, trans size,
min size and max size values are given in Table 1 which
are adopted in [1]. The parameter local to total ratio for
a transaction is fixed at 0.6 [6]. Thus, 60 percent of the
data objects are randomly chosen from the local database
and the 40 percent of the data objects are randomly chosen
from the remaining database sites. A transaction writes all
the data objects it reads (write prob is set to 1). With these
settings, by varying MPL values, sufficient variation in the
data contention is realized.

In the simulation experiments, we have evaluated the two
performance metrics : throughput and response time. The
throughput metric is evaluated as the number of transactions
completed per second by the system. The response time
is the time spent by the transaction in the system. This
is the difference between when the transaction was first
submitted and when the transaction decides to commit. In
all simulation experiments we have set backup trans time
to 0. That is, we consider that both the coordinator and
its backup site are connected to the high speed local area
network.

0

5000

10000

15000

20000

10 15 20 25 30 35 40 45 50

re
sp

on
se

 ti
m

e
(m

se
c)

MPL

2PC
BC

3PC

Figure 1. MPL versus response time at trans time=0

0

1

2

3

4

5

10 15 20 25 30 35 40 45 50

th
ro

ug
hp

ut

MPL

2PC
BC

3PC

Figure 2. MPL versus throughput at trans time=0

0

5000

10000

15000

20000

25000

30000

35000

40000

10 15 20 25 30 35 40 45 50

re
sp

on
se

 ti
m

e
(m

se
c)

MPL

2PC
BC

3PC

Figure 3. MPL versus response time at trans time=1000

0

1

2

3

4

5

10 15 20 25 30 35 40 45 50

th
ro

ug
hp

ut

MPL

2PC
BC

3PC

Figure 4. MPL versus throughput at trans time=1000

0

10000

20000

30000

40000

50000

60000

70000

80000

0 500 1000 1500 2000 2500 3000 3500 4000

re
sp

on
se

 ti
m

e
(m

se
c)

transmission time (msec)

2PC
BC

3PC

Figure 5. Transmission time versus response time at
MPL=30

0

1

2

3

4

5

0 500 1000 1500 2000 2500 3000 3500 4000

th
ro

ug
hp

ut

transmission time (msec)

2PC
BC

3PC

Figure 6. Transmission time versus throughput at MPL=30

At different MPL values, Figure 1 shows the response
time results and Figure 2 shows the throughput results by
setting transmission time (trans time) to 0. These graphs
show the behavior of BC protocol in the local area network
based environments. In DDBS, the increase in MPL results
in higher resource contention. As a result, more number of
transactions wait for resources. So, the response time of
three protocols increases with MPL. From Figure 1, it can
be observed that, the response time performance using BC
protocol is little higher than 2PC protocol. Also, in Figure
2, the throughput is little less than 2PC protocol. This
indicates the overhead of BC protocol over 2PC protocol in
local area network based environments.

At different MPL values, Figure 3 shows the response
time results and Figure 4 shows the throughput results by
setting transmission time to 1000 msec. Here, wide area
network environment is assumed. It can be observed that,
with the increase in transmission time, the effect of com-
munication with the backup site is nullified. As a result,
both response time and throughput curves of BC protocol
are close to 2PC protocol.

At different transmission time values, Figure 5 shows
the response time results and Figure 6 shows the through-
put results by setting MPL to 30. As the transmission
time increases, the transaction spends longer duration in the
commit processing. Consequently, more number of trans-
actions wait for the data objects for longer duration. As a
result response time is increases and throughput decreases.
It can be observed that due to longer transmission times, the
overhead of the BC protocol over 2PC protocol is nullified.
As a result, both response time and throughput curves of
BC and 2PC protocols coincide.

7. Summary and conclusions

In this paper we have proposed BC protocol for the
commit processing in DDBSs that exhibits non-blocking
behavior in most of the coordinator failures. In this proto-
col, one backup site is attached with each operational site.

The proposed protocol differs with 3PC protocol in the sec-
ond phase.After receiving responses from all participants in
the first phase, the coordinator communicates its decision
only to its backup site in the backup phase. In case of
blocking, the participants consult the backup site and follow
termination protocols. This protocol incurs little overhead
(messages and time required to write to the backup site) over
2PC protocol. By selecting nearby site to the coordinator as
the backup site, overhead can be nullified. This brings the
performance of BC protocol close to 2PC protocol. Also,
BC protocol preserves the consistency of the database in
case of partitioning failures. We have analytically shown
that the probability that both the coordinator and the corre-
sponding backup site are down at the same time is reduced
significantly. Also, the simulation results show that the per-
formance of BC protocol is very close to 2PC protocol. The
proposed BC protocol has following merits. First, it elimi-
nates the blocking of transactions in most of the coordinator
failures. Second, it ensures consistency of the database in
case of partitioning failures. And third, the performance of
BC protocol is close to 2PC protocol. With these merits,
BC protocol becomes a good choice for commit processing
in DDBS environments where frequent site failures occur
and messages take longer delivery time.

Acknowledgments
This work is partially supported by Grant-in-Aid for Cre-
ative Basic Research # 09NP1401: ‘‘Research on Mul-
timedia Mediation Mechanism for Realization of Human-
oriented Information Environments’’ by the Ministry of
Education, Science, Sports and Culture, Japan and Japan
Society for the Promotion of Science, Japan.

References

[1] R.Agrawal, M.J.Carey and M.Livny, ‘‘Concurrency
control performance modeling: alternatives and im-
plications’’, ACM Transactions on Database Systems,
vol.12, no.4, December 1987, pp. 609-654.

[2] Y.Al-Houmaily and P.Chrysanthis, ‘‘Two-phase com-
mit in giga-bit networked distributed databases’’, pro-
ceedings of 8th International Conference on Parallel
and Distributed Computing Systems, September 1995.

[3] B.Bhargava, Y.Zhang, S. Goel, ‘‘A study of dis-
tributed transaction processing in an internetwork’’,
Volume 1006 of Lecture Notes in Computer Science,
Springer-Verlag, 1995, pp. 135-152.

[4] P.A.Bernstein, V.Hadzilacos and N.Goodman, Con-
currency control and recovery in database systems,
Addison-Wesley, 1987.

[5] S.Ceri and P.Pelagatti, Distributed databases: princi-
ples and systems, New York:McGraw-Hill, 1984.

[6] Alok N.Choudhary, Cost of distributed deadlock de-
tection:A performance study, in 1990 proc. of IEEE
Conference on Data Engineering, 1990, pp.174-181.

[7] Michael Hammer and David Shipman, ‘‘Reliability
mechanisms for SDD-1: A system for distributed
databases’’, ACM Transactions on Database Systems,
vol.5, no.4, December 1980, pp.431-466.

[8] J.N.Gray, ‘‘Notes on database operating systems: in
operating systems an advanced course’’, Volume 60
of Lecture Notes in Computer Science, 1978, pp. 393-
481.

[9] Idit Keider and Danny Dolev, ‘‘Increasing the re-
silience of atomic commit, at no additional cost’’,
in proc. of the Fourteenth ACM SIGACT-SIGMOD-
SIGAR Symposium on Principles of Database Systems,
1995, pp.245-254.

[10] C.Mohan, B.Lindsay and R.Obermark, ‘‘Transaction
management in the R� distributed database manage-
ment system’’, ACM Transactions on Database Sys-
tems, vol.11, no.4, 1994.

[11] Ramesh Gupta, Jayant Haritsa and Kirti Ramamritam,
‘‘Revisiting commit processing in distributed database
systems’’, ACM SIGMOD, 1997, pp. 486-497.

[12] G.Samaras, K.Britton, A.Citron, and C.Mohan,
‘‘Two-phase commit optimizations in a commercial
distributed environment’’, Journal of Distributed and
Parallel Databases, vol.3, no.4, 1995.

[13] P.Spiro, A.Joshi, and T.K.Rangarajan, ‘‘Designing
an optimized transaction commit protocol’’, Digital
Technical Journal, 1991.

[14] D.Skeen, ‘‘Nonblocking commit protocols’’, ACM
SIGMOD, June 1981.

[15] D.Skeen, ‘‘A quorum-based commit protocol’’, in
proc. of 6th Berkeley Workshop on Distributed Data
Management and Computer Networks, February 1982,
pp. 69-80.

[16] D.Skeen and M.Stonebraker, ‘‘A formal model of
crash recovery in a distributed system’’, IEEE Trans-
actions on Software Engineering, vol.SE-9, no.3,
1983, pp.219-227.

[17] J.Stamos and F.Cristian, ‘‘Coordinator log transac-
tion execution protocol’’, Journal of Distributed and
Parallel Databases, 1993, pp.383-408.

[18] M.Tamer Ozsu and Patrick Valduriez, Principles of
distributed database systems, Prentice-Hall, 1991.

