
Simple Firewalls

Arshad Jhumka

University of Warwick

arshad@dcs.warwick.ac.uk

February 4, 2018

Arshad Jhumka (University of Warwick) CS915 - Advanced Computer Security February 4, 2018 1 / 29



Previously,

We have studied how to develop security policies.

We have looked at security policies, e.g., Bell-LaPadula, Chinese Wall.
We have also studied threat models to drive the development of
appropriate security policy.

We have studied how to enforce security policies through execution
monitoring

We have looked at monitors, specified in terms of security automata,
to stop an execution when the policy is about to be violated.
We also looked at target transformers for policy enforcement.

Arshad Jhumka (University of Warwick) CS915 - Advanced Computer Security February 4, 2018 2 / 29



What Now

We are going to look at a specific target transformer: Firewalls.

Firewall: A security guard placed at the point of entry between a
private network and the Internet that monitors all incoming and
outgoing packets.

Firewall consists of set of rules.
The decision on whether to forward or drop a message depends on the
rule that the message satisfies.
However, there are many challenges when designing a firewall.

Some challenges:

May have conflicting rules.
Set of rules may not be complete, i.e., rules for some packets are
missing.
Compactness, i.e., some rules are redundant.

Arshad Jhumka (University of Warwick) CS915 - Advanced Computer Security February 4, 2018 3 / 29



Firewall Example

Arshad Jhumka (University of Warwick) CS915 - Advanced Computer Security February 4, 2018 4 / 29



Consistency and Completeness

Consistency issue.

Conflicting rules; several rules can be satisfied but with different
outputs.

Example: rule r1 and r2 conflict since the SMTP packets from
previously known malicious hosts to the mail server match both rules
and the decisions of r1 and r2 are different

Completeness issue.

It is difficult to ensure that all possible packets are considered.

to block these two types of traffic, the following two rules should be
inserted immediately after rule r1 :

(I = 0) ∧ (S = any ) ∧ (D = Mail Server ) ∧ (N = any ) ∧ (P = any
) → discard
(I = 0) ∧ (S = any ) ∧ (D = any ) ∧ (N = 25) ∧ (P = tcp )→ discard

Arshad Jhumka (University of Warwick) CS915 - Advanced Computer Security February 4, 2018 5 / 29



Model and Notation

Packet: n-tuple, 〈d1 . . . dn〉 of data.

Field Fi : variable with a non-negative integer domain, denoted by
D(Fi ), e.g., source IP address [0,232 − 1].

Each data item di in packet is such that di ∈ D(Fi ).

Σ : set of all packets over fields F1 . . .Fn.

Rule: 〈 predicate 〉 → 〈 decision 〉.
Predicate: boolean expression over d1 . . . dn, decision ∈ {a, d}
Firewall: sequence of rules, R1 . . .Rm.

A packet matches a rule Ri iff the packet satisfies the predicate of Ri .

Two rules overlap if there is at least one packet that can match both
rules.

Two rules conflict iff they overlap and have different decisions.

When two rules Ri ,Rj , i < j conflict, the decision taken is that of Ri .

The last rule is called the default rule; usually, a tautology.

Arshad Jhumka (University of Warwick) CS915 - Advanced Computer Security February 4, 2018 6 / 29



Firewall Decision Diagram (FDD)

FDD is an acyclic and directed graph, defined over F1 . . .Fn, with 5
properties:

1 Has exactly one root, a node with no incoming edge. Nodes with no
outgoing edges are called terminal nodes.

2 Each node v in FDD is labeled with a field, denoted F (v), such that

F (v) ∈
{
{F1, . . . ,Fn} if v is non-terminal
{a, d} if v is terminal

3 An edge e is labeled with a non-empty set of integer, denoted I (e),
such that if e is an outgoing edge of node v , then we have
I (e) ⊆ D(F (v)).

4 A directed path from root to a terminal nodes is called a decision path.
No two nodes on a decision path have the same label.

5 The set of all outgoing edges of node v , denoted E (v), satisfies the
following two conditions:

1 Consistency: I (e) ∩ I (e′) = ∅, for any two distinct edges e, e′ ∈ E(v).
2 Completeness: ∪e∈E(v)I (e) = D(F (v)).

Arshad Jhumka (University of Warwick) CS915 - Advanced Computer Security February 4, 2018 7 / 29



Example FDD

aa dd d d

[5,6]
[7,8]

[1,4] 
[9,10]

F1

F2 F2 F2
[3,4] 
[6,8]

[3,4] 
[6,8]

[1,2] 
[5,5] 
[9,10]

[1,2] 
[5,5] 

[9,10]
[1,5] [6,10]

Arshad Jhumka (University of Warwick) CS915 - Advanced Computer Security February 4, 2018 8 / 29



FDD and Decision

FDD maps each packet to a decision by testing packet down the FDD
from root to a terminal node.

Label of the terminal node represents the decision for the packet.

Each non-terminal node specifies a test of a packet field.

Each outgoing edge from a non-terminal node corresponds to some
values of that field.

An edge is selected when the edge label contains the value of the
packet field.

The selection process is repeated at the new node, until a terminal
node is reached.

Arshad Jhumka (University of Warwick) CS915 - Advanced Computer Security February 4, 2018 9 / 29



FDD Traversal

Example (Traversing FDD for Decision)

Input: FDD, packet

output: decision

current := root;

while (label(current) != a or d) do {

forall edge ((current, j),value) do {

if (data is contained in value) then

current := j;

endif

} od;

} end while

return(label(current));

Arshad Jhumka (University of Warwick) CS915 - Advanced Computer Security February 4, 2018 10 / 29



FDD and Decision

Decision path: Represented by 〈v1e1 . . . vkekvk+1〉, where v1 is the
root and vk+1 is a terminal node and each edge ei is a directed arc
from node vi to node vi+1.

A decision path 〈v1e1 . . . vkekvk+1〉 represents the following rule:
F1 ∈ S1 ∧ · · · ∧ Fd ∈ Sd → 〈 decision 〉, where decision is the

label of the terminal node vk+1 in the path and

Si =

{
I (ej) if ∃ node vj in decision path with labeled field Fi
D(Fi ) otherwise

Each path (together with labels) in FDD represents a rule in the
firewall.

There is only one rule that any packet p will match in an FDD.

Arshad Jhumka (University of Warwick) CS915 - Advanced Computer Security February 4, 2018 11 / 29



Example FDD and Firewall Rules

Continue using existing FDD, firewall rules are:

R1. F1 ∈ [5, 6] ∧ F2 ∈ [3, 4] ∪ [6, 8]→ a
R2. F1 ∈ [5, 6] ∧ F2 ∈ [1, 2] ∪ [5, 5] ∪ [9, 10]→ d
R3. F1 ∈ [7, 8] ∧ F2 ∈ [3, 4] ∪ [6, 8]→ a
R4. F1 ∈ [7, 8] ∧ F2 ∈ [1, 2] ∪ [5, 5] ∪ [9, 10]→ d
R5. F1 ∈ [1, 4] ∪ [9, 10] ∧ F2 ∈ [1, 5]→ d
R6. F1 ∈ [1, 4] ∪ [9, 10] ∧ F2 ∈ [6, 10]→ d

Arshad Jhumka (University of Warwick) CS915 - Advanced Computer Security February 4, 2018 12 / 29



Important result for FDDs

For an FDD f , f.accept is the set of all packets accepted by f .

For an FDD f , f.discard is the set of all packets discarded by f .

These two sets precisely define the semantics of the FDD.

Theorem (Theorem of FDDs)

For any FDD f , we have

1 f .accept ∩ f .discard = ∅.
2 f .accept ∪ f .discard = Σ.

Two FDDs f and f ′ are equivalent iff (i) f .accept = f ′.accept and
(ii) f .discard = f ′.discard .

Arshad Jhumka (University of Warwick) CS915 - Advanced Computer Security February 4, 2018 13 / 29



FDD Reduction

The greater the number of decision path in an FDD, the greater the
number of rules for the firewall.

Hence, it takes more time for the firewall to arrive at a decision, for
any packet.

Thus, number of decision paths (rules) must be reduced. How to
compress the graph?

Use the concept of isomorphic nodes.

Definition (Isomorphic Nodes)

Two nodes v and v ′ in an FDD are isomorphic iff

1 both v and v ′ are terminal nodes with identical labels.

2 Both v and v ′ are non-terminal nodes, and there is a 1-1 correspondence
between the outgoing edges of v and those of v ′ such that every pair of
corresponding edges have identical labels and they point to the same node.

Arshad Jhumka (University of Warwick) CS915 - Advanced Computer Security February 4, 2018 14 / 29



Algorithm 1 - Reduced FDD

An FDD is reduced iff it satisfies the following three conditions:

No node in FDD has only one outgoing edge.

No two nodes in FDD are isomorphic.

No two nodes have more than one edge between them.

Algorithm for FDD Reduction

Input: FDD f, Output: Reduced FDD equivalent to f

Steps: (apply 1-3 repeatedly until FDD cannot be reduced any further)

1. If there is a node v with only 1 outgoing edge e, e points to v’,

remove both v and e, and all edges that point to v point to v’.

2. Two isomorphic edges v and v’, remove v’ together with all its

outgoing edges, and let all edges that point to v’ point to v.

3. Two edges e and e’ that are both between the same pair of nodes,

then remove e’ and change label of e from I(e) to I(e) U I(e’).

Arshad Jhumka (University of Warwick) CS915 - Advanced Computer Security February 4, 2018 15 / 29



Reduced FDD - Example (Cont’d)

Arshad Jhumka (University of Warwick) CS915 - Advanced Computer Security February 4, 2018 16 / 29



FDD Marking

Reduced FDD ⇒ Reduced number of decision paths.

Also, order of rules in firewall is important. How to determine the
order?

FDD Marking; mark which transitions to be considered last.

F1 ∈ S1 ∧ . . . ∧ Fn ∈ Sn → 〈decision〉 is simple iff every Si , 1 ≤ i ≤ n,
is an interval of consecutive non-negative integers.

Most firewalls require simple rules;hence, minimise number of simple
rules generated from FDD.

Number of simple rules generated from marked FDD ≤ Number of
simple rules generated from original FDD

Arshad Jhumka (University of Warwick) CS915 - Advanced Computer Security February 4, 2018 17 / 29



Marked FDD

A marked version f ′ of an FDD f is the same as f except that exactly
one outgoing edge of each non-terminal node if f ′ is marked “all”.

FDD f and f ′ are equivalent since the label of edges marked “all” do
not change.

FDD f ′ is called a marked FDD.

Arshad Jhumka (University of Warwick) CS915 - Advanced Computer Security February 4, 2018 18 / 29



Minimal Load Marked FDD

The load of a non-empty set of integers S, denoted load(S), is the
minimal number of non-overlapping integer intervals that cover S.

Load of a edge e in a marked FDD is defined as follows:

load(e) ∈
{

1 if e is marked all
load(I (e)) otherwise

Load of a node v in a marked FDD is defined recursively as follows:

load(v) ∈


1 if v is terminal∑k

i=1(load(ei ) ∗ load(vi ) if v is non-terminal; suppose v has k outgoing edges
e1, . . . , ek which point to nodes v1, . . . , vk respectively

Arshad Jhumka (University of Warwick) CS915 - Advanced Computer Security February 4, 2018 19 / 29



Algorithm 2 - Minimal Load Marked FDD

Algorithm M-FDD:

Input: FDD f, Output: marked FDD f’ with minimal load

(no the marked FDD f’’ has lower load)

Steps:

1. Compute the load of each terminal node v in f as follows: load(v) := 1

2. WHILE (there is a node v whose load has not yet been computed,

suppose v has k outgoing edges e1,..., ek, and these edges point to

v1,...,vk respectively, and the loads of these k nodes have been computed)

DO {

(a) Among the k edges e1,..., ek, choose an edge ej with the

largest value of (load(ej) -1) * load(v), and mark edges

ej with ‘‘all’’.

(b) Compute the load of v as follows:

load(v) :=
∑k

i=1(load(ei ) ∗ load(vi ))

} END WHILE

Arshad Jhumka (University of Warwick) CS915 - Advanced Computer Security February 4, 2018 20 / 29



Marked FDD Remarks

Load of a marked FDD f, denoted load(f), equals the load of the root
of f .

Marked FDD with smaller load ⇒ generation of smaller number of
simple rules.

Theorem (Algorithm and Minimal Load FDD)

Given an FDD f , algorithm M-FDD returns a marked FDD f ′ with
minimal load.

Arshad Jhumka (University of Warwick) CS915 - Advanced Computer Security February 4, 2018 21 / 29



From Marked FDD to Firewall Generation

Semantics of firewall: A packet (p1, . . . , pn) matches a rule
F1 ∈ S1 ∧ . . . ∧ Fn ∈ Sn → 〈decision〉 iff the condition
F1 ∈ S1 ∧ . . . ∧ Fn ∈ Sn holds.

Firewall consists of a sequence of rules such that, for any packet,
there is at least one rule that the packet matches; maps every packet
to the decision of the first matching rule.

Theorem (Firewall Theorem)

For a firewall f of a sequence of rules,

1 f.accept ∩ f.discard = ∅
2 f.accept ∪ f.discard = Σ

For a FDD f and firewall f ′, f ≡ f ′ iff
f .accept = f ′.accept ∧ f .discard = f ′.discard .

Arshad Jhumka (University of Warwick) CS915 - Advanced Computer Security February 4, 2018 22 / 29



From Marked FDD to Firewall Generation (Informal)

Start with a marked FDD f , perform a depth-first traversal of f such
that for each non-terminal node v , the outgoing edge marked “all” of
v is traversed after all other other outgoing edges of v have been
traversed.

Whenever a terminal node encountered, if v1e1 . . . vkekvk+1 is a
decision path, output rule r as follows:
F1 ∈ S1 ∧ . . . ∧ Fn ∈ Sn → F (vk+1), where

Si =


I (ej ) if the decision has a node vj

and that is labeled with field Fi
and ej is not marked “all”

D(Fi ) otherwise

Rule represented by 〈v1e1 . . . vk ek vk+1〉 is F1 ∈ T1 ∧ . . . ∧ Fn ∈ Tn → F (vk+1) where

Ti =

 I (ej ) if the decision has a node vj
that is labeled with field Fi

D(Fi ) otherwise

Predicate F1 ∈ S1 ∧ . . . ∧ Fn ∈ Sn is called the matching predicate of rule.

Predicate F1 ∈ T1 ∧ . . . ∧ Fn ∈ Tn is called the resolving predicate of the rule.

Arshad Jhumka (University of Warwick) CS915 - Advanced Computer Security February 4, 2018 23 / 29



Algorithm 3 - Firewall Generation

Input: Marked FDD f
Output: Firewall equivalent to f . For each rule r , r.mp and r.rp is
computed.
Steps:
Depth-first traverse f s.t for each nonterminal node v , the outgoing edge marked as “all” of v is traversed after all other
outgoing edges of v have been traversed. Whenever a terminal node is encountered, assuming v1e1 . . . vk ek vk+1 is the decision
path where each ei is the most recently traversed outgoing edge of node vi , output a rule r together with its matching predicate
r.mp and its resolving predicate as follows:
r is the rule F1 ∈ S1 ∧ . . . ∧ Fn ∈ Sn → F (vk+1) where

Si =


I (ej ) if the decision has a node vj

and that is labeled with field Fi
and ej is not marked “all”

D(Fi ) otherwise

r.mp is the predicate of rule r .
r.rp is the predicate F1 ∈ T1 ∧ . . . ∧ Fn ∈ Tn , where

Ti =

 I (ej ) if the decision has a node vj
that is labeled with field Fi

D(Fi ) otherwise

Firewall may however have redundant rules, i.e., removing rules do not change the semantics of the firewall.

Removing them results in more efficient firewall. How to identify redundant rules?

Arshad Jhumka (University of Warwick) CS915 - Advanced Computer Security February 4, 2018 24 / 29



Firewall Generation - Example (Cont’d)

Arshad Jhumka (University of Warwick) CS915 - Advanced Computer Security February 4, 2018 25 / 29



Algorithm 4 - Firewall Compaction

Present an efficient algorithm for discovering redundant rules.

Redundant rules are those with same decision but one is implied by
the other.

Input: A firewall 〈r1, . . . , rm〉
Output: An equivalent but more compact firewall.
Steps:
1. for i = m to 1 do

redundant[i] := 0;
2. for i = m to 1 do

if there exist a rule rk in the firewall, where i < k ≤ m, such that the following 4 conditions hold:
2.1. redundant[k] = false;
2.2. ri , rk have same decisions.
2.3. ri .rp implies rk .mp
2.4. for every rule rj , where i < j < k, at least one of the following three conditions holds:

2.4.1. redundant[j] = 1.
2.4.2. ri , rj have the same decision.
2.4.3. no packet satisfies both ri .rp and rj .mp.

then redundant[i] := 1
else redundant[i] := 0

3. for i = m to 1 do
if redundant[i] = 1 then remove ri from the firewall.

Arshad Jhumka (University of Warwick) CS915 - Advanced Computer Security February 4, 2018 26 / 29



Firewall Compaction - Example (Cont’d)

Arshad Jhumka (University of Warwick) CS915 - Advanced Computer Security February 4, 2018 27 / 29



Algorithm 5 - Firewall Simplification

Input: A (compact) firewall f
Output: A simple firewall f ′ which is equivalent to f .
Steps:

while f has a rule of the form F1 ∈ S1 ∧ . . . ∧ Fi ∈ Si ∧ . . . ∧ Fn ∈ Sn → 〈decision〉 where some Si is represented by
[a1, b1] ∪ . . . ∪ [ak , bk ], k ≥ 2.
do

replace this rule by the following k non-overlapping rules:
F1 ∈ S1 ∧ . . . ∧ Fi ∈ [a1, b1] ∧ . . . ∧ Fd ∈ Sd → 〈decision〉
F1 ∈ S1 ∧ . . . ∧ Fi ∈ [a2, b2] ∧ . . . ∧ Fd ∈ Sd → 〈decision〉

.

.

.
F1 ∈ S1 ∧ . . . ∧ Fi ∈ [ak , bk ] ∧ . . . ∧ Fd ∈ Sd → 〈decision〉

end

Arshad Jhumka (University of Warwick) CS915 - Advanced Computer Security February 4, 2018 28 / 29



Summary

Showed how to design a simple firewall from a user-specified firewall
design diagram.

Step 1: Starting with a user-specified FDD f , algorithm algorithm 1
transforms it into a reduced FDD f1.

Step 2: From f1, algorithm algorithm 2 transforms it into a marked
FDD f2.

Step 3: From f2, algorithm algorithm 3 transforms it into a firewall
f3.

Step 4: Algorithm 4 transforms f3 into a compacted firewall f4.

Step 5: Algorithm 5 transforms f4 into a simple firewall f5.

Arshad Jhumka (University of Warwick) CS915 - Advanced Computer Security February 4, 2018 29 / 29


