Simple Firewalls

Arshad Jhumka

University of Warwick

arshad@dcs.warwick.ac.uk

February 4, 2018

Arshad Jhumka (University of Warwick) CS915 - Advanced Computer Security February 4, 2018

Previously,

@ We have studied how to develop security policies.
o We have looked at security policies, e.g., Bell-LaPadula, Chinese Wall.
o We have also studied threat models to drive the development of
appropriate security policy.

@ We have studied how to enforce security policies through execution
monitoring
o We have looked at monitors, specified in terms of security automata,
to stop an execution when the policy is about to be violated.
o We also looked at target transformers for policy enforcement.

Arshad Jhumka (University of Warwick) CS915 - Advanced Computer Security February 4, 2018 2 /29

@ We are going to look at a specific target transformer: Firewalls.

@ Firewall: A security guard placed at the point of entry between a
private network and the Internet that monitors all incoming and
outgoing packets.

o Firewall consists of set of rules.

e The decision on whether to forward or drop a message depends on the
rule that the message satisfies.

o However, there are many challenges when designing a firewall.

@ Some challenges:
e May have conflicting rules.
e Set of rules may not be complete, i.e., rules for some packets are
missing.
o Compactness, i.e., some rules are redundant.

Arshad Jhumka (University of Warwick) CS915 - Advanced Computer Security February 4, 2018

Firewall Example

Firowall
(Gaeway Fouter) Mail Server Host 1

(ol 1 W -

A Private Netw/ork

1. Rule ry: (I = 0) A (S = any) A (D = Mail Server) A (N = 25) A (P = tep) — accept
(This rule allows incoming SMTP packets to proceed to the mail server.)
2. Rule rz: (I = 0) A (S — Malicious Hosts) A (D — any) 4 (N — any) A (P — any) — discard
(This rule discards incoming packets from previously known malicious hosts.)
3. Rule rz: (I=1) A (S = any) A (D = any) A (N = any) A (P = any) — accept
(Thla rule allows any outgoing packet to procee:
4. Rule r:: (I = any) A (S = any) A (D = any) A (N = Anyw AP = any) — accept
(This rule allows any incoming or outgoing packet to proceed.)

Name Meaning

1 Interface

S Source IP address

D Destination [P address
N Destination port number
r

Protocol type

Arshad Jhumka (University of Warwick) CS9 Advanced Computer Security

February 4, 2018

Consistency and Completeness

o Consistency issue.

o Conflicting rules; several rules can be satisfied but with different
outputs.

@ Example: rule rl1 and r2 conflict since the SMTP packets from
previously known malicious hosts to the mail server match both rules
and the decisions of rl and r2 are different

@ Completeness issue.

o It is difficult to ensure that all possible packets are considered.
@ to block these two types of traffic, the following two rules should be
inserted immediately after rule rl :
o (I=0)A(S=any)A (D= Mail Server) A (N =any) A (P = any
) — discard
o (I=0)A(S=any)A(D=any)A(N=25)A (P =tcp) — discard

Arshad Jhumka (University of Warwick) CS915 - Advanced Computer Security February 4, 2018 5/29

Model and Notation

Packet: n-tuple, (d ...d,) of data.

Field F;: variable with a non-negative integer domain, denoted by
D(F;), e.g., source IP address [0,232 — 1].

Each data item d; in packet is such that d; € D(F;).

Y : set of all packets over fields F; ... F,.

Rule: (predicate) — (decision).

Predicate: boolean expression over di ... d,, decision € {a,d}
Firewall: sequence of rules, Ry ... Rp.

A packet matches a rule R; iff the packet satisfies the predicate of R;.

Two rules overlap if there is at least one packet that can match both
rules.

Two rules conflict iff they overlap and have different decisions.
When two rules R;, R;, i < j conflict, the decision taken is that of K;.
The last rule is called the default rule; usually, a tautology.

Arshad Jhumka (University of Warwick) CS915 - Advanced Computer Security February 4, 2018 6 /29

Firewall Decision Diagram (FDD)

e FDD is an acyclic and directed graph, defined over Fy ... F,, with 5
properties:
© Has exactly one root, a node with no incoming edge. Nodes with no

outgoing edges are called terminal nodes.
@ Each node v in FDD is labeled with a field, denoted F(v), such that

{Fi,...,Fn} if v is non-terminal
Fv) e { {a,d} if v is terminal

© An edge e is labeled with a non-empty set of integer, denoted /(e),
such that if e is an outgoing edge of node v, then we have
1(e) € D(F(v)).
© A directed path from root to a terminal nodes is called a decision path.
No two nodes on a decision path have the same label.
© The set of all outgoing edges of node v, denoted E(v), satisfies the
following two conditions:
@ Consistency: 1(e) N I(e") =0, for any two distinct edges e, e’ € E(v).
@ Completeness: Uecg(v)l(e) = D(F(v)).

Arshad Jhumka (University of Warwick) CS915 - Advanced Computer Security February 4, 2018 7 /29

Example FDD

[3.4]
(6.8]

Arshad Jhumka (University of Warwick) CS915 - Advanced Computer Security February 4, 2018 8 /29

FDD and Decision

@ FDD maps each packet to a decision by testing packet down the FDD
from root to a terminal node.

@ Label of the terminal node represents the decision for the packet.

@ Each non-terminal node specifies a test of a packet field.

@ Each outgoing edge from a non-terminal node corresponds to some
values of that field.

@ An edge is selected when the edge label contains the value of the
packet field.

@ The selection process is repeated at the new node, until a terminal
node is reached.

Arshad Jhumka (University of Warwick) CS915 - Advanced Computer Security February 4, 2018 9 /29

FDD Traversal

Example (Traversing FDD for Decision)

Input: FDD, packet
output: decision

current := root;
while (label(current) !'= a or d) do {
forall edge ((current, j),value) do {
if (data is contained in value) then
current := j;
endif
} od;
} end while
return(label (current)) ;

Arshad Jhumka (University of Warwick) CS915 - Advanced Computer Security February 4, 2018

FDD and Decision

e Decision path: Represented by (vie ... vkexvki1), where vy is the
root and vk41 is a terminal node and each edge e; is a directed arc
from node v; to node vj ;.

@ A decision path (vie ... vkexviki1) represents the following rule:

FieSiA---NFq€Sys— (decision), where decision is the
label of the terminal node v, in the path and

S _ I(ej) if 3 node v; in decision path with labeled field F;
" | D(F;) otherwise

e Each path (together with labels) in FDD represents a rule in the
firewall.

@ There is only one rule that any packet p will match in an FDD.

Arshad Jhumka (University of Warwick) CS915 - Advanced Computer Security February 4, 2018 11 /29

Example FDD and Firewall Rules

o Continue using existing FDD, firewall rules are:
RI. F, €[5,6]AFc[3,4U[6,8] — a
R2. F, €[5,6] A Fy € [1,2]U[5,5]U[9,10] — d
R3. F,€[7,8]AF,€[3,4U][6,8 — a
R4. F € [7,8] AR e [1,2]U[5,5]U[9,10] — d
R5. F €[1,4]U[9,10] A F> € [1,5] — d
R6. Fy € [1,4]U[9,10] A F € [6,10] — d

Arshad Jhumka (University of Warwick) CS915 - Advanced Computer Security February 4, 2018 12 /29

Important result for FDDs

e For an FDD f, f.accept is the set of all packets accepted by f.
@ For an FDD f, f.discard is the set of all packets discarded by f.

@ These two sets precisely define the semantics of the FDD.

Theorem (Theorem of FDDs)

For any FDD f, we have
Q f.accept N f.discard = 0.
@ f.accept U f.discard = %.

e Two FDDs f and f’ are equivalent iff (i) f.accept = f'.accept and
(ii) f.discard = f'.discard.

Arshad Jhumka (University of Warwick) CS915 - Advanced Computer Security February 4, 2018 13 /29

FDD Reduction

@ The greater the number of decision path in an FDD, the greater the
number of rules for the firewall.

@ Hence, it takes more time for the firewall to arrive at a decision, for
any packet.

@ Thus, number of decision paths (rules) must be reduced. How to
compress the graph?

@ Use the concept of isomorphic nodes.

Definition (Isomorphic Nodes)

Two nodes v and v/ in an FDD are isomorphic iff
@ both v and v/ are terminal nodes with identical labels.

@ Both v and v/ are non-terminal nodes, and there is a 1-1 correspondence
between the outgoing edges of v and those of v/ such that every pair of
corresponding edges have identical labels and they point to the same node.

v

Arshad Jhumka (University of Warwick) CS915 - Advanced Computer Security February 4, 2018 14 /29

Algorithm 1 - Reduced FDD

An FDD is reduced iff it satisfies the following three conditions:
@ No node in FDD has only one outgoing edge.
@ No two nodes in FDD are isomorphic.
@ No two nodes have more than one edge between them.

Algorithm for FDD Reduction
Input: FDD f, Output: Reduced FDD equivalent to f

Steps: (apply 1-3 repeatedly until FDD cannot be reduced any further)

1. If there is a node v with only 1 outgoing edge e, e points to v’,
remove both v and e, and all edges that point to v point to v’.

2. Two isomorphic edges v and v’, remove v’ together with all its
outgoing edges, and let all edges that point to v’ point to v.

3. Two edges e and e’ that are both between the same pair of nodes,
then remove e’ and change label of e from I(e) to I(e) U I(e’).

Arshad Jhumka (University of Warwick) CS915 - Advanced Computer Security February 4, 2018 15 /29

Reduced FDD - Example (Cont'd)

Arshad Jhumka (University of Warwick) CS915 - Advanced Computer Security February 4, 2018 16 / 29

FDD Marking

@ Reduced FDD =- Reduced number of decision paths.

@ Also, order of rules in firewall is important. How to determine the
order?

o FDD Marking; mark which transitions to be considered last.

e FLeSIN...NF, €S, — (decision) is simple iff every S;,1 < i < n,
is an interval of consecutive non-negative integers.

@ Most firewalls require simple rules;hence, minimise number of simple
rules generated from FDD.

@ Number of simple rules generated from marked FDD < Number of
simple rules generated from original FDD

Arshad Jhumka (University of Warwick) CS915 - Advanced Computer Security February 4, 2018 17 /29

Marked FDD

@ A marked version ' of an FDD f is the same as f except that exactly
one outgoing edge of each non-terminal node if ' is marked “all”.

@ FDD f and f’ are equivalent since the label of edges marked “all” do
not change.

e FDD f’ is called a marked FDD.

Arshad Jhumka (University of Warwick) CS915 - Advanced Computer Security February 4, 2018 18 /29

Minimal Load Marked FDD

@ The load of a non-empty set of integers S, denoted load(S), is the
minimal number of non-overlapping integer intervals that cover S.

@ Load of a edge e in a marked FDD is defined as follows:

load(e) € 1 if e is marked all
load(/(e)) otherwise

@ Load of a node v in a marked FDD is defined recursively as follows:

1 if v is terminal
load(v) € Zle(load(e,-) * load(v;) if v is non-terminal; suppose v has k outgoing edges
€1, ..., e which point to nodes vy, ..., v, respectively

Arshad Jhumka (University of Warwick)

CS915 - Advanced Computer Security February 4, 2018 19 /29

Algorithm 2 - Minimal Load Marked FDD

Algorithm M-FDD:
Input: FDD f, Output: marked FDD f’ with minimal load
(no the marked FDD f’’ has lower load)

Steps:
1. Compute the load of each terminal node v in f as follows: load(v) :=1

2. WHILE (there is a node v whose load has not yet been computed,
suppose v has k outgoing edges el,..., ek, and these edges point to
vl,...,vk respectively, and the loads of these k nodes have been computed)
Do {
(a) Among the k edges el,..., ek, choose an edge ej with the
largest value of (load(ej) -1) * load(v), and mark edges
ej with ‘‘all’’.
(b) Compute the load of v as follows:
load(v) := S_k | (load(e;) * load(v;))

} END WHILE

Arshad Jhumka (University of Warwick) CS915 - Advanced Computer Security February 4, 2018 20 / 29

Marked FDD Remarks

@ Load of a marked FDD f, denoted load(f), equals the load of the root
of f.

@ Marked FDD with smaller load = generation of smaller number of
simple rules.

Theorem (Algorithm and Minimal Load FDD)

Given an FDD f, algorithm M-FDD returns a marked FDD f' with
minimal load.

February 4, 2018 21 /29

Arshad Jhumka (University of Warwick) CS915 - Advanced Computer Security

From Marked FDD to Firewall Generation

e Semantics of firewall: A packet (p1,...,pn) matches a rule
FreSiA...NF, €S, — (decision) iff the condition
FLeSiNn...NF, €S, holds.

@ Firewall consists of a sequence of rules such that, for any packet,
there is at least one rule that the packet matches; maps every packet
to the decision of the first matching rule.

Theorem (Firewall Theorem)

For a firewall f of a sequence of rules,
Q facceptn f.discard = ()
@ f.acceptU f.discard = ¥

e For a FDD f and firewall f/, f = f' iff
f.accept = f'.accept A f.discard = f'.discard.

Arshad Jhumka (University of Warwick) CS915 - Advanced Computer Security February 4, 2018

From Marked FDD to Firewall Generation (Informal)

@ Start with a marked FDD f, perform a depth-first traversal of f such
that for each non-terminal node v, the outgoing edge marked “all” of
v is traversed after all other other outgoing edges of v have been
traversed.

Whenever a terminal node encountered, if vie; ... vkexvks1 is a
decision path, output rule r as follows:
FreSiAN...NF, €S, — F(vky1), where

1(ej) if the decision has a node v;
and that is labeled with field F;
and g; is not marked “all”

D(F;) otherwise

Rule represented by (viey ... vkecvip1)is F1 € Ti Ao A Fy € Ty — F(viy1) where

that is labeled with field F;

1(e)) if the decision has a node v;
T =
D(F;) otherwise

Predicate F; € S A ... A F, € S, is called the matching predicate of rule.
Predicate F1 € T1 A ... A F, € T, is called the resolving predicate of the rule.

Arshad Jhumka (University of Warwick) CS915 - Advanced Computer Security February 4, 2018

Algorithm 3 - Firewall Generation

Input: Marked FDD f
Output: Firewall equivalent to . For each rule r, r.rmp and r.rp is

computed.

Steps:

Depth-first traverse f s.t for each nonterminal node v, the outgoing edge marked as “all” of v is traversed after all other
outgoing edges of v have been traversed. Whenever a terminal node is encountered, assuming vye; . . . vie, vy 1 is the decision
path where each g;is the most recently traversed outgoing edge of node v;, output a rule r together with its matching predicate
r.mp and its resolving predicate as follows:

ristherule F € Sy A ... A Fy € Sy — F(viy1) where

I(e;) if the decision has a node v;
and that is labeled with field F;
and e; is not marked “all”

D(F;) otherwise

r.mp is the predicate of rule r.
r.rp is the predicate F; € Ty A ... A Fy € Tp, where

I(ej) if the decision has a node v;
T, = that is labeled with field F;
D(F;) otherwise

@ Firewall may however have redundant rules, i.e., removing rules do not change the semantics of the firewall.

@ Removing them results in more efficient firewall. How to identify redundant rules?

Arshad Jhumka (University of Warwick) CS9 Advanced Computer Security

Algorithm 4 - Firewall Compaction

@ Present an efficient algorithm for discovering redundant rules.

@ Redundant rules are those with same decision but one is implied by
the other.

Input: A firewall (r,...,rm)
Output: An equivalent but more compact firewall.
Steps:

1. fori = m to 1 do
redundant[i] := 0;
2. fori=mto1ldo
if there exist a rule ry in the firewall, where i < k < m, such that the following 4 conditions hold:
2.1. redundant[k] = false;
2.2. rj, ry have same decisions.
2.3. rj.rp implies r.mp
2.4. for every rule r;, where i < j < k, at least one of the following three conditions holds:
2.4.1. redundant[j] = 1.
2.4.2. rj, rj have the same decision.
2.4.3. no packet satisfies both r;.rp and r;.mp.
then redundant(i] := 1
else redundant[i] :== 0
3. fori=mto1ldo
if redundant[i] = 1 then remove r; from the firewall.

Arshad Jhumka (University of Warwick) CS915 - Advanced Computer Security ruary 4, 2018

Firewall Compaction - Example (Cont'd)

T =Fe[58 AFe(3,4U[68 — a,
rimp = F1€[5,8]AF: € [3,4U[6,8]
rmaop =T e[5,8 AR e [3,4U16,8

s = F e[58AFRe10 — 4
remp = F1 € [5,8 AFe(l,10]

rarp = (Fy € [5,8| A k3 € [1,2 U[5,5] U [9,10])
ry =R eLIAFRE,10] — 4

rsamp = k€ [1,10] A Ky € [1,10]
rarp = F1 €[1,4U[9,10] A Fs € [1,10]

1. Fi e [5,8]/\F2 € [3,4]U[6,8] — a,
2. Fy e [l,ll)]/\Fg € [l,l[)]—) d

Arshad Jhumka (University of Warwick) CS915 - Advanced Computer Security bruary 4, 2018 27 /29

Algorithm 5 - Firewall Simplification

Input: A (compact) firewall f
Output: A simple firewall £/ which is equivalent to f.
Steps:

while f has a rule of the form F; € S A ... AF; € S A... N F, € S, — (decision) where some S; is represented by
[a1, b1] U ... U [ak, bi], k > 2.
do

replace this rule by the following k non-overlapping rules:

FrLeESIAN...ANF€la, 1] AN ... ANFy € 54 — (decision)

FlreESIAN...ANF€lag,] AN...NFy € 5S4 — (decision)

Fi €S1A...ANFj €lag,b] A...AFy €Sy — (decision)
end

Arshad Jhumka (University of Warwick) CS915 - Advanced Computer Security

Showed how to design a simple firewall from a user-specified firewall
design diagram.

o Step 1: Starting with a user-specified FDD f, algorithm algorithm 1
transforms it into a reduced FDD f;.

@ Step 2: From f1, algorithm algorithm 2 transforms it into a marked

FDD f,.

o Step 3: From f,, algorithm algorithm 3 transforms it into a firewall
f3.

o Step 4: Algorithm 4 transforms f3 into a compacted firewall f4.

o Step 5: Algorithm 5 transforms f; into a simple firewall fs.

Arshad Jhumka (University of Warwick) CS915 - Advanced Computer Security February 4, 2018 29 /29

