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Computational neuroscience

On the path toward brain-scale simulations

Felix Wang & James B. Aimone

Today’s high-performance computing systems 
are nearing an ability to simulate the human 
brain at scale. This presents a new challenge: 
going forward, will the bigger challenge be the 
brain’s size or its complexity?

How far are we from simulating the human brain? Ever since computers 
have been invented, researchers have wondered about instilling them 
with artificial intelligence. At the same time, full-scale brain simula-
tions provide us with the potential to discover deep understanding in 
the fields of neuroscience and health1 and are increasingly enabled by 
the availability of whole-organism connectomes (meaning, the map of 
neuron connectivity)2. Especially with the rapidly growing societal costs 
of mental health, the use of advanced simulations is a valuable tool to 
explore brain function and its dysfunction3,4. Nevertheless, full-scale 
brain simulations are a challenging task, and one of the main bottle-
necks boils down to their exponential computational cost. Writing in 
Nature Computational Science, Wenlian Lu and colleagues present an 
approach that has pushed the limit on the scale and complexity of brain 
simulations that can be performed5.

Beyond just its sheer size, simulating the human brain is a complex 
challenge due to its intricate structure and connectivity. Using a sim-
ple back-of-the-envelope estimate, the brain contains approximately  

100 billion neurons, each capable of connecting with up to 10,000 
other neurons. Conservative estimates place the number of con-
nections between neurons in the brain — called synapses — at about  
1 quadrillion, or 1015. Reaching toward large-scale simulations, the key 
limiting factor lies in how to efficiently model these synapses. On mod-
ern parallel supercomputing systems, while it may be straightforward 
enough to compute the model updates for each neuron independently, 
the across-model communication costs imposed by the synapses 
quickly eclipse that of neurons, even before incorporating synaptic 
stochasticity (each synapse is an independent source of randomness) 
and plasticity (the presumed locus of learning in the brain).

Another substantial challenge in brain-scale simulation is the vast 
diversity of timescales involved within the model. Neuron dynamics 
for transmitting and processing spiking signals typically occur on the 
order of milliseconds, but the processes governing neural plasticity 
(that is, learning and adaptation), typically unfold over seconds, or 
over months in the case of neurogenesis or synaptic restructuring6. 
Similarly, the timescales of interest for simulations vary as well: while 
there are some neurological conditions, such as epilepsy, which exhibit 
aberrant dynamics observable in short time scales, many neurologi-
cal conditions also arise over weeks and months6. For this reason, we 
ideally need to be able to simulate the brain at speeds much faster 
than real-time.

In their study, Lu and colleagues have tackled some of these chal-
lenges to increase the scale and complexity of brain simulations5 (Fig. 1). 
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Fig. 1 | Estimation of computational costs of full-
brain simulations. Lu and colleagues show that 
full-brain scales are achievable with today's high-
performance computing (HPC) systems. Future 
brain simulations will push these limits by including 
stochastic synapses, continual learning, and 
anatomically realistic neurons, potentially greatly 
exceeding today’s conventional HPC capabilities. 
The scale achieved by the work by Lu and colleagues 
is shown by a yellow marker. The dashed line 
represents the estimated scale of the human 
brain. The red curve represents the estimated cost 
of synapses, and the blue curve represents the 
estimated costs of simulating neurons. FLOPS, 
floating-point operations per second.
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reason, we expect to see some growing tension between improving our 
models and our simulators. Increasing simulation fidelity to capture 
more biological detail and diversity will require refinements to the neu-
ron, synapse, and whole-brain connectivity models, greatly increasing 
computational cost at a constant scale. We can only speculate as to how 
this complexity will increase computational costs, but it is possible that 
the inclusion of learning10 and spatial considerations such as dendrites 
(the tree-like arborization of neurons)11 will eventually make neurons, 
not synapses, the dominant cost. To reduce simulation costs accord-
ingly, we may have to look into advancing computational techniques 
and supporting hardware systems that are less reliant on homogeneity, 
perhaps shifting toward neuromorphic technologies for acceleration 
over GPUs12. Returning to their applications in neuroscience and health, 
ideally these efforts would lead us to a more complete understanding 
of the brain by expanding the scope and detail of questions we may ask 
about the brain through simulation.
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By utilizing over 14,000 graphics processing units (GPUs) over 3,500 
compute nodes, they were able to simulate a full 86 billion neurons 
and 47.8 trillion synapses in an approximated brain model. While 
there have been other simulations that have reached ultra-large scales  
(>1013 synapses)7,8, this is the first study that achieved this scale of simu-
lation while both incorporating measured neurobiological constraints 
and targeting a functional cognitive task.

The use of GPUs is particularly promising because they are able to 
process necessary computations in parallel, which helps to accelerate 
these large-scale workloads9. However, the use of GPUs for biological 
simulations has historically been challenging due to the diverse types 
of neurons and the complex connectivity of the brain, which tends to be 
locally dense and globally sparse. When simulations get large enough 
to span multiple compute nodes, the additional complexity of having 
to shuffle data to and from GPUs as well as between compute nodes 
makes the design of simulation software much more difficult.

Although the authors used simplified, homogeneous neuron 
models in their work, they proposed solutions to address the critical 
communication problem. This was accomplished through a two-level 
scheme to reduce the total amount of communication that could take 
place between compute nodes. Within a local group of GPUs, they 
allowed for direct connections. Between groups of GPUs, they assigned 
a bridge node that was responsible for forwarding data. This substan-
tially cut down on the total number of overlapping communication 
pathways in their multi-node system, thus reducing network conges-
tion. Between a GPU and its compute node, they also separated the 
computation and communication into three main tasks — sending, 
computing, and receiving — which could be partially overlapped. This 
additionally improved efficiency by minimizing the time spent waiting 
on data transfer where possible.

As a result of these efforts, the authors were able to achieve impres-
sive simulation times for a brain-scale model compared to similar 
simulation efforts. Using these simulations for computational neu-
roscience experiments, the authors were also able to fit their spiking 
neural simulation to data observed through functional MRI (magnetic 
resonance imaging), which is a method for measuring brain activity 
through blood oxygenation levels. These experiments compared the 
resting and active states of the brain, and the responses to a visual 
evaluation task. Although these experiments are only able to paint the 
brain in broad strokes, they provide an important neuroscience result 
in advancing how we may learn about the brain through simulation as 
an important computational milestone.

The methods developed by Lu and colleagues provide valuable 
technical insights for realizing efficient brain-scale simulations, as 
well as a sense of the considerable computational resource needs. It 
is notable that this simulation, which captures roughly one tenth of 
the synapses of the brain, used roughly one tenth the floating-point 
operations per second (FLOPS) of an exascale machine, suggesting 
that today’s largest high-performance computing systems are in the 
ballpark of what is necessary for modeling every synapse. For this 
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