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Preface

Since the term “random field’’ has a variety of different connotations, ranging from
agriculture to statistical mechanics, let us start by clarifying that, in this book, a
random field is a stochastic process, usually taking values in a Euclidean space, and
defined over a parameter space of dimensionality at least 1.

Consequently, random processes defined on countable parameter spaces will not
appear here. Indeed, even processes on R1 will make only rare appearances and,
from the point of view of this book, are almost trivial. The parameter spaces we like
best are manifolds, although for much of the time we shall require no more than that
they be pseudometric spaces.

With this clarification in hand, the next thing that you should know is that this
book will have a sequel dealing primarily with applications.

In fact, as we complete this book, we have already started, together with KW
(Keith Worsley), on a companion volume [8] tentatively entitled RFG-A, or Random
Fields and Geometry: Applications. The current volume—RFG—concentrates on
the theory and mathematical background of random fields, while RFG-A is intended
to do precisely what its title promises. Once the companion volume is published,
you will find there not only applications of the theory of this book, but of (smooth)
random fields in general.

Making a clear split between theory and practice has both advantages and disad-
vantages. It certainly eased the pressure on us to attempt the almost impossible goal
of writing in a style that would be accessible to all. It also, to a large extent, eases the
load on you, the reader, since you can now choose the volume closer to your interests
and so avoid either “irrelevant’’mathematical detail or the “real world,’’depending on
your outlook and tastes. However, these are small gains when compared to the major
loss of creating an apparent dichotomy between two things that should, in principle,
go hand-in-hand: theory and application. What is true in principle is particularly true
of the topic at hand, and, to explain why, we shall indulge ourselves in a paragraph
or two of history.

The precusor to both of the current volumes was the 1981 monograph The Geom-
etry of Random Fields (GRF) which grew out of RJA’s (i.e., Robert Adler’s) Ph.D.
thesis under Michael Hasofer. The problem that gave birth to the thesis was an applied
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one, having to do with ground fissures due to water permeating through the earth un-
der a building site. However, both the thesis and GRF ended up being directed more
to theoreticians than to subject-matter researchers. Nevertheless, the topics there
found many applications over the past two decades, in disciplines as widespread as
astrophysics and medical imaging.

These applications led to a wide variety of extensions of the material of GRF ,
which, while different in extent to what was there, were not really different in kind.
However, in the late 1990s KW found himself facing a brain mapping problem on
the cerebral cortex (i.e., the brain surface) that involved looking at random fields
on manifolds. Jonathan Taylor (JET) looked at this problem and, in somewhat of a
repetition of history, took it to an abstract level and wrote a Ph.D. thesis that completely
revolutionized1 the way one should think about problems involving the geometry
generated by smooth random fields. This, and subsequent material, makes up Part III
of the current, three-part, book.

In fact, this book is really about Part III, and it is there that most of the new
material will be found. Part I is mainly an adaptation of RJA’s 1990 IMS lecture
notes, An Introduction to Continuity, Extrema, and Related Topics for General Gauss-
ian Processes, considerably corrected and somewhat reworked with the intention of
providing all that one needs to know about Gaussian random fields in order to read
Part III. In addition, Part I includes a chapter on stationarity. En passant, we also
included many things that were not really needed for Part III, so that Part I can be
(and often has been) used as the basis of a one-quarter course in Gaussian processes.
Such a course (and, indeed, this book as a whole) would be aimed at students who
have already taken a basic course in measure-theoretic probability and also have some
basic familiarity with stochastic processes.

Part II covers material from both integral and differential geometry. However, the
material here is considerably less standard than that of Part I, and we expect that few
readers other than professional geometers will be familiar with all of it. In addition,
some of the proofs are different from what is found in the standard geometry literature
in that they use properties of Gaussian distributions.2

There are two main aims to Part II. One is to set up an analogue of the critical point
theory of Marston Morse in the framework of Whitney stratified manifolds. What
makes this nonstandard (at least in terms of what most students of mathematics see
as part of their graduate education) is that Morse theory is usually done for smooth
manifolds, preferably without boundaries. Whitney stratified manifolds are only
piecewise smooth, and are permitted any number of edges, corners, etc. This brings
them closer to the objects of integral geometry, to which we devote a chapter. While
the results of this specific chapter are actually subsumed by what we shall have to
say about Whitney stratified manifolds, they have the advantage that they are easy to
state and prove without heavy machinery.

The second aim of Part II is to develop Lipschitz–Killing curvatures in the setting
of Whitney stratified manifolds and to describe their role in what are known as “tube

1 This verb was chosen by RJA and not JET.
2 After all, since we shall by then have the Gaussian Part I behind us, it seems wasteful not

to use it when it can help simplify proofs.
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formulas.’’ We shall spend quite some time on this. Some of the material here is
“well known’’ (albeit only to experts) and some, particularly that relating to tube and
Crofton formulas in Gauss space, is new. Furthermore, we derive the tube formulas
for locally convex Whitney stratified manifolds, which is both somewhat more general
than the usual approach for smooth manifolds, and somewhat more practical, since
most of the parameter spaces we are interested in have boundaries. In addition, the
approach we adopt is often unconventional.

These two aims make for a somewhat unusual combination of material and there is
no easily accessible and succinct3 alternative to our Part II for learning about them. In
the same vein, in order to help novice differential geometers, we have included a one-
chapter primer on differential geometry that runs quickly, and often unaesthetically,
through the basic concepts and notation of this most beautiful part of mathematics.

However, although Parts I and II of this book contain much material of intrinsic
interest we would not have written them were it not for Part III, for which they provide
necessary background material. What is it in Part III that justifies close to 300 pages
of preparation? Part III revolves around the excursion sets of smooth, Rk-valued
random fields f over piecewise smooth manifolds M . Excursion sets are subsets of
M given by

AD ≡ AD(f,M)
�= {t ∈ M : f (t) ∈ D}

for D ⊂ Rk .
A great deal of the sample function behavior of such fields can be deduced from

their excursion sets and a surprising amount from the Euler, or Euler–Poincaré, char-
acteristics of these excursion sets, defined in Part II. In particular, if we denote the
Euler characteristic of a set A by ϕ(A), then much of Part III is devoted to finding
the following expression for their expectation, when f is Gaussian with zero mean
and unit constant variance:

E{ϕ(AD)} =
dim M∑
j=0

(2π)−j/2Lj (M)Mk
j (D). (0.0.1)

Here the Lj (M) are the Lipschitz–Killing curvatures ofM with respect to a Riemann-
ian metric induced by the random field f , and the Mk

j (D) are certain Minkowski-like

functionals (closely akin to Lipschitz–Killing curvatures) on Rk under Gauss mea-
sure.

If all of this sounds terribly abstract, the truth is that it both is, and is not. It is
abstract, because while (0.0.1) has had many precursors over the last 60 years or so, it
has never before been established in the generality described above. It is also abstract
in that the tools involved in the derivation of (0.0.1) in this setting require some rather
heavy machinery from differential geometry. However, this level of abstraction has

3 The stress here is on “succinct.’’ With the exception of the material on Gauss space, almost
everything that we have to say can be found somewhere in the literatures of integral and
differential geometry, for which there are many excellent texts, some of which we shall list
later. However, all presume a background knowledge that is beyond what we shall require,
and each contains only a subset of the results we shall need.

Administrator
Highlight
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turned out to pay significant dividends, for not only does it yield insight into earlier
results that we did not have before, but it also has practical implications. For example,
the approach that we shall employ works just as well for nonstationary processes as
it does for stationary ones.4 However, nonstationarity, even on manifolds as simple
as [0, 1]2, was previously considered essentially intractable. Simply put, this is one
of those rare but constantly pursued examples in mathematics in which abstraction
leads not only to a complete and elegant theory, but also to practical consequences.

An extremely simple and very down-to-earth application of (0.0.1) arises when
the manifold is the unit interval [0, 1], f is real-valued, and D = [u,∞). In that
case, E{ϕ(AD)} is no more than the mean number of upcrossings of the level u by the
process f , along with a boundary correction term. Consequently, modulo the bound-
ary term, (0.0.1) collapses to no more than the famous Rice formula, undoubtedly
one of the most important results in the applications of smooth stochastic processes.
If you are unfamiliar with Rice’s formula, then you might want to start reading this
book at Section 11.1, where it appears in some detail, together with heuristic, but
instructional, proofs and applications.

One of the reasons that Rice’s formula is so important is that it has long been used
as an approximation, for large u, to the excursion probability

P

{
sup

t∈[0,1]
f (t) ≥ u

}
,

itself an object of major practical importance. The heuristic argument behind this
is simple: If f crosses a high level, it is unlikely do so more than once. Thus, in
essence, the probability that f crosses the level u is close to the probability that there
is an upcrossing of u, along with a boundary correction term. (The correction comes
from the fact that one way for supt∈[0,1] f (t) to be larger than u is for there to be
no upcrossings but f (0) ≥ u.) Since the number of upcrossings of a high level will
always be small, the probability of an upcrossing is well approximated by the mean
number of upcrossings. Hence Rice’s formula gives an approximation for excursion
probabilities.

If (0.0.1) is the main result of Part III, then the second-most-important result is
that, at the same level of generality and for a wide choice of D, we can find a bound
for the difference

|P{∃ t ∈ M : f (t) ∈ D} − E{ϕ(AD)}|.
A specific case of this occurs when f takes values in R1, in which case not only can
we show that, for large u,∣∣∣P{ sup

t∈M
f (t) ≥ u

}
− E{ϕ(A[u,∞))}

∣∣∣
is small, but we can provide an upper bound to it that is both sharp and explicit.

Given that the second term here is known from (0.0.1), what this inequility gives is
an excellent approximation to Gaussian excursion probabilities in a very wide setting,
something that has long been a holy grail of Gaussian process theory.

4 Still assuming marginal stationarity, i.e., zero mean and constant variance.
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In the generality in which we shall be working, the bound is determined by geo-
metric properties of the manifold M with the induced Riemannian metric mentioned
above. Furthermore, unlike the handwaving argument described above for the simple
one-dimensional case, the new tools provide a fully rigorous proof.

At this point we should probably say something about why we chose to take
piecewise smooth manifolds as our generic parameter space. This is perhaps best
explained via an example. Suppose that we were to take parameter spaces that were
smooth, even C∞, manifolds, with C∞ boundaries.

C

C

BA

BA

Fig. 0.0.1. A C∞ function defined over a manifold with a C∞ boundary gives excursion sets
that have sharp, nondifferentiable, corners.

Such an example is shown in Figure 0.0.1, where the parameter space is a disk.
The three excursions of a (C∞) function f above some nominal level are marked on
the function surface, and these lie above the three corresponding components of the
excursion set A[u,∞). Note that, despite the smoothness of each component of this
example, the excursion set has sharp corners where it intersects with the boundary of
the parameter space. In other words, A[u,∞) is only a piecewise smooth manifold.

It turns out that since we end up with piecewise smooth manifolds for our excursion
sets, there is not a lot saved by not starting with them as parameter spaces as well.5

So now you know what awaits you at the end of the path through this book.
However, traversing the path has value in itself. Wandering, as it does, through the
fields of both probability and geometry, it is a path that we imagine not too many of
you will have traversed before. We hope that you will enjoy the scenery along the
way as much as we have enjoyed describing it. (We also hope, for your sake, that it
will be easier and faster in the reading than it was in the writing.)

We are left now with two tasks: Advising how best to read this book, and offering
our acknowledgments.

5 Of course, we could simplify things considerably by working only with parameter spaces
that have no boundary, something that would be natural, for example, for a differential
geometer. However, this would leave us with a theory that could not handle parameter
spaces as simple as the square and the cube, a situation that would be intolerable from the
point of view of applications.
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The best way to read the book is, of course, to start at the beginning and work
through to the end. That was how we wrote it. However, here some other possibilities,
depending on what you want to get out of it.

(i) A course on Gaussian processes: Chapters 1 through 4 along with Sections 5.1
through 5.4 if you want to learn about stationarity as well. These chapters can
be read in more or less any order; see the comments in the introduction to Part I.

(ii) Random fields on Euclidean spaces, with an accent on geometry: Sections 1.1–
1.4.2 and Chapter 3 for basic Gaussian processes, Sections 4.1, 4.5, and 4.6
for some classical material on extremal distributions, and Chapter 5 on station-
arity. Chapter 6 and Section 9.4 give the basic geometry and Chapter 11 the
random geometry of Gaussian fields. Section 14.4 gives examples of how the
results of Chapter 11 relate to excursion probabilities, and Section 15.10 gives
examples of the non-Gaussian theory. (Note that because you have chosen to
remain in the Euclidean scenario, and so avoid most of the real challenges of
differential geometry, you have been relegated to reading examples instead of
the general case!)

(iii) Probabilisitic problems in, and using, differential geometry: Sections 1.1, 1.2
and the results (but not proofs) of Chapter 3 to get a bare-bones introduction to
Gaussian processes, along with Sections 5.5 and 5.6 for some important notation.
As much of Chapter 7 as you need to revise differential-geometric concepts,
followed by Chapters 8, 9, and 10. The punch line is then in Chapters 12 and 13
for Gaussian processes and Chapter 15 in general. It is only in this last chapter
that you will get to see all the geometric preliminaries of Part II in play at once.

(iv) Applications without the theory: Wait for RFG-A. We are working on it!

Now for the acknowledgments. Both RJA and JET owe debts of gratitude to KW,
and we had better acknowledge them now, since we can hardly do it in the preface
of RFG-A.

Beyond our personal debts to KW, not least for getting the two us of together,
the subject matter of this book also owes him an enormous debt of gratitude. It
was during his various extensions and applications of the material of GRF that the
passage between the old Euclidean theory and its newer manifold version began to
take shape. Without his tenacious refusal to leave (applied) problems because the
theory (geometry) seemed too hard, the foundations on which our Part III is based
would never have been laid.

Back to the personal level, we also owe debts of gratitude to numerous students
at the Technion, UC Santa Barbara, Stanford, and the ICE-EM in Brisbane who sat
through courses as we put this volume together, as well as the group at McGill that
went through the book as a reading course with KW. Their enthusiasm, patience, and
refusal to take “it is easy to see that’’ for an answer when it was not all that easy to
see things, not to mention all the typos and errors that they found, has helped iron a
lot of wrinkles out of the final product.

In particular, we would like to thank Nicholas Chamandy, Sourav Chatterjee,
Steve Huntsman, Farzan Rohani, Alessio Sancetta, Armin Schwartzman, and Sreekar
Vadlamani for their questions, comments, and, embarrassingly often, corrections.
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The ubiquitous anonymous reviewer also made a number of useful suggestions and
we are suitably grateful to him/her.

The generous support of the U.S.–Israel Binational Science Foundation, the Israel
Science Foundation, the U.S. National Science Foundation, the Louis and Samuel
SeidenAcademic Chair, and the Canadian Natural Sciences and Engineering Research
Council over the (too long a) period that we worked on this book are all gratefully
acknowledged.

Finally, don’t forget, after you finish reading this book, to run to your library for
a copy of RFG-A, to see what all of this theory is really good for.

Until such time as RFG-A appears in print, preliminary versions will be available
on our home pages, which is where we shall also keep a list of typos and/or corrections
for this book.

Robert J. Adler Jonathan E. Taylor
Haifa, Israel Stanford, CA, USA
ie.technion.ac.il/Adler.phtml www-stat.stanford.edu/∼jtaylo
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Part I. Gaussian Processes 3

If you have not yet read the preface, then please do so now.
Since you have read the preface, you already know a number of important things

about this book, including the fact that Part I is about Gaussian random fields.
The centrality of Gaussian fields to this book is due to two basic factors:

• Gaussian processes have a rich, detailed, and very well-understood general theory,
which makes them beloved by theoreticians.

• In applications of random field theory, as in applications of almost any theory, it is
important to have specific, explicit formulas that allow one to predict, to compare
theory with experiment, etc. As we shall see in Part III, it will be only for Gaussian
(and related; cf. Section 1.4.6 and Chapter 15) fields that it is possible to derive
such formulas, and then only in the setting of excursion sets.

The main reason behind both these facts is the convenient analytic form of the
multivariate Gaussian density, and the related properties of Gaussian fields. This is
what Part I is about.

There are five main collections of basic results that will be of interest to us.
Rather interestingly, although later in the book we shall be interested in Gaussian
fields defined over various types of manifolds, the basic theory of Gaussian fields
is actually independent of the specific geometric structure of the parameter space.
Indeed, after decades of polishing, even proofs gain little in the way of simplification
by restricting to special cases even as simple as R. Thus, at least for a while, we can
and shall work in as wide as possible generality, working with fields defined only on
topological spaces to which we shall assign a natural (pseudo)metric induced by the
covariance structure of the field.

The first set of results that we require, along with related information, form Chap-
ter 1 and are encapsulated in different forms in Theorems 1.3.3 and 1.3.5 and their
corollaries. These give a sufficient condition, in terms of metric entropy, ensuring the
sample path boundedness and continuity of a Gaussian field along with providing in-
formation about moduli of continuity. While this entropy condition is also necessary
for stationary fields, this is not the case in general, and so for completeness we look
briefly at the majorizing measure version of this theory in Section 1.5. However, it
will be a rare reader of this book who will ever need the more general theory.

To put the seemingly abstract entropy conditions into focus, these results will be
followed by a section with a goodly number of extremely varied examples. Despite
the fact that these cover only the tip of a very large iceberg, their diversity shows
the power of the abstract approach, in that all can be treated via the general theory
without further probabilistic arguments. The reader who is not interested in the general
Gaussian theory, and cares mainly about the geometry of fields on RN or on smooth
manifolds, need only read Sections 1.4.1 and 1.4.2 on continuity and differentiability
in this scenario, along with the early parts of Section 1.4.3, needed for understanding
the spectral representation of Chapter 5.

Chapter 2 contains the Borell–TIS (Borell–Tsirelson–Ibragimov–Sudakov) in-
equality and Slepian inequalities (along with some of their relatives). The Borell–TIS
inequality gives a universal bound for the excursion probability
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P

{
sup
t∈T

f (t) ≥ u
}
, (0.0.2)

u > 0, for any centered, continuous Gaussian field. As such, it is a truly basic
tool of Gaussian processes, somewhat akin to Chebyshev’s inequality in statistics or
maximal inequalities in martingale theory. Slepian’s inequality and its relatives are
just as important and basic, and allow one to use relationships between covariance
functions of Gaussian fields to compare excursion probabilities and expectations of
suprema.

The main result of Chapter 3 is Theorem 3.1.1, which gives an expansion for
a Gaussian field in terms of deterministic eigenfunctions with independent N(0, 1)
coefficients. A special case of this expansion is the Karhunen–Loève expansion of
Section 3.2, with which we expect many readers will already be familiar. Together
with the spectral representations of Chapter 5, they make up what are probably the
most important tools in the Gaussian modeler’s bag of tricks. However, these ex-
pansions are also an extremely important theoretical tool, whose development has
far-reaching consequences.

Chapter 4 serves as a basic introduction to what is also one of the central topics
of Part III, the computation of the excursion probabilities for a zero-mean Gaussian
field and a general parameter space T . In Part III we shall develop highly detailed
expansions of the form

P

{
sup
t∈T

f (t) ≥ u
}
= uαe−u2/2σ 2

T

n∑
j=0

Cju
−j + error,

for large u, appropriate parameters α, σ 2
T , n, and Cj that depend on both f and T .

However, to do this, we shall have to place specific assumptions on the parameter
space T , in particular assuming that it is a piecewise smooth manifold.6 Without
these assumptions, the best that one can do is to identify α, σ 2

T , and occasionally C0,
and this is what Chapter 4 will do. Furthermore, to keep the treatment down to a
reasonable length, we shall generally concentrate only on upper bounds, rather than
expansions, for Gaussian excursion probabilities.7

Chapter 5, the last of Part I, is somewhat different from the others in that it is
not really about Gaussian processes, but about stationarity and isotropy in general.
The main reason for the generality is that limiting oneself to the Gaussian scenario
gains us so little that it is not worthwhile doing so. The results here, however, will be
crucial for many of the detailed calculations of Part III.

6 For those of you who are already comfortable with the theory of stratified manifolds, our
“piecewise smooth manifolds’’ are Whitney stratified manifolds with convex support cones.

7 There is also a well-developed theory of a Poisson limit nature for probabilities of the form
P{supt∈Tu f (t) ≥ η(x, u)}, for which η(x, u) and the size of Tu grow (to infinity) with
u. In this case, one searches for growth rates that give a limit dependent on x, but not u.
You can find more about this in Aldous [10], which places the Gaussian theory within a
much wider framework of limit results, or in Leadbetter, Lindgren, and Rootzén [97] and
Piterbarg [126], which give more detailed and more rigorous accounts for the Gaussian and
Gaussian-related situation.
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There are a number of ways in which you can read Part I of this book. You
should definitely start with Sections 1.1 and 1.2, which have some boring, standard,
but important technical material. From then on, it is very much up to you, since
the remainder of Chapter 1 and the other four chapters of Part I are more or less
independent of one another. A reviewer of the book suggested going from Section 1.2
directly to Chapter 3 to read about how to construct examples of Gaussian processes
via orthogonal expansions, a suggestion that certainly makes historical sense and
would also be more natural for an analyst rather than a probabilist. With or without
Chapter 3, one can go from Section 1.2 to Section 1.3 to learn a little about entropy
methods and from there directly to Chapter 4 to get quickly to extremal properties,
one of the key topics of this book. Chapter 2, on the Borell and Slepian inequalities,
can follow this. We obviously wrote the book in the order that seemed most logical
to us, but you do have a fair number of choices in how to read Part I.

Finally, we repeat what was already said in the preface, that there is nothing new
in Part I beyond perhaps the way some things are presented, and that as a treament
of the basic theory of Gaussian fields it is not meant to be exhaustive. There are now
many books covering various aspects of this theory, including those by Bogachev
[28], Dudley [56], Fernique [67], Hida and Hitsuda [77], Janson [86], Ledoux and
Talagrand [99], Lifshits [105], and Piterbarg [126]. In terms of what will be important
to us, [56] and [99] stand out from the pack, perhaps augmented with Talagrand’s
review [154]. Finally, while not as exhaustive8 as the others, you might find RJA’s
lecture notes [3], augmented with the corrections in Section 2.1 below, a user-friendly
introduction to the subject.

8 Nor, perhaps, as exhausting.





1

Gaussian Fields

1.1 Random Fields

We shall start with some rather dry, but necessary, technical definitions. As mentioned
in the penultimate paragraph of the introduction to Part I, once you have read them
you have a number of choices as to what to read next.

As you read in the preface, for us a random field is simply a stochastic process,
usually taking values in a Euclidean space, and defined over a parameter space of
dimensionality at least 1. Although we shall be rather loose about exchanging the
terms “field’’ and “process,’’ in general we shall use “field’’ when the geometric
structure of the parameter space is important to us, and shall use “process’’otherwise.
“Random’’ and “stochastic’’ are, of course, completely synonymous.

Here is a formal definition, which states the obvious (and, we hope, the familiar).

Definition 1.1.1. Let (�,F,P) be a complete probability space and T a topological
space.1 Then a measurable mapping f : � → RT (the space of all real-valued
functions on T ) is called a real-valued random field.2 Measurable mappings from �

to (RT )d , d > 1, are called vector-valued random fields. If T ⊂ RN , we call f an
(N, d) random field, and if d = 1, simply an N -dimensional random field.

Thus, f (ω) is a function, and (f (ω))(t) its value at time t . In general, however,
we shall not distinguish among

1 The use of T comes from the prehistory of Gaussian processes, and probably stands for
“time.’’ While the whole point of this book is to get away from the totally ordered structure
of R, the notation is too deeply entombed in the collective psyche of probabilists to change
it now. Later on, however, when we move to manifolds as parameter spaces, we shall
emphasize this by replacing T by M . Nevertheless, points in M will still be denoted by t .
We hereby make the appropriate apologies to geometers.

2 More on notation: While we shall follow the standard convention of denoting random
variables by uppercase Latin characters, we shall use lowercase to denote random functions.
The reason for this will be become clear in Parts II and III, where we shall need the former
for tangent vectors.
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ft ≡ f (t) ≡ f (t, ω) ≡ (f (ω))(t),

etc., unless there is some special need to do so.
Before going further, we shall make one technical blanket assumption on all

random fields that will appear in this book, although we shall rarely mention it again.
Throughout, we shall demand that all random fields be separable.3 If you are familiar
with this assumption, you will know that it solves many measurability problems. For
example, without separability, it is not necessarily the case that the supremum of
a random field is a well-defined random variable. If you are not familiar with the
concept, it probably would not have occurred to you that such problems might exist.
Either way, you need not worry about it anymore.

1.2 Gaussian Variables and Fields

A real-valued random variable X is said to be Gaussian (or normally distributed ) if
it has the density function

ϕ(x)
�= 1√

2πσ
e−(x−m)2/2σ 2

, x ∈ R,

for some m ∈ R and σ > 0. It is elementary calculus that the mean of X is m and
the variance σ 2, and that the characteristic function is given by

φ(θ) = E{eiθX} = eiθm−σ 2θ2/2.

We abbreviate this by writing X ∼ N(m, σ 2). The case m = 0, σ 2 = 1 is rather
special, and in this situation we say that X has a standard normal distribution. In
general, if a random variable or process has zero mean, we call it centered .

Since the indefinite integral of ϕ is not a simple function, we also need notation
(�) for the distribution function and (�)for the tail probability function of a standard
normal variable:

�(x)
�= 1 −�(x)

�= 1√
2π

∫ x

−∞
e−u2/2 du. (1.2.1)

3 This property, due originally to Doob [50], implies conditions on both T and f . In particular,
An R

d -valued random field f , on a topological space T , is called separable if there exists
a countable dense subset D ⊂ T and a fixed event N with P{N} = 0 such that, for any
closed B ⊂ R

d and open I ⊂ T ,

{ω : f (t, ω) ∈ B ∀t ∈ I }�{ω : f (t, ω) ∈ B ∀t ∈ I ∩D} ⊂ N.

Here � denotes the usual symmetric difference operator, so that

A�B = (A ∩ Bc) ∪ (Ac ∩ B), (1.1.1)

where Ac is the complement of A.
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While� and� may not be explicit, there are simple, and rather important, bounds
that hold for every x > 0 and become sharp very quickly as x grows. In particular,
in terms of � we have4(

1

x
− 1

x3

)
ϕ(x) < �(x) <

1

x
ϕ(x). (1.2.2)

An Rd -valued random variable X is said to be multivariate Gaussian if, for every
α = (α1, . . . , αd) ∈ Rd , the real-valued variable 〈α,X′〉 =∑d

i=1 αiXi is Gaussian.5

In this case there exists a mean vector m ∈ Rd with mj = E{Xj } and a nonnegative
definite6 d × d covariance matrix C, with elements cij = E{(Xi −mi)(Xj −mj)},
such that the probability density of X is given by

ϕ(x) = 1

(2π)d/2|C|1/2
e−

1
2 (x−m)C−1(x−m)′ , (1.2.3)

where |C| = det C is the determinant7 of C. Consistently with the one-dimensional
case, we write this as X ∼ N(m,C), or X ∼ Nd(m,C) if we need to emphasize the
dimension.

4 The upper bound in (1.2.2) follows from the observation that∫ −∞
x

e−u2/2 du ≤
∫ −∞
x

u

x
e−u2/2 du = x−1e−x2/2

after integration by parts. For the lower bound, make the substitution u �→ x + v/x to
note that ∫ −∞

x
e−u2/2 du =

∫ ∞
0

e−(x2+2v+v2/x2)/2x−1 dv

= x−1e−x2/2
∫ ∞

0
e−(2v+v2/x2)/2 dv

≥ x−1e−x2/2
∫ ∞

0
e−v(1 − v2/(2x2)) dv

on using the fact that e−z > 1− z for all z ≥ 0. It is now trivial to check that the remaining
integral is at least 1 − x−2.

5 Throughout the book, vectors are taken to be row vectors, and a prime indicates transposition.
The inner product between x and y in R

d is usually denoted by 〈x, y〉 or, occasionally, by
x · y and even (x, y) when this makes more sense.

6 A d × d matrix C is called nonnegative definite (or positive semidefinite) if xCx′ ≥ 0 for
all x ∈ R

d . A function C : T × T → R is called nonnegative definite if the matrices
(C(ti , tj ))

n
i,j=1 are nonnegative definite for all 1 ≤ n < ∞ and all (t1, . . . , tn) ∈ T n.

7 At various places we shall use the notation | | to denote any of “absolute value,’’ “Euclidean
norm,’’ “determinant,’’ or “Lebesgue measure,’’ depending on the argument, in a natural
fashion. The notation ‖ ‖ is used only for either the norm of complex numbers or for special
norms, when it usually appears with a subscript. This is unless it is used, as in Chapter 2
in particular, as ‖f ‖ to denote the supremum of a function f , which is not a norm at all.
Despite this multitude of uses of a simple symbol, its meaning should always be clear from
the context.
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In view of (1.2.3) we have that Gaussian distributions are completely determined
by their first- and second-order moments and that uncorrelated Gaussian variables
are independent. Both of these facts will be of crucial importance later on.

While the definitions are fresh, note for later use that it is relatively straightforward
to check from (1.2.3) that the characteristic function of a multivariate Gaussian X is
given by

φ(θ) = E{ei〈θ,X〉} = ei〈θ,m〉− 1
2 θCθ ′ , (1.2.4)

where θ ∈ Rd .
One consequence of the simple structure of φ is the fact that if {Xn}n≥1 is an L2

convergent8 sequence of Gaussian vectors, then the limit X must also be Gaussian.
Furthermore, if Xn ∼ N(mn,Cn), then

|mn −m|2 → 0 and ‖Cn − C‖2 → 0 (1.2.5)

as n → ∞, where m and C are the mean and covariance matrix of the limiting
Gaussian. The norm on vectors is Euclidean and that on matrices any of the usual.
The proofs involve only (1.2.4) and the continuity theorem for convergence of random
variables.

One immediate consequence of either (1.2.3) or (1.2.4) is that if A is any d × d

matrix and X ∼ Nd(m,C), then

AX ∼ N(mA,A′CA). (1.2.6)

A judicious choice of A then allows us to compute conditional distributions as well.
If n < d make the partitions

X = (X1, X2) = ((X1, . . . , Xn), (Xn+1, . . . Xd)),

m = (m1,m2) = ((m1, . . . , mn), (mn+1, . . . md)),

C =
(
C11 C12
C21 C22

)
,

where C11 is an n × n matrix. Then each Xi is N(mi, Cii) and the conditional
distribution9 of Xi given Xj is also Gaussian, with mean vector

mi|j = mi + CijC
−1
jj (Xj −mj)′ (1.2.7)

and covariance matrix

8 That is, there exists a random vector X such that E{|Xn −X|2} → 0 as n → ∞.
9 To prove this, take

A =
(
In −C12C22
0 Id−n

)
and define Y = (Y 1, Y 2) = AX. Check using (1.2.6) that Y 1 and Y 2 ≡ X2 are independent
and use this to obtain (1.2.7) and (1.2.8) for i = 1, j = 2.
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Ci|j = Cii − CijC
−1
jj Cji . (1.2.8)

We can now define a real-valued Gaussian (random) field or Gaussian (random)

process to be a random field f on a parameter set T for which the (finite-dimensional)
distributions of (ft1 , . . . , ftn) are multivariate Gaussian for each 1 ≤ n < ∞ and
each (t1, . . . , tn) ∈ T n. The functions m(t) = E{f (t)} and

C(s, t) = E{(fs −ms)(ft −mt)}
are called the mean and covariance functions of f . Multivariate10 Gaussian fields
taking values in Rd are fields for which 〈α, f ′

t 〉 is a real-valued Gaussian field for
every α ∈ Rd .

In fact, one can also go in the other direction as well. Given any set T , a function
m : T → R, and a nonnegative definite function C : T × T → R there exists11 a
Gaussian process on T with mean function m and covariance function C.

Putting all this together, we have the important principle that for a Gaussian
process, everything about it is determined by the mean and covariance functions.
The fact that no real structure is required of the parameter space T is what makes
Gaussian fields such a useful model for random processes on general spaces. To build
an appreciation for this, you may want to jump ahead to Section 1.4 to look at some
examples. However, you will get more out of that section if you first bear with us to
answer one of the most fundamental questions in the theory of Gaussian processes:
When are Gaussian processes (almost surely) bounded and/or continuous?

1.3 Boundedness and Continuity

The aim of this section is to develop a useful sufficient condition for a centered
Gaussian field on a parameter space T to be almost surely bounded and/or continuous,
i.e., to determine conditions for which

P

{
sup
t∈T

|f (t)| < ∞
}
= 1 or P

{
lim
s→t

|f (t)− f (s)| = 0, ∀t ∈ T
}
= 1.

Of course, in order to talk about continuity—i.e., for the notation s → t above to have
some meaning—it is necessary that T have some topology, so we assume that (T , τ )
is a metric space, and that continuity is in terms of the τ -topology. Our first step is to
show that τ is irrelevant to the question of continuity.12 This is rather useful, since
10 Similary, Gaussian fields taking values in a Banach space B are fields for which α(ft )

is a real-valued Gaussian field for every α in the topological dual B∗ of B. The co-
variance function is then replaced by a family of operators Cst : B∗ → B, for which
Cov(α(ft ), β(fs)) = β(Cstα), for α, β ∈ B∗.

11 This is a consequence of the Kolmogorov existence theorem, which, at this level of gen-
erality, can be found in Dudley [55]. Such a process is a random variable in R

T and may
have terrible properties, including lack of measurability in t . However, it will always exist.

12 However, τ will come back into the picture when we talk about moduli of continuity later
in this section.
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we shall also soon show that boundedness and continuity are essentially the same
problem for Gaussian fields, and formulating the boundedness question requires no
topological demands on T .

To start, define a new metric d on T by

d(s, t)
�= {E[(f (s)− f (t))2]}1/2, (1.3.1)

in a notation that will henceforth remain fixed. Actually, d is only a pseudometric,
since although it satisfies all the other demands of a metric, d(s, t) = 0 does not
necessarily13 imply that s = t . Nevertheless, we shall abuse terminology by calling
d the canonical metric for T and/or f .

It will be convenient for us always to assume thatd is continuous in the τ -topology,
and we shall indeed do so, since in the environment of f continuity that will interest
us, d continuity costs us nothing. To see this, suppose that supT E{f 2

t } < ∞, and
that f is a.s. continuous. Then

lim
s→t

d2(s, t) = lim
s→t

E{(f (s)− f (t))2}
= E

{
lim
s→t

(f (s)− f (t))2
}

= 0,

the exchange of limit and expectation justified by the uniform integrability provided
by the fact that since f is Gaussian, boundedness in L2 implies boundness in all Lp.
In other words, a.s. continuity of f implies the continuity of d.

Here is the lemma establishing the irrelevance of τ to the continuity question.

Lemma 1.3.1. Let f be a centered Gaussian process on a compact metric space
(T , τ ). Then f is a.s. continuous with respect to the τ -topology if and only if it is a.s.
continuous with respect to the d (pseudo)topology. More precisely, with probability
one, for all t ∈ T ,

lim
s:τ(s,t)→0

|f (s)− f (t)| = 0 ⇐⇒ lim
s:d(s,t)→0

|f (s)− f (t)| = 0.

Proof. Since d is (always) assumed continuous in the τ topology, it is immediate
that if f is d-continuous then it is τ -continuous.

Suppose, therefore, that f is τ -continuous. For η ≥ 0, let

Aη = {(s, t) ∈ T × T : d(s, t) ≤ η}.
Sinced is continuous, this is a τ -closed subset ofT×T . Furthermore,

⋂
η>0 Aη = A0.

Fix ε > 0. Then, by the τ -compactness of T , there is a finite set B ⊂ A0 (the number
of whose elements will in general depend on ε) such that

13 For a counterexample, think of a periodic process on R, with period p. Then d(s, t) = 0
implies no more than s − t = kp for some k ∈ Z.
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(s′,t ′)∈B

{
(s, t) ∈ T × T : max(τ (s, s′), τ (t, t ′)) ≤ ε

}
covers Aη for some η = η(ε) > 0, with η(ε) → 0 as ε → 0. That is, whenever
(s, t) ∈ Aη there is an (s′, t ′) ∈ B with τ(s, s′), τ (t, t ′) ≤ ε. Note that

|ft − fs | ≤ |fs − fs′ | + |fs′ − ft ′ | + |ft ′ − ft |.
Since (s′, t ′) ∈ B ⊂ A0, we have f (s′) = f (t ′) a.s. Thus

sup
d(s,t)≤η(ε)

|ft − fs | ≤ 2 sup
τ(s,t)≤ε

|ft − fs |,

and the τ -continuity of f implies its d-continuity. ��
The astute reader will have noted that in the statement of Lemma 1.3.1 the param-

eter space T was quietly assumed to be compact, and that this additional assumption
was needed in the proof. Indeed, from now on we shall assume that this is always the
case, and shall rely on it heavily. Fortunately, however, it is not a serious problem. As
far as continuity is concerned, if T is σ -compact14 then a.s. continuity on its compact
subsets immediately implies a.s. continuity over T itself. We shall not go beyond
σ -compact spaces in this book. The same is not true for boundedness, nor should it
be.15 However, we shall see that, at least on compact T , boundedness and continuity
are equivalent problems. Furthermore, both depend on how “large’’ the parameter
set T is when size is measured in a metric that comes from the process itself.16 One
way to measure the size of T is via the notion of metric entropy.

Definition 1.3.2. Let f be a centered Gaussian field on T , and d the canonical metric
(1.3.1). Assume that T is d-compact, and write

Bd(t, ε)
�= {s ∈ T : d(s, t) ≤ ε} (1.3.2)

for the d ball centered on t ∈ T and of radius ε. Let N(T , d, ε) ≡ N(ε) denote the
smallest number of such balls that cover T , and set

H(T, d, ε) ≡ H(ε) = ln(N(ε)). (1.3.3)

Then N and H are called the (metric) entropy and log-entropy functions for T (or
f ). We shall refer to any condition or result based on N or H as an entropy condi-
tion/result.

14 T is σ -compact if it can be represented as the countable union of compact sets.
15 Think of simple Brownian motion on R+. While bounded on every finite interval, it is a

consequence of the law of the iterated logarithm that it is unbounded on R+.
16 A particularly illuminating example of this comes from Brownian noise processes of Sec-

tion 1.4.3. There we shall see that the same process can be continuous, or discontinuous,
depending on how we specify its parameter set.
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Note that since we are assuming thatT is d-compact, it follows thatH(ε) < ∞ for
all ε > 0. The same need not be (nor generally is) true for limε→0 H(ε). Furthermore,
note for later use that if we define

diam(T ) = sup
s,t∈T

d(s, t), (1.3.4)

then N(ε) = 1 and so H(ε) = 0 for ε ≥ diam(T ).
Here then are the main results of this section, all of which will be proven soon.

Theorem 1.3.3. Letf be a centered Gaussian field on a d-compactT , d the canonical
metric, and H the corresponding entropy. Then there exists a universal constant K
such that

E

{
sup
t∈T

ft

}
≤ K

∫ diam(T )/2

0
H 1/2(ε) dε. (1.3.5)

This result has immediate consequences for continuity. Define the modulus of
continuity ωF of a real-valued function F on a metric space (T , τ ) as

ωF (δ) ≡ ωF,τ (δ)
�= sup

τ(s,t)≤δ

|F(t)− F(s)|, δ > 0. (1.3.6)

The modulus of continuity of f can be thought of as the supremum of the random
field fs,t = ft − fs over a certain neighborhood of T × T , in that

ωf,τ (δ) = sup
(s, t) ∈ T × T
τ(s,t)≤δ

f (s, t). (1.3.7)

(Note we can drop the absolute value sign since the supremum here is always non-
negative.)

More precisely, write d(2) for the canonical metric of fs,t on T × T . Then

d(2)((s, t), (s′, t ′)) =
[
E

{
((ft − fs)− (ft ′ − fs′))

2
}]1/2

≤ 2 max(d(s, t), d(s′, t ′)),
and so

N({(s, t) ∈ T × T : d(s, t) ≤ δ}, d(2), δ) ≤ N(T , d, δ/2).

From these observations, it is immediate that Theorem 1.3.3 implies the following
corollary.

Corollary 1.3.4. Under the conditions of Theorem 1.3.3 there exists a universal con-
stant K such that

E
{
ωf,d(δ)

} ≤ K

∫ δ

0
H 1/2(ε) dε. (1.3.8)

Note that this is not quite enough to establish the a.s. continuity of f . Continuity
is, however, not far away, since the same construction used to prove Theorem 1.3.3
will also give us the following, which, with the elementary tools we have at hand at
the moment,17 neither follows from, nor directly implies, (1.3.8).
17 See, however, Theorem 2.1.3 below to see what one can do with better tools.
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Theorem 1.3.5. Under the conditions of Theorem 1.3.3 there exists a random η ∈
(0,∞) and a universal constant K such that

ωf,d(δ) ≤ K

∫ δ

0
H 1/2(ε) dε, (1.3.9)

for all δ < η.

Note that (1.3.9) is expressed in terms of the d modulus of continuity. Translating
this to a result for the τ modulus is trivial.

We shall see later that if f is stationary,18 then the convergence of the entropy inte-
gral is also necessary for continuity and that continuity and boundedness always occur
together (Theorem 1.5.4). Now, however, we shall prove Theorems 1.3.3 and 1.3.5
following the approach of Talagrand [154]. The original proof of Theorem 1.3.5 is
due to Dudley [51], and in fact, things have not really changed very much since then.
Immediately following the proofs, in Section 1.4, we shall look at examples, to see
how entropy arguments work in practice. You may want to skip to the examples
before going through the proofs first time around.

We start with the following almost trivial, but important, observations.

Observation 1. If f is a separable process on T then supt∈T ft is a well-defined (i.e.,
measurable) random variable.

Measurability follows directly from Definition 1.1.1 of separability, which gave
us a countable dense subset D ⊂ T for which

sup
t∈T

ft = sup
t∈D

ft .

The supremum of a countable set of measurable random variables is always measur-
able.

One can actually manage without separability for the rest of this section, in which
case

sup
{
E

[
sup
t∈F

ft

]
: F ⊂ T , F finite

}
should be taken as the definition of E{supT ft }.
Observation 2. If f is a separable process on T and X a centered random variable
(not necessarily independent of f ), then

E

{
sup
t∈T

(ft +X)
}
= E

{
sup
t∈T

ft

}
.

18 We shall treat stationarity in detail in Chapter 5. For the moment all you need to know is that
under stationarity the expectation E{f (t)} is constant, while the covariance E{f (t)f (s)} is
a function of s − t only.
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As trite as this observation is, it ceases to be valid if, for example, we investigate
supt |ft +X| rather than supt (ft +X).

Proof of Theorem 1.3.3. Fix a point t0 ∈ T and consider ft −ft0 . In view of Obser-
vation 2, we can work with E{supT (ft−ft0)} rather than E{supT ft }. Furthermore, in
view of separability, it will suffice to take these suprema over the countable separating
set D ⊂ T . To save on notation, we might therefore just as well assume that T is
countable, which we now do.

We shall represent the difference ft − ft0 via a telescoping sum, in what is called
a chaining argument, and is in essence an approximation technique. We shall keep
track of the accuracy of the approximations via entropy and simple union bounds.

To build the approximations, first fix some r ≥ 2 and choose the largest i ∈ Z

such that diam(T ) ≤ r−i , where the diam(T ) is measured in terms of the canonical
metric of f . For j > i, take a finite subset �j of T such that

sup
t∈T

inf
s∈�j

d(s, t) ≤ r−j

(possible by d-compactness), and define a mapping πj : T → �j satisfying

sup
t∈T

d(t, πj (t)) ≤ r−j , (1.3.10)

so that

sup
t∈T

d(πj (t), πj−1(t)) ≤ 2r−j+1. (1.3.11)

For consistency, set �i = {t0} and πi(t) = t0 for all t . Consistent with the notation

of Definition 1.3.2, we can choose �j to have no more than Nj
�= N(r−j ) points,

and so entropy has now entered into the argument.
The idea of this construction is that the pointsπj (t) are successive approximations

to t , and that as we move along the “chain’’πj (t) we have the decomposition19

ft − ft0 =
∑
j>i

fπj (t) − fπj−1(t). (1.3.12)

19 We actually need to check two things: that the potentially infinite sum in (1.3.12) is well
defined, with probability one, and that it indeed converges to ft − ft0 . The first is straight-
forward, the second requires a little measure theoretic legerdemain.

By (1.3.11) and (1.3.13) it follows that

P{|fπj (t) − fπj−1(t)| ≥ (r/
√

2)−j } ≤ 2 exp

(
−(r/

√
2)−2j

2(2r−j+1)2

)
= 2 exp

(
−2j /8r2

)
,

which is emminently summable. By Borel–Cantelli, and recalling that r ≥ 2, we have that
the sum in (1.3.12) converges absolutely, with probability one.

For the second step, fix a t ∈ T and consider the sum
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To start the proof we look for a bound on the tail of the distribution of supT (ft −
ft0), for which we need a little notation (carefully chosen to make the last lines of the
proof come out neatly). Define

Mj = NjNj−1, aj = 23/2r−j+1
√

ln(2j−iMj ), S =
∑
j>i

aj .

ThenMj is the maximum number of possible pairs (πj (t), πj−1(t)) as t varies through
T and aj was chosen so as to make later formulas simplify. Recall (1.2.2), which
implies

P{X ≥ u} ≤ e−u2/2σ 2
, (1.3.13)

for X ∼ N(0, σ 2) and u > 0. Applying (1.3.13) we have, for all u > 0,

P
{∃ t ∈ T : fπj (t) − fπj−1(t) > uaj

} ≤ Mj exp

( −u2a2
j

2(2r−j+1)2

)
, (1.3.14)

and so

P

{
sup
t∈T

ft − ft0 ≥ uS
}
≤
∑
j>i

Mj exp

( −u2a2
j

2(2r−j+1)2

)

=
∑
j>i

Mj

(
2j−iMj

)−u2

.

For u > 1 this is at most∑
j>i

(
2j−i

)−u2

≤ 2−u2 ∑
j>i

2−(j−i)+1 = 2 · 2−u2
.

The basic relationship that, for nonnegative random variables X,

E{X} =
∫ ∞

0
P{X ≥ u} du,

together with the observation that supt∈T (ft − ft0) ≥ 0 since t0 ∈ T , immediately
yields

f
(n)
t

�= ft0 +
n∑

j=i+1

fπj (t) − fπj−1(t) ≡ fπn(t).

From the construction of the πj it is immediate that E{|f (t) − f
(n)
t |2} → 0 as n → ∞,

and so the fact that f (n)
t converges almost surely implies that it must also converge to ft .

Since this must be true for any countable subset of points in T , separability gives that it is
true throughout T (cf. footnote 3).
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E

{
sup
t∈T

ft

}
≤ KS, (1.3.15)

with K = 1 + 2
∫∞

1 2−u2
du. Thus, all that remains to complete the proof is to

compute S.
Using the definition of S, along with the elementary inequality that

√
ab ≤ √

a+√
b, gives

S ≤ 23/2
∑
j>i

r−j+1
(√

j − i
√

ln 2 +
√

ln Nj +
√

ln Nj−1

)

≤ K

⎛⎝r−i +
∑
j≥i

r−j
√

ln Nj

⎞⎠
≤ K

∑
j≥i

r−j
√

ln Nj ,

where K is a constant that may change from line to line, but depends only on r . The
last inequality follows from absorbing the lone term of r−i into the second term of
the sum, which is possible since the very definition of i implies that Ni+1 ≥ 2, and
changing the multiplicative constant K accordingly.

Recalling now the definition of Nj as N(r−j ), we have that

ε ≤ r−j ⇒ N(ε) ≥ Nj .

Thus ∫ r−i

0

√
ln N(ε) dε ≥

∑
j≥i

(
r−j − r−j−1

)√
ln Nj = K

∑
j≥i

r−j
√

ln Nj .

Putting this together with the bound on S and substituting into (1.3.15) gives

E

{
sup
t∈T

ft

}
≤ K

∫ r−i

0
H 1/2(ε) dε.

Finally, note that N(ε) = 1 (and so H(ε) = 0) for ε ≥ 2r−i ≥ diam(T ), to establish
(1.3.5) and so complete the proof. ��
Proof of Theorem 1.3.5. The proof starts with the same construction as in the proof
of Theorem 1.3.3. Note that from the same principles behind the telescoping sum
(1.3.12) defining ft − ft0 we have that for all s, t ∈ T and J > i,

ft − fs = fπJ (t) − fπJ (s) +
∑
j>J

[fπj (t) − fπj−1(t)] (1.3.16)

−
∑
j>J

[fπj (s) − fπj−1(s)].
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From (1.3.13) we have that for all u > 0,

P{|fπj (t) − fπj (s)| ≥ ud(πj (t), πj (s))} ≤ e−u2/2.

Arguing as we did to obtain (1.3.14), and the line or two following, we now see that

P

{
∃ s, t ∈ T : |fπj (t) − fπj (s)| ≥

√
2d(πj (t), πj (s))

√
ln(2j−iN2

j )

}
≤ 2i−j .

Since this is a summable series, Borel–Cantelli gives the existence of a random j0 > i

for which, with probability one,

j > j0 ⇒ |fπj (t) − fπj (s)| ≤
√

2d(πj (t), πj (s))

√
ln(2j−iN2

j )

for all s, t ∈ T .
Essentially the same argument also gives that

j > j0 ⇒ |fπj (t) − fπj−1(t)| ≤
√

2d(πj (t), πj−1(t))

√
ln(2j−iMj )

for all t ∈ T .
Putting these into (1.3.16) gives that

|ft − fs | ≤ Kd(πj0(t), πj0(s))

√
ln(2j0−iN2

j0
)

+K
∑
j>j0

d(πj (t), πj−1(t))

√
ln(2j−iMj ).

Note that d(πj (t), πj−1(t)) ≤ 2r−j+1 and

πj0(s)) ≤ d(s, t)+ 2r−j0 ≤ 3r−j0

if we take d(s, t) ≤ η
�= r−j0 . The above sums can be turned into integrals just as

we did at the end of the previous proof, which leads to (1.3.9) and so completes the
argument. ��

Before leaving to look at some examples, you should note one rather crucial fact:
The only Gaussian ingredient in the preceding two proofs was the basic inequality
(1.3.13) giving exp(−u2/2) as a tail bound for a single N(0, 1) random variable. The
remainder of the proof used little more than the union bound on probabilities and
some clever juggling. Furthermore, it does not take a lot of effort to see that the
square root in the entropy integrals such as (1.3.5) is related to “inverting’’ the square
in exp(−u2/2), while the logarithm comes from “inverting’’ the exponential. If this
makes you feel that there is a far more general non-Gaussian theory behind all this,
and that it is not going to be very different from the Gaussian one, then you are right.
A brief explanation of how it works is in Section 1.4.6.
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1.4 Examples

Our choice of examples was determined primarily by the type of random fields that we
need later in the book. Thus we shall start by looking at random fields on RN , followed
by looking at how to turn questions of differentiability into questions of continuity.
Following these, we shall look at the Brownian family of processes, needed for setting
up the spectral representation theory of Chapter 5. As mentioned above, this family
is also very instructive in understanding why the finiteness of entropy integrals is
a natural condition for continuity. The section on generalized fields is useful as a
recipe for providing examples, and the section on set-indexed processes is there for
fun. Neither of these will appear elsewhere in the book. The non-Gaussian examples
of Section 1.4.6 are worth knowing about already at this stage.

1.4.1 Fields on RN

Returning to Euclidean space after the abstraction of entropy on general metric spaces,
it is natural to expect that conditions for continuity and boundedness will become so
simple to both state and prove that there was really no need to introduce such abstruse
general concepts.

This expectation is both true and false. It turns out that avoiding the notion of
entropy does not make it any easier to establish continuity theorems, and indeed,
reliance on the specific geometry of the parameter space often confounds the basic
issues. On the other hand, the following important result is easy to state without
specifically referring to any abstract notions. To formulate it, let ft be a centered
Gaussian process on a compact T ⊂ RN and define

p2(u) = sup
|s−t |≤u

E

{
|fs − ft |2

}
, (1.4.1)

where | · | is the usual Euclidean metric. If f is stationary, then

p2(u) = 2 sup
|t |≤u

[C(0)− C(t)]. (1.4.2)

Theorem 1.4.1. If, for some δ > 0, either∫ δ

0
(− ln u)

1
2 dp(u) < ∞ or

∫ ∞

δ

p
(
e−u2

)
du < ∞, (1.4.3)

then f is continuous and bounded on T with probability one. A sufficient condition
for either integral in (1.4.3) to be finite is that for some 0 < C < ∞ and α, η > 0,

E{|fs − ft |2} ≤ C

|log |s − t ||1+α
, (1.4.4)

for all s, t with |s − t | < η. Furthermore, there exists a constant K , dependent only
on the dimension N , and a random δ0 > 0 such that for all δ < δ0,
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ωf (δ) ≤ K

∫ p(δ)

0
(− ln u)

1
2 dp(u), (1.4.5)

where the modulus of continuity ωf is taken with respect to the Euclidean metric. A
similar bound, in the spirit of (1.3.8), holds for E{ωf (δ)}.
Proof. Note first that since p(u) is obviously nondecreasing in u, the Riemann–
Stieltjes integral (1.4.3) is well defined. The proof that both integrals in (1.4.3)
converge and diverge together and that the convergence of both is assured by (1.4.4)
is simple calculus and left to the reader. Of more significance is relating these integrals
to the entropy integrals of Theorems 1.3.3 and 1.3.5 and Corollary 1.3.4. Indeed, all
the claims of the theorem will follow from these results if we show that∫ δ

0
H 1/2(ε) dε ≤ K

∫ p(δ)

0
(− ln u)

1
2 dp(u) (1.4.6)

for small enough δ.
Since T is compact, we can enclose it in an N -cube CL of side length L =

maxi=1,...,N sups,t∈T |ti − si |. Since p is nondecreasing, there is no problem in defin-
ing

p−1(ε)
�= sup{u : p(u) ≤ ε}.

Now note that for each ε > 0, the cube CL, and so T , can be covered by [1 +
L
√
N/(2p−1(ε))]N (Euclidean) N -balls, each of which has radius no more than ε in

the canonical metric d . Thus,∫ δ

0
H 1/2(ε) dε ≤ √

N

∫ δ

0
(ln(1 + L

√
N/(2p−1(ε)))

1
2 dε

= √
N

∫ p(δ)

0
(ln(1 + L

√
N/2u))

1
2 dp(u)

≤ 2
√
N

∫ p(δ)

0
(− ln u)

1
2 dp(u)

for small enough δ. This completes the proof. ��
The various sufficient conditions for continuity of Theorem 1.4.1 are quite sharp,

but not necessary. There are two stages at which necessity is lost. One is simply that
entropy conditions, in general, need not be necessary in the nonstationary case. The
second is that something is lost in the passage from entropy to the conditions on p.

As an example of the latter, take standard Brownian motion W on [0, 1], take the
homeomorphism h(t) = ln 4/(ln(4/t)) from [0, 1] to [0, 1], and define a new process
on [0, 1] by f (t) = f (h1/2(t). It is trivial that f is a.s. continuous, since it is obtained
from W via a continuous transformation. It is also easy to verify that f and W have
identical entropy functions. However, while the p function for W satisfies (1.4.3),
this is not true for that of f . The reason for this is the high level of nonstationarity of
the increments of f as opposed to those of W .
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Despite these drawbacks, the results of Theorem 1.4.1 are, from a practical point
of view, reasonably definitive. For example, we shall see below (Corollary 1.5.5) that
if f is stationary and

K1

(− ln |t |)1+α1
≤ C(0)− C(t) ≤ K2

(− ln |t |)1+α2
, (1.4.7)

for |t | small enough, then f will be sample path continuous if α2 > 0 and discontin-
uous if α1 < 0.

Before leaving the Euclidean case, it is also instructive to see how the above
conditions on covariance functions translate to conditions on the spectral measure
ν of (5.4.1) when f is stationary. Although this involves using concepts yet to be
defined, this is a natural place to describe the result. If you are familiar with spectral
theory, the following will be easy to follow. If not, then you can return here after
reading Chapter 5.

The translation is via standard Tauberian theory, which translates the behavior of
C at the origin to that of ν at infinity (cf., for example, [25]). A typical result is the
following, again in the centered, Gaussian case: If the integral∫ ∞

0

(
log(1 + λ)

)1+α
ν(dλ)

converges for some α > 0, then f is a.s. continuous, while if it diverges for some
α < 0, then f is a.s. discontinuous.

In other words, it is the “high-frequency oscillations’’in the spectral representation
that are controlling the continuity/discontinuity dichotomy. This is hardly surprising.
What is perhaps somewhat more surprising, since we have seen that for Gaussian pro-
cesses continuity and boundedness come together, is that it is these same oscillations
that are controlling boundedness as well.

1.4.2 Differentiability on RN

We shall stay with Euclidean T ⊂ RN for the moment, and look at the question of
a.s. differentiability of centered, Gaussian f .

Firstly, however, we need to define the L2, or mean square, (partial) derivatives
of a random field.

Choose a point t ∈ RN and a sequence of k “directions’’ t ′1, . . . , t ′k in RN , so that
t ′ = (t ′1, . . . , t ′k) ∈ ⊗kRN , the k-fold tensor product RN with itself. We say that
f has a kth-order L2 partial derivative at t , in the direction t ′, which we denote by
Dk

L2f (t, t
′), if the limit

Dk
L2f (t, t

′) �= lim
h1,...,hk→0

1∏k
i=1 hi

F

(
t,

k∑
i=1

hit
′
i

)
(1.4.8)

exists in L2, where F(t, t ′) is the symmetrized difference
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F(t, t ′) =
∑

s∈{0,1}k
(−1)k−

∑k
i=1 si f

(
t +

k∑
i=1

si t
′
i

)

and the limit above is interpreted sequentially, i.e., first send h1 to 0, then h2, etc. A
simple sufficient condition for L2 partial differentiability of order k in all directions
and throughout a region T ∈ RN is that

lim
h1,...,hk ,̂hi ,...,̂hk→0

1∏k
i=1 hiĥi

E

{
F

(
t,

k∑
i=1

hit
′
i

)
F

(
s,

k∑
i=1

ĥis
′
i

)}
(1.4.9)

exists20 for all s, t ∈ T , all directions s′, t ′ ∈ ⊗kRN , and all sequences h1, . . . , hk
and ĥi , . . . , ĥk , where the limits are again to be interpreted sequentially. Note that if
f is Gaussian then so are its L2 derivatives, when they exist.

With L2 partial derivatives defined, we can now turn to sample path, or almost
sure, derivatives and ask, for example, whether they are continuous and bounded. It
turns out that the general structure that we have so far built actually makes this a very
simple question to answer.

To see why, endow the space RN × ⊗kRN with the norm

‖(s, s′)‖N,k
�= |s| + ‖s′‖⊗kRN = |s| +

(
k∑

i=1

|s′i |2
)1/2

,

and write BN,k(y, h) for the h-ball centered at y = (t, t ′) in the metric induced by
‖ · ‖N,k . Furthermore, write

Tk,ρ
�= T × {t ′ : ‖t ′‖⊗kRN ∈ (1 − ρ, 1 + ρ)

}
for the product of T with the ρ-tube around the unit sphere in ⊗kRN . This is enough
to allow us to formulate the following theorem.

Theorem 1.4.2. Suppose f is a centered Gaussian random field on an open T ∈ RN ,
possessing kth-order partial derivatives in the L2 sense in all directions everywhere
inside T . Suppose, furthermore, that there exist 0 < K < ∞ and ρ, δ, h0 > 0 such
that for 0 < η1, η2, h < h0,

E{[F(t, η1t
′)− F(s, η2s

′)]2} (1.4.10)

< K(− ln(‖(t, t ′)− (s, s′)‖N,k + |η1 − η2|))−(1+δ),

for all

((t, t ′), (s, s′)) ∈ Tk,ρ × Tk,ρ : (s, s′) ∈ BN,k((t, t
′), h).

Then, with probability one, f is k-times continuously differentiable; that is, f ∈
Ck(T ).
20 This is an immediate consequence of the fact that a sequence Xn of random variables

converges in L2 if and only if E{XnXm} converges to a constant as n,m → ∞.
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Proof. Recalling that we have assumed the existence ofL2 derivatives, we can define
the Gaussian field

F̂ (t, t ′, η) =
{
F(t, ηt ′), η �= 0,

Dk
L2f (t, t

′), η = 0,

on T̂
�= Tk,ρ × (−h, h), an open subset of the finite-dimensional vector space RN ×

⊗kRN × R with norm

‖(t, t ′, η)‖N,k,1 = ‖(t, t ′)‖N,k + |η|.

Whether f ∈ Ck(T ) is clearly the same issue as whether F̂ ∈ C(T̂ ), with the issue
of the continuity of f really only being on the hyperplane where η = 0. But this
puts us back into the setting of Theorem 1.4.1, and it is easy to check that condition
(1.4.4) there translates to (1.4.10) in the current scenario. ��

1.4.3 The Brownian Family of Processes

Perhaps the most basic of all random fields is a collection of independent Gaussian
random variables. While it is simple to construct such random fields for finite and
even countable parameter sets, deep technical difficulties obstruct the construction
for uncountable parameter sets. The path that we shall take around these difficulties
involves the introduction of random measures, which, at least in the Gaussian case,
are straightforward to formulate.

Let (T , T , ν) be a σ -finite measure space and denote by Tν the collection of sets
of T of finite ν measure. A Gaussian noise based on ν, or “Gaussian ν-noise,’’ is a
random field W : Tν → R such that for all A,B ∈ Tν ,

W(A) ∼ N(0, ν(A)), (1.4.11)

A ∩ B = ∅ ⇒ W(A ∪ B) = W(A)+W(B) a.s., (1.4.12)

A ∩ B = ∅ ⇒ W(A) and W(B) are independent. (1.4.13)

Property (1.4.12) encourages one to think of W as a random (signed) measure,
although it is not generally σ -finite.21 We describe (1.4.13) by saying that W has
independent increments.

Theorem 1.4.3. If (T , T , ν) is a measure space, then there exists a real-valued Gauss-
ian noise, defined for all A ∈ Tν , satisfying (1.4.11)–(1.4.13).

Proof. In view of the closing remarks of the preceding section, all we need do is
provide an appropriate covariance function on Tν × Tν . Try

21 While the notation “W ’’ is inconsistent with our determination to use lowercase Latin
characters for random functions, we retain it as a tribute to Norbert Wiener, who is the
mathematical father of these processes.
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Cν(A,B)
�= ν(A ∩ B). (1.4.14)

This is nonnegative definite, since for any Ai ∈ Tν and αi ∈ R,∑
i,j

αiCν(Ai, Aj )αj =
∑
i,j

αiαj

∫
T

IAi
(x)IAj

(x)ν(dx)

=
∫
T

(∑
i

αiIAi
(x)

)2

ν(dx)

≥ 0.

Consequently, there exists a centered Gaussian random field on Tν with covariance
Cν . It is immediate that this field satisfies (1.4.11)–(1.4.13), and so we are done. ��

A particularly simple example of a Gaussian noise arises when T = Z. Take ν

a discrete measure of the form ν(A) = ∑
k akδk(A), where the ak are nonnegative

constants and δk is the Dirac measure on {k}. For T take all subsets of Z. In this
case, the Gaussian noise can actually be defined on points t ∈ T and extended to a
signed measure on sets in Tν by additivity. What we get is a collection {Wk}k∈Z of
independent, centered, Gaussian variables, with E{W 2

k } = ak . If the ak are all equal,
this is classical Gaussian “white’’ noise on the integers.

A more interesting case is T = RN , T = BN , the Borel σ -algebra on RN , and
ν(·) = | · |, Lebesgue measure. This gives us a Gaussian white noise defined on the
Borel subsets of RN of finite Lebesgue measure, which is also a field with orthogonal
increments, in the sense of (1.4.13). It is generally called the set-indexed Brownian
sheet. It is not possible, in this case, to assign nontrivial values to given points t ∈ RN ,
as was the case in the previous example.

It also turns out that working with the Brownian sheet on all of BN is not really
the right thing to do, since, as will follow from Theorem 1.4.5, this process is rather
badly behaved. Restricting the parameter space to various classes of subsets of BN is
the right approach. Doing so gives us a number of interesting examples, with which
the remainder of this section is concerned.

As a first step, restrict W to rectangles of the form [0, t] ⊂ RN+ , where t ∈ RN+ =
{(t1, . . . , tN ) : ti ≥ 0}. It then makes sense to define a random field on RN+ itself via
the equivalence

W(t) = W ([0, t]) . (1.4.15)

Wt is called the Brownian sheet on RN+ , or multiparameter Brownian motion. It is
easy to check that this field is the centered Gaussian process with covariance

E{WsWt } = (s1 ∧ t1)× · · · × (sN ∧ tN ), (1.4.16)

where s ∧ t
�= min(s, t).

When N = 1, W is the standard Brownian motion on [0,∞). When N > 1, if we
fix N − k of the indices, it is a scaled k-parameter Brownian sheet in the remaining
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variables. (This is easily checked via the covariance function.) Also, when N > 1,
it follows immediately from (1.4.16) that Wt = 0 when mink tk = 0, i.e., when t is
on one of the axes. It is this image, with N = 2, of a sheet tucked in at two sides and
given a good shake, that led Ron Pyke [128] to introduce the name.

A simple simulation of a Brownian sheet, along with its contour lines, is shown
in Figure 1.4.1.

Fig. 1.4.1. A simulated Brownian sheet on [0, 1]2, along with its contour lines at the zero level.

One of the rather interesting aspects of the contour lines of Figure 1.4.1 is that they
are predominantly parallel to the axes. There is a rather deep reason for this, and it has
generated a rather massive literature. Many fascinating geometrical properties of the
Brownian sheet have been discovered over the years (e.g., [36, 44, 45] and references
therein), and a description of the potential theoretical aspects of the Brownian sheet
is well covered in [91], where you will also find more references. Nevertheless, the
geometrical properties of fields of this kind fall beyond the scope of our interests,
since we shall be concerned with the geometrical properties of smooth (i.e., at least
differentiable) processes only. Since the Brownian motion on R1+ is well known to
be nondifferentiable at all points, it follows from the above comments relating the
sheet to the one-dimensional case that Brownian sheets too are far from smooth.

Nevertheless, we shall still have need of these processes, primarily since they
hold roughly the same place in the theory of multiparameter stochastic processes
that the standard Brownian motion does in one dimension. The Brownian sheet is
a multiparameter martingale (e.g., [36, 84, 170, 171]) and forms the basis of the
multiparameter stochastic calculus. There is a nice review of its basic properties in
[165], which also develops its central role in the theory of stochastic partial differential
equations, and describes in what sense it is valid to describe the derivative

∂NW(t1, . . . , tN )

∂t1 · · · ∂tN
as Gaussian white noise.

The most basic of the sample path properties of the Brownian sheets are the
continuity results of the following theorem. Introduce a partial order on Rk by writing
s ≺ (�)t if si < (≤) ti for all i = 1, . . . , k, and for s � t let �(s, t) = ∏N

1 [si, ti].
Although W(�(s, t)) is already well defined via the original set-indexed process, it
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is also helpful to think of it as the “increment’’ of the point-indexed Wt over �(s, t),
that is,

W(�(s, t)) =
∑

α∈{0,1}N
(−1)N−∑N

i=1 αiW

(
s +

N∑
i=1

αi(ti − si)

)
. (1.4.17)

We call W(�(s, t)) the rectangle-indexed version of W .

Theorem 1.4.4. The point and rectangle-indexed Brownian sheets are continuous22

over compact T ⊂ RN .

Proof. We need only consider the point-indexed sheet, since by (1.4.17) its continuity
immediately implies that of the rectangle-indexed version. Furthermore, we lose
nothing by taking T = [0, 1]N . Thus, consider

w(s, t)
�= E

{
|W(s)−W(t)|2

}
for s, t ∈ [0, 1]N . We shall show that

w(s, t) ≤ 2N |t − s|, (1.4.18)

from which it follows, in the notation of (1.4.1), that p2(u) ≤ 2Nu. Since∫∞
1 e−u2/2 du < ∞, Theorem 1.4.1 (cf. (1.4.3)) immediately yields the continuity

and boundedness of W .
To establish (1.4.18) write u ∨ v for max(u, v) and note that

w(s, t) ≤ 2
N∏
i=1

(si ∨ ti )− 2
N∏
i=1

(si ∧ ti ).

Set a = 2
∏N−1

i=1 (si ∨ ti ) and b = 2
∏N−1

i=1 (si ∧ ti ). Then 2 ≥ a > b and

w(s, t) ≤ a(sN ∨ tN )− b(sN ∧ tN ).

If sN > tN , the right-hand side is equal to

asN − btN = a(sN − tN )+ tN (a − b) ≤ 2|sN − tN | + |a − b|.
Similarly, if sN < tN the right-hand side equals

atN − bsN = a(tN − sN)+ sN(a − b) ≤ 2|tN − sN | + |a − b|,
so that

22 For the rectangle-indexed case, we obviously need a metric on the sets forming the parameter
space. The symmetric difference metric of (1.1.1) is natural, and so we use it.



28 1 Gaussian Fields

w(s, t) ≤ 2|tN − sN | +
N−1∏
i=1

(si ∨ ti )−
N−1∏
i=1

(si ∧ ti ).

Continuing this process yields

w(s, t) ≤ 2
N∑
i=1

|ti − si | ≤ 2N |t − s|,

which establishes (1.4.18) and so the theorem. ��
In the framework of the general set-indexed sheet, Theorem 1.4.4 states that the

Brownian sheet is continuous over A = {all rectangles in T } for compact T , and so
bounded. This is far from a trivial result, for enlarging the parameter set, for the same
process, can lead to unboundedness. The easiest way to see this is with an example.

An interesting, but quite simple example is given by the class of lower layers in
[0, 1]2. A set A in RN is called a lower layer if s ≺ t and t ∈ A implies s ∈ A. In
essence, restricted to [0, 1]2 these are sets bounded by the two axes and a nonincreasing
line. A specific example in given in Figure 1.4.2, which is part of the proof of the
next theorem.

Theorem 1.4.5. The Brownian sheet on lower layers in [0, 1]2 is discontinuous and
unbounded with probability one.

Proof. We start by constructing some examples of lower layers. Write a generic
point in [0, 1]2 as (s, t) and let T01 be the upper right triangle of [0, 1]2, i.e., those
points for which which s ≤ 1 and t ≤ 1 ≤ s + t . Let C01 be the largest square in
T01, i.e., those points for which which 1

2 < s ≤ 1 and 1
2 ≤ t ≤ 1.

Continuing this process, for n = 1, 2, . . . , and j = 1, . . . , 2n, let Tnj be the
right triangle defined by s + t ≥ 1, (j − 1)2−n ≤ s < j2−n, and 1 − j2−n < t ≤
1 − (j − 1)2−n. Let Cnj be the square filling the upper right corner of Tnj , in which
(2j − 1)2−(n+1) ≤ s < j2−n and 1 − (2j − 1)2−(n+1) ≤ t < 1 − (j − 1)2−n.

The class of lower layers in [0, 1]2 certainly includes all sets made up by taking
those points that lie between the axes and one of the step-like structures of Figure 1.4.2,
where each step comes from the horizontal and vertical sides of some Tnj with,
perhaps, different n.

Note that since the squares Cnj are disjoint for all n and j , the random variables
W(Cnj ) are independent. Also |Cnj | = 4−(n+1) for all n, j .

Let D be the negative diagonal {(s, t) ∈ [0, 1]2 : s + t = 1} and Lnj = D ∩ Tnj .
For each n ≥ 1, each point p = (s, t) ∈ D belongs to exactly one such interval
Ln,j (n,p) for some unique j (n, p).

For each p ∈ D and M < ∞ the events

Enp
�= {W(Cn,j (n,p)) > M2−(n+1)}

are independent for n = 0, 1, 2, . . . , and since W(Cnj )/2−(n+1) is standard normal
for all n and j , they also have the same positive probability. Thus, for each p we
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Fig. 1.4.2. Construction of some lower layers.

have that for almost all ω, the events Enp occur infinitely often. Let n(p) = n(p, ω)

be the least such n.
Since the events Enp(ω) are measurable jointly in p and ω, Fubini’s theorem

implies that with probability one, for almost all p ∈ D (with respect to Lebesgue
measure on D) some Enp occurs, and n(p) < ∞. Let

Vω =
⋃
p∈D

Tn(p),j (n(p),p),

Aω
�= {(s, t) : s + t ≤ 1} ∪ Vω,

Bω
�= Aω \

⋃
p∈D

Cn(p),j (n(p),p).

Then Aω and Bω are lower layers. Furthermore, almost all p ∈ D belong to an

interval of length 2
1
2−n(p), which is the hypotenuse of a triangle with the square

Cp = Cn(p),j (n(p),p) in its upper right corner, for which 2W(Cp) > M2−n(p). Con-
sequently,

W(Aω)−W(Bω) ≥
∑
p

M2−n(p)/2,

where the sum is over those p ∈ D corresponding to distinct intervals Ln(p),j (n(p),p).
Since the union of the countably many such intervals is almost all of the diagonal,
the sum of

∑
2−n(p) is precisely 1.

Hence W(Aω) − W(Bω) ≥ M/2, implying that max{|W(Aω)|, |W(Bω)|} ≥
M/4. Sending M → ∞ we see that W is unbounded and so, a fortiori, discontinuous
with probability one over lower layers in [0, 1]2. ��

The above argument is due to Dudley [54], and a similar argument shows that
W is unbounded over the convex subsets of [0, 1]3. A fortiori, W is also unbounded
over the convex subsets of [0, 1]k for all k ≥ 4 and (just to make sure that you don’t
confuse sample path properties with topological properties of the parameter space)
W is continuous over convex subsets of the unit square. For details see [56].
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These examples should be enough to convince you that the relationship between
a Gaussian process and its parameter space is, as far as continuity and boundedness
are concerned, an important and delicate subject.

1.4.4 Generalized Fields

We start with an example: Take a centered, Gaussian random field f on RN , with
covariance function C. Let F be a family of functions on RN , and for ϕ ∈ F define

f (ϕ) =
∫

RN

ϕ(t)f (t) dt. (1.4.19)

We thus obtain a centered Gaussian process indexed by functions in F , whose co-
variance functional is given by

C(ϕ,ψ) = E{f (ϕ)f (ψ)} =
∫

RN

∫
RN

ϕ(s)C(s, t)ψ(t) ds dt. (1.4.20)

The above construction makes sense only when C(t, t) < ∞, for otherwise f

has infinite variance and the integrand in (1.4.19) is not defined. Nevertheless, there
are occasions when (1.4.20) makes sense, even though C(t, t) = ∞. In this case we
shall refer to C as a covariance kernel, rather than as a covariance function.

We shall look at a very important example of such processes in Section 5.3 when
we consider moving averages of Gaussian ν-noise, in which case F will be made up
of translations of the form ϕ(s) = F(t − s), for F ∈ L2(ν).

Another important example arises in the spectral representation of stationary pro-
cesses. In Section 5.4 we shall take F to the family of complex exponentials exp(it ·λ)
for fields on RN , or as the family of characters for fields on a general group.23

While moving averages and stationary processes afford two classes of examples,
there are many more, some of which we shall describe at the end of this section. In
particular, given any positive definite function C on RN ×RN , not necessarily finite,
one can define a function-indexed process on

23 On the assumption that you might already be familiar with basic spectral theory, consider
the spectral distribution theorem, Theorem 5.4.1. This is written in the setting of complex-
valued fields. For simplicity, assume that the spectral measure ν has a spectral density g.
Then (5.4.1) gives us that stationary covariances over R

N can be formally written as

C(s, t) =
∫
RN

ei(t−s)·λg(λ) dλ

=
∫
RN

∫
RN

eit ·λ1
[
g1/2(λ1)δ(λ1, λ2)g

1/2(λ2)
]
e−is·λ2 dλ1 dλ2,

which is in the form of (1.4.20), with ϕ = eit ·, ψ = e−is·. The covariance kernel in the
integrand now involves the Dirac delta function, which is certainly not finite on the diagonal.
It is this issue that will lead to our having to be careful in defining the stochastic integral in
the spectral representation of Theorem 5.4.2.



1.4 Examples 31

FC
�=
{
ϕ :
∫

RN

∫
RN

ϕ(s)C(s, t)ϕ(t) ds dt < ∞
}
.

The proof requires no more than checking that given such a C on RN × RN , the
corresponding C defined by (1.4.20) determines a finite positive definite, and so
covariance, function on FC × FC .

In general, function-indexed processes of this kind, for which the covariance
kernel C(s, t) is infinite on the diagonal, are known as generalized random fields.24

The question that we shall now look at is when such processes are continuous and
bounded. The answer involves a considerable amount of work, but it is worthwhile at
some stage to go through the argument carefully. It is really the only non-Euclidean
case for which we shall give an involved entropy calculation in reasonably complete
detail.

We start by describing potential function spaces to serve as parameter spaces for
continuous generalized Gaussian fields with such covariance kernels.

Take T ⊂ RN compact, q > 0, and p =  q!. Let C0, . . . , Cp and Cq be finite,
positive constants, and let F (q) = F (q)(T , C0, . . . , Cp, Cq) be the class of functions
on T whose partial derivatives of orders 1, . . . , p are bounded by C0, . . . , Cp, and
for which the partial derivatives of order p satisfy Hölder conditions of order q − p

with constant Cq . Thus for each ϕ ∈ F (q) and t, t + τ ∈ T ,

ϕ(t + τ) =
p∑

n=0

�n(t, τ )

n! +�(t, τ ), (1.4.21)

where each �n(t, τ ) is a homogeneous polynomial of degree n in τ = (τ1, . . . , τN)

of the form

24 The terminology comes from deterministic analogues. There are many partial differential
equations for which no pointwise solution exists, but “smoothed’’ or “weak’’ versions of the
equations do have solutions. This is analogous to the nonexistence of a pointwise-defined
f (t) in (1.4.19), while a function-indexed version of f does make sense. The function ϕ

plays the role of a local mollifier, or smoothing function.
A particularly important class of examples, arising in physics, is given by covariance

kernels whose behavior near the diagonal is bounded, for α < N , by

C(s, t) ≤ C

|s − t |α .

When α = N − 2, N > 2, these kernels include the so-called free field of Euclidean
quantum field theory. (WhenN = 2 the free field has a covariance kernel with a logarithmic
singularity at 0, and when N = 1 the free field is no longer generalized, but is the real-
valued, stationary Markov Gaussian process with covariance function C(t) = e−β|t |, for
someβ > 0.) These processes, along with a large number of related generalized fields whose
covariance kernels satisfy similar conditions, possess a type of multidimensional Markov
property. For details on this see, for example, Dynkin [57, 58, 59, 60] and Adler and Epstein
[6] and references therein. For structural and renormalization properties of generalized fields
of this kind, presented among a much wider class of examples, see Dobrushin [49], who
also treats a large variety of non-Gaussian fields.
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�n(t, τ ) =
N∑

j1=1

· · ·
N∑

jn=1

∂nϕ(t)

∂tj1 · · · ∂tjn
τj1 · · · τjn, (1.4.22)

and where

sup
t∈T

∣∣∣∣ ∂nϕ(t)

∂tj1 · · · ∂tjn

∣∣∣∣ ≤ Cn and |�(t, τ )| ≤ Cq |τ |q . (1.4.23)

For these parameter spaces, we have the following result.25

Theorem 1.4.6. Let T ⊂ RN be compact, and suppose that C is a covariance kernel
satisfying ∫

T×T

C(s, t) ds dt < ∞.

A centered Gaussian process with covariance function satisfying (1.4.20) will be
continuous on F (q)(T , C0, . . . , Cp, Cq) if q > N .

Acouple of comments are in order before we start the proof. Firstly, note that since
we have not specified any other metric on F (q), the continuity claim of the theorem
is in relation to the topology induced by the canonical metric d. There are, of course,
more natural metrics on F (q), but recall from Lemma 1.3.1 that mere continuity is
independent of the metric, as long asC(ϕ,ψ) is continuous in ϕ andψ . More detailed
information on moduli of continuity will follow immediately from Theorem 1.3.5,
the relationship of the chosen metric to d , and the entropy bound (1.4.32) below.

Secondly, the condition q > N , while sufficient, is far from necessary. To see
this one need only take the case of f (t) ≡ X, where X is centered Gaussian. In this
case, defining f (ϕ) by (1.4.19) gives a generalized process that is continuous over
F (q) for all q > 0, regardless of the dimension N . To obtain sharper results one
needs to assume more on the specific form of the covariance kernel, which we shall
not do here.

Proof of Theorem 1.4.6. The proof relies on showing that the usual entropy integral
converges, where the entropy of F (q) is measured in the canonical metric d given by

d2(ϕ, ψ) =
∫
T

∫
T

(ϕ(s)− ψ(s)) C(s, t) (ϕ(t)− ψ(t)) ds dt. (1.4.24)

We shall obtain a bound on the entropy by explicitly constructing, for each ε > 0,
a finite family F (q)

ε of functions that serve as an ε-net for F (q) in the d metric. To
make life notationally easier, we shall assume throughout that T = [0, 1]N .

Fix ε > 0 and set

δ = δ(ε) = ε1/q . (1.4.25)

Let Zδ denote the grid of the (1 +  δ−1!)N points in [0, 1]N of the form

25 There is a similar-looking but incorrect result (“Theorem’’ 1.7) in the lecture notes [3]. We
thank Leonid Mytnik for pointing out that it had to be wrong.
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tη = (η1δ, . . . , ηNδ), ηi = 0, 1, . . . ,  δ−1!, i = 1, . . . , N. (1.4.26)

Set

δn = δn(ε) = δq−n, n = 0, . . . , p =  q!,

and for each ϕ ∈ F (q), n = 0, . . . , p, and tη of the form (1.4.26) let A(n)
η (ϕ) denote

the vector formed by taking the integer part of δ−1
n times the partial derivatives of ϕ

of order n evaluated at the point tη. (The index η here is, of course, N -dimensional.)

Thus, a typical element of A(n)
η is of the form

{
A(n)
η (ϕ)

}
i
=
⌊
ϕ(n1,...,nN )(tη)

δn

⌋
, n1 + · · · + nN = n, (1.4.27)

where we have written ϕ(n1,...,nN ) for the derivative ∂nϕ/∂n1x1 · · · ∂nN xN , and the
index i runs from 1 to

(
n+N−1
N−1

)
, the number of partitions of n into N parts.

Finally, for ϕ ∈ F (q), let A(n) = A(n)(ϕ) denote the vector-valued function on
Zδ defined by A(n)(tη) = A

(n)
η (ϕ). For each ϕ ∈ F (q), let FA(n)(ϕ) denote the set of

ψ ∈ F (q) with fixed matrix A(n)(ϕ). Our first task will be to show that the d-radius
of FA(n)(ϕ) is not greater than Cε, where C is a constant dependent only on q and N .
All that will then remain will be to calculate how many different collections FA(n)(ϕ)

are required to cover F (q). In other words, we need to find how many ϕ’s are needed
to approximate, in terms of the metric (1.4.24), all functions in F (q).

Thus, take ϕ1, ϕ2 ∈ FA(n)(ϕ), and set

ϕ = ϕ1 − ϕ2. (1.4.28)

Let ‖ ‖d be the norm induced on F (q) by the metric d, and ‖ ‖∞ the usual sup
norm. Then

‖ϕ‖2
d =

∫
[0,1]N

∫
[0,1]N

ϕ(s)C(s, t)ϕ(t) ds dt, ‖ϕ‖∞ = sup
[0,1]k

|ϕ(t)|.

We want to show that the ϕ of (1.4.28) has d-norm less than Cε, for some finite
constant C.

Note first, however, that in view of the definition (1.4.27) of the matrix Aδ we
have for each tη ∈ Zδ and each partial derivative ϕ(n1,...,nN ) of such a ϕ of order
n1 + · · · + nN = n ≤ p that

ϕ(n1,...,nN )(tη) ≤ δn.

Putting this inequality together with the Taylor expansion (1.4.21)–(1.4.22), we
find that for all t ∈ [0, 1]N ,

|ϕ(t)| ≤
p∑

n=0

Nn

n! δnδ
n + Cδq = C(N, p)δq,
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the equality following from the definition of the δn and the fact that each polynomial
�n of (1.4.22) has less than Nn distinct terms.

Thus, for ϕ of the form (1.4.28),

‖ϕ‖∞ ≤ Cδq. (1.4.29)

We now turn to ‖ϕ‖d . Allowing the constant C to change from line to line, we have

‖ϕ‖2
d =

∫
[0,1]N×[0,1]N

ϕ(s)C(s, t)ϕ(t) ds dt

≤ Cδ2q
∫
[0,1]N×[0,1]N

C(s, t) ds dt

≤ Cδ2q .

Thus, by (1.4.25),

‖ϕ‖d < Cε, (1.4.30)

as required.
It remains to determine how many collections FA(n)(ϕ) are required to cover F (q).

Since this is a calculation that is now independent of both Gaussian processes in
general and the above covariance function in particular, we shall only outline how it
is done. The details, which require somewhat cumbersome notation, can be found
in Kolmogorov and Tihomirov [94], which is a basic reference for general entropy
computations.

Consider, for fixed δ, the matrix Aδ , parameterized, as in (1.4.26), by ηi =
0, 1, . . . , [δ−1], i = 1, . . . , N , and n = 0, 1, . . . , p. Fix, for the moment, η2 =
· · · = ηN = 0. It is clear from the restrictions (1.4.23), (1.4.27), the definition of δn,
and the fact that each vector A(n)

η has no more than
(
n+N−1
N−1

)
distinct elements that

there are no more than

O

(
1

δ0

( 1

δ1

)( N
N−1) · · ·

( 1

δp

)(p+N
N−1)

)
= O

(
δ−ξ

)
(for an appropriate and eventually unimportant ξ ) ways to fill in the row of Aδ corre-
sponding to (n1, . . . , nN) = (0, . . . , 0).

What remains to show is that because of the rigid continuity conditions on the
functions in F (q), there exists an absolute constant M = M(q,C0, . . . , Cp, Cq) such
that once this first row is determined, there are no more than M ways to complete
the row corresponding to (n1, . . . , nN) = (1, . . . , 0), and similarly no more than M2

ways to complete the row corresponding to (n1, . . . , nN) = (2, . . . , 0), etc. Thus, all
told, there are no more than

O(δ−ξM(1+δ−1)N ) (1.4.31)

ways to fill the matrix Aδ , and so we have a bound for the number of different
collections FA(n)(ϕ).
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Modulo a constant, it now follows from (1.4.25), (1.4.30), and (1.4.31) that the
log entropy function for our process is bounded above by

C1 + C2ξ

(q + (N − α)/2)
ln

(
1

ε

)
+ C3

(
1

ε

)1/q

. (1.4.32)

Since this is integrable if q > N , we are done. ��
Before leaving function-indexed processes, there are a number of comments that

are worth making that relate them to other problems both within and outside of the
theory of Gaussian processes.

In most of the literature pertaining to generalized Gaussian fields the parameter
space used is the Schwarz space S of infinitely differentiable functions decaying
faster than any polynomial at infinity. Since this is a very small class of functions
(at least in comparison to the classes F (q) that Theorem 1.4.6 deals with), continuity
over S is automatically assured and therefore not often explicitly treated. However,
considerations of continuity and smaller parameter spaces are of relevence in the
treatment of infinite-dimensional diffusions arising as the solutions of stochastic par-
tial differential equations, in which solutions over very specific parameter spaces are
often sought. For more on this see, for example, [82, 166, 165].

A class of examples of particular importance to the theory of empirical processes
is that in which the covariance kernel is the product of a Dirac delta δ and a bounded
“density,’’ g, in the sense that

E{f (ϕ)f (ψ)} =
∫

ϕ(t)ψ(t)g(t) dt

“=’’
∫∫

ϕ(s)[g1/2(s)δ(s, t)g1/2(t)]ψ(t) dt.

Such processes will arise as the stochastic integrals W(ϕ) in Section 5.2, where
W is a Gaussian ν-noise where ν is (now) a probability measure with density g. For
more on this setting, in which the computations are similar in spirit to those made
above, see Dudley [56].

Secondly, it is worth noting that much of what has been said above regarding gen-
eralized fields—i.e., function-indexed processes—can be easily extended to Gaussian
processes indexed by families of measures. For example, if we consider the function
ϕ in (1.4.19) to be the (positive) density of a measure μ on RN , then by analogy it
makes sense to write

f (μ) =
∫

RN

f (t)μ(dt),

with the corresponding covariance functional

C(μ, ν) = E{f (μ)f (ν)} =
∫

RN

∫
RN

μ(ds)C(s, t)ν(dt).

Again, as was the case for generalized Gaussian fields, the process X(μ) may be
well defined even if the covariance kernel C diverges on the diagonal. In fact, f (μ)
will be well defined for all μ ∈ MC , where
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MC
�=
{
μ :

∫
RN

∫
RN

μ(ds)C(s, t)μ(dt) < ∞
}
.

Similar arguments to those used above to characterize the continuity of a family
of Gaussian fields on F (q) can be used to ascertain continuity of measure-indexed
processes on suitably smooth classes of measures. We leave both the details and an
attempt to formulate the appropriate results to the interested reader. The general idea
of how to proceed can be gleaned from the treatment of set-indexed processes in the
following section.

1.4.5 Set-Indexed Processes

We have already met some set-indexed processes in dealing with the Brownian family
of processes in Section 1.4.3, in which we concentrated on Gaussian ν-noise (cf.
(1.4.11)–(1.4.13)) indexed by sets. We saw, for example, that while the Brownian
sheet indexed by rectangles was continuous (Theorem 1.4.4), when indexed by lower
layers in [0, 1]2 it was discontinuous and unbounded (Theorem 1.4.5).

In this section we shall remain in the setting of ν-noise, and look at two classes of
set-indexed processes. The first will be Euclidean, and the parameter spaces will be
classes of sets in compact T ⊂ RN with smooth boundaries. For this example we also
add the assumption that ν has a density bounded away from zero and infinity on T .
For the second eaxmple, we look at Vapnick–Červonenkis classes of sets, of singular
importance in statistical learning theory and image processing, and characterized by
certain combinatorial properties. Here the ambient space (in which the sets lie) can be
any measure space. We shall skimp on proofs when they have nothing qualitatively
new to offer. In any case, all that we have to say is done in full detail in Dudley
[53, 56], where you can also find a far more comprehensive treatment and many more
examples.

Our first family is actually closely related to the family F (q) of functions we have
just studied in detail. While we shall need some of the language of manifolds and
homotopy to describe this example, which will be developed only later, in Chapter 6,
it will be basic enough that the average reader should have no trouble following the
argument.

With SN−1 denoting the unit sphere in RN , recall the basic fact that we can
cover it by two patches V1 and V2, each of which maps via a C∞ diffeomorphism
Fj : Vj → BN−1 to the open ball BN−1 = {t ∈ RN−1 : |t |2 < 1}.

Adapting slightly the notation of the previous example, let F (q)(Vj ,M) be the
set of all real-valued functions ϕ on Vj such that

ϕ ◦ F−1
j ∈ F (q)(BN−1,M, . . . ,M)

(cf. (1.4.21)–(1.4.23)). Furthermore, let F (q)(SN−1,M) denote the set of all real-
valued functions ϕ on SN−1 such that the restriction of ϕ to Vj is in F (q)(Vj ,M).
Now taking the N -fold Cartesian product of copies of F (q)(SN−1,M), we obtain a
family of functions from SN−1 to RN , which we denote by D(N, q,M), where the
D stands for Dudley, who introduced this family in [52].
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Each ϕ ∈ D(N, q,M) defines an (N − 1)-dimensional surface in RN , and a
simple algebraic geometric construction26 enables one to “fill in’’ the interior of this
surface to obtain a set Iϕ . We shall denote the family of sets obtained in this fashion
by I (N, q,M), and call them the Dudley sets with q-times differentiable boundaries.

Theorem 1.4.7. The Brownian sheet is continuous on a bounded collection of Dudley
sets in RN with q-times differentiable boundaries if q > N − 1 ≥ 1. If N − 1 > 1 ≥
q > 0 or if N−1 > q ≥ 1, then the Brownian sheet is unbounded with probability 1.

Outline of proof. The proof of the unboundedness part of the result is beyond us,
and so you are referred to [56]. As far as the proof of continuity is concerned, what
we need are the following inequalities for the log-entropy, on the basis of which
continuity follows from Theorem 1.3.5:

H(I (N, q,M), ε) ≤
{
Cε−2(N−1)/(Nq−N+1), (N − 1)/N < q ≤ 1,

Cε−2(N−1)/q , 1 ≤ q.

These inequalities rely on the “simple algebraic geometric construction’’noted above,
and so we shall not consider them in detail. The details are in [56]. The basic idea,
however, requires little more than noting that there are basically as many sets in
I (N, q,M) as there are functions in D(N, q,M), and we have already seen, in the
previous example, how to count the number of functions in D(N, q,M).

There are also equivalent lower bounds for the log-entropy for certain values of
N and q, but these are not important to us. ��

We now turn to the so-called Vapnick–Červonenkis, or VC, sets, due, not surpris-
ingly, to Vapnick and Červonenkis [163, 164]. These sets arise in a very natural way
in many areas including statistical learning theory and image analysis. The recent
book [162] by Vapnick is a good place to see why.

The arguments involved in entropy calculations for VC classes of sets are of an
essentially combinatoric nature, and so somewhat different from those we have met so
far. We shall therefore look at them somewhat more closely than we did for Dudley
sets. For more details, however, including a discussion of the importance of VC
classes to the problem of finding universal Donsker classes in the theory of empirical
processes, see [56].

Let (E, E) be a measure space. Given a class C of sets in E and a finite set F ⊂ E,
let �C(F ) be the number of different sets A ∩ F for A ∈ C. If the number of such
sets is 2|F |, then C is said to shatter F . For n = 1, 2, . . . , set

mC(n) �= max{�C(F ) : F has n elements}.
26 The construction works as follows: For given ϕ : SN−1 → R

N in D(N, q,M), let Rϕ be
its range and Aϕ the set of all t ∈ R

N , t /∈ Rϕ , such that among mappings of SN−1 into
R
N \ {t}, ϕ is not homotopic (cf. Definition 6.1.3) to any constant map ψ(s) ≡ r �= t . Then

define Iϕ = Rϕ ∪ Aϕ . For an example, try untangling this description for ϕ the identity
map from SN−1 to itself to see that what results is Iϕ = BN .
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Clearly, mC(n) ≤ 2n for all n. Also, set

V (C) �=
{

inf {n : mC(n) < 2n}, mC(n) < 2n for some n,

∞, mC(n) = 2n for all n.
(1.4.33)

The class C is called a Vapnick–Červonenkis class if mC(n) < 2n for some n, i.e.,
if V (C) < ∞. The number V (C) is called the VC index of C, and V (C) − 1 is the
largest cardinality of a set shattered by C.

Two extreme but easy examples that you can check for yourself are E = R and
C all half-lines of the form (−∞, t], for which mC(n) = n + 1 and V (C) = 2, and
E = [0, 1] with C all the open sets in [0, 1]. Here mC(n) = 2n for all n, and so
V (C) = ∞ and C is not a VC class.

A more instructive example, which also leads into the general theory we are after,
is E = RN and C is the collection of half-spaces of RN . Let �(N, n) be the maximal
number of components into which it is possible to partition RN via n hyperplanes.
Then, by definition, mC(n) = �(N, n). It is not hard to see that � must satisfy the
recurrence relation

�(N, n) = �(N, n− 1)+�(N − 1, n− 1), (1.4.34)

with the boundary conditions �(0, n) = �(N, 0) = 1.
To see this, note that if RN has already been partitioned into �(N, n− 1) subsets

via n− 1 ((N − 1)-dimensional) hyperplanes, H1, . . . , Hn−1, then adding one more
hyperplane Hn will cut in half as many of these subsets as intersect Hn. There can be
no more such subsets, however, than the maximal number of subsets formed onHn by
partitioning with the n−1 (N−2)-dimensional hyperplanesH1∩Hn, . . . , Hn−1∩Hn;
i.e., �(N − 1, n− 1). Hence (1.4.34).

Induction then shows that

�(N, n) =
{∑N

j=0

(
n
j

)
, n > N,

2n, n ≤ N,

where we adopt the usual convention that
(
n
j

) = 0 if n < j .
From either the above or (1.4.34) you can now check that

�(N, n) ≤ nN + 1 for all N, n > 0. (1.4.35)

It thus follows, from (1.4.33), that the half-spaces of RN form a VC class for
all N .

What is somewhat more surprising, however, is that an inequality akin to (1.4.35),
which we developed only for this special example, holds in wide (even non-Euclidean)
generality.

Lemma 1.4.8. Let C be a collection of sets in E such that V (C) ≤ v. Then

mC(n) < �(v, n) ≤ nv + 1 for all n ≥ v. (1.4.36)
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Since the proof of this result is combinatoric rather than probabilistic, and will be
of no further interest to us, you are referred to either of [163, 56] for a proof.

The importance of Lemma 1.4.8 is that it enables us to obtain bounds on the
entropy function for Gaussian ν-noise over VC classes that are independent of ν.

Theorem 1.4.9. Let W be the Gaussian ν-noise on a probability space (E, E, ν). Let
C be a Vapnick–Červonenkis class of sets in E with V (C) = v. Then there exists
a constant K = K(v) (not depending on ν) such that for 0 < ε ≤ 1

2 , the entropy
function for W satisfies

N(C, ε) ≤ Kε−2v| ln ε|v.
Proof. We start with a little counting, and then turn to the entropy calculation proper.
The counting argument is designed to tell us something about the maximum number
of C sets that are a certain minimum distance from one another and can be packed
into E.

Fix ε > 0 and suppose A1, . . . , Am ∈ C, m ≥ 2, and ν(Ai�Aj ) ≥ ε for i �= j .
We need an upper bound on m. Sampling with replacement, select n points at random
from E. The ν-probability that at least one of the sets Ai�Aj contains none of these
n points is at most (

m

2

)
(1 − ε)n. (1.4.37)

Choose n = n(m, ε) large enough so that this bound is less than 1. Then

P {all symmetric differences Ai�Aj are nonempty} > 0,

and so for at least one configuration of the n sample points the class C picks out at
least m distinct subsets (since, with positive probability, given any two of the Ai there
is at least one point not in both of them). Thus, by (1.4.36),

m ≤ mC(n) ≤ nv = (
n(m, ε)

)v
. (1.4.38)

Take now the smallest n for which (1.4.37) is less than 1. For this n we have
m2(1 − ε)n−1 ≥ 2, so that

n− 1 ≤ 2 ln m− ln 2

| ln(1 − ε)| ,

and n ≤ (2 ln m)/ε. Furthermore, by (1.4.38), m ≤ (2 ln m)vε−v .
For some m0 = m0(v) < ∞, (2 ln m)v ≤ m1/(v+1) for m ≥ m0, and then

m ≤ ε−v−1, so ln m ≤ (v + 1)| ln ε|. Hence

m ≤ K(v)ε−v| ln ε|v for 0 < ε ≤ 1

2
,

if K(v) = max(m0, 2v+1(v + 1)v).
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This concludes the counting part of the proof. We can now do the entropy
calculation. Recall that the canonical distance between sets in E is given by

dν(A,B) = [ν(A�B)] 1
2 .

Fix ε > 0. In view of the above, there can be no more than m = K(v)ε2v|2 ln ε|v
sets A1, . . . , Am in C for which dν(Ai, Aj ) ≥ ε for all i, j . Take an ε-neighborhood
of each of the Ai in the dν metric. (Each such neighborhood is a collection of sets in
E .) The union of these neighborhoods covers C, and so we have constructed an ε-net
of the required size, and are done. ��

An immediate consequence of the entropy bound of Theorem 1.4.9 is the follow-
ing.

Corollary 1.4.10. LetW be Gaussianν-noise based over a probability space (E, E, ν).
Then W is continuous over any Vapnick–Červonenkis class of sets in E .

For more about set-indexed processes, particularly from the martingale viewpoint,
see [84].

1.4.6 Non-Gaussian Processes

A natural question to ask is whether the results and methods that we have seen in this
section extend naturally to non-Gaussian fields. We already noted, immediately after
the proof of the central Theorem 1.3.5, that the proof there used normality only once,
and so the general techniques of entropy should be extendable to a far wider setting.

For most of the processes that will concern us, this will not be terribly relevant.
In Chapter 15 we shall concentrate on random fields that can be written in the form

f (t) = F(g1(t), . . . , gd(t)),

where the gi are i.i.d. Gaussian and F : Rd → R is smooth. In this setting, conti-
nuity and boundedness of the non-Gaussian f follow deterministically from similar
properties on F and the gi , and so no additional theory is needed.

Nevertheless, there are many processes that are not attainable in this way, for
which one might a priori expect that the random geometry of Part III of this book might
apply. In particular, we are thinking of the smooth stable fields of Samorodnitsky
and Taqqu [138]. With this in mind, and for completeness, we state Theorem 1.4.11
below. However, other than the “function of Gaussian’’ non-Gaussian scenario, we
know of no cases for which this random geometry has even the beginnings of a parallel
theory.

To set up the basic result, let ft be a random process defined on a metric space
(T , τ ) and taking values in a Banach space (B, ‖ ‖B). Since we are no longer in the
Gaussian case, there is no reason to assume that there is any longer a canonical metric
of T to replace τ . Also, recall that a function ϕ : R → R is called a Young function
if it is even, continuous, convex, and satisfies

lim
x→0

ϕ(x)

x
= 0, lim

x→∞
ϕ(x)

x
= ∞.
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Theorem 1.4.11. Take f as above, and assume that the real-valued process ‖ft −
fs‖B is separable. Let Nτ be the metric entropy function for T with respect to the
metric τ . If there exists an α ∈ (0, 1] and a Young function ϕ such that the following
two conditions are satisfied, then f is continuous with probability one:

E

{
ϕ

(‖f (t)− f (s)‖αB
τ(s, t)

)}
≤ 1,∫

Nτ (u)>1
ϕ−1 (Nτ (u)) du < ∞.

The best place to read about this is in Ledoux and Talagrand [99].

1.5 Majorizing Measures

Back in Section 1.3 we used the notion of entropy integrals to determine sufficient
conditions for the boundedness and continuity of Gaussian fields. We claimed there
that these arguments were sharp for stationary processes, but need not be sharp in
general. That is, there are processes that are a.s. continuous, but whose entropy
integrals diverge. We also noted that the path to solving these issues lay via majorizing
measures, and so we shall now explain what these are, and how they work.

Our plan here is to give only the briefest of introductions to majorizing measures.
You can find the full theory in the book by Ledoux and Talagrand [99] and the more
recent papers and book [152, 154, 155, 156] by Talagrand. In particular, [154] gives
a very user friendly introduction to the subject, and the proof of Theorem 1.5.1 below
is taken from there.

We include this section for mathematical completeness27 and will not use its
results anywhere else in the book. It is here mainly to give you an idea of how to
improve on the weaknesses of entropy arguments, and to whet your appetite to turn
to the sources for more. Here is the main result.

Theorem 1.5.1. If f is a centered Gaussian process on (d-compact) T , then there
exists a universal constant K such that

E

{
sup
t∈T

ft

}
≤ K inf

μ
sup
t∈T

∫ ∞

0

√
ln

1

μ(Bd(t, ε))
dε, (1.5.1)

where Bd is the d-ball of (1.3.2) and the infimum on μ is taken over all probability
measures μ on T .

Furthermore, if f is a.s. bounded, then there exists a probability measure μ and
a universal constant K ′ such that

K ′ sup
t∈T

∫ ∞

0

√
ln

1

μ(Bd(t, ε))
dε ≤ E

{
sup
t∈T

ft

}
. (1.5.2)

27 “Mathematical completeness’’ should be understood in a relative sense, since our proofs
here will most definitely be incomplete!



42 1 Gaussian Fields

A measure μ for which the integrals above are finite for all t is called a majorizing
measure.

Note that the upper limit to the integrals in the theorem is really diam(T ), since

ε > diam(T ) ⇒ T ⊂ Bd(t, ε) ⇒ μ(Bd(t, ε)) = 1,

and so the integrand is zero beyond this limit.
Theorem 1.5.1 is the majorizing measure version of Theorem 1.3.3,28 which gave

an upper bound for E{supt ft } based on an entropy integral, but which did not have
a corresponding lower bound. Theorem 1.5.1, however, takes much more work to
prove than its entropic relative. Nevertheless, by building on what we have already
done, it is not all that hard to see where the upper bound (1.5.1) comes from.

Outline of proof. Start by rereading the proof of Theorem 1.3.3 as far as (1.3.14).
The argument leading up to (1.3.14) was that, eventually, increments fπj (t)−fπj−1(t)

would be smaller than uaj . However, on the way to this we could have been less
wasteful in a number of our arguments.

For example, we could have easily arranged things so that

∀ s, t ∈ T , πj (t) = πj (s) ⇒ πj−1(t) = πj−1(s), (1.5.3)

which would have given us fewer increments to control. We could have also as-
sumed that

∀ t ∈ �j, πj(t) = t, (1.5.4)

so that, by (1.5.3),

πj−1(t) = πj−1(πj (t)). (1.5.5)

So let us assume both (1.5.3) and (1.5.4). Then controlling the increments fπj (t)−
fπj−1(t) actually means controlling the increments ft − fπj−1(t) for t ∈ �j . There
are only Nj such increments, which improves on our previous estimate of NjNj−1.
This does not make much of a difference, but what does, and this is the core of the
majorizing measure argument, is replacing the original aj by families of nonnegative
numbers {aj (t)}t∈�j

, and then to ask when

∀ t ∈ �j, ft − fπj−1(t) ≤ uaj (t) (1.5.6)

for large enough j . Note that under (1.5.6),

∀ t ∈ T , ft − ft0 ≤ uS,

where

28 There is a similiar extension of Theorem 1.3.5, but we shall not bother with it.
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S
�= sup

t∈T

∑
j>i

aj (πj (t)).

Thus

P

{
sup
t∈T

(ft − ft0) ≥ uS
}
≤
∑
j>i

∑
t∈�′

j

P{ft − fπj−1(t) ≥ uaj (t)}

≤
∑
j>i

∑
t∈�′

j

2 exp

( −u2a2
j (t)

(2r−j+1)2

)
, (1.5.7)

where�′
j

�= �j \⋃i<k≤j−1 �k . (The move from the�j to the disjoint�′
j is crucial,

and made possible by (1.5.5).) This bound is informative only if the right-hand side
is less than or equal to one. Let us see how to ensure this when u = 1. Setting

wj(t) = 2 exp

( −a2
j (t)

(2r−j+1)2

)
, (1.5.8)

we want to have
∑

j

∑
t∈�′

j
wj (t) ≤ 1. We are now getting close to our majorizing

measure.
Recall thatT has long ago been assumed countable. Suppose we have a probability

measure μ supported on T and for all j > i and all t ∈ �j set wj(t) = μ({t}). Undo
(1.5.8) to see that this means that we need to take

aj (t) = 2r−j+1

√
ln

2

μ({t}) .

With this choice, the last sum in (1.5.7) is no more than 21−u2
, and S is given by

S = 2 sup
t∈T

∑
j>i

r−j+1

√
ln

2

μ({πj (t)}) ,

all of which ensures that for the arbitrary measure μ we now have

E

{
sup
t∈T

ft

}
≤ K sup

t∈T

∑
j>i

r−j+1

√
ln

2

μ({πj (t)}) . (1.5.9)

This is, in essence, the majorizing measure upper bound. To make it look more
like (1.5.1), note that each map πj defines a partition Aj of T comprising the sets

At
�= {s ∈ T : πj (s) = t}, t ∈ �j .

With Aj(t) denoting the unique element of Aj that contains t ∈ T , it is not too hard
(but also not trivial) to reformulate (1.5.9) to obtain
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E

{
sup
t∈T

ft

}
≤ K sup

t∈T

∑
j>i

r−j+1

√
ln

2

μ({Aj(t)}) , (1.5.10)

which is now starting to look a lot more like (1.5.1). To see why this reformulation
works, you should go to [154], which you should now be able to read without even
bothering about notational changes. You will also find there how to turn (1.5.10)
into (1.5.1), and also how to get the lower bound (1.5.2). All of this takes quite a bit
of work, but at least now you should have some idea of how majorizing measures
arose. ��

Despite the elegance of Theorem 1.5.1, it is not always easy, given a specific
Gaussian process, to find the “right’’ majorizing measure for it. To circumvent this
problem, Talagrand recently [155] gave a recipe for how to wield the technique
without the need to explicitly compute a majorizing measure. However, we are
already familiar with one situation in which there is a simple recipe for building
majorizing measures. This is when entropy integrals are finite.

Thus, let be H(ε) be our old friend (1.3.3), and set

g(t)
�=
√

ln
1

t
, 0 < t ≤ 1. (1.5.11)

Then here is a useful result linking entropy and majorizing measures.

Lemma 1.5.2. If
∫∞

0 H 1/2(ε) dε < ∞, then there exists a majorizing measure μ and
a universal constant K such that

sup
t∈T

∫ η

0
g(μ(B(t, ε))) dε < K(η| log η| +

∫ η

0
H 1/2(ε) dε), (1.5.12)

for all η > 0.

This lemma, together with Theorem 1.5.1, provides an alternative proof of Theo-
rems 1.3.3 and 1.3.5, since the additional term of η| log η| in (1.5.12) can be absorbed
into the integral (for small enough η) by changing K . In other words, the lemma
shows how entropy results follow from those for majorizing measures. What is par-
ticularly interesting, however, is the proof of the lemma, which actually shows how
to construct a majorizing measure when the entropy integral is a priori known to be
finite.

Proof. For convenience we assume that diam(T ) = 1. Let {An,1, . . . , An,N(2−n)},
for n ≥ 0, be a minimal family of d-balls of radius 2−n that cover T . Set

Bn,k = An,k \
⋃
j<k

An,j , (1.5.13)

so that Bn = {Bn,1, . . . , Bn,N(2−n)} is a partition of T and each Bi is contained in a
d-ball of radius 2−n. For each pair n, k choose a point tn,k ∈ Bn,k and then define a
probability measure μ on T by
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μ(A) =
∞∑
n=0

2−(n+1)(N(2−n))−1
N(2−n)∑
k=1

δtn,k (A),

where δtk is the measure giving unit mass to tk . This will be our majorizing measure.
To check that it satisfies (1.5.12), note first that if ε ∈ (2−(n+1), 2−n], then

μ(B(t, ε)) ≥ (2n+1N(2−(n+1)))−1,

for all t ∈ T . Consequently,∫ 2−n

0

√
ln

1

μ(B(t, ε))
dε ≤

∞∑
k=n+1

2−k(ln(2kN(2−k)))
1
2

≤
∞∑

k=n+1

2−k(k ln 2)
1
2 + 2

∫ 2−n

0
(ln(N(ε))

1
2 dε

≤ (n+ 2)2−n
√

ln 2 + 2
∫ 2−n

0
H 1/2(ε) dε,

the last line following from a little elementary algebra.
This establishes (1.5.12) for dyadic η. The passage to general η follows via a

monotonicity argument. ��
Another class of examples for which it is easy to find a majorizing measure is

given by that of stationary fields over compact Abelian groups. Once again, we
shall assume that you are either familiar with the notion of stationarity or will return
after having read Chapter 5. Under stationarity it is perhaps not suprising that Haar
measure is a majorizing measure.

Theorem 1.5.3. If f is stationary over a compact Abelian group T , then (1.5.1) and
(1.5.2) hold with μ taken to be normalized Haar measure on T .

A very similar result holds if T is only locally compact. You can find the details
in [99].

Proof. Since (1.5.1) is true for any probability measure on T , it also holds for Haar
measure. Thus we need only prove the lower bound (1.5.2).

Thus, assume that f is bounded, so that by Theorem 1.5.1 there exists a majorizing
measureμ satisfying (1.5.2). We need to show thatμ can be replaced by Haar measure
on T , which we denote by ν.

Set
Dμ

�= sup{η : μ(B(t, η)) < 1/2, for all t ∈ T },
with Dν defined analogously. With g as in (1.5.11), (1.5.2) can be rewritten as∫ Dm

0
g(μ(B(t, ε)) dε ≤ KE

{
sup
t∈T

ft

}
,
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for all t ∈ T . Let τ be a random variable with distribution ν; i.e., τ is uniform on T .
For each ε > 0, set Z(ε) = μ(B(τ, ε)). Then, for any t0 ∈ T ,

E{Z(ε)} =
∫
T

μ(B(t, ε))ν(dt)

=
∫
T

μ(t + B(t0, ε))ν(dt)

=
∫
T

ν(t + B(t0, ε))μ(dt)

= ν(B(t0, ε)),

where the second equality comes from the stationarity of f and the third and fourth
from the properties of Haar measures.

Now note that g(x) is convex over x ∈ (0, 1
2 ), so that it is possible to define a

function ĝ that agrees with it on (0, 1
2 ), is bounded on ( 1

2 ,∞), and convex on all of
R+. By Jensen’s inequality,

ĝ(E{Z(ε)}) ≤ E{ĝ(Z(ε))}.
That is,

ĝ(ν(B(t0, ε))) ≤
∫
T

ĝ(μ(B(t, ε))ν(dt).

Finally, set � = min(Dμ,Dν). Then∫ �

0
ĝ(ν(B(t0, ε)) dε ≤

∫ �

0
dε

∫
T

ĝ(μ(B(t, ε))ν(dt)

=
∫
T

∫ �

0
ν(dt)ĝ(μ(B(t, ε)) dε

≤ KE

{
sup
t∈T

ft

}
.

This is the crux of (1.5.2). The rest is left to you. ��
This more or less completes our discussion of majorizing measures. However, we

still have two promises to fulfill before completing this chapter. The first of these is
to show why entropy conditions are necessary, as well as sufficient, for boundedness
and continuity if f is stationary. This is Theorem 1.5.4 below. Its proof is really a
little dishonest, since it relies on the main majorizing measure result Theorem 1.5.1,
which we have not proven. It could in fact be proven without resort to majorizing
measures, and was done so originally. However, for a chapter that was supposed to be
only an “introduction’’ to the general theory of Gaussian processes, we have already
used up more than enough space, and so shall make do with what we have at hand
already.
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Theorem 1.5.4. Let f be a centered stationary Gaussian process on a compact group
T . Then the following three conditions are equivalent:

f is a.s. continuous on T , (1.5.14)

f is a.s. bounded on T , (1.5.15)∫ ∞

0
H 1/2(ε) dε < ∞. (1.5.16)

Proof. That (1.5.14) implies (1.5.15) is obvious. That (1.5.16) implies (1.5.14) is
Lemma 1.5.2 together with Theorem 1.5.1. Thus it suffices to show that (1.5.15)
implies (1.5.16), which we shall now do.

Note firstly that by Theorem 1.5.3 we know that

sup
t∈T

∫ ∞

0
g
(
μ
(
B(t, ε)

))
dε < ∞ (1.5.17)

for μ normalized Haar measure on T . Furthermore, by stationarity, the value of the
integral must be independent of t .

For ε ∈ (0, 1) let M(ε) be the maximal number of points {tk}M(ε)
k=1 in T for which

min
1≤j,k≤M(ε)

d(tj , tk) > ε.

It is easy to check that

N(ε) ≤ M(ε) ≤ N(ε/2).

Thus, since μ is a probability measure, we must have

μ(B(t, ε)) ≤ (N(2ε))−1.

Consequently, by (1.5.17) and, in particular, its independence on t ,

∞ >

∫ ∞

0
g(μ(B(t, ε))) dε ≥

∫ ∞

0
(ln N(2ε))

1
2 dε = 2

∫ ∞

0
H 1/2(ε) dε,

which proves the theorem. ��
Our second and final responsibility is to prove that the claims we made back

at (1.4.7) are correct. That they are is the statement of the following corollary to
Theorem 1.5.4.

Corollary 1.5.5. If f is centered and stationary on open T ⊂ RN with covariance
function C, and

K1

(− ln |t |)1+α1
≤ C(0)− C(t) ≤ K2

(− ln |t |)1+α2
, (1.5.18)

for |t | small enough, then f will be sample path continuous if α2 > 0 and discontin-
uous if α1 < 0.
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Proof. Recall from Theorem 1.4.1 that the basic energy integral in (1.5.16) converges
or diverges together with ∫ ∞

δ

p(e−u2
) du, (1.5.19)

where
p2(u) = 2 sup

|t |≤u

[C(0)− C(t)]

(cf. (1.4.2)). Applying the bounds in (1.5.18) to evaluate (1.5.19) and applying the
extension of Theorem 1.5.3 to noncompact groups easily proves the corollary. ��
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Gaussian Inequalities

Basic statistics has its Chebyshev inequality, martingale theory has its maximal in-
equalities, Markov processes have large deviations, but all pale in comparison to the
power and simplicity of the coresponding basic inequality of Gaussian processes. This
inequality was discovered independently, and established with very different proofs,
by Borell [30] and Tsirelson, Ibragimov, and Sudakov (TIS) [160]. For brevity, we
shall call it the Borell–TIS inequality. In the following section we shall treat it in
some detail.

A much older inequality, which allows comparison between the suprema of dif-
ferent Gaussian processes, is due to Slepian, and we shall describe it and some of its
newer relatives in Section 2.2.

2.1 Borell–TIS Inequality

One of the first facts we learned about Gaussian processes was that if X ∼ N(0, σ 2),
then for all u > 0,(

σ√
2πu

− σ 3

√
2πu3

)
e−

1
2u

2/σ 2 ≤ P{X > u} ≤ σ√
2πu

e−
1
2u

2/σ 2
(2.1.1)

(cf. (1.2.2)). One immediate consequence of this is that

lim
u→∞ u−2 ln P{X > u} = −(2σ 2)−1. (2.1.2)

There is a classical result of Landau and Shepp [96] and Marcus and Shepp [110] that
gives a result closely related to (2.1.2), but for the supremum of a general centered
Gaussian process. If we assume that ft is a.s. bounded, then they showed that

lim
u→∞ u−2 ln P

{
sup
t∈T

ft > u
}
= −(2σ 2

T )
−1, (2.1.3)

where
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σ 2
T

�= sup
t∈T

E{f 2
t }

is a notation that will remain with us throughout this section. An immediate conse-
quence of (2.1.3) is that for all ε > 0 and large enough u,

P

{
sup
t∈T

ft > u
}
≤ eεu

2−u2/2σ 2
T . (2.1.4)

Since ε > 0 is arbitrary, comparing (2.1.4) and (2.1.1), we reach the rather surprising
conclusion that the supremum of a centered, bounded Gaussian process behaves much
like a single Gaussian variable with a suitably chosen variance.

In Chapter 4 we shall see that it requires little more than the basic techniques of
the current chapter, along with the notion of entropy from Chapter 1, to considerably
improve on (2.1.4), in that the exponential term eεu

2
can be replaced by a power term

of the form uα . Later, in Part III, we shall how to do even better, although then we
shall have to assume more on the random fields.

Now, however, we want to see what can be done with minimal assumptions, and
to see from where (2.1.4) comes. In fact, (2.1.4) and its consequences are all special
cases of a nonasymptotic result due, as mentioned above, independently, and with very
different proofs, to Borell [30] and Tsirelson, Ibragimov, and Sudakov (TIS) [160].

Theorem 2.1.1 (Borell–TIS inequality). Let ft be a centered Gaussian process,
a.s. bounded on T . Write

‖f ‖ = ‖f ‖T = sup
t∈T

ft .

Then
E{‖f ‖} < ∞,

and for all u > 0,

P{‖f ‖ − E{‖f ‖} > u} ≤ e−u2/2σ 2
T . (2.1.5)

Before we look at the proof of (2.1.5), which we refer to as the Borell–TIS
inequality,1 we take a moment to look at some of its conseqences, which are many
and major. It is no exaggeration to say that this inequality is today the single most
important tool in the general theory of Gaussian processes.

An immediate and trivial consequence of (2.1.5) is that for all u > E{‖f ‖},

P{‖f ‖ > u} ≤ e−(u−E‖f ‖)2/2σ 2
T ,

so that both (2.1.3) and (2.1.4) follow from the Borell–TIS inequality.

1 Actually, Theorem 2.1.1 is not in the same form as Borell’s original inequality, in which
E{‖f ‖} was replaced by the median of ‖f ‖. However, the two forms are equivalent. For
this and other variations of (2.1.5), including extensions to Banach space–valued processes
for which ‖ ‖ is the norm, see the more detailed treatments of [28, 56, 67, 99, 105]. To see
how the Borell–TIS inequality fits into the wider theory of concentration inequalities, see
the recent book [98] by Ledoux.
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Indeed, a far stronger result is true, for (2.1.4) can now be replaced by

P {‖f ‖ > u} ≤ eCu−u2/2σ 2
T ,

where C is a constant depending only on E{‖X‖}, and we know at least how to bound
this quantity from Theorem 1.3.5.

Note that, despite the misleading notation, ‖ ‖ ≡ sup is not a norm, and that very
often one needs bounds on the tail of supt |ft |, which does give a norm. However,
symmetry immediately gives

P

{
sup
t

|ft | > u
}
≤ 2P

{
sup
t

ft > u
}
, (2.1.6)

so that the Borell–TIS inequality helps out here as well.
Here is a somewhat more significant consequence of the Borell–TIS inequality.

Theorem 2.1.2. For f centered, Gaussian,

P{‖f ‖ < ∞} = 1 ⇐⇒ E{‖f ‖} < ∞ (2.1.7)

⇐⇒ E
{
eα‖f ‖2}

< ∞
for sufficiently small α.

Proof. The existence of the exponential moments of ‖f ‖ implies the existence of
E{‖f ‖}, and this in turn implies the a.s. finiteness of ‖f ‖. Furthermore, since by
Theorem 2.1.1 we already know that the a.s. finiteness of ‖f ‖ entails that of E{‖f ‖},
all that remains to prove is that the a.s. finiteness of ‖f ‖ also implies the existence
of exponential moments.

But this is an easy consequence of the Borell–TIS inequality, since, with both
‖f ‖ and E{‖f ‖} now finite,

E{eα‖f ‖2} =
∫ ∞

0
P
{
eα‖f ‖2

> u
}
du

≤ eα + E{‖f ‖} + 2
∫ ∞

eα∨E{‖f ‖}
P
{‖f ‖ >

√
ln u1/α

}
du

≤ eα + E{‖f ‖}

+ 2
∫ ∞

eα∨E{‖f ‖}
exp

(
−(√ln u1/α − E{‖f ‖})2

2σ 2
T

)
du

≤ eα + E{‖f ‖}

+ 4α
∫ ∞

0
u exp

(
−(u− E{‖f ‖})2

2σ 2
T

)
exp{αu2} du,

which is clearly finite for small enough α. ��
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Recall Theorems 1.3.3 and 1.3.5, which established, respectively, the a.s. bound-
edness of ‖f ‖ and a bound on the modulus of continuity ωf,d(δ) under essentially
identical entropy conditions. It was rather irritating back there that we had to establish
each result independently, since it is “obvious’’ that one should imply the other. A
simple application of the Borell–TIS inequality almost does this.

Theorem 2.1.3. Suppose that f is a.s. bounded on T . Then f is also a.s uniformly
continuous (with respect to the canonical metric d) if and only if

lim
η→0

φ(η) = 0, (2.1.8)

where

φ(η)
�= E

{
sup

d(s,t)<η

(fs − ft )
}
. (2.1.9)

Furthermore, under (2.1.8), for all ε > 0 there exists an a.s. finite random variable
η > 0 such that

ωf,d(δ) ≤ φ(δ) |ln φ(δ)|ε , (2.1.10)

for all δ ≤ η.

Proof. We start with necessity. For almost every ω we have

lim
η→0

sup
d(s,t)<η

|fs(ω)− ft (ω)| = 0.

But (2.1.8) now follows from dominated convergence and Theorem 2.1.2.
For sufficiency, note that from (2.1.8) we can find a sequence {δn} with δn → 0

such that φ(δn) ≤ 2−n. Set δ′n = min(δn, 2−n), and consider the event

An =
{

sup
d(s,t)<δ′n

|fs − ft | > 2−n/2
}
.

The Borell–TIS inequality (cf. (2.1.6)) gives that for n ≥ 3,

P{An} ≤ 2 exp

(
−1

2
(2−n/2 − 2−n)2/2−2n

)
≤ K exp(−2n−1).

Since P {An} is an admirably summable series, Borel–Cantelli gives us that f is a.s.
uniformly d-continuous, as required.

To complete the proof we need to establish the bound (2.1.10) on ωf,d . Note
first that

diam(S) = sup
s,t∈S

(E{|ft − fs |2})1/2

= √
2π sup

s,t∈S
E{|ft − fs |}

≤ √
2πE

{
sup
s,t∈S

ft − fs

}
= √

2πφ(diam(S)),



2.1 Borell–TIS Inequality 53

where the second line is an elementary Gaussian computation and the third uses the
fact that sups,t∈S(ft − fs) is nonnegative. Consequently, we have that

δ ≤ √
2πφ(δ), (2.1.11)

for all δ > 0.
Now define the numbers

δn = sup{δ : φ(δ) ≤ e−n}
and, for ε > 0, the events

Bn =
{

sup
d(s,t)<δn

|fs − ft | > φ(δn)| ln φ(δn)|ε/2
}
.

Then the Borell–TIS inequality gives

P{Bn} ≤ 4 exp

{
−1

2
(| ln φ(δn)|ε/2 − 1)2φ

2(δn)

δ2
n

}
≤ K1 exp{−K2n

ε},

the second inequality following from (2.1.11) and the definition of δn.
Since

∑
n P{Bn} < ∞, we have that for n ≥ N(ω),

ωf,d(δn) ≤ φ(δn)| ln φ(δn)|ε/2.

Monotonicity of ωf,d , along with separability, complete the proof. ��
We now turn to the proof of the Borell–TIS inequality. There are essentially three

quite different ways to tackle this proof. Borell’s original proof relied on isoperimetric
inequalities.2 While isoperimetric inequalities may be natural for a book with the word
“geometry’’ in its title, we shall avoid them, since they involve setting up a number of
concepts for which we shall have no other need. The proof of Tsirelson, Ibragimov,
and Sudakov used Itô’s formula from stochastic calculus. This is one of our3 favorite
proofs, since as one of the too few links between the Markovian and Gaussian worlds
of stochastic processes, it is to be prized.

We shall, however, take a more direct route, which we learned about from the
excellent collection of exercises [38], although its roots are much older. The first step
in this route involves the following two lemmas, which are of independent interest.

Lemma 2.1.4. Let X and Y be independent k-dimensional vectors of centered, unit-
variance, independent, Gaussian variables. If f, g : Rk → R are bounded C2

functions then

2 Borell has a newer, very recent version of this approach, to be found in [31, 32].
3 Or at least one of RJA’s favorite proofs. Indeed, this approach was used in RJA’s lecture

notes [3]. There, however, there is a problem, for in the third line from the bottom of page
46 appear the words “To complete the proof note simply that. . . .’’ The word “simply’’ is
simply out of place, and in fact, Lemma 2.2 there is false as stated. A correction (with the
help of Amir Dembo) appears, en passant, in the “Proof of Theorem 2.1.1’’ below.
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Cov(f (X), g(X)) =
∫ 1

0
E
{〈∇f (X),∇g

(
αX +

√
1 − α2Y

)〉}
dα, (2.1.12)

where ∇f (x) = (
∂f
∂xi

f (x))i=1,...,k .

Proof. It suffices to prove the lemma with f (x) = ei〈t,x〉 and g(x) = ei〈s,x〉, with
s, t, x ∈ Rk . Standard approximation arguments (which is where the requirement
that f is C2 appears) will do the rest. Write

ϕ(t)
�= E

{
ei〈t,X〉} = e|t |2/2

(cf. (1.2.4)). It is then trivial that

Cov(f (X), g(X)) = ϕ(s + t)− ϕ(s)ϕ(t).

On the other hand, computing the integral in (2.1.12) gives∫ 1

0
E
{〈∇f (X),∇g

(
αX +

√
1 − α2Y

)〉}
dα

=
∫ 1

0
dαE

{〈(
itj e

i〈t,X〉)
j
,

(
isj e

i
〈
s,αX+

√
1−α2Y

〉)
j

〉}

= −
∫ 1

0
dα
∑
j

sj tjE
{
e
i
〈
t+αs,X

〉}
E
{
e
i
〈
s,
√

1−α2Y
〉}

= −
∫ 1

0
dα 〈s, t〉 e(|t |2+2α〈s,t〉+|s|2)/2

= −ϕ(s)ϕ(t)
(
1 − e〈s,t〉

)
= ϕ(s + t)− ϕ(s)ϕ(t),

which is all that we need. ��
Lemma 2.1.5. Let X be as in Lemma 2.1.4. If h : Rk → R is C2 with Lipschitz
constant4 1 and if E{h(X)} = 0, then for all t > 0,

E
{
eth(X)

} ≤ et
2/2. (2.1.13)

Proof. Let Y be an independent copy ofX and α a uniform random variable on [0, 1].
Define the pair (X,Zα) via

(X,Zα)
�= (

X,αX +
√

1 − α2Y
)
.

4 Recall that the Lipschitz constant of a function on R
k is given by

‖f ‖Lip
�= sup

x
|∇f (x)| = sup

x

{ |f (x)− f (y)|
|x − y|

}
.
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Takeh as in the statement of the lemma, t ≥ 0 fixed, and define g = eth. Applying
(2.1.12) gives

E{h(X)g(X)} =
∫ 1

0
E{〈∇g(X),∇h(Zα)〉} dα

= t

∫ 1

0
E
{〈∇h(X),∇h(Zα)

〉
eth(X)

}
dα

≤ tE
{
eth(X)

}
,

using the Lipschitz property of h. Let u be the function defined by

eu(t) = E
{
eth(X)

}
.

Then

E
{
h(X)eth(X)

} = u′(t)eu(t),

so that from the preceding inequality, u′(t) ≤ t . Since u(0) = 0 it follows that
u(t) ≤ t2/2, and we are done. ��

The following lemma gives the crucial step toward proving the Borell–TIS in-
equality.

Lemma 2.1.6. Let X be a k-dimensional vector of centered, unit-variance, indepen-
dent Gaussian variables. If h : Rk → R has Lipschitz constant σ, then for all
u > 0,

P{h(X)− E{h(X)} > u} ≤ e−
1
2u

2/σ 2
. (2.1.14)

Proof. By scaling it suffices to prove the result for σ = 1. Assume for the moment
that f ∈ C2. Then, for every t, u > 0,

P{h(X)− E{h(X)} > u} ≤
∫
h(x)−E{h(X)}>u

et(h(x)−E{h(X)}−u)dP (x)

≤ e−tuE
{
et(h(x)−E{h(X)})}

≤ e
1
2 t

2−tu,

the last inequality following from (2.1.13). Taking the optimal choice of t = u gives
(2.1.14) for f ∈ C2.

To remove the C2 assumption, take a sequence of C2 approximations to f each
one of which has Lipschitz coefficient no greater than σ and apply Fatou’s inequality.
This completes the proof. ��

We now have all we need to prove Theorem 2.1.1.
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Proof of Theorem 2.1.1. There will be two stages to the proof. Firstly, we shall
establish Theorem 2.1.1 for finite T . We then lift the result from finite to general T .

Thus, let T be finite, so that we can write it as {1, . . . , k}. In this case we can
replace sup by max, which has Lipshitz constant 1. Theorem 2.1.1 then follows
immediately from 2.1.6. The general case is a little more delicate.

Let C be the k× k covariance matrix of f on T , with components cij = E{fifj },
so that

σ 2
T = max

1≤i≤k
cii = max

1≤i≤k
E{f 2

i }.

LetW be a vector of independent, standard Gaussian variables, andA such thatA′A =
C. Thus f

L= AW , and maxi fi
L= maxi (AW)i , where

L= indicates equivalence in
distribution (law).

Consider the function h(x) = maxi (Ax)i , which is trivially C2. Then∣∣max
i

(Ax)i − max
i

(Ay)i
∣∣ = ∣∣max

i
(eiAx)− max

i
(eiAy)

∣∣
≤ max

i

∣∣eiA(x − y)
∣∣

≤ max
i

∣∣eiA∣∣ · |x − y|,

where as usual ei is the vector with 1 in position i and zeros elsewhere. The first
inequality above is elementary, and the second is Cauchy–Schwarz. But

|eiA|2 = e′iA′Aei = e′iCei = cii ,

so that ∣∣max
i

(Ax)i − max
i

(Ay)i
∣∣ ≤ σT |x − y|.

In view of the equivalence in law of maxi fi and maxi (AW)i and Lemma 2.1.6, this
establishes the theorem for finite T .

We now turn to lifting the result from finite to general T . This is, almost, an easy
exercise in approximation. For each n > 0 let Tn be a finite subset of T such that
Tn ⊂ Tn+1 and Tn increases to a dense subset of T . By separability,

sup
t∈Tn

ft
a.s.→ sup

t∈T
ft ,

and since the convergence is monotone, we also have that

P

{
sup
t∈Tn

ft ≥ u
}
→ P

{
sup
t∈T

ft ≥ u
}

and E

{
sup
t∈Tn

ft

}
→ E

{
sup
t∈T

ft

}
.

Since σ 2
Tn

→ σ 2
T < ∞ (again monotonically), this would be enough to prove the

general version of the Borell–TIS inequality from the finite-T version if only we
knew that the one worrisome term, E{supT ft }, were definitely finite, as claimed in
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the statement of the theorem. Thus if we show that the assumed a.s. finiteness of ‖f ‖
implies also the finiteness of its mean, we shall have a complete proof to both parts
of the theorem.

We proceed by contradiction. Thus, assume E{‖f ‖} = ∞, and choose u0 > 0
such that

e−u2
0/σ

2
T ≤ 1

4
and P

{
sup
t∈T

ft < u0

}
≥ 3

4
.

Now choose n ≥ 1 such that E{‖f ‖Tn} > 2u0, which is possible since E{‖f ‖Tn} →
E{‖f ‖T } = ∞. The Borell–TIS inequality on the finite space Tn then gives

1

2
≥ 2e−u2

0/σ
2
T ≥ 2e−u2

0/σ
2
Tn ≥ P{|‖f ‖Tn − E{‖f ‖Tn}| > u0}

≥ P{E{‖f ‖Tn} − ‖f ‖T > u0} ≥ P{‖f ‖T < u0} ≥ 3

4
.

This provides the required contradiction, and so we are done. ��

2.2 Comparison Inequalities

The theory of Gaussian processes is rich in comparison inequalities, where by this
term we mean results of the form “if f is a “rougher’’ process than g, and both are
defined over the same parameter space, then ‖f ‖ will be “larger’’ than ‖g‖.’’ The
most basic of these is Slepian’s inequality.

Theorem 2.2.1 (Slepian’s inequality). If f and g are a.s. bounded, centered Gauss-
ian processes on T such that E{f 2

t } = E{g2
t } for all t ∈ T and

E{(ft − fs)
2} ≤ E{(gt − gs)

2} (2.2.1)

for all s, t ∈ T , then for all real u,

P{‖f ‖ > u} ≤ P{‖g‖ > u}. (2.2.2)

Furthermore,

E{‖f ‖} ≤ E{‖g‖}. (2.2.3)

Slepian’s inequality is so natural that it hardly seems to require a proof, and hardly
the rather analytic, nonprobabilistic one that will follow. To see that there is more
to the story than meets the eye, one need only note that (2.2.2) does not follow from
(2.2.1) if we replace5 supT ft by supT |ft | and supT gt by supT |gt |.

Slepian’s inequality is based on the following technical lemma, the proof of which,
in all its important details, goes back to Slepian’s original paper [144].

5 For a counterexample to “Slepian’s inequality for absolute values’’ take T = {1, 2}, with
f1 and f2 standard normal with correlation ρ. Writing Pρ(u) for the probability under
correlationρ that max(|f1|, |f2|) > u, it is easy to check that for allu > 0,P−1(u) < P0(u),
while P0(u) > P1(u), which negates the monotonicity required by Slepian’s inequality.
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Lemma 2.2.2. Let f1, . . . , fk be centered Gaussian variables with covariance matrix
C = (cij )

k
i,j=1, cij = E{fifj }. Let h : Rk → R be C2, and assume that, together

with its derivatives, it satisfies a o(|x|d) growth condition at infinity for some finite
d.6 Let

H(C) = E {h(f1, . . . , fk)} , (2.2.4)

and assume that for a pair (i, j), 1 ≤ i < j ≤ k,

∂2h(x)

∂xi∂xj
≥ 0 (2.2.5)

for all x ∈ Rk . Then H(C) is an increasing function of cij .

Proof. We have to show that

∂H(C)

∂cij
≥ 0

whenever ∂2h/∂xi∂xj ≥ 0.
To make our lives a little easier we assume that C is nonsingular, so that it makes

sense to write ϕ(x) = ϕC(x) for the centered Gaussian density on Rk with covariance
matrix C. Straightforward algebra shows that7

∂ϕ

∂cii
= 1

2

∂2ϕ

∂x2
i

,
∂ϕ

∂cij
= ∂2ϕ

∂xi∂xj
, i �= j. (2.2.6)

Applying this and our assumptions on h to justify two integrations by parts, we
obtain, for i �= j ,

∂H(C)

∂cij
=
∫

Rk

h(x)
∂ϕ(x)

∂cij
dx =

∫
Rk

∂2h(x)

∂xi∂xj
ϕ(x) dx ≥ 0.

This completes the proof for the case of nonsingular C. The general case can be
handled by approximating a singular C via a sequence of nonsingular covariance
matrices. ��
Proof of Theorem 2.2.1. By separability, and the final argument in the proof of
the Borell–TIS inequality, it suffices to prove (2.2.2) for T finite. Note that since
E{f 2

t } = E{g2
t } for all t ∈ T , (2.2.1) implies that E{fsft } ≥ E{gsgt } for all s, t ∈ T .

Let h(x) = ∏k
i=1 hi(xi), where each hi is a positive nonincreasing, C2 function

satisfying the growth conditions placed on h in the statement of Lemma 2.2.2, and k

is the number of points in T . Note that for i �= j ,
6 We could actually manage with h twice differentiable only in the sense of distributions. This

would save the approximation argument following (2.2.7) below, and would give a neater,
albeit slightly more demanding, proof of Slepian’s inequality, as in [99].

7 This is, of course, little more than the heat equation of PDE theory.
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∂2h(x)

∂xi∂xj
= h′

i (xi)h
′
j (xj )

∏
n�=i
n�=j

hn(xn) ≥ 0,

since both h′
i and h′

j are nonpositive. It therefore follows from Lemma 2.2.2 that

E

{
k∏

i=1

hi(fi)

}
≥ E

{
k∏

i=1

hi(gi)

}
. (2.2.7)

Now take {h(n)i }∞n=1 to be a sequence of positive, nonincreasing C2 approximations
to the indicator function of the interval (−∞, λ], to derive that

P{‖f ‖ < u} ≥ P{‖g‖ < u},
which implies (2.2.2).

To complete the proof, all that remains is to show that (2.2.2) implies (2.2.3). But
this is a simple consequence of integration by parts, since

E{‖f ‖} =
∫ ∞

0
P{‖f ‖ > u} du−

∫ 0

−∞
P{‖f ‖ < u} du

≤
∫ ∞

0
P{‖g‖ > u} du−

∫ 0

−∞
P{‖g‖ < u} du

= E {‖g‖} .
This completes the proof. ��

As mentioned above, there are many extensions of Slepian’s inequality, the most
important of which is probably the following.

Theorem 2.2.3 (Sudakov–Fernique inequality). Let f and g be a.s. bounded
Gaussian processes on T . If

E{ft } = E{gt }
and

E{(ft − fs)
2} ≤ E{(gt − gs)

2}
for all s, t ∈ T , then

E{‖f ‖} ≤ E{‖g‖}. (2.2.8)

In other words, a Slepian-like inequality holds without a need to assume either zero
mean or identical variance for the compared processes. However, in this case we have
only the weaker ordering of expectations of (2.2.3) and not the stochastic domination
of (2.2.2).
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The original version of this inequality assumed zero means, and its proof involved
considerable calculus, in spirit not unlike that in the proof of Slepian’s inequality (cf.
[66] or [85]). The proof that we give is due to Sourav Chatterjee, [37] who, at the
time of writing, is a gifted young graduate student at Stanford. It starts with a simple
and well-known lemma.

Lemma 2.2.4. Let X = (X1, . . . , Xk) be a vector of centered Gaussian variables
with arbitrary covariance matrix, and let h : Rk → R be C1, with h and its first-
order derivatives satisfying a o(|x|d) growth condition at infinity for some finite d.
Then, for 1 ≤ i ≤ k,

E {Xih(X)} =
k∑

j=1

E
{
XiXj

}
E
{
hj (X)

}
. (2.2.9)

where hj
�= ∂h/∂xj .

Proof. Assume firstly that the Xj are independent and have unit variance. Then,

E {Xih(X)} =
∫

Rk

xih(x)e
−|x|2/2 dx (2.2.10)

=
∫

Rk

hi(x)e
−|x|2/2 dx

= E {hi(X)} ,
where the second equality is via a simple integration by parts. This is (2.2.9) for this
case.

For the general case, write C = ATA for the covariance matrix of X, and define
h′(x) = h(Ax). Let X′ = (X1,

′′ . . . , X′
k) be a vector of independent, standard

normal variables. Then, X ∼ AX′, and writing amn and aTmn for the elements of A
and AT and applying (2.2.10),

E {Xih(X)} = E

{
k∑

m=1

aimX
′′
mh

′(X′)
}

=
k∑

m=1

aimE{h′
m(X

′)}

=
k∑

m=1

aimE

⎧⎨⎩
k∑

j=1

ajmhj (X)

⎫⎬⎭ =
k∑

j=1

E{hj (X)}
k∑

m=1

aima
T
mj

=
k∑

j=1

E{XiXj }E{hj (X)},

as required. ��
The Sudakov–Fernique inequality on finite spaces is a special case of the following

result, whose proof, en passant, actually provides more. For general (nonfinite) spaces
the arguments that we have previously used to go from finite to general parameter
work here as well, giving the classic Sudakov–Fernique inequality with no extra work.
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Theorem 2.2.5. Let X = (X1, . . . , Xk) and Y = (Y1, . . . , Yk) be Gaussian vectors
with E{Xi} = E{Yi} for all i. Set

γX
ij = E{(Xi −Xj)

2}, γ Y
ij = E{(Yi − Yj )

2},
and

γ
�= sup

1≤i,j≤k

|γX
ij − γ Y

ij |.

Then ∣∣E{max
i

Xi

}− E
{

max
i

Yi
}∣∣ ≤ √2γ log k. (2.2.11)

If, in addition, γX
ij ≤ γ Y

ij for 1 ≤ i, j ≤ k, then

E
{

max
i

Xi

} ≤ E
{

max
i

Yi
}
. (2.2.12)

Proof. Without loss of generality, we may assume that X and Y are defined on the
same probability space and are independent. Fix β > 0 and define hβ : Rk → R by

hβ(x)
�= β−1 log

(
k∑

i=1

eβxi

)
.

Note that

max
i

xi = β−1 log(eβ maxi xi ) ≤ β−1 log

(
k∑

i=1

eβxi

)
≤ β−1 log(keβ maxi xi ) = β−1 log k + max

i
xi .

Thus

sup
x∈Rk

∣∣hβ(x)− max
i

xi
∣∣ ≤ β−1 log k. (2.2.13)

Now let μi = E{Xi} = E{Yi} and set

X̃i = Xi − μi, Ỹi = Yi − μi.

Furthermore, write σX
ij = E{X̃iX̃j }, σY

ij = E{X̃iX̃j }, and for t ∈ [0, 1] define the
random vector Zt by

Zt,i
�= √

1 − tX̃i +
√
t Ỹi + μi.

Now fix β > 0 and, for all t ∈ [0, 1], set

ϕ(t)
�= E

{
hβ(Zt )

}
.
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Then ϕ is differentiable, and

ϕ′(t) = E

{
k∑

i=1

∂hβ

∂xi
(Zt )

(
Ỹi

2
√
t
− X̃i

2
√

1 − t

)}
.

Again, for any i, Lemma 2.2.4 gives us that

E

{
∂hβ

∂xi
(Zt )X̃i

}
= √

1 − t

k∑
j=1

σX
ij E

{
∂2hβ

∂xi∂xj
(Zt )

}

and

E

{
∂hβ

∂xi
(Zt )Ỹi

}
= √

t

k∑
j=1

σY
ij E

{
∂2hβ

∂xi∂xj
(Zt )

}
,

so that

ϕ′(t) = 1

2

k∑
i,j=1

E

{
∂2hβ

∂xi∂xj
(Zt )

}
(σY

ij − σX
ij ). (2.2.14)

In a moment we shall show that if γX
ij ≤ γ Y

ij then ϕ′ ≥ 0 throughout its range. This
will prove (2.2.12), since it implies that for all β > 0,

E{hβ(Y )} = ϕ(1) ≥ ϕ(0) = E{hβ(X)}.

Takingβ → ∞ and applying (2.2.13) establishes (2.2.12). The more delicate inequal-
ity (2.2.11) requires more information on ϕ, which comes from a little elementary
calculus.

Note that

∂hβ

∂xi
(x) = eβxi∑k

j=1 e
βxj

�= pi(x),

where for each x ∈ Rk , the pi(x) define a probability measure on {1, . . . , k}. It is
then straightforward to check that

∂2hβ

∂xi∂xj
(x) =

{
β(pi(x)− p2

i (x)), i = j,

−βpi(x)pj (x), i �= j.

Thus,
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k∑
i,j=1

∂2hβ

∂xi∂xj
(x)(σY

ij − σX
ij ) (2.2.15)

= β

k∑
i=1

pi(x)(σ
Y
ij − σX

ij )− β

k∑
i,j=1

pi(x)pj (x)(σ
Y
ij − σX

ij )

= β

2

k∑
i,j=1

pi(x)pj (x)[(σY
ii + σY

jj − 2σY
ij )− (σX

ii + σX
jj − 2σX

ij )]

= β

2

k∑
i,j=1

pi(x)pj (x)(γ
Y
ij − γX

ij ).

The second equality here uses the fact that
∑

i pi(x) = 1, while the third one relies
on the fact that

σX
ii + σX

jj − 2σX
ij = E{(X̃i − X̃j )

2}
= E{(Xi −Xj)

2} − (μi − μj )
2 = γX

ij − (μi − μj )
2,

along with a similar equality for the σY .
Substituting (2.2.15) into (2.2.14) gives us that ϕ′(t) ≥ 0 whenever γX

ij ≤ γ Y
ij , as

we claimed above.
All that remains, therefore, is to establish (2.2.11), which we do by getting a bound

on ϕ′(t).
Combining (2.2.15) with the definition of γ , it is immediate that∣∣∣∣∣∣

k∑
i,j=1

∂2hβ

∂xi∂xj
(x)
(
σY
ij − σX

ij

)∣∣∣∣∣∣ ≤ βγ

2

k∑
i,j=1

pi(x)pj (x) = βγ

2
.

Substituting this into (2.2.14) gives

|E{hβ(Y )} − E{hβ(X)}| = |ϕ(1)− ϕ(0)| ≤ βγ

4
.

Combining this with (2.2.13) gives

∣∣E{max
i

Xi

}− E
{

max
i

Yi
}∣∣ ≤ βγ

4
+ 2 log k

β
,

and choosing β = √
8 log k/γ gives (2.2.11), as required. ��

There are many extensions to the Sudakov–Fernique inequality that we shall not
need in this book, but you can find them in the references in the description of Part I.
From those sources you can also find out how to extend the above arguments to obtain
conditions on covariance functions that allow statements of the form
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P
{

min
1≤i≤n

max
1≤j≤m

Xij ≥ u
} ≥ P

{
min

1≤i≤n
max

1≤j≤m
Yij > u

}
,

along with even more extensive variations due, originally, to Gordon [69]. Gor-
don [70] also shows how to extend the essentially Gaussian computations above to
elliptically contoured distributions.

As we mentioned earlier, Chapter 4, which does not require the material of Chap-
ter 3, continues with the theme of suprema distributions.



3

Orthogonal Expansions

While most of what we shall have to say in this brief chapter is rather theoretical,
it actually covers one of the most important practical aspects of Gaussian modeling.
The basic result is Theorem 3.1.1, which states that every centered Gaussian process
with a continuous covariance function has an expansion of the form

f (t) =
∞∑
n=1

ξnϕn(t), (3.0.1)

where the ξn are i.i.d. N(0, 1), and the ϕn are certain functions on T determined by
the covariance function C of f . In general, the convergence in (3.0.1) is in L2(P)

for each t ∈ T , but (Theorem 3.1.2) if f is a.s. continuous then the convergence is
uniform over T , with probability one.

There are many theoretical conclusions that follow from this representation.
For one example, note that since continuity of C will imply that of the ϕn (cf.
Lemma 3.1.4), it follows from (3.0.1) that sample path continuity of f is a “tail
event’’on the σ -algebra determined by the ξn, from which one can show that centered
Gaussian processes are either continuous with probability one, or discontinuous with
probability one. There is no middle ground. A wide variety of additional zero–one
laws also follow from this representation. Perhaps the most notable is the following,

P

{
lim
s→t

fs = ft for all t ∈ T
}
= 1

⇐⇒ P

{
lim
s→t

fs = ft

}
= 1 for each t ∈ T .

That is, under our ubiquitous assumption that the covariance functionC is continuous,
pointwise and global a.s. continuity are equivalent for Gaussian processes. A proof,
in the spirit of what follows, can be found in [3].

The practical implications of (3.0.1) are mainly in the area of simulation. By
truncating the sum (3.0.1) at a point appropriate to the problem at hand, one needs
“only’’ to determine the ϕn. However, these arise as the orthonormal basis of a
particular Hilbert space, and can generally be found by solving an eigenfunction
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problem involving C. In particular, if T is a nice subset of RN , this leads to the
famous Karhunen–Loève expansion, which we shall treat briefly in Section 3.2. While
even in the Euclidean situation there are only a handful of situations for which this
eigenfunction problem can be solved analytically, from the point of view of computing
it is a standard problem, and the approach is practical.

3.1 The General Theory

As usual, we shall take T to be compact in the canonical metric d generated by f .
The first step toward establishing the expansion (3.0.1) lies in setting up the so-

called reproducing kernel Hilbert space (RKHS) of a centered Gaussian process with
covariance function C.

In essence, the RKHS is made up of functions that have about the same smoothness
properties that C(s, t) has, as a function in t for fixed s, or vice versa. Start with

S =
{
u : T → R : u(·) =

n∑
i=1

aiC(si, ·), ai real, si ∈ T , n ≥ 1

}
.

Define an inner product on S by

(u, v)H =
⎛⎝ n∑

i=1

aiC(si, ·),
m∑

j=1

bjC(tj , ·)
⎞⎠

H

=
n∑

i=1

m∑
j=1

aibjC(si, tj ). (3.1.1)

The fact thatC is nonnegative definite implies (u, u)H ≥ 0 for allu ∈ S. Furthermore,
note that the inner product (3.1.1) has the following unusual property:

(u, C(t, ·))H =
(

n∑
i=1

aiC(si, ·), C(t, ·)
)
H

=
n∑

i=1

aiC(si, t) = u(t). (3.1.2)

This is the reproducing kernel property.
For the sake of exposition, assume that the covariance function, C, is positive

definite (rather than merely nonnegative definite), so that (u, u)H = 0 if and only if
u(t) ≡ 0. In this case (3.1.1) defines a norm ‖u‖H = (u, u)

1/2
H .

For {un}n≥1 a sequence in S we have

|un(t)− um(t)| = |(un − um,C(t, ·))H | ≤ ‖un − um‖H‖C(t, ·)‖H
≤ ‖un − um‖HC(t, t),

the last line following directly from (3.1.1). Thus it follows that if {un} is Cauchy in
‖ · ‖H then it is pointwise Cauchy. The closure of S under this norm is a space of
real-valued functions, denoted by H(C), and called the RKHS of f or of C, since
every u ∈ H(C) satisfies (3.1.2) by the separability of H(C). (The separability of
H(C) follows from the separability of T and the assumption that C is continuous.)
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Since all this seems at first rather abstract, consider two concrete examples. Take
T = {1, . . . , n} finite, and f centered Gaussian with covariance matrix C = (cij ),
cij = E{fifj }. Let C−1 = (cij ) denote the inverse of C, which exists by positive
definiteness. Then the RKHS of f is made up of all n-dimensional vectors u =
(u1, . . . , un) with inner product

(u, v)H =
n∑

i=1

n∑
j=1

uic
ij vj .

To prove this, we need only check that the reproducing kernel property (3.1.2) holds.1

However, with δ(i, j) the Kronecker delta function, andCk denoting the kth row ofC,

(u, Ck)H =
n∑

i=1

n∑
j=1

uic
ij ckj =

n∑
i=1

uiδ(i, k) = uk,

as required.
For a slightly more interesting example, take f = W to be standard Brownian

motion on T = [0, 1], so that C(s, t) = min(s, t). Note that C(s, ·) is differentiable
everywhere except at s, so that following the heuristics developed above we expect
that H(C) should be made up of a subset of functions that are differentiable almost
everywhere.

To both make this statement more precise and prove it, we start by looking at the
space S. Thus, let

u(t) =
n∑

i=1

aiC(si, t), v(t) =
n∑

i=1

biC(ti , t),

be two elements of S, with inner product

(u, v)H =
n∑

i=1

n∑
j=1

aibj min(si, tj ).

Since the derivative of C(s, t) with respect to t is 1[0,s](t), the derivative of u is∑n
i=1 ai1[0,si ](t). Therefore,

(u, v)H =
∑∑

aibj

∫ 1

0
1[0,si ](t)1[0,tj ](t) dt

=
∫ 1

0

(∑
ai1[0,si ](t)

∑
bj1[0,tj ](t)

)
dt

=
∫ 1

0
u̇(t)v̇(t) dt.

1 A simple proof by contradiction shows that there can never be two different inner products
on S with the reproducing kernel property.
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With S under control, we can now look for an appropriate candidate for the RKHS.
Define

H =
{
u : u(t) =

∫ t

0
u̇(s) ds,

∫ 1

0
(u̇(s))2 ds < ∞

}
, (3.1.3)

equipped with the inner product

(u, v)H =
∫ 1

0
u̇(s)v̇(s) ds. (3.1.4)

Since it is immediate that C(s, ·) ∈ H for t ∈ [0, 1], and

(u, C(t, ·))H =
∫ 1

0
u̇(s)1[0,t](s) ds = u(t),

it follows that the H defined by (3.1.3) is indeed our RKHS. This H is also known,
in the setting of diffusion processes, as a Cameron–Martin space.

With a couple of examples under our belt, we can now return to our main task:
setting up the expansion (3.0.1). The first step is finding a countable orthonormal
basis for the separable Hilbert space H(C). We start with H = span{ft , t ∈ T },
with the (covariance) inner product that H inherits as a subspace of L2(P). Next we
define a linear mapping � : S → H by

�(u) = �

(
n∑

i=1

aiC(ti , ·)
)

=
n∑

i=1

aif (ti).

Clearly, �(u) is Gaussian for each u ∈ S, and � is norm-preserving. That is,∥∥∥� (∑ aiC(ti , ·)
)∥∥∥2

H
=
∑
i,j

aiC(ti , tj )aj =
∥∥∥∑ aif (ti)

∥∥∥2

2
.

Consequently, � extends to all of H(C) with range equal to all of H, with all limits
remaining Gaussian. This extension is called the canonical isomorphism between
these spaces.

Since H(C) is separable, we now also know that H is, and proceed to build an
orthonormal basis for it. If {ϕn}n≥1 is an orthonormal basis for H(C), then setting
ξn = �(ϕn) gives {ξn}n≥1 as an orthonormal basis for H. In particular, we must have
that the ξn are N(0, 1) and

ft =
∞∑
n=1

ξnE{ftξn}, (3.1.5)

where the series converges in L2(P). Since � was an isometry, it follows from
(3.1.5) that

E{ftξn} = (C(t, ·), ϕn)H = ϕn(t), (3.1.6)

the last equality coming from the reproducing kernel property of H(C). Putting
(3.1.6) together with (3.1.5) now establishes the following central result.
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Theorem 3.1.1. If {ϕn}n≥1 is an orthonormal basis for H(C), then f has the L2

representation

ft =
∞∑
n=1

ξnϕn(t), (3.1.7)

where {ξn}n≥1 is the orthonormal sequence of centered Gaussian variables given by
ξn = �(ϕn).

The equivalence in (3.1.7) is only in L2; i.e., the sum is, in general, convergent,
for each t , only in mean square. The following result shows that much more is true
if we know that f is a.s. continuous.

Theorem 3.1.2. If f is a.s. continuous, then the sum in (3.1.7) converges uniformly
on T with probability 1.2

We need two preliminary results before we can prove Theorem 3.1.2. The first is
a convergence result due to Itô and Nisio [83], which, since it is not really part of a
basic probability course,3 we state in full, and the second an easy lemma.

Lemma 3.1.3. Let {Zn}n≥1 be a sequence of symmetric independent random vari-
ables, taking values in a separable, real Banach space B, equipped with the norm
topology. Let Xn =∑n

i=1 Zi . Then Xn converges with probability one if and only if
there exists a B-valued random variable X such that 〈Xn, x

∗〉 → 〈X, x∗〉 in proba-
bility for every x∗ ∈ B∗, the topological dual of B.

Lemma 3.1.4. Let {ϕn}n≥1 be an orthonormal basis for H(C). Then, under our glo-
bal assumption of continuity of the covariance function, each ϕn is continuous and

∞∑
n=1

ϕ2
n(t) (3.1.8)

converges uniformly in t ∈ T to C(t, t).

Proof. Note that

|ϕn(s)− ϕn(t)| =
∣∣(C(s, ·), ϕn(·))H − (C(t, ·), ϕn(·))H

∣∣
= ∣∣([C(s, ·)− C(t, ·)], ϕn(·))H

∣∣
≤ ‖ϕn‖H‖C(s, ·)− C(t, ·)‖H
= ‖C(s, ·)− C(t, ·)‖H
= C(s, s)− 2C(s, t)+ C(t, t)

= d2(s, t),

2 There is also a converse to Theorem 3.1.2, that the a.s. uniform convergence of a sum
like (3.1.7) implies the continuity of f , and some of the earliest derivations (e.g., [68]) of
sufficient conditions for continuity actually used this approach. Entropy-based arguments,
however, turn out to give much easier proofs.

3 When the Banach space of the Itô–Nisio theorem is the real line, this is a textbook result.
In that case, however, it goes under the name of Lévy’s theorem.
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where the first and last-but-one equalities use the reproducing kernel property and
the one inequality is Cauchy–Schwarz. The continuity of ϕn now follows from that
of C.

To establish the uniform convergence of (3.1.8), note that the orthonormal ex-
pansion and the reproducing kernel property imply

C(t, ·) =
∞∑
n=1

ϕn(·)(C(t, ·), ϕn)H =
∞∑
n=1

ϕn(·)ϕn(t), (3.1.9)

convergence of the sum being in the ‖ ‖H norm. Hence,
∑∞

n=1 ϕ
2
n(t) converges to

C(t, t) for every t ∈ T . Furthermore, the convergence is monotone, and so it follows
that it is also uniform (≡ Dini’s theorem). ��
Proof of Theorem 3.1.2. We know that for each t ∈ T ,

∑∞
n=1 ξnϕn(t) is a sum

of independent variables converging in L2(P). Thus, by Lemma 3.1.3, applied to
real-valued random variables, it converges with probability one to a limit, which we
denote by ft . The limit process is, by assumption, almost surely continuous.

Now consider both f and each function ξnϕn as random variables in the Banach
spaceC(T ), with sup-norm topology. Elements of the dualC∗(T ) are therefore finite,
signed Borel measures μ on T , and 〈f,μ〉 = ∫

f dμ. Define

fn(·) =
n∑

i=1

ξiϕi(·) =
n∑

i=1

�(ϕi)ϕi(·).

By Lemma 3.1.3, it suffices to show that for every μ ∈ C∗(T ) the random
variables 〈fn, μ〉 converge in probability to 〈f,μ〉. However,

E{|〈fn, μ〉 − 〈f,μ〉|} = E

{∣∣∣∣∫
T

(fn(t)− f (t))μ(dt)

∣∣∣∣}
≤
∫
T

E{|fn(t)− f (t)|} |μ|(dt)

≤
∫
T

[E(fn(t)− f (t))2] 1
2 |μ|(dt)

=
∫
T

⎛⎝ ∞∑
j=n+1

ϕ2
j (t)

⎞⎠
1
2

|μ|(dt),

where |μ|(A) is the total variation measure for μ.
Since

∑∞
j=n+1 ϕ

2
j (t) → 0 uniformly in t ∈ T by Lemma 3.1.4, the last expression

above tends to zero as n → ∞. Since this implies the convergence in probability of
〈fn, μ〉 to 〈f,μ〉, we are done. ��

3.2 The Karhunen–Loève Expansion

As we have already noted, applying the orthogonal expansion (3.1.7) in practice
relies on being able to find the orthonormal functions ϕn. When T is a compact
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subset of RN there is a special way in which to do this, leading to what is known as
the Karhunen–Loève expansion.

For simplicity, take T = [0, 1]N . Let λ1 ≥ λ2 ≥ · · · , and ψ1, ψ2, . . . ,

be, respectively, the eigenvalues and normalized eigenfunctions of the operator
C : L2(T ) → L2(T ) defined by (Cψ)(t) = ∫

T
C(s, t)ψ(s) ds. That is, the λn

and ψn solve the integral equation∫
T

C(s, t)ψ(s) ds = λψ(t), (3.2.1)

with the normalization ∫
T

ψn(t)ψm(t) dt =
{

1, n = m,

0, n �= m.

These eigenfunctions lead to a natural expansion ofC, known as Mercer’s theorem
(see [132, 181] for a proof).

Theorem 3.2.1 (Mercer). Let C, {λn}n≥1, and {ψn}n≥1 be as above. Then

C(s, t) =
∞∑
n=1

λnψn(s)ψn(t), (3.2.2)

where the series converges absolutely and uniformly on [0, 1]N × [0, 1]N .

The key to the Karhunen–Loève expansion is the following result.

Lemma 3.2.2. Forf on [0, 1]N as above, {√λnψn} is a complete orthonormal system
in H(C).

Proof. Set ϕn = √
λnψn and define

H =
{
h : h(t) =

∞∑
n=1

anϕn(t), t ∈ [0, 1]N,
∞∑
n=1

a2
n < ∞

}
.

Give H the inner product

(h, g)H =
∞∑
n=1

anbn,

where h =∑
anϕn and g =∑

bnϕn.
To check that H has the reproducing kernel property, note that

(h(·), C(t, ·))H =
( ∞∑
n=1

anϕn(·),
∞∑
n=1

√
λnψn(t)ϕn(·)

)
H

=
∞∑
n=1

√
λnanψn(t) = h(t).

It remains to be checked that H is in fact a Hilbert space, and that {√λnψn} is both
complete and orthonormal. But all this is standard, given Mercer’s theorem. ��
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We can now start rewriting things to get the expansion we want. Remaining with
the basic notation of Mercer’s theorem, we have that the RKHS, H(C), consists of
all square-integrable functions h on [0, 1]N for which

∞∑
n=1

λn

∣∣∣∣∫
T

h(t)ψn(t) dt

∣∣∣∣2 < ∞,

with inner product

(h, g)H =
∞∑
n=1

λn

∫
T

h(t)ψn(t) dt

∫
T

g(t)ψn(t) dt.

The Karhunen–Loève expansion of f is obtained by setting ϕn = λ
1
2
n ψn in the

orthonormal expansion (3.1.7), so that

ft =
∞∑
n=1

λ
1
2
n ξnψn(t), (3.2.3)

where the ξn are i.i.d. N(0, 1).
As simple as this approach might seem, it is generally limited by the fact that

it is usually not easy to solve the integral equation (3.2.1) analytically. There is,
however, at least one classic, example for which this can be done, the Brownian sheet
of Section 1.4.3, which we recall has covariance function

E{WsWt } = (s1 ∧ t1)× · · · × (sN ∧ tN ) (3.2.4)

on IN = [0, 1]N .
For the moment, we set N = 1 and so have the standard Brownian motion

on [0, 1], for which we have already characterized the corresponding RKHS as the
Cameron–Martin space. For Brownian motion (3.2.1) becomes

λψ(t)

∫ 1

0
min(s, t)ψ(s) ds =

∫ t

0
sψ(s) ds + t

∫ 1

t

ψ(s) ds.

Differentiating both sides with respect to t gives

λψ ′(t) =
∫ 1

t

ψ(s) ds,

λψ ′′(t) = −ψ(t),

together with the boundary conditions ψ(0) = 0 and ψ ′(1) = 0.
The solutions of this pair of differential equations are given by

ψn(t) =
√

2 sin

(
1

2
(2n+ 1)πt

)
, λn =

(
2

(2n+ 1)π

)2

, (3.2.5)
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as is easily verified by substitution. Thus, the Karhunen–Loève expansion of Brown-
ian motion on [0, 1] is given by

Wt =
√

2

π

∞∑
n=0

ξn

(
2

2n+ 1

)
sin

(
1

2
(2n+ 1)πt

)
.

Returning now to the general Brownian sheet, it is now clear from the product
form (3.2.4) of the covariance function that rather than taking a single sum in the
Karhunen–Loève expansion, it is natural to work with an N -dimensional sum and a
multi-index n = (n1, . . . , nN). With this in mind, it follows then from (3.2.5) that
the eigenfunctions and eigenvalues are given by

ψn(t) = 2N/2
N∏
i=1

sin

(
1

2
(2ni + 1) πti

)
,

λn =
N∏
i=1

(
2

(2ni + 1)π

)2

.

As an aside, there is also an elegant expansion of the Brownian sheet using the
Haar functions, which also works in the set-indexed setting, due to Ron Pyke [129].

Another class of examples that can almost be handled via the Karhunen–Loève
approach is that of stationary fields defined on all of (noncompact) RN . Since what
is about to come is rather imprecise, we shall allow ourselves the standard notational
luxury of the stationary theory of taking our field to be complex-valued, despite the
fact that all that we have done in this chapter was for real-valued processes. In this
case the covariance function is C(s, t) = E{fsft } = C(t − s) and is a function of
t − s only. It is then easy to find eigenfunctions for (3.2.1) via complex exponentials.
Note that for any λ ∈ RN , the function ei〈t,λ〉 (a function of t ∈ RN ) satisfies∫

RN

C(s, t)ei〈s,λ〉 ds =
∫

RN

C(t − s)ei〈s,λ〉 ds

= ei〈t,λ〉
∫

RN

C(u)e−i〈u,λ〉 du = Kλe
i〈t,λ〉,

for some, possibly zero, Kλ.
Suppose that Kλ �= 0 for only a countable number of λ ∈ RN . Then the Mercer

expansion (3.2.2) can be written as

C(t) =
∑
λ

Kλe
i〈t,λ〉, (3.2.6)

while the Karhunen–Loève expansion becomes

f (t) =
∑
λ

K
1/2
λ ξλe

i〈t,λ〉. (3.2.7)
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These are, respectively, special cases of the spectral distribution theorem (cf. (5.4.1))
and the spectral representation theorem (cf. (5.4.6)) of Chapter 5 when the spectral
measure is discrete.

Despite the minor irregularity of assuming that f is complex-valued, the above
argument is completely rigorous. On the other hand, what follows is not.

If Kλ �= 0 on an uncountable set, then the situation becomes more delicate,
but is nevertheless worth looking at. In this case, one could imagine replacing the
summations in (3.2.6) and (3.2.7) by integrals, to obtain

C(t) =
∫

RN

Kλe
i〈t,λ〉 dλ

and

f (t) =
∫

RN

K
1/2
λ ξλe

i〈t,λ〉 dλ. (3.2.8)

Everything is well defined in the first of these integrals, but in the second we have
the problem that the ξλ should be independent for each λ, and it is well known that
there is no measurable way to construct such a process.

Nevertheless, we shall see in Chapter 5 that there are ways to get around these
problems, and that when properly formulated, (3.2.8) actually makes sense.
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Excursion Probabilities

As we have already mentioned more than once before, one of the oldest and most
important problems in the study of stochastic processes of any kind is to evaluate the
excursion probabilities

P

{
sup
t∈T

f (t) ≥ u
}
,

where f is a random process over some parameter set T . As usual, we shall restrict
ourselves to the case in which f is centered and Gaussian and T is compact for the
canonical metric of (1.3.1).

While the Borell–TIS inequality, Theorem 2.1.1, gives an easy and universal
bound to Gaussian excursion probabilities, it is far from optimal. In fact, comput-
ing excursion probabilities for general Gaussian processes is a surprisingly difficult
problem. Even the simple case of T = [0, 1] is hard. In this one-dimensional case,
there is hope for obtaining an explicit expression for the excursion probability if f is
Markovian. For example, if f is Brownian motion, then, as any elementary textbook
on stochastic processes will tell you, the so-called reflection principle easily yields
that P{sup0≤t≤1 f (t) ≥ u} = 2�(u), where� is the Gaussian tail probability (1.2.1).

However, if we turn to stationary processes on R, then there are only five non-
trivial1 Gaussian processes for which the excursion probability has a known analytic
form, and the resulting formulas, while amenable to numerical computation, are not
generally very pretty.2

In each of these five examples the process is either Markovian or close to Marko-
vian, and this is what makes the computation feasible. Similarly, none of the processes
has even a mean square derivative, and so none are particularly smooth. In the case
of smooth processes, or processes over parameter spaces richer than the unit interval,
the very specific tools that work for these very special cases fail completely. What
one can do in the general case is the subject of this chapter and of Chapter 14.

1 There is also one close-to-trivial but extremely enlightening case, with covariance function
cos(ωt), for which elementary calculations give the excursion probability. We shall discuss
this in some detail in Section 14.4.4.

2 The five covariance functions are
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Our ultimate aim will be to develop, when possible and appropriate, expansions
of the form

P

{
sup
t∈T

f (t) ≥ u
}
= uαe−u2/2σ 2

T

⎡⎣ n∑
j=0

Cju
−j + error

⎤⎦ (4.0.1)

for large u and appropriate parameters α, σ 2
T , n, and Cj that depend on both f and

T . Furthermore, we would like to be able to identify the constants Cj and also to be
able to say something about the error term.

In Chapter 14 we shall indeed establish such a result, with a full identification
of all constants. However, we shall have to make two major assumptions. One is
that the parameter space T is a piecewise smooth manifold, and the second is that
f is almost surely C2. The current chapter will make fewer assumptions, and will
concentrate on general approaches relying heavily on the concept of entropy from
Chapter 1. As a consequence, we shall generally be able to identify only the first term
in (4.0.1). Even then, while we shall be able to determine α and σ 2

T , only under rare
cases shall we also be able to identify C0.

Furthermore, so as to keep the treatment down to a reasonable length, we shall
generally concentrate on upper bounds, rather than expansions, for Gaussian excur-
sion probabilities.

This chapter contains six sections. The first four have just been described. The
remaining two are both brief, and are meant as quick introductions to techniques that
can lead to sharper results under additional assumptions. They lie between the general
results of the first four sections and the very sharp results, for smooth Gaussian fields
on structured domains, of Chapter 14.

4.1 Entropy Bounds

As we saw in Section 2.1, an immediate consequence of the Borell–TIS inequality is
the fact that for all ε > 0 and large enough u,

C(t) = e−|t |,

C(t) =
{

1 − |t |, |t | ≤ 1,

0, |t | ≥ 1,

C(t) = 3
2 exp[− 1

3 |t |]{1 − 1
3 exp[−2|t |/√3]},

C(t) =
{

1 − α|t |, |t | ≤ 1,

C(t − 1), −∞ < t < ∞,

C(t) =
{

1 − |t |/(1 − β), |t | ≤ 1,

−β/(1 − β), 1 < |t | < (1 − β)/β,

where in the last case, β ∈ (0, 1), and the computation of the excursion probability is known
only for f (0) conditioned to be 0. For details, see [145, 43] and the review [26].
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P

{
sup
t∈T

ft ≥ u
}
≤ eεu

2−u2/2σ 2
T , (4.1.1)

where σ 2
T = supT E{f 2

t } (cf. (2.1.4)). This is in the classic form of a large-deviation
result, and holds with no assumptions beyond the almost sure boundedness of f .
Our aim is to improve on (4.1.1) by placing side conditions on the entropy (cf.
Definition 1.3.2) of f over T . Here is a very easy, and definitely suboptimal, result.

Theorem 4.1.1. Let f be a centered, a.s. continuous Gaussian field over T with
entropy function N . If N(ε) ≤ Kε−α , then for all sufficiently large u,

P

{
sup
t∈T

f (t) ≥ u

}
≤ Cαu

α+ηe−u2/2σ 2
T , (4.1.2)

for every η > 0, where Cα = C(K, α, σ 2
T ) is a finite constant.

Proof. Take ε > 0 and define

μ(t, ε) = E

{
sup

s∈Bd(t,ε)

fs

}
and

μ(ε) = sup
t∈T

μ(t, ε), (4.1.3)

where Bd(t, ε) is a ball of radius ε around t in the canonical metric d of (1.3.1). Since
N(ε) balls of radius ε cover T , it is an immediate consequence of the Borell–TIS
inequality that for u > μ(ε),

P

{
sup
t∈T

f (t) ≥ u

}
≤ N(ε)e−

1
2 (u−μ(ε))2/σ 2

T . (4.1.4)

Allowing C = C(α) to denote a constant, dependent only on α and that may
change from line to line, we have from Theorem 1.3.3 that

μ(t, ε) ≤ C

∫ ε

0
(logN(ε))

1
2 dε ≤ C

∫ ε

0
(log(1/ε))

1
2 dε ≤ Cε

√
log(1/ε). (4.1.5)

Set ε = ε(u) = u−1, choose u large enough so that u > Cu−1
√

log u, and substitute
into (4.1.4) to obtain

P

{
sup
t∈T

f (t) ≥ u

}
≤ C1u

αe
− 1

2

(
u−C2u

−1
√

log u
)2

/σ 2
T (4.1.6)

≤ C3u
αeC4

√
log ue−u2/2σ 2

T .

Since for η > 0 and u large enough eC
√

log u < uη, this gives us (4.1.2) and so
completes the proof. ��
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The bound in (4.1.2) can be improved slightly, to C(u log u)αe−u2/2σ 2
T , by choos-

ing ε = ε(u) in the above proof to satisfy u−1 = ε(log(1/ε))1/2. The gain, however,
is rather small, in view of the fact that far stronger results hold. In particular, in a
series of papers [135, 136, 150, 137, 153] by Samorodnitsky and Talagrand, with a
leapfrogging of ideas and techniques,3 the results of the following three theorems,
among others, were obtained. In each, f is a priori assumed to have continuous

sample paths with probability one, σ 2
T

�= supT E{f 2
t }, and at each appearance, K

represents a universal constant that may differ between appearances.

Theorem 4.1.2. If for some A > σT , some α > 0, and some ε0 ∈ [0, σT ] we have

N(T , d, ε) ≤ (A/ε)α (4.1.7)

for all ε < ε0, then for u ≥ σ 2
T [(1 +√

α)/ε0] we also have

P

{
sup
t∈T

ft ≥ u

}
≤
(

KAu√
ασ 2

T

)α

�

(
u

σT

)
, (4.1.8)

where K is a universal constant.4

Theorem 4.1.3. Set

Tδ =
{
t ∈ T : E{f 2

t } ≥ σ 2
T − δ2

}
. (4.1.9)

Suppose there exist α > β > 1 such that for all δ > 0, ε ∈ (0, δ(1 + √
α)/

√
β), we

have

N(Tδ, d, ε) ≤ Aδβε−α. (4.1.10)

Then for u ≥ 2σT
√
β,

P

{
sup
t∈T

ft ≥ u

}
≤ Aββ/2

αα/2
Kα+β

(
u

σ 2
T

)α−β

�

(
u

σT

)
. (4.1.11)

Theorem 4.1.4. Suppose there exist A,B > 0 and α ∈ (0, 2) such that

N(T , ε) < A exp(Bε−α).

3 While the Samorodnitsky and Talagrand papers are what led to the final form presented
here, the key arguments are much older, and two of the key players were Simeon Berman
(e.g., [20, 21, 22, 23]) and Michel Weber (e.g., [167]).

4 Note that at first sight, the right-hand side of (4.1.8) seems to scale incorrectly, since in
the power term we would expect to see u/σT rather than u/σ 2

T
. This is an artifact of the

condition A > σT , which implies that increasing σT requires increasing A as well, thus
ensuring correct scaling. The same phenomenon appears in (4.1.11), albeit a little more
subtly.
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Then, for all u > 0,

P

{
sup
t∈T

ft > u

}
≤ K1 exp

(
K2u

2α/(2+α)
)
�

(
u

σT

)
,

where K1 and K2 are universal.

In a moment we shall turn to proofs of the first two of these results,5 adopting
(and occasionally correcting typos and oversights in) the proofs in [153]. Note that
(4.1.10) raises an interesting question whether we (formally) take α = β. In that
case the upper bound is of the form C(α, β)�(u/σT ), and this also serves as a trivial
lower bound when C = 1. Thus it is natural to ask if there are scenarios in which
one can in fact also take C = 1 in the upper bound. It turns out that there are, and we
shall look at these in Section 4.2.

Theorems 4.1.2 and 4.1.3 treat entropy functions for which the growth of N in
ε is of a power form, which, at least for processes indexed by points in Euclidean
spaces or smooth manifolds, are the most common. Theorem 4.1.4, which we shall
not prove, handles the scenario of exponential entropy and is a qualitatively different
result. Note that you cannot set α = 0 in this result to recover either Theorem 4.1.2
or 4.1.3. The upper bound given here is, under mild side conditions, also a lower
bound.

Before reading further, you might want to turn now to Section 4.3 to see some
concrete examples for which the above results apply. Here, however, we shall give
the proofs of Theorems 4.1.2 and 4.1.3. The central idea is old, and goes back at
least to the works of Berman [18, 19] and Pickands [123, 124, 125] in the mid to late
1960s, which themselves have roots in Cramér’s classic paper [41].

The basic approach lies in looking for a subset Tmax ⊂ T (very often a unique
point in T ) where the maximal variance is achieved, and then studying two things:
the “size’’ of Tmax (e.g., as measured in terms of metric entropy) and how rapidly
E{f 2

t } decays as one moves out of Tmax. The underlying idea is that the supremum
of the process is most likely to occur in or near the region of maximal variance, and
the rate of decay of E{f 2

t } outside that region determines how best to account for the
impact of nearby regions.

A key lemma, on which all the proofs we shall give rely, is the following result
of [153]. Recall throughout the assumption of Chapter 1 that the parameter space T

is compact for the pseudometric d , which we shall assume is still in place.

Lemma 4.1.5. Let f be a centered, a.s. continuous Gaussian process on T and X a
centered Gaussian variable such that the family {X, ft , t ∈ T } is jointly Gaussian.
Assume that

E{(ft −X)X} ≤ 0 (4.1.12)

5 A proof of a lower bound for (4.1.11) can be found in [136]. You can also find quite general
arguments, for both upper and lower bounds and for non-Gaussian as well as Gaussian
stationary processes, in a number of papers by Albin (e.g., [9]). We shall see more in the
way of lower bounds for specific cases soon.
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for all t ∈ T . Set

μ = E

{
sup
t∈T

ft

}
, σ 2 = E{X2}, a2 = sup

t∈T
E{(ft −X)2}.

Then, if a < σ and u > μ,

P

{
sup
t∈T

ft ≥ u
}
≤ 1

2
exp

(
− (u− μ)2

2a2

)
+ a√

a2 + σ 2
exp

(
− (u− μ)2

2(a2 + σ 2)

)
+�

(
u− μ

σ

)
. (4.1.13)

If, in addition, u > max(2μ,μ+ σ), then

P

{
sup
t∈T

ft ≥ u
}
≤ �

( u
σ

) [
1 +K

au

σ 2
exp

(
a2u2

2σ 4

)]
exp

(
2uμ

σ 2

)
, (4.1.14)

where K is a universal constant.

In a typical application of Lemma 4.1.5, X is usually the value of f at a point
t0 ∈ T of maximal variance. In that case (4.1.12) trivially holds, and a < σ will also
hold if T is sufficiently small.

Proof. While the proof is rather technical, the idea behind it is actually quite simple.
It starts by defining the function at by

at = E{(ft −X)X}
σ 2

≤ 0,

and the random process gt by

ft = gt + (1 + at )X.

Note that E{gtX} = 0. That is, X and the full process g are independent.
The argument then works as follows. There are essentially three ways for supT ft

to be larger than u. One is for supT gt to be large. One is for each of X and supT gt
to be large enough for the sum to be large, and the last is for X to be large. The
three terms in (4.1.13) correspond, in order, to these three cases, and each is obtained
by conditioning on the distribution of X and then using the Borell–TIS inequality to
handle supT gt . That there is only one term in (4.1.14) comes from the fact that here u
is even larger, and then the last term actually dominates all others. The reason for this
is that from the assumption at ≤ 0 and a < σ it follows that E{X2} > supT E{g2

t },
and so it is “easier’’ for X to reach larger values than it is for g. Now read on.

It is trivial to check that for all s, t ∈ T ,

E

{
(gt − gs)

2
}
≤ E

{
(ft − fs)

2
}
,

so that by the Sudakov–Fernique inequality (Theorem 2.2.3),
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E

{
sup
t∈T

gt

}
≤ E

{
sup
t∈T

ft

}
= μ. (4.1.15)

Preparing for the conditioning argument, write

P

{
sup
t∈T

ft ≥ u

∣∣∣X = x
}
= P

{
sup
t∈T

(ft −X) ≥ u− x

∣∣∣X = x
}

= P

{
sup
t∈T

(gt + atX) ≥ u− x

∣∣∣X = x
}
.

For x > 0, using the fact that at ≤ 0, we have

sup
t∈T

(gt + atx) ≤ sup
t∈T

gt ,

from which it trivially follows that for x ≥ 0,

P

{
sup
t∈T

ft ≥ u

∣∣∣X = x
}
≤ P

{
sup
t∈T

gt ≥ u− x

∣∣∣X = x
}
.

However, since X and the process g are independent, we can drop the last condition-
ing, and since

E

{
g2
t

}
≤ E

{
(gt + atX)2

}
= E

{
(ft −X)2

}
≤ a2,

it follows from (4.1.15) and the Borell–TIS inequality (Theorem 2.1.1) that for 0 ≤
x ≤ u− μ,

P

{
sup
t∈T

ft ≥ u

∣∣∣X = x

}
≤ exp

(
− (u− x − μ)2

2a2

)
. (4.1.16)

We get a slightly different bound for x ≤ 0. Note that since

|at | = |E {(ft −X)X}|
σ 2

≤ a

σ
≤ 1,

we have

sup
t∈T

(gt + atx) ≤ |x| + sup
t∈T

gt = −x + sup
t∈T

gt .

Thus, again applying the Borell–TIS inequality, we have

P

{
sup
t∈T

(gt + atX) ≥ u− x

∣∣∣X = x
}
≤ P

{
sup
t∈T

gt ≥ u
}

≤ exp

(
− (u− μ)2

2a2

)
, (4.1.17)

which is independent of x. We now have all we need to establish (4.1.13). Write, for
u ≥ μ,
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P

{
sup
t∈T

ft ≥ u
}
=
∫ ∞

−∞
P

{
sup
t∈T

ft ≥ u

∣∣∣X = x
}e−x2/2σ 2

√
2πσ

dx

=
∫ 0

−∞
+
∫ u−μ

0
+
∫ ∞

u−μ

. . .

�= I1 + I2 + I3.

The term I3 is trivially bounded by the last term in (4.1.13). For I1, bound the
integrand by (4.1.17) and integrate out x to obtain the first term on the right-hand side
of (4.1.13). For the intermediate term, apply (4.1.16) and note, with s = u−μ, that

I2 ≤ 1√
2πσ

∫ ∞

−∞
exp

(
− (s − x)2

2a2
− x2

2σ 2

)
dx

= a√
a2 + σ 2

exp

(
− s2

2(σ 2 + a2)

)
,

evaluating the integral by completing the square. Thus the first part of the lemma,
(4.1.13), is established.

It remains to prove (4.1.14). We start by observing that

exp

(
− (u− μ)2

2a2

)
= exp

(
− (u− μ)2

2(a2 + σ 2)

)
exp

(
− (u− μ)2σ 2

2a2(a2 + σ 2)

)
.

Since σ > a and u > μ+ σ ,

exp

(
− (u− μ)2σ 2

2a2(a2 + σ 2)

)
≤ exp

(
− σ 2

4a2

)
≤ a

σ
.

Thus the sum of the first two terms on the right-hand side of (4.1.13) is bounded
above by

2a

σ
exp

(
− (u− μ)2

2(a2 + σ 2)

)
.

Since

1

α2 + σ 2
≥ 1

σ 2
− a2

σ 4
,

the previous expression is at most

2a

σ
exp

(
− (u− μ)2

2σ 2
+ u2a2

2σ 4

)
≤ 2au(u− μ)

σ 3
exp

(
u2a2

2σ 4

)
exp

(
− (u− μ)2

2σ 2

)
,

on applying the various inequalities between a, σ , u and μ. Apply the basic Gaussian
tail bound (1.2.2) to bound the above by
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Kua

σ 2
�

(
u− μ

σ

)
exp

(
u2a2

2σ 4

)
,

for a universal K . To complete the argument note that for x ≥ 1, y ≥ 0,

�(x − y) ≤ e2xy�(x).

(This is easily proven from the fact that f (y)
�= e2xy�(x) − �(x − y) satisfies

f (0) = 0 and has positive derivative, since

f ′(y) = 2xe2xy�(x)− 1√
2π

e−(x−y)2/2 ≥ 0,

again applying the Gaussian tail bound (1.2.2).) ��
While Lemma 4.1.5 will be the main tool for the proofs of Theorems 4.1.2

and 4.1.3, we first need a counting result about partitioning our (pseudo)metric
space (T , d).

Lemma 4.1.6. Let (T , d) be a metric space and take p, q integers, p < q. Let Pq

be a partition of T of sets of diameter no more than 4−q+1. Take a set of integers kl ,
p ≤ l ≤ q. Then there exists an increasing sequence {Pl}p≤l≤q of partitions of T
with the following properties:

Pl+1 is a refinement of Pl . i.e., For each A ∈ Pl+1 there is an (4.1.18)

A′ ∈ Pl such that A ⊆ A′.
For each set A ∈ Pl , diam(A) ≤ 4−l+1. (4.1.19)

Each set of Pl contains at most kl sets of Pl+1. (4.1.20)

|Pl | ≤ N(4−l )+ |Pl+1|
kl

, for all l < q, (4.1.21)

where N(ε) is the metric entropy function for (T , d) and |Pl | is the number of sets
in Pl .

Proof. We shall construct the partitions P� by decreasing induction over l; i.e., we
show how to construct P� once P�+∞ is given.

Set N = N(4−l ) and consider points {ti}1≤i≤N of T such that

sup
t∈T

inf
i
d(t, ti) ≤ 4−l .

For i ≤ N let Ai be the union of all the sets in P�+∞ that intersect Bd(ti , 4−l ). Thus,

since the sets in P�+∞ have diameter no larger than 4−l , Ai has diameter at most

2 · 4−l + 2 · 4−l = 4−l+1.

Now define Ci = Ai \⋃j<i Aj . These form a partition of T that is coarser than
P�+∞. Some of these sets might contain more that kl sets of P�+∞. In such a case,
these sets can be repartitioned into smaller sets, all but at most one of which is the
union of exactly kl of the sets in P�+∞. The exception will contain fewer than kl of
the sets in P�+∞. This constructs P� and (4.1.21) is immediate. ��
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Corollary 4.1.7. Suppose that in Lemma 4.1.6 we have, for someA, α > 0,N(4−l ) ≤
(A4l )α if l ≥ p and |Pq | ≤ (A4q)α . Then, if kl ≥ 2 · 4α for all l, we have
|Pl | ≤ 2(A4l )α .

Proof. Using the construction given in the proof of the lemma, and by decreasing
induction over l,

|P�| ≤ (A4l )α + 2(A4l+1)α

kl
≤ 2(A4l )α. ��

Proof of Theorem 4.1.2. The argument is by partitioning, much as for the proof of
Theorem 4.1.1. The improvement in the result relies on being more careful as to
how the partitioning is carried out, and from a judicious application of Lemma 4.1.5,
which we did not previously have.

Start by choosing a < σT andμ > 0. Then choose a partition {Ti}i≤N of T intoN
compact sets, each of diameter no more than a and for each of which E{supTi ft } ≤ μ.
Then, for u > max(2μ,μ+ σT ), it follows from (4.1.14) (by taking X to be f taken
at a point of maximal variance in each Ti) that

P

{
sup
t∈T

ft ≥ u
}
≤ N

(
1 +K

au

σ 2
T

exp

(
a2u2

2σ 4
T

))
exp

(
2uμ

σ 2
T

)
�

(
u

σT

)
, (4.1.22)

where K is a universal constant. The free variables here are μ and a, and the problem
is that N → ∞ as a, μ → 0. The trick therefore is to find a sequence of partitions
for which N does not grow too fast.

As usual, our first step is to assume that T is finite and once again apply the
argument at the end of the proof of the Borell–TIS inequality for moving from finite
to infinite T .6 Thus we can, and do, assume that T is finite, and can now start the
serious part of the proof.

Since T is finite, we can consider it as a partition of itself, and find a q large
enough so that d(s, t) ≥ 4−q+1 for all s, t ∈ T . Applying Corollary 4.1.7 with
kl =  2 · 4α! + 1 ≤ 3 · 4α , and for each l ≤ q, with 4−l ≤ ε0, we find a further
partition of T into N ≤ 2(A4l )α sets {Ti}i≤N such that for m ≥ l,

N(Ti, d, 4−m+1) ≤ (3 · 4α)m−l

for all i ≤ N . The last inequality follows from repeated applications of (4.1.20).
Using this bound in Theorem 1.3.3, it is a simple calculation to see that

E

{
sup
t∈Ti

ft

}
≤ K

√
α4−l , (4.1.23)

for some universal K .

6 The one issue that is slightly more involved this time is whether a bound on the entropy
function for the original parameter space T translates to an equivalent bound for the process
defined on a finite subset of T . This, however, is easy to check.
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Now take for l the smallest integer such that 4−l ≤ √
ασ 2

T /4Ku, with the K of
(4.1.23). Assuming, for no loss of generality, thatK ≥ 1, we have 4−l ≤ ε0, provided
that u ≥ √

ασ 2
T /ε0. Since 4−l ≥ √

ασ 2
T /16Ku we have N ≤ (16KAu/

√
ασ 2

T )
α .

We also have, in the notation of Theorem 4.1.2, that

μ ≤ ασ 2
T

4u
, a ≤ 4−l+1 ≤

√
ασ 2

T

u
.

Now observe that since u >
√
ασT , we have μ ≤ √

ασT ≤ u/4 and a < σT , so that
the result now follows from (4.1.22), as promised. ��
Proof of Theorem 4.1.3. As before, the proof uses a partitioning argument. This
time, however, we start by partioning the space into regions depending on the size
of E{f 2

t }. In each of these regions we apply Theorem 4.1.2 to bound the supremum,
so that the hard part of the bounding has already been done. The rest of the proof is
really just accounting, to make sure that the various pieces add up appropriately.

To start, fix u > 2σT
√
β. Set δ0 = 0, δ1 = √

βσ 2
T /u and, for k ≥ 1, set

δk = 2k−1δ1. For k ≥ 1 set Uk = Tδk \ Tδk−1 . Set ε0 = δ1(1 + √
α)/

√
β, and

note that

σ 2
T

(
1 +√

α
)

ε0
≤ σ 2

T

√
β

δ1
= u.

Thus, setting σ 2
k = σ 2

T − δ2
k−1, and applying Theorem 4.1.2 to Uk , we obtain

P

{
sup
t∈Uk

≥ u
}
≤ Aδ

β
k

(
Ku√
ασ 2

k

)α

�

(
u

σk

)
.

Let k0 be the largest integer such that δk0−1 ≤ σT /2. Since u ≥ 2
√
βσT , we have

that k0 ≥ 2 and δk0−1 ≥ σT /4. For k ≤ k0, we have σ 2
k ≥ 3σ 2

T /4, so that

P

{
sup
t∈Uk

ft ≥ u
}
≤ Aδ

β
k

(
Ku√
ασ 2

T

)α (σT
u

)
exp

(
− u2

2(σ 2
T − δ2

k−1)

)
.

Since we also have that

1

σ 2
T − δ2

k−1

≥ 1

σ 2
T

+ δ2
k−1

σ 4
T

,

we see that

P

{
sup
t∈Uk

ft ≥ u
}
≤ Aδ

β
k

(
Ku√
ασ 2

T

)α

exp

(
−u2δ2

k−1

2σ 4
T

)
�

(
u

σT

)
.

Note that
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∑
k≥1

δ
β
k exp

(
−u2δ2

k−1

2σ 4
T

)
= δ

β

1 +
∑
k≥2

δ
β
k exp

(
−u2δ2

k−1

2σ 4
T

)

≤ δ
β

1

⎛⎝1 +
∑
k≥2

2βk exp(−β22k−3)

⎞⎠
≤ (Kδ1)

β,

the last line requiring β > 1. Consequently, if we set T ′ = ⋃
k≤k0

Uk , we have,
recalling the value of δ1, that

P

{
sup
t∈T ′

ft ≥ u
}
≤ A

ββ/2

αα/2
Kβ+α

(
u

σ 2
T

)α−β

�

(
u

σT

)
. (4.1.24)

For t /∈ T ′ we have

E

{
f 2
t

}
≤ σ 2

T − δ2
k0−1 ≤ σ 2

T − σ 2
T /16 = 15σ 2

T /16.

Thus, if we now apply the entropy bound (4.1.10), we see that for u > σT
√
β we

have

P

{
sup

t∈T \T ′
ft ≥ u

}
≤ Aσ

β
T

(
Ku√
ασ 2

T

)α

�

(
4u

σT
√

15

)
. (4.1.25)

To conclude, it suffices to check that for x ≥ √
β we have �(4x/

√
15) ≤

(Kβ)β/2x−β�(x), so that the left-hand side of (4.1.25) is dominated by the left-
hand side of (4.1.11). ��

4.2 Processes with a Unique Point of Maximal Variance

We shall now look at a rather interesting special case. We know already from the
discussion following Theorem 4.1.3 that there would seem to be cases in which the
trivial lower bound

P

{
sup
t∈T

f (t) ≥ u

}
≥ sup

t∈T
P {f (t) ≥ u} = �

(
u

σT

)
comes close (up to a constant) to serving as an upper bound as well.

A class of examples in which this holds with the constant 1 arises when there is a
unique point t0 ∈ T at which the maximal variance is achieved and some additional
side conditions are assumed. In that case, we have the following elegant result of
Talagrand [151].
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Theorem 4.2.1. Suppose f is a centered, bounded Gaussian process on T , and that
there is a unique point t0 ∈ T such that

E

{
f 2
t0

}
= σ 2

T = sup
T

E

{
f 2
t

}
. (4.2.1)

For δ > 0, set

Tδ =
{
t ∈ T : E

{
ftft0

} ≥ σ 2
T − δ2

}
.

Suppose that

lim
δ→0

E
{
supt∈Tδ ft

}
δ

= 0. (4.2.2)

Then

lim
u→∞

P
{
supt∈T f (t) ≥ u

}
�(u/σT )

= 1. (4.2.3)

There is actually a converse to this result, which states that (4.2.3) implies the
existence of a t0 ∈ T for which (4.2.1) and (4.2.2) hold. You can find a proof of the
converse in [151].

Proof. Since it is a triviality that

P

{
sup
t∈T

ft ≥ u
}
≥ P

{
ft0 ≥ u

} = �

(
u

σT

)
,

the theorem will be proven once we establish (4.2.3) with a limsup rather than lim.
To start, take η ∈ (0, 1) and, by (4.2.2), δ0 small enough so that

δ ≤ 2δ0 ⇒ E

{
sup
t∈Tδ

ft

}
≤ η2δ. (4.2.4)

We can and do assume that δ0 ≤ σT η
2. Note also that

sup
t /∈Tδ0

E

{
f 2
t

}
< σ 2

T ,

since otherwise there would be a t /∈ Tδ0 (so that t �= t0) for which E
{
f 2
t

} = σ 2
T ,

which contradicts the assumption of there being a unique point of maximal variance.
It therefore follows immediately from the Borell–TIS inequality that

lim
u→∞

P

{
supt∈T \Tδ0 ft ≥ u

}
�(u/σT )

= 0, (4.2.5)

and so to complete the proof it will suffice to show that for some universal K , and
for u large enough,
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P

{
sup
t∈Tδ0

ft ≥ u
}
≤ �

(
u

σT

)
(1 +Kη). (4.2.6)

Fix u and set α = σ 2
T /ηu. Adopting and adapting the main idea in the proof of

Theorem 4.1.3, define a nondecreasing sequence of subsets of T , and a sequence of
“annuli,’’ by setting V−1 = ∅ and, for k ≥ 0,

Vk = T2kα, Uk = Vk \ Vk−1.

If p is the smallest integer for which 2pα ≥ δ0, then

Tδ0 ⊂
⋃

0≤k≤p

Uk,

and we shall now try to obtain the bound in (4.2.6) by obtaining a similar bound for
each Uk and then combining them via a union bound.

Setting μk = E
{
supt∈Vk

ft
}
, (4.2.4) implies that μk ≤ αη22k for k ≤ p. Setting

ωk = sup
t∈Vk

(
E

{(
ft − ft0

)2})1/2
,

we have

ωk = sup
t∈Vk

KE
{∣∣ft − ft0

∣∣} ≤ KE

{
sup
t∈Vk

∣∣ft − ft0

∣∣} ≤ Kμk ≤ Kαη22k, (4.2.7)

the first line being a standard Gaussian identity and the second inequality coming
from the fact that t0 ∈ Vk .

By (4.1.14) with X = ft0 we therefore have

P

{
sup
t∈U0

ft ≥ u

}
≤ �

(
u

σT

)
(1 +KηeKη2/2)e2η ≤ �

(
u

σT

)
(1 +Kη).

We use a similar argument for the remaining Uk . Take the random variable X of
Lemma 4.1.5 to be Xk = (1 − (α2k−1)2/σ 2

T )ft0 . It is then easy to check that the
definition of Tδ implies that (4.1.12) holds. Furthermore, since k ≤ p and δ0 ≤ σT η

2,

(
E

{(
Xk − ft0

)2})1/2 =
(
α2k−1

)2
σT

≤ δ0

σT
α2k−1 ≤ η2α2k.

It follows from (4.2.7) and the triangle inequality that if we set

a2
k = sup

t∈Vk

E

{
(ft −Xk)

2
}
,

then ak ≤ Kη2α2k . Thus, by (4.1.14) and the fact that η < 1 we have
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P

{
sup
t∈Uk

ft ≥ u
}
≤ �

(
u

σT (1 − (α2k−1)2/σ 2
T )

) (
1 +Kη2keKη222k )

eKη2k

≤ �

(
u

σT (1 − (α2k−1)2/σ 2
T )

)
eKη22k

.

Using the fact that for x ≤ 1 we know that (1 − x)−1 ≥ 1 + x, we have

u

σT (1 − (α2k−1)2/σ 2
T )

≥ u

σT
+ (α2k−1)2u

2σ 3
T

.

Also, since a simple change of variables shows that

�(x + y) ≤ e−xy�(x),

for y ≥ 0, it follows, on recalling the definition of α, that

�

(
u

σT (1 − (α2k−1)2/σ 2
T )

)
≤ �

(
u

σT

)
exp

(
− (α2k−1)2u2

σ 4
T

)

≤ �

(
u

σT

)
exp

(
−22k

4η

)
.

Putting all this together, we thus have

∑
1≤k≤p

P

{
sup
t∈Uk

ft ≥ u
}
≤ �

(
u

σT

) ∑
1≤k≤p

exp

(
−22k

(
1

4η
−Kη

))
.

Since the last sum can be made arbitrarily small by taking η small enough, we have
established (4.2.6) and so the theorem. ��

4.3 Examples

Theorem 4.2.1 provided us with conditions under which Gaussian processes have
supremum distribution, at least in the tail, which behaves the same as that of a single
Gaussian variable. Here is a class of examples for which this happens.

Example 4.3.1. Let ft be a centered Gaussian random field on RN , with f (0) = 0
and with stationary and isotropic increments, in the sense that the distribution of
f (t + s)− f (s) depends only on |t |. Suppose that

p2(t)
�= E

{
(ft+s − fs)

2
}
= E

{
f 2
t

}
is convex, and that
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lim
t→0

p2(t)

|t | = 0. (4.3.1)

With some abuse of notation, let T = [0, T ] be an N -dimensional rectangle. Then

lim
u→∞

P
{
supt∈T ft ≥ u

}
�(u/σT )

= 1, (4.3.2)

where σ 2
T = supt∈T E

{
f 2(t)

} = E
{
f 2(T )

}
.

Without doubt the best known class of random fields statisfying the conditions
of the example are the so-called fractional Brownian motions or fields, which have
covariance function

C(s, t) = 1

2

(
|t |2α + |s|2α − |t − s|2α

)
.

While these processes have isotropic increments for all α ∈ (0, 1), it is only when
α > 1

2 that p2 is convex. More information on these processes can be found, for
example, in [138].

Proof. The proof requires no more than checking that conditions (4.2.1) and (4.2.2)
of Theorem 4.2.1 hold. Since f has stationary increments, (4.2.1) is clearly satisfied
by taking t0 = T . Thus we need only show that (4.2.2) holds, namely,

lim
δ→0

E
{
supt∈Tδ ft

}
δ

= 0.

However, since p2(t) is convex, it has a left derivative at each point, and so it is easy
to check (draw a picture) that for t ∈ Tδ we have |T − t | ≤ Kδ2 for some finite K .
Thus, since f has isotropic increments, it suffices to show that

lim
δ→0

E
{
sup0≤t≤δ2 |ft |

}
δ

= 0.

But this follows immediately from an entropy bound such as Theorem 1.3.3 along
with the inequality (1.4.6) and condition (4.3.1). ��

We now look at two applications of Theorem 4.1.3. The first, which treats a
nonstationary process on IN = [0, 1]N , is designed to show how sample roughness
and nonstationarity interact to determine excursion probabilties. Setting β = ∞
gives a result for stationary processes, and setting α = 2 gives a result for (relatively)
smooth processes of a form that we shall study in far more detail in Chapter 14.

The second example shows how to use the general theory to handle a Brownian
sheet problem.

Example 4.3.2. Let f be a centered, unit-variance, stationary Gaussian process on
IN with covariance function C satisfying
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1 − C(t) ≤ a|t |α, (4.3.3)

when |t | ≤ γ , for some a, γ > 0 and α ∈ [0, 2]. Let σ(t) be positive, continuous,
and nondecreasing (under the usual partial order) on IN such that

|σ(t)− σ(s)| ≤ b|t − s|β (4.3.4)

for all s, t ∈ IN and some b, β ≥ 0, and define a new, nonstationary, process h by

h(t) = σ(t)f (t), t ∈ IN . (4.3.5)

Finally, let σ , without a parameter, denote σ(1, . . . , 1). Then there exists a
(computable) finite C = C(N, a, α, b, β, σ ) > 0 such that for sufficiently large u,

P

{
sup
t∈IN

h(t) > u
}
≤
{
Cu

− 2
β
+ 2N

α �
(
u
σ

)
, 0 < α < 2β,

C�
(
u
σ

)
, 0 < 2β ≤ α.

(4.3.6)

Proof. Note firstly that if σ is strictly increasing, then h has a unique point of max-
imum variance, at t0 = (1, . . . , 1). Nevertheless, even in this case, the assumptions
we have made are not strong enough to imply that (4.2.2) holds, so that Theorem 4.2.1
(which is designed for examples in which there is a unique point of maximal variance)
need not apply. Consequently, we apply Theorem 4.1.3, so that the proof relies on
finding a good bound for the entropy N(Tδ, d, ε) of the set

Tδ =
{
t ∈ IN : E{h2

t } = σ 2(t) ≥ σ 2 − δ2
}
.

It is an easy calculation from (4.3.4) that Tδ can be covered by a cube of side length
no more than Cδ2/βb−1/β , where C = C(N) is a dimension-dependent constant.

Furthermore, in view of the definition (4.3.5) of h,

E

{
(ht − hs)

2
}
= (σt − σs)

2 + 2σtσs (1 − C(t − s)) (4.3.7)

≤ b2|t − s|2β + 2σ 2a|t − s|α,
the inequality holding for all |t − s| < γ , by (4.3.5).

Moving to the canonical metric on IN in order to calculate entropies, it follows
that if 0 < α < 2β, then (4.3.7) implies

d(s, t) ≤ C|t − s|α/2.

Combining this with the comments above on the size of Tδ , we have that

N(Tδ, d, ε) ≤ Cε−2N/αδ2/β .

The first case in (4.3.6) now follows from Theorem 4.1.3. The second is similar and
left to you. ��
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Our last example deals with the pinned Brownian sheet over N -dimensional rect-
angles. Recall from Section 1.4.3 that the Brownian sheet is a Gaussian noise defined
on the Borel subsets of RN . The set-indexed, pinned Brownian sheet, based on a prob-
ability measure ν on the Borel sets of IN , is the set-indexed, zero-mean Gaussian
process B with covariance function

E
{
B(A)B(A′)

} = ν(A ∩ A′)− ν(A)ν(A′). (4.3.8)

The point-indexed, pinned Brownian sheet is obtained by looking only at rectangles
of the form [0, t] for some t ∈ IN , in which case we can index it simply by t . Both
the set and point-indexed pinned sheets play a crucial role in the theory of empirical
processes.

Example 4.3.3. Let B be the set-indexed, pinned Brownian sheet based on a proba-
bility measure ν and defined over the collection AN of N -dimensional rectangles in
IN . Assume that ν have a bounded density that is everywhere positive.7 Then there
exists a finite C = C(ν) > 0 such that for large enough u,

P

{
sup

A∈AN

B(A) > u
}
≤ Cu2(2N−1)e−2u2

. (4.3.9)

For the point-indexed pinned sheet,8

7 The condition on ν can be relaxed to demanding that ν has a strictly positive density on
some interval [s − ε, t + ε] (s, t, ε ∈ IN ) for which ν([s, t]) ≥ 1

2 . Indeed, the conditions
can be relaxed even further to those used by [5] in obtaining corresponding bounds for the
point-indexed sheet. See Samorodnitsky [136, 137] for details.

8 Using the “double-sum’’ techniques of Section 4.5 below, one can do considerably better
than (4.3.10). In a series of works [78, 62, 63, 161] various versions of this technique were
used to show that

P

{
sup
t∈IN

B(t) > u
}
' (4 ln 2)N−1

(N − 1)! u2(N−1)e−2u2
,

where a(u) ' b(u) ⇐⇒ limu→∞ a(u)/b(u) is well defined. (Note: the factor (N − 1)!
is missing in [62, 63].)

In the one-dimensional case there is no loss of generality in taking ν to be uniform measure
on [0, 1], in which case B is the Brownian bridge. We can then do better than (4.3.10). In
particular, any standard graduate probability textbook will prove—via an iterative use of
the classic reflection principle—that

P

{
sup

t∈[0,1]
|B(t)| > u

}
= 2

∞∑
k=1

(−1)k−1e−2k2u2
,

the first term of which, of course, we have in (4.3.10), albeit without a precise constant.
Note that the factor of 2 here comes from the fact that we have looked at the supremum of
the absolute value of B. The fact that it is precisely 2 comes from the “well-known’’ fact
that high maxima and low minima of Gaussian processes are asymptotically indpendent
(e.g., [97]).
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P

{
sup
t∈IN

B(t) > u
}
≤ Cu2(N−1)e−2u2

. (4.3.10)

Proof. The first point to note is that since ν is a probability measure, it follows from
(4.3.8) that

sup
A∈AN

E

{
B(A)2

}
= sup

t∈IN
E

{
B(t)2

}
= 1

4
.

Assuming all its conditions hold, Theorem 4.1.3 therefore immediately gives the
exponent of the exponentials in (4.3.9) and (4.3.10). The remainder of the proof
involves an unentertaining amount of straightforward algebra, so we shall be content
with only an outline. In particular, we shall discuss only (4.3.9). The point-indexed
result (4.3.10) is easier.

As in the proof of Example 4.3.2 we need to find a bound for the entropy of
N(Tδ, d, ε), where Tδ is now given by

Tδ =
{
A ∈ AN : E

{
B2(A)

}
≥ 1

4
− δ2

}
=
{
A ∈ AN : ν(A)− ν2(A) ≥ 1

4
− δ2

}
.

If ν is Lebesgue measure, which we now assume to keep the notation manageable,
this simplifies to

Tδ =
{
A ∈ AN : 1

2
(1 − δ) ≤ ν(A) ≤ 1

2
(1 + δ)

}
. (4.3.11)

To approximate the sets in Tδ in terms of the canonical metric, take N -dimensional
rectangles whose endpoints sit on the points of the lattice

LN
ε =

{
t ∈ [0, 1]N : ti = niε

2, ni ∈
(

0, 1, . . . , [ε−2]
)
, i = 1, . . . , N

}
.

We can choose each of the first N − 1 coordinates ni in at most ε−2 ways, and the
last (in view of (4.3.11)) in at most CNδε

−2 ways, so that

N (Tδ, d, ε) ≤ C′
Nε

−4Nδ.

Substituting this into (4.1.10) and (4.1.11) is all we need in order to establish (4.3.9)
and so complete the argument.

If ν is not Lebesgue measure, but has an everywhere positive bounded density,
the same argument works with a few more constants. ��

4.4 Extensions

There is almost no limit to the number of extensions and variations that exist of the
results of the preceding two sections. Obviously, the more one is prepared to assume,
the more one can obtain.
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For example, in the notation of Theorem 4.2.1, set

L(h) = E

{
sup
t∈Th

(ft − E{ftft0}ft0)
}
.

It is not hard to see that condition (4.2.2) of Theorem 4.2.1 is equivalent to

lim
h→0

L(h)

h
= 0.

Dobric, Marcus, and Weber [48] have shown that if we assume a little more about
L(h) we can improve Theorem 4.2.1 as follows.

Theorem 4.4.1. Suppose there exists a unique t0 ∈ T such that E
{
f 2
t0

} = 1 =
supT E

{
f 2
t

}
, and two functions ω1, ω2, concave for h ∈ [0, h̄] for some h̄ > 0 with

ωi(0) = 0. Define

hi(u) = sup

{
h : ωi(h)

h2
= u

}
, i = 1, 2.

If

ω1(h) ≤ L(h) ≤ ω2(h)

and

sup
t∈Th

E

{[
ft − ft0E(ftft0)

]2}
< (2 − ε)h2

for h ∈ [0, h̄] for some ε > 0, then there exist constants C1 and C2 such that for all
u large enough,

eC1uω1(h1(u)) ≤ P{supT ft ≥ u}
�(u)

≤ eC2uω2(h2(u)).

If, for example,

lim sup
h→0

L(h)

ω1(h)
≥ 1,

then for all ε > 0,

lim sup
u→∞

P{supt∈T f (t) ≥ u}
�(u) exp(k1(1 − ε)uω1(h1(u)))

≥ 1.

You can find a proof of this result in [48]. It differs in detail, but not in kind, from
what we have seen here.

There are also asymptotic bounds of a somewhat different nature due to Lifshits
[104], who, in a quite general setting, has shown that
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P

{
sup
t∈T

ft > u
}
' (2 − p)1/2�p

(
u2−p − du1−p

pσ 2
T

)
�

(
u− d

σT

)

× exp

{
− (2 − p)u2

2pσ 2
T

− d(p − 1)u

pσ 2
T

+ d2

2σ 2
T

}
,

for all 1 ≤ p < 2, where �p(x) ≡ E{exp(xsupt∈T ft
p) and d a constant (not

easily) determined by f . Of course, this result is somewhat circular, since one
needs the Laplace transform of supt∈T ft

p before being able to compute anything.
Nevertheless, the above inequality leads to some nice theoretical results about �p-
valued Gaussian processes.

We close this section with a much less general case than we have hitherto con-
sidered. Suppose that f is a stationary, zero-mean Gaussian field on RN and has a
covariance function that near the origin can be written as

C(t) = 1 − t�t ′ + o(|t |2), (4.4.1)

where � = {λij }1≤i,j≤N is the matrix of second-order spectral moments (cf. (5.5.2)).
In this case, one can show that

lim
u→∞

P
{
supt∈[0,T ]N ft ≥ u

}
uN�(u)

= (det �)1/2

(2π)N/2
. (4.4.2)

Why this result should be true is something we shall soon investigate in detail and
over parameter spaces far more general than cubes in Part III of the book. Indeed,
we shall obtain far more precise results, of the ilk of (4.0.1).

4.5 The Double-Sum Method

Since we have mentioned it already a number of times, it is only reasonable that we at
least also briefly describe the so-called double-sum method for computing asymptotic
exceedance probabilities.

The description will be very brief, since the topic is treated in detail in both [97]
and [126]. In particular, Piterbarg’s monograph [126] has an excellent and remarkably
readable treatment of this rather technical material in the setting of random fields.

In essence, the technique is not qualitatively different from what we have been
doing throughout this chapter. The differences lie only in the details and in the
concentration on lower, as well as upper, bounds for exceedance probabilities. The
basic idea is to break up the parameter space T into a finite union of small sets Tk ,
where the size of the Tk generally depends on the exceedance level u. The Tk need
not be disjoint, although any overlap should be small in relation to their sizes. While
initially there is no need to assume any particular structure for T , this usually is
needed for the most precise results.

It is then elementary that
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k

P

{
sup
t∈Tk

f (t) ≥ u
}
≥ P

{
sup
t∈T

f (t) ≥ u
}

≥
∑
k

P

{
sup
t∈Tk

f (t) ≥ u
}

(4.5.1)

−
∑∑

j �=k
P

{
sup
t∈Tj

f (t) ≥ u, sup
t∈Tk

f (t) ≥ u
}
.

The single summations are treated much as we did before, by choosing a point tk ∈ Tk ,
writing

P

{
sup
t∈Tk

f (t) ≥ u
}
=
∫ ∞

−∞
P

{
sup
t∈Tk

f (t) ≥ u
∣∣f (tk) = u

}
ptk (x) dx,

and arguing much as we did in the proof of Lemma 4.1.5.
The crux of the double-sum method lies in showing that the remaining double-sum

is of lower order than the single sum and, where possible, estimating its size.
If one could write the joint probabilities in (4.5.1) as the product

P

{
sup
t∈Tj

f (t) ≥ u, sup
t∈Tk

f (t) ≥ u
}
= P

{
sup
t∈Tj

f (t) ≥ u
}
P

{
sup
t∈Tk

f (t) ≥ u
}
,

then we would be basically done, since then the double-sum term would easily be
seen to be of lower order than the single sum. Such independence obviously does not
hold, but if we choose the sizes of the Tk in such a fashion that a “typical component’’
of an excursion set is considerably smaller than this size, and manage to show that
high extrema are independent of one another, then we are well on the way to a proof.

The details, which are heavy, are all in Piterbarg [126]. Piterbarg’s monograph
is also an excellent source of worked examples, and includes a number of rigorous
computations of excursion probabilities for many interesting examples of processes
and fields.

4.6 Local Maxima and Excursion Probabilities

We close this chapter with somewhat of a red herring, in that we shall describe an
approach that makes a lot of sense, that has been used and developed with considerable
success by Piterbarg [126] and others, but which we shall nevertheless not explore
further. Despite this, it does give a good heuristic feeling for results we shall develop
in Part III, particularly those of Chapter 14.

We leave the general setting of the previous sections, and concentrate on smooth
random fields over structured parameter spaces. In particular, we shall adopt the
regularity conditions of Chapter 12, in which f will be a smooth Gaussian process
defined over a Whitney stratified manifold M . Since we shall get around to defining
these manifolds only in Section 8.1, you can either return to the current discussion
after reading that section, or simply assume that “anN -dimensional Whitney stratified
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manifold’’ is no more than another way of saying “a unit cube IN ⊂ RN .’’ You will
not lose much in the way of intuition in doing so.

Furthermore, since the current section deals with a general idea rather than specific
results, we shall not be more precise about exactly what conditions we require and
shall simply assume that everything we write is well defined. The appropriate rigor
will come in Part III of the book.

Our aim is to connect the excursion probability of f with the mean number of its
local maxima of a certain type.

We start by noting that an N -dimensional Whitney stratified manifold M can be
written as the disjoint union

M =
N⋃
k=0

∂kM, (4.6.1)

of open k-dimensional submanifolds (cf. (9.3.5)). (If you are working with IN , then
this is just a decomposition of IN into k-dimensional facets, so that ∂NM = M◦ is
the interior of the cube, ∂N−1M the union of the interiors of the (N −1)-dimensional
faces, and so forth, down to ∂0M , which is made up of the 2N vertices of the cube.)

Let

ME
u (M)

�= # (extended outward maxima of f in M with ft ≥ u) .

In the terminology of Section 9.1, ME
u is more precisely defined as the number of

extended outward critical points t ∈ ∂kM ⊂ M of f for which the Hessian of
f |∂kM has maximal index. For the example of IN , these points are the local maxima
t ∈ ∂kM , k = 0, . . . , N , of f |∂kM for which f (tn) ↑ f (t) whenever the tn ∈ ∂k+1M

converge to t monotonically (for the usual partial order on RN ) along a direction
normal to ∂kM at t .

Since the notion of extended local maxima9 includes the 0-dimensional sets ∂0M

(i.e., the “corners’’ of M) it is not hard to see that if supt∈M ft ≥ u, then f must have
at least one extended outward maximum on M , and vice versa (see the argument in
Section 14.1.1 if you want details). Consequently, we can argue as follows:

9 Note that if we write

Mu (M)
�= #(local maxima of f in M with ft ≥ u),

then one can actually carry through all of the following argument with ME
u replaced by

Mu. In fact, this was Piterbarg’s original argument (cf. [126]). Since it is always true that
Mu ≥ ME

u , this means that the upper bound given in (4.6.5) below is poorer with this
change. Since the lower bound involves a difference of two terms, each of which is larger
with this change, it is unclear which variation of the argument is better, although one expects
the version with ME

u rather than Mu to give the tighter bound. In some sense, the difference
is of academic interest only, since neither bound can be explicitly evaluated. When we turn
to the explicit computations for the Gaussian case in Chapter 14, we shall in any case adopt
a somewhat different approach.
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P

{
sup
t∈M

ft ≥ u
}
= P{ME

u (M) ≥ 1} ≤
N∑
k=0

P{ME
u (∂kM) ≥ 1} ≤

N∑
k=0

E{ME
u (∂kM)}.

(4.6.2)
This gives a simple upper bound for excursion probabilities in terms of the mean
number of outward extended maxima. For a lower bound, note that{

sup
t∈M

ft ≥ u
}

⇐⇒ {ME
u (M◦) ≥ 1, ME

u (∂M) = 0} ∪ {ME
u (∂M) ≥ 1}, (4.6.3)

where ∂M = ⋃N−1
k=0 ∂kM . Now assume that f , as a function on the N -dimensional

manifold M , does not have any critical points on ∂M . Write

{ME
u (M◦) ≥ 1, ME

u (∂M) = 0} = {ME
u (M◦) = 1,ME

u (∂M) = 0}
∪ {ME

u (M◦) ≥ 2,ME
u (∂M) = 0}.

To compute the probabilities of the above two events, set

pk = P{ME
u (M◦) = k},

and note that

E{ME
u (M◦)} = P{ME

u (M◦) = 1} +
∞∑
k=2

kpk,

so that

P{ME
u (M) = 1,ME

u (∂M) = 0}
= P{ME

u (M) = 1} − P{ME
u (M◦) = 1,ME

u (∂M) ≥ 1}

= E{ME
u (M◦)} −

∞∑
k=2

kpk − P{ME
u (M◦) = 1,ME

u (∂M) ≥ 1}.

In a similar vein,

P{ME
u (M◦) ≥ 2,ME

u (∂M) = 0}

=
∞∑
k=2

pk − P{ME
u (M◦) ≥ 2,ME

u (∂M) ≥ 1}.

Putting the last two equalities together with (4.6.3) immediately gives us that

P

{
sup
t∈M

ft ≥ u
}
= E{ME

u (M◦)} −
∞∑
k=2

(k − 1)pk + P{ME
u (∂M) ≥ 1}

− P{ME
u (M◦) ≥ 1,ME

u (∂M) ≥ 1}
≥ E{ME

u (M◦)} − 1

2
E{ME

u (M◦)[ME
u (M◦)− 1]}

(4.6.4)

on noting that k − 1 < k(k − 1)/2 for k ≥ 2. Iterate this argument through ∂kM ,
0 ≤ k ≤ N − 1, and combine it with (4.6.2) to obtain the following.
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Theorem 4.6.1. Let f be almost surely C2 on a C2 Whitney stratified manifold M .
With the preceding notation, assume that f |∂kM has, almost surely, no critical points
on
⋃k−1

j=0 ∂jM . Furthermore, assume that the random variablesME
u (∂kM) have finite

second moments for all k and given u. Then

N∑
k=0

E{ME
u (∂kM)} ≥ P

{
sup
t∈M

ft ≥ u
}

(4.6.5)

≥
N∑
k=0

[
E{ME

u (∂kM)} − 1

2
E{ME

u (∂kM)[ME
u (∂kM)− 1]}

]
.

Of course, we have not really proven Theorem 4.6.1 with the rigor that it deserves,
so you should feel free to call it a conjecture rather than a theorem.

What you should note about this theorem/conjecture is that it makes no distri-
butional assumptions on f beyond ensuring that all the terms it involves are well
defined and finite. It certainly does not require that f be Gaussian. Consequently, it
covers a level of generality far beyond the Gaussian theory we have treated so far.

It also makes sense that it would be quite a general phenomenon for the
negative terms in (4.6.5) to be of smaller order that the others. After all, for
ME

u (∂kM)[ME
u (∂kM)−1] to be nonzero, there must be at least two extended outward

maxima of f |∂kM above the level u on ∂kM , and this is unlikely to occur if u is large.
Thus Theorem 4.6.1 seems to hold a lot of promise for approximating extremal

probabilities in general, assuming that we could actually compute explicit expressions
for the simple expectations in (4.6.5) along with some useful bounds for the product
expectations.

In Chapter 11 we shall work hard to obtain generic expressions that, in principle,
allow us to compute all these expectations. In particular, we shall have Theorem 11.2.1
for the simple means and Theorem 11.5.1 for the factorial moments in (4.6.5). Un-
fortunately, however, carrying out the computations in practice will turn out to be
impossible, even in the case that f is Gaussian. Consequently, we shall be forced to
take a less-direct path to approximating excursion probabilities, by evaluating mean
Euler characteristics that actually approximate the first-order expectations in (4.6.5).
The details of this argument will appear in Chapter 14.

First of all, however, we shall need to spend quite some time in Part II of this
book on studying geometry.





5

Stationary Fields

Stationarity has always been the backbone of almost all examples in the theory of
Gaussian processes for which specific computations were possible. As described in
the preface, one of the main reasons we shall be studying Gaussian processes on
manifolds is to get around this assumption. Nevertheless, despite the fact that we
shall ultimately try to avoid it, we invest a chapter on the topic for two reasons:

• Many of the results of Part III are significantly easier to interpret when specialized
down to cases under which stationarity holds.

• Even in the nonstationary case, many of the detailed computations of Part III can
be considered as deriving from a “local conversion to pseudostationarity,’’ or,
even more so, to pseudoisotropy. This will be taken care of there via the “induced
Riemannian metric’’ defined in Section 12.2. Knowledge of what happens under
stationarity is therefore important for knowing what to do in the general case.

We imagine that many of you will be familiar with most of the material of this
chapter and so will skip it and return only when specific details are required later. For
the newcomers, you should be warned that our treatment is full enough only to meet
our specific needs and that both style and content are occasionally a little eclectic. In
other words, you should go elsewhere for fuller, more standard treatments. References
will be given along the way.

The most important classic results of this chapter are the spectral distribution and
spectral representation theorems for RN of Section 5.4. However, the most important
results for us will be some of the consequences of these theorems for relationships
between spectral moments that are concentrated in Section 5.5. This is the one section
of this chapter that you will almost definitely need to come back to, even if you have
decided that you are familiar enough with stationarity to skip this chapter for the
moment.

5.1 Basic Stationarity

Although our primary interest lies in the study of real-valued random fields, it is
mathematically more convenient to discuss stationarity in the framework of complex-
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valued processes. Hence, unless otherwise stated, we shall assume throughout this
chapter that f (t) = (fR(t) + ifI (t)) takes values in the complex plane C and that
E{‖f (t)‖2} = E{f 2

R(t) + f 2
I (t)} < ∞. (Both fR and fI are, obviously, to be real-

valued.) As for a definition of normality in the complex scenario, we first define
a complex random variable to be Gaussian if the vector of its two components is
bivariate Gaussian.1 A complex process f is Gaussian if

∑
i αti fti is a complex

Gaussian variable for all sequences {ti} and complex {αti }.
We also need some additional assumptions on the parameter spaceT . In particular,

we require that it have a group structure2 and an operation with respect to which
the field is stationary. Consequently, we now assume that T has such a structure,
“+’’ represents the binary operation on T and “−’’ repesents inversion. As usual,
t − s = t + (−s). For the moment, we need no further assumptions on the group.

Since ft ∈ C, it follows that the mean function m(t) = E{f (t)} is also complex-
valued, as is the covariance function, which we redefine for the complex case as

C(s, t)
�= E{[f (s)−m(s)][f (t)−m(t)]}, (5.1.1)

with the bar denoting complex conjugation.
Some basic properties of covariance functions follow immediately from (5.1.1):

• C(s, t) = C(t, s), which becomes the simple symmetry C(s, t) = C(t, s) if f
(and so C) is real-valued.

• For any k ≥ 1, t1, . . . , tk ∈ T , and z1, . . . , zk ∈ C, the Hermitian form∑k
i=1
∑k

j=1 C(ti, tj )zizj is always real and nonnegative. We summarize this,
as before, by saying that C is nonnegative definite.

(The second of these properties follows from the equivalence of the double-sum to
E{‖∑k

i=1[f (ti)−m(ti)]zi‖2}.)
Suppose for the moment that T is Abelian. A random field f is called strictly

homogeneous or strictly stationary over T , with respect to the group operation +, if
its finite-dimensional distributions are invariant under this operation. That is, for any
k ≥ 1 and any set of points τ, t1, . . . , tk ∈ T ,

(f (t1), . . . , f (tk))
L= (f (t1 + τ), . . . , f (tk + τ)). (5.1.2)

An immediate consequence of strict stationarity is thatm(t) is constant andC(s, t)

is a function of the difference s − t only.
Going the other way, if for a random field with E{‖f (t)‖2} < ∞ for all t ∈ T

we have that m(t) is constant and C(s, t) is a function of the difference s − t only,
then we call f simply stationary or homogeneous, occasionally adding either of the
two adjectives “weakly’’ or “second-order.’’

1 It therefore follows that a complex Gaussian variable X = XR + iXI is defined by five
parameters: E{XI }, E{XR}, E{X2

I
}, E{X2

R
}, and E{XIXR}.

2 If stationarity is a new concept for you, you will do well by reading this section the first
time taking T = R

N with the usual notions of addition and subtraction.
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Note that none of the above required the Gaussianity we have assumed up until
now on f . If, however, we do add the assumption of Gaussianity, it immediately
follows from the structure (1.2.3) of the multivariate Gaussian density3 that a weakly
stationary Gaussian field will also be strictly stationary if C′(s, t) = E{[f (s) −
m(s)][f (t) − m(t)]} is also a function only of s − t . If f is real-valued, then since
C ≡ C′ it follows that all weakly stationary real-valued Gaussian fields are also
strictly stationary, and the issue of qualifying adjectives is moot.4

If T is not Abelian we must distinguish between left and right stationarity. We
say that a random field f on T is right-stationary if (5.1.2) holds and that f is left-

stationary if f ′(t) �= f (−t) is right-stationary. The corresponding conditions on the
covariance function change accordingly.

In order to build examples of stationary processes, we need to make a brief
excursion into (Gaussian) stochastic integration.

5.2 Stochastic Integration

We return to the setting of Section 1.4.3, so that we have a σ -finite5 measure space
(T , T ,ν), along with the Gaussian ν-noise W defined over T . Our aim will be to
establish the existence of integrals of the form∫

T

f (t)W(dt), (5.2.1)

for deterministic f ∈ L2(ν) and, eventually, complex W . Appropriate choices of f
will give us examples of stationary Gaussian fields, many of which we shall meet in
the following sections.

Before starting, it is only fair to note that we shall be working with two and a bit
assumptions. The “bit’’ is that for the moment we shall treat only real f and W . We
shall, painlessly, lift that assumption soon. Of the other two, one is rather restrictive
and one not, but neither is of importance to us. The nonrestrictive assumption is the
Gaussian nature of the process W . Indeed, since all of what follows is based only on
L2 theory, we can, and so shall, temporarily drop the assumption that W is a Gaussian

3 Formally, (1.2.3) is not quite enough. Since we are currently treating complex-valued pro-
cesses, the k-dimensional marginal distributions of f now involve 2k-dimensional Gaussian
vectors. (The real and imaginary parts each require k dimensions.)

4 The reason for needing the additional condition in the complex case should be intuitively
clear: C alone will not even determine the variance of each of fI and fR but only their sum.
However, together with C′ both of these parameters, as well as the covariance between fI
and fR , can be computed. See [113] for further details.

5 Note that “σ -finite’’ includes “countable’’ and “finite,’’ in which case ν will be a discrete
measure and all of the theory we are about to develop is really much simpler. As we shall
see later, these are more than just important special cases and so should not be forgotten
as you read this section. Sometimes it is all too easy to lose sight of the important simple
cases in the generality of the treatment.
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noise and replace conditions (1.4.11)–(1.4.13) with the following three requirements
for all A,B ∈ T :

E{W(A)} = 0, E{[W(A)]2} = ν(A), (5.2.2)

A ∩ B = ∅ ⇒ W(A ∪ B) = W(A)+W(B) a.s., (5.2.3)

A ∩ B = ∅ ⇒ E{W(A)W(B)} = 0. (5.2.4)

Note that in the Gaussian case (5.2.4) is really equivalent to the seemingly stronger
(1.4.13), since zero covariance and independence are then equivalent.

The second restriction is that the integrand f in (5.2.1) is deterministic. Remov-
ing this assumption would lead us to having to define the Itô integral, which is a
construction for which we shall have no need.

Since, by (5.2.3), W is a finitely additive (signed) measure, (5.2.1) is evocative
of Lebesgue integration. Consequently, we start by defining the stochastic version
for simple functions

f (t) =
n∑
1

ai1Ai
(t), (5.2.5)

where A1, . . . , An are disjoint T -measurable sets, by writing

W(f ) ≡
∫
T

f (t)W(dt)
�=

n∑
1

aiW(Ai). (5.2.6)

It follows immediately from (5.2.2) and (5.2.4) that in this case W(f ) has zero mean
and variance given by

∑
a2
i ν(Ai). Think ofW(f ) as a mapping from simple functions

in L2(T , T , ν) to random variables6 in L2(P) ≡ L2(�,F,P). The remainder of the
construction involves extending this mapping to a full isomorphism from L2(ν) ≡
L2(T , T , ν) onto a subspace of L2(P). We shall use this isomorphism to define the
integral.

Let S = S(T ) denote the class of simple functions of the form (5.2.5) for some
finite n. Note first there is no problem with the consistency of the definition (5.2.6)
over different representations of f . Furthermore, W clearly defines a linear mapping
on S that preserves inner products. To see this, write f, g ∈ S as

f (t) =
n∑
1

ai1Ai
(t), g(t) =

n∑
1

bi1Ai
(t),

in terms of the same partition, to see that the L2(P) inner product between W(f ) and
W(g) is given by

6 Note that if W is Gaussian, then so is W(f ).
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〈W(f ),W(g)〉L2(P) = E

{
n∑
1

aiW(Ai) ·
n∑
1

biW(Ai)

}
(5.2.7)

=
n∑
1

aibiE
{
[W(Ai)]2

}
=
∫
T

f (t)g(t)ν(dt)

= 〈f, g〉L2(ν),

the second line following from (5.2.4) and the second-to-last from (5.2.2) and the
definition of the Lebesgue integral.

Since S is dense in L2(ν) (e.g., [134]) for each f ∈ L2(ν) there is a sequence
{fn} of simple functions such that ‖fn − f ‖L2(ν) → 0 as n → ∞. Using this, for
such f we define W(f ) as the mean square limit

W(f )
�= lim

n→∞W(fn). (5.2.8)

Furthermore, by (5.2.7), the limit is independent of the approximating sequence
{fn}, and the mapping W so defined is linear and preserves inner products; i.e., the
mapping is an isomorphism. We take this mapping as our definition of the integral
and so now not only do we have existence, but from (5.2.7) we have that for all
f, g ∈ L2(ν),

E{W(f )W(g)} =
∫
T

f (t)g(t)ν(dt). (5.2.9)

Note also that since L2 limits of Gaussian random variables remain Gaussian (cf.
(1.2.5) and the discussion above it) under the additional assumption that W is a
Gaussian noise, it follows that W(f ) is also Gaussian.

With our integral defined, we can now start looking at some examples of what
can be done with it.

5.3 Moving Averages

We now return to the main setting of this chapter, in which T is an Abelian group
under the binary operation + and − represents inversion. Let ν be a Haar measure
on (T , T ) (assumed to be σ -finite) and take F : T → R in L2(ν). If W is a ν-noise
on T , then the random process

f (t)
�=
∫
T

F (t − s)W(ds) (5.3.1)

is called a moving average of W , and we have the following simple result.

Lemma 5.3.1. Under the preceding conditions, f is a stationary random field on T .
Furthermore, if W is a Gaussian noise, then f is also Gaussian.
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Proof. To establish stationarity we must prove that

E {f (t)f (s)} = C(t − s)

for someC. However, from (5.2.9) and the invariance of ν under the group operation,

E {f (t)f (s)} =
∫
T

F (t − u)F (s − u)ν(du)

=
∫
T

F (t − s + v)F (v)ν(dv)

�= C(t − s),

and we are done.
If W is Gaussian, then we have already noted when defining stochastic integrals

that f (t) = W(F(t − ·)) is a real-valued Gaussian random variable for each t . The
same arguments also show that f is Gaussian as a process. ��

A similar but slightly more sophisticated construction also yields a more general
class of examples, in which we think of the elements g of a group G acting on the
elements t of an underlying space T . This will force us to change notation a little
and, for the argument to be appreciated in full, to assume that you also know a little
about manifolds. If you do not, then you can return to this example later, after having
read Chapter 6, or simply take the manifold to be RN . In either case, you may still
want to read the very concrete and quite simple examples at the end of this section
now.

Thus, taking the elements g of a groupG acting on the elements t of an underlying
space T , we denote the identity element of G by e and the left and right multiplication
maps by Lg and Rg . We also write Ig = Lg ◦ R−1

g for the inner automorphism of G
induced by g.

Since we are now working in more generality, we shall also drop the commutativity
assumption that has been in force so far. This necessitates some additional definitions,
since we must distinguish between left and right stationarity. We say that a random
field f on G is strictly left-stationary if for all n, all (g1, . . . , gn), and any g0,

(f (g1), . . . , f (gn))
L= (f ◦ Lg0(g1), . . . , f ◦ Lg0(gn)).

It is called strictly right-stationary if f ′(g) �= f (g−1) is strictly left-stationary and
strictly bistationary, or simply strictly stationary, if it is both left and right strictly
stationary. As before, if f is Gaussian and has constant mean and covariance function
C satisfying

C(g1, g2) = C′(g−1
1 g2), (5.3.2)

for some C′ : G → R, then f is strictly left-stationary. Similarly, if C satisfies

C(g1, g2) = C′′(g1g
−1
2 ) (5.3.3)
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for someC′′, thenf is right-stationary. Iff is not Gaussian, but has constant mean and
(5.3.2) holds, then f is weakly left-stationary. Weak right-stationarity and stationarity
are defined analogously.

We can now start collecting the building blocks of the construction, which will be
of a left-stationary Gaussian random field on a groupG. An almost identical argument
will construct a right-stationary field. It is then easy to see that this construction will
give a bistationary field on G only if it is unimodular, i.e., if any left Haar measure
on G is also right invariant.

We first add the condition that G be a Lie group, i.e., a group that is also a C∞
manifold such that the maps taking g to g−1 and (g1, g2) to g1g2 are both C∞. We
say G has a smooth (C∞) (left) action on a smooth (C∞) manifold T if there exists
a map θ : G× T → T satisfying, for all t ∈ T and g1, g2 ∈ G,

θ(e, t) = t,

θ(g2, θ(g1, t)) = θ(g2g1, t).

We write θg : T → T for the partial mapping θg(t) = θ(g, t). Suppose ν is a
measure on T , and let θg∗(ν) be the push-forward of ν under the map θg; i.e., θg∗(ν)
is given by ∫

A

θg∗(ν) =
∫
θ
g−1 (A)

ν.

Furthermore, we assume that θg∗(ν) is absolutely continuous with respect to ν, with
Radon–Nikodym derivative

D(g)
�= dθg∗(ν)

dν
(t), (5.3.4)

independent of t . We call such a measure ν left relatively invariant under G. It is
easy to see that D(g) is a C∞ homomorphism from G into the multiplicative group
of positive real numbers, i.e., D(g1g2) = D(g1)D(g2). We say that ν is left invariant
with respect to G if it is left relatively invariant and D ≡ 1.

Here, finally, is the result.

Lemma 5.3.2. Suppose G acts smoothly on a smooth manifold T and ν is left rela-
tively invariant under G. Let D be as in (5.3.4) and let W be Gaussian ν-noise on
T . Then for any F ∈ L2(T , ν),

f (g) = 1√
D(g)

W(F ◦ θg−1)

is a left stationary Gaussian random field on G.

Proof. We must prove that

E {f (g1)f (g2)} = C(g−1
1 g2)
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for some C : G → R. From the definition of W , we have

E{f (g1)f (g2)} = 1√
D(g1)D(g2)

∫
T

F (θ
g−1

1
(t))F (θ

g−1
2
(t))ν(dt)

= 1√
D(g1)D(g2)

∫
T

F (θ
g−1

1
(θg2(t)))F (t)θg2∗(ν)(dt)

= D(g2)√
D(g1)D(g2)

∫
T

F (θ
g−1

1 g2
(t))F (t)ν(dt)

=
√
D(g−1

1 g2)

∫
T

F (θ
g−1

1 g2
(t))F (t)ν(dt)

�= C(g−1
1 g2).

This completes the proof. ��
It is easy to find simple examples to which Lemma 5.3.2 applies. The most

natural generic example of a Lie group acting on a manifold is its action on itself.
In particular, any right Haar measure is left relatively invariant, and this is a way to
generate stationary processes. To apply Lemma 5.3.2 in this setting one needs only to
start with a Gaussian noise based on a Haar measure on G. In fact, this is the example
(5.3.1) with which we started this section.

A richer but still concrete example of a group G acting on a manifold T is given
by the group of rigid motions GN = GL(N,R) × RN acting7 on T = RN . For
g = (A, t) and s ∈ RN , set

θ(A, t)(s) = As + t.

In this example it is easy to see that Lebesgue measure λN(dt) = dt is relatively
invariant with respect to G with D(g) = det A. For an even more concrete ex-
ample, take compact Borel B ⊂ RN and F(s) = 1B(s). It then follows from
Lemma 5.3.2 that

f (A, t) = W
(
A−1(B − t)

)
√| det(A)|

is a stationary process with variance λN(B) and covariance function

C((A1, t1), (A2, t2)) =
λN

(
A1A

−1
2 (B − (t1 − t2))

)
√
| det(A1A

−1
2 )|

,

where we have adopted the usual notation that B + t = {s + t : s ∈ B} and
AB = {At : t ∈ B}.

Examples of this kind have been used widely in practice. For examples involving
the statistics of brain mapping see, for example, [142, 143].

7 Recall that GL(N,R) is the (general linear) group of invertible transformations of R
N .
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5.4 Spectral Representations on RN

The moving averages of the previous section gave us examples of stationary fields that
were rather easy to generate in quite general situations from Gaussian noise. Now,
however, we want to look at a general way of generating all stationary fields, via the
so-called spectral representation. This is quite a simple task when the parameter set
is RN , but rather more involved when a general group is taken as the parameter space
and issues of group representations arise. Thus we shall start with the Euclidean
case, which we treat in detail, and then discuss some aspects of the general case in the
following section. In both cases, while an understanding of the spectral representation
is a powerful tool for understanding stationarity and a variety of sample path properties
of stationary fields, it is not necessary for what comes later in the book.

We return to the setting of complex-valued fields, take T = RN , and assume, as
usual, that E{ft } = 0. Furthermore, since we are now working only with stationary
processes, it makes sense to abuse notation somewhat and write

C(t − s) = C(s, t) = E{f (s)f (t)}.
We call C, which is now a function of one parameter only, nonnegative definite if∑n

i,j=1 ziC(ti − tj )zj ≥ 0 for all n ≥ 1, t1, . . . , tn ∈ RN , and z1, . . . , zn ∈ C. Then
we have the following result, which dates back to Bochner [27], in the setting of
(nonstochastic) Fourier analysis, a proof of which can be found in almost any text on
Fourier analysis.

Theorem 5.4.1 (spectral distribution theorem). A continuous function C : RN →
C is nonnegative definite (i.e., a covariance function) if and only if there exists a finite
measure ν on the Borel σ -field BN such that

C(t) =
∫

RN

ei〈t,λ〉ν(dλ), (5.4.1)

for all t ∈ RN .

With randomness in mind, we write σ 2 = C(0) = ν(RN). The measure ν is called
the spectral measure (for C), and the function F : RN → [0, σ 2] given by

F(λ)
�= ν

(
N∏
i=1

(−∞, λi]
)
, λ = (λ1, . . . , λN) ∈ RN,

is called the spectral distribution function.8 When F is absolutely continuous the
corresponding density is called the spectral density.

The spectral distribution theorem is a purely analytic result and would have noth-
ing to do with random fields were it not for the fact that covariance functions are

8 Of course, unless ν is a probability measure, so that σ 2 = 1, F is not a distribution function
in the usual usage of the term.
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nonnegative definite. Understanding of the result comes from the spectral represen-
tation theorem (Theorem 5.4.2), for which we need to extend somewhat the stochastic
integration of Section 5.2.

As usual, we start with a measure ν on RN , and define a complex ν-noise to be a
C-valued, set-indexed process satisfying

E{W(A)} = 0, E{W(A)W(A)} = ν(A), (5.4.2)

A ∩ B = ∅ ⇒ W(A ∪ B) = W(A)+W(B) a.s., (5.4.3)

A ∩ B = ∅ ⇒ E{W(A)W(B)} = 0, (5.4.4)

where the bar denotes complex conjugation.9

It is then a straightforward exercise to extend the construction of Section 5.2 to
obtain an L2 stochastic integral

W(f ) =
∫

RN

f (λ)W(dλ)

for f : RN → C with ‖f ‖ ∈ L2(ν), and satisfying

E{W(f )W(g)} =
∫

RN

f (λ)g(λ)ν(dλ). (5.4.5)

This construction allows us to state the following important result.

Theorem 5.4.2 (spectral representation theorem). Let ν be a finite measure on
RN and W a complex ν-noise. Then the complex-valued random field

f (t) =
∫

RN

ei〈t,λ〉W(dλ) (5.4.6)

has covariance

C(s, t) =
∫

RN

ei〈(s−t),λ〉ν(dλ) (5.4.7)

and so is (weakly) stationary. If W is Gaussian, then so is f .
Furthermore, to every mean square continuous, centered (Gaussian) stationary

random field f on RN with covariance function C and spectral measure ν (cf. The-
orem 5.4.1), there corresponds a complex (Gaussian) ν-noise W on RN such that
(5.4.6) holds in mean square for each t ∈ RN .

In both cases, W is called the spectral process corresponding to f .

9 You should note for later reference that if we split a complex ν-noise into its real and
imaginary parts, WR and WI say, it does not follow from (5.4.4) that A ∩ B = ∅ im-
plies any of E{W(A)W(B)} = 0, E{WR(A)WR(B)} = 0, E{WI (A)WI (B)} = 0, or
E{WI (A)WR(B)} = 0. Indeed, this is most definitely not the case for the complex W of
Theorem 5.4.2 when, for example, the stationary process f there is real-valued. See the dis-
cussion below on “real’’ spectral representations, in which the above problem is addressed
by taking W to be defined on a half-space rather than all of R

N .
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Proof. The fact that (5.4.6) generates a stationary field with covariance (5.4.7) is an
immediate consequence of (5.4.5). What needs to be proven is the statement that all
stationary fields can be represented as in (5.4.6). We shall only sketch the basic idea
of the proof, leaving the details to the reader. (They can be found in almost any book
on time series—our favorite is [34]—for processes on either Z or R and the extension
to RN is trivial.)

For the first step, set up a mapping � from10 H �= span{ft , t ∈ RN } ⊂ L2(P) to

K �= span{eit ·, t ∈ RN } ⊂ L2(ν) via

�

⎛⎝ n∑
j=1

ajf (tj )

⎞⎠ =
n∑

j=1

aj e
itj · (5.4.8)

for all n ≥ 1, aj ∈ C, and tj ∈ RN . A simple computation shows that this gives
an isomorphism between H and K, which can then be extended to an isomorphism
between their closures H and K.

Since indicator functions are in K, we can define a process W on RN by setting

W(λ) = �−1(1(−∞,λ]), (5.4.9)

where (−∞, λ] = ∏N
j=1(−∞, λj ]. Working through the isomorphisms shows that

W is a complex ν-noise and that
∫
RN exp(i〈t, λ〉)W(dλ) is (L2(P) indistinguishable

from) ft . ��
There is also an inverse11 to (5.4.6), expressing W as an integral involving f , but

we shall have no need of it and so now turn to some consequences of Theorems 5.4.1
and 5.4.2.

When the basic fieldf is real, it is natural to expect a “real’’spectral representation,
and this is in fact the case, although notationally it is still generally more convenient
to use the complex formulation. Note firstly that if f is real, then the covariance
function is a symmetric function (C(t) = C(−t)), and so it follows from the spectral
distribution theorem (cf. (5.4.1)) that the spectral measure ν must also be symmetric.
Introduce three12 new measures, on R+ × RN−1, by
10 Actually, we really define H to be the closure in L2(P) of all sums of the form

∑n
i=1 aif (ti )

for ai ∈ C and ti ∈ T , thinned out by identifying all elements indistinguishable in L2(P),
i.e., elements U,V for which E{‖(U − V )‖2} = 0. Recall that we already met this space,
as well as the mapping �, when treating orthonormal expansions in Section 3.1.

11 Formally, the inverse relationship is based on (5.4.9), but it behaves like regular Fourier
inversion. For example, if �(λ, η) is a rectangle in R

N that has a boundary of zero ν

measure, then

W(�(λ, η)) = lim
K→∞(2π)−N

∫ K

−K
· · ·
∫ K

−K

N∏
k=1

e−iλktk − e−iηktk

−itk
f (t) dt.

As is usual, if ν(�(λ, η)) �= 0, then additional boundary terms need to be added.
12 Note that if ν is absolutely continuous with respect to Lebesgue measure (so that there is a

spectral density), one of these, ν2, will be identically zero.
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ν1(A) = ν(A ∩ {λ ∈ RN : λ1 > 0}),
ν2(A) = ν(A ∩ {λ ∈ RN : λ1 = 0}),
μ(A) = 2ν1(A)+ ν2(A).

We can now rewrite13 (5.4.1) in real form as

C(t) =
∫

R+×RN−1
cos(〈λ, t〉)μ(dλ). (5.4.10)

There is also a corresponding real form of the spectral representation (5.4.6). The
fact that the spectral representation yields a real-valued process also implies certain
symmetries14 on the spectral process W . In particular, it turns out that there are two
independent real-valued μ-noises, W1 and W2, such that15

ft =
∫

R+×RN−1
cos(〈λ, t〉)W1(dλ)+

∫
R+×RN−1

sin(〈λ, t〉)W2(dλ). (5.4.11)

It is easy to check that f so defined has the right covariance function.

5.5 Spectral Moments

Since they will be very important later on, we now take a closer look at spectral
measures and, in particular, their moments. It turns out that these contain a lot of
simple, but very useful, information. Given the spectral representation (5.4.7), that is,

C(t) =
∫

RN

ei〈t,λ〉ν(dλ), (5.5.1)

we define the spectral moments

λi1...iN
�=
∫

RN

λ
i1
1 · · · λiNN ν(dλ), (5.5.2)

for all (i1, . . . , iN )with ij ≥ 0. Recalling that stationarity implies thatC(t) = C(−t)

and ν(A) = ν(−A), it follows that the odd-ordered spectral moments, when they
exist, are zero; i.e.,

13 There is nothing special about the half-space λ1 ≥ 0 taken in this representation. Any
half-space will do.

14 To establish this rigorously, we really need the inverse to (5.4.6), expressingW as an integral
involving f , which we do not have.

15 In one dimension, it is customary to take W1 as a μ-noise and W2 as a (2ν1)-noise, which
at first glance is different from what we have. However, noting that when N = 1,
sin(λt)W2(dλ) = 0 when λ = 0, it is clear that the two definitions in fact coincide in
this case.
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λi1...iN = 0 if
N∑
j=1

ij is odd. (5.5.3)

Furthermore, it is immediate from (5.5.1) that successive differentiation of both sides
with respect to the ti connects the various partial derivatives of C at zero with the
spectral moments. To see why this is important, recall the definition (1.4.8) of the L2

derivatives of a random field as the L2 limit

Dk
L2f (t, t

′) = lim
h→0

F(t, ht ′),

for t ∈ RN and t ′ ∈ ⊗kRN .
By choosing t ′ = (

ei1 , . . . , eik
)
, where ei is the vector with ith element 1 and all

others zero, we can talk of the mean square derivatives

∂k

∂ti1 · · · ∂tik
f (t)

�= Dk
L2f (t, (ei1 , . . . , eik ))

of f of various orders.
It is then straightforward to see that the covariance function of such partial deriva-

tives must be given by

E

{
∂kf (s)

∂si1∂si1 · · · ∂sik
∂kf (t)

∂ti1∂ti1 · · · ∂tik

}
= ∂2kC(s, t)

∂si1∂ti1 · · · ∂sik ∂tik
. (5.5.4)

The corresponding variances have a nice interpretation in terms of spectral mo-
ments when f is stationary. For example, if f has mean square partial derivatives of
orders α + β and γ + δ for α, β, γ, δ ∈ {0, 1, 2, . . . }, then16

E

{
∂α+βf (t)

∂αti∂β tj
· ∂

γ+δf (t)

∂γ tk∂δtl

}
= (−1)α+β ∂α+β+γ+δ

∂αti∂β tj ∂γ tk∂δtl
C(t)

∣∣∣
t=0

(5.5.5)

= (−1)α+βiα+β+γ+δ

∫
RN

λαi λ
β
j λ

γ

k λ
δ
l ν(dλ).

Here are some important special cases of the above, for which we adopt the shorthand
fj = ∂f/∂tj and fij = ∂2f/∂ti∂tj along with a corresponding shorthand for the
partial derivatives of C:

(i) fj has covariance function −Cjj and thus variance λ2ej = −Cjj (0), where ej ,
as usual, is the vector with a 1 in the j th position and zero elsewhere.

16 If you decide to check this for yourself using (5.4.6) and (5.4.7)—which is a worthwhile
exercise—make certain that you recall the fact that the covariance function is defined as
E{f (s)f (t)}, or you will make the same mistake RJA did in [2] and forget the factor of
(−1)α+β in the first line. Also, note that although (5.5.5) seems to have some asymmetries
in the powers, these disappear due to the fact that all odd-ordered spectral moments, like all
odd-ordered derivatives of C, are identically zero.
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(ii) In view of (5.5.3), and taking β = γ = δ = 0, α = 1 in (5.5.5),

f (t) and fj (t) are uncorrelated, (5.5.6)

for all j and all t . If f is Gaussian, this is equivalent to independence. Note that
(5.5.6) does not imply that f and fj are uncorrelated as processes. In general,
for s �= t , we will have that E{f (s)fj (t)} = −Cj (s − t) �= 0.

(iii) Taking α = γ = δ = 1, β = 0 in (5.5.5) gives that

fi(t) and fjk(t) are uncorrelated (5.5.7)

for all i, j, k and all t .

This concludes our initial discussion of stationarity for random fields on RN . In
the following section we investigate what happens under slightly weaker conditions
and after that what happens when the additional assumption of isotropy is added. In
Section 5.8 we shall see how all of this is really part of a far more general theory
for fields defined on groups. In Section 3.1 we shall see that, at least for Gaussian
fields restricted to bounded regions, that spectral theory is closely related to a far
wider theory of orthogonal expansions that works for general—i.e., not necessarily
Euclidean—parameter spaces

5.6 Constant Variance

It will be important for us in later chapters that some of the relationships of the previous
section continue to hold under a condition weaker than stationarity. Of particular
interest is knowing when (5.5.6) holds; i.e., when f (t) and fj (t) are uncorrelated.

Suppose that f has constant variance, σ 2 = C(t, t), throughout its domain of
definition, and that its L2 first-order derivatives all exist. In this case, analagously to
(5.5.5), we have that

E{f (t)fj (t)} = ∂

∂tj
C(t, s)

∣∣∣
s=t

= ∂

∂sj
C(t, s)

∣∣∣
s=t

. (5.6.1)

Since constant variance implies that ∂/∂tjC(t, t) ≡ 0, the above two equalities
imply that both partial derivatives there must be identically zero. That is, f and its
first-order derivatives are uncorrelated.

One can, of course, continue in this fashion. If first derivatives have constant
variance, then they, in turn, will be uncorrelated with second derivatives, in the sense
thatfi will be uncorrelated withfij for all i, j . It will not necessarily be true, however,
that fi and fjk will be uncorrelated if i �= j and i �= k. This will, however, be true
if the covariance matrix of all first-order derivatives is constant.
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5.7 Isotropy

An interesting special class of homogeneous random fields on RN that often arises in
applications in which there is no special meaning attached to the coordinate system
being used is the class of isotropic fields. These are characterized17 by the property
that the covariance function depends only on the Euclidean length |t | of the vector t ,
so that

C(t) = C(|t |). (5.7.1)

Isotropy has a number of surprisingly varied implications for both the covariance
and spectral distribution functions, and is actually somewhat more limiting than it
might at first seem. For example, we have the following result, due to Matérn [111].

Theorem 5.7.1. If C(t) is the covariance function of a centered, isotropic random
field f on RN , then C(t) ≥ −C(0)/N for all t .

Proof. Isotropy implies that C can be written as a function on R+ only. Let τ be any
positive real number. We shall show that C(τ) ≥ −C(0)/N .

Choose any t1, . . . , tN+1 in RN for which |ti − tj | = τ for all i �= j . Then, by
(5.7.1),

E

⎧⎨⎩
∣∣∣∣∣
N+1∑
k=1

f (tk)

∣∣∣∣∣
2
⎫⎬⎭ = (N + 1)[C(0)+NC(τ)].

Since this must be positive, the result follows. ��
The restriction of isotropy also has significant simplifying consequences for the

spectral measure ν of (5.4.1). Let θ : RN → RN be a rotation, so that |θ(t)| = |t | for
all t . Isotropy then implies C(t) = C(θ(t)), and so the spectral distribution theorem
implies ∫

RN

ei〈t,λ〉ν(dλ) =
∫

RN

ei〈θ(t),λ〉ν(dλ) (5.7.2)

=
∫

RN

ei〈t,θ(λ)〉ν(dλ) =
∫

RN

ei〈t,λ〉νθ (dλ),

where νθ is the push-forward of ν by θ defined by νθ (A) = ν(θ−1A). Since the
above holds for all t , it follows that ν ≡ νθ ; i.e., ν, like C, is invariant under rotation.
Furthermore, if ν is absolutely continuous, then its density is also dependent only on
the modulus of its argument.

An interesting consequence of this symmetry is that an isotropic field cannot
have all the probability of its spectral measure concentrated in one small region in

17 Isotropy can also be defined in the nonstationary case, the defining property then being that
the distribution of f is invariant under rotation. Under stationarity, this is equivalent to
(5.7.1). Without stationarity, however, this definition does not imply (5.7.1). We shall treat
isotropy only in the scenario of stationarity.
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RN away from the origin. In particular, it is not possible to have a spectral measure
degenerate at one point, unless that point is the origin. The closest the spectral measure
of an isotropic field can come to this sort of behavior is to have all its probability
concentrated in an annulus of the form

{λ ∈ RN : a ≤ |λ| ≤ b}.
In such a case it is not hard to see that the field itself is then composed of a “sum’’ of
waves traveling in all directions but with wavelengths between 2π/b and 2π/a only.

Another consequence of isotropy is that the spherical symmetry of the spectral
measure significantly simplifies the structure of the spectral moments, and hence the
correlations between various derivatives of f . In particular, it follows immediately
from (5.5.5) that

E
{
fi(t)fj (t)

} = −E
{
f (t)fij (t)

} = λ2δij , (5.7.3)

where δij is the Kronecker delta and λ2
�= ∫

RN λ2
i ν(dλ), which is independent of the

value of i. Consequently, if f is Gaussian, then the first-order derivatives of f are
independent of one another, as they are of f itself.

Since isotropy has such a limiting effect in the spectrum, it is natural to ask how
the spectral distribution and representation theorems are affected under isotropy. The
following result, due originally to Schoenberg [140] (in a somewhat different setting)
and Yaglom [177], describes what happens.

Theorem 5.7.2. For C to be the covariance function of a mean square continuous,
isotropic, random field on RN it is necessary and sufficient that

C(t) =
∫ ∞

0

J(N−2)/2(λ|t |)
(λ|t |)(N−2)/2

μ(dλ), (5.7.4)

where μ is a finite measure on R+ and Jm is the Bessel function of the first kind of
order m, that is,

Jm(x) =
∞∑
k=0

(−1)k
(x/2)2k+m

k!�(k +m+ 1)
.

Proof. The proof consists in simplifying the basic spectral representation by using
the symmetry properties of ν.

We commence by converting to polar coordinates, (λ, θ1, . . . , θN−1), λ ≥ 0,
(θ1, . . . , θN−1) ∈ SN−1, where SN−1 is the unit sphere in RN . Define a measure μ

on R+ by setting μ([0, λ]) = ν(BN(λ)), and extending as usual, where BN(λ) is the
N -ball of radius λ and ν is the spectral measure of (5.4.1).

Then, on substituting into (5.4.1) with t = (|t |, 0, . . . , 0) and performing the
coordinate transformation, we obtain

C(|t |) =
∫ ∞

0

∫
SN−1

exp(i|t |λ cos θN−1)σ (dθ)μ(dλ),
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where σ is surface area measure on SN−1. Integrating out θ1, . . . , θN−2, it fol-
lows that

C(|t |) = sN−2

∫ ∞

0

∫ π

0
eiλ|t | cos θN−1 (sin θN−1)

N−2 dθN−1μ(dλ),

where

sN
�= 2πN/2

�(N/2)
, N ≥ 1, (5.7.5)

is the surface area18 of SN−1.
The inside integral can be evaluated in terms of Bessel functions to yield∫ π

0
eiλ|t | cos θ sinN−2 θ dθ = J(N−2)/2(λ|t |)

(λ|t |)(N−2)/2
,

which, on absorbing sN−2 into μ, completes the proof. ��
For small values of the dimension N , (5.7.4) can be simplified even further. For

example, substituting N = 2 into (5.7.4) yields that in this case,

C(t) =
∫ ∞

0
J0(λ|t |)μ(dλ),

while substituting N = 3 and evaluating the inner integral easily yields that in
this case,

C(t) =
∫ ∞

0

sin(λ|t |)
λ|t | μ(dλ).

Given the fact that the covariance function of an isotropic field takes such a special
form, it is natural to seek a corresponding form for the spectral representation of the
field itself. Such a representation does in fact exist and we shall now describe it,
albeit without giving any proofs. These can be found, for example, in the book by
Wong [169], or as special cases in the review by Yaglom [178], which is described in
Section 5.8 below. Another way to verify it would be to check that the representation
given in Theorem 5.7.3 below yields the covariance structure of (5.7.4). Since this
is essentially an exercise in the manipulation of special functions and not of intrinsic
probabilistic interest, we shall avoid the temptation to carry it out.

The spectral representation of isotropic fields on RN is based on the so-called
spherical harmonics19 on the (N − 1)-sphere, which form an orthonormal basis for
18 When N = 1, we have the “boundary’’ of the “unit sphere’’ [−1, 1] ∈ R. This is made up

of the two points ±1, which, in counting measure, has measure 2. Hence s1 = 2 makes
sense.

19 We shall also avoid giving details about spherical harmonics. A brief treatment would add
little to understanding them. The kind of treatment required to, for example, get the code
correct in programming a simulation of an isotropic field using the representations that
follow will, in any case, send you back to the basic reference of Erdélyi [61] followed by
some patience in sorting out a software help reference. A quick web search will yield you
many interactive, colored examples of these functions within seconds.
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the space of square-integrable functions on SN−1 equipped with the usual surface
measure. We shall denote them by {h(N−1)

ml , l = 1, . . . , dm, m = 0, 1, . . . }, where
the dm are known combinatorial coefficents.20

Now use the spectral decomposition

f (t) =
∫

RN

ei〈t,λ〉W(dλ)

to define a family of noises on R+ by

Wml(A) =
∫
A

∫
SN−1

h
(N−1)
ml (θ)W(dλ, dθ),

where, once again, we work in polar coordinates. Note that since W is a ν-noise,
where ν is the spectral measure, information about the covariance of f has been coded
into the Wml . From this family, define a family of mutually uncorrelated, stationary,
one-dimensional processes {fml} by

fml(r) =
∫ ∞

0

Jm+(N−2)/2(λr)

(λr)(N−2)/2
Wml(dλ),

where, as in the spectral representation (5.4.6), one has to justify the existence of this
L2 stochastic integral. These are all the components we need in order to state the
following.

Theorem 5.7.3. A centered, mean square continuous, isotropic random field on RN

can be represented by

f (t) = f (r, θ) =
∞∑

m=0

dm∑
l=1

fml(r)h
(N−1)
ml (θ). (5.7.6)

In other words, isotropic random fields can be decomposed into a countable num-
ber of mutually uncorrelated stationary processes with a one-dimensional parameter,
a result that one would not intuitively expect. As noted above, there is still a hidden
spectral process in (5.7.6), entering via the Wml and fml . This makes for an important
difference between (5.7.6) and the similar looking Karhunen–Loève expansion we
saw Section 3.2. Another difference lies in the fact that while it is possible to truncate
the expansion (5.7.6) to a finite number of terms and retain isotropy, this is not true
of the standard Karhunen–Loève expansion. In particular, isotropic fields can never
have finite Karhunen–Loève expansions. For a heuristic argument as to why this is
the case, recall from Section 5.7 that under isotropy the spectral measure must be
invariant under rotations, and so cannot be supported on a finite, or even countable,
number of points. Consequently, one also needs an uncountable number of inde-
pendent variables in the spectral noise process to generate the process via (5.4.6).

20 The spherical harmonics on SN−1 are often written as {h(N−1)
m,l1,...,lN−2,±lN−1

}, where 0 ≤
łN−1 ≤ · · · ≤ l1 ≤ m. The constants dm in our representation can be computed from this.
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However, a process with a finite Karhunen–Loève expansion provides only a finite
number of such variables, which can never be enough.

An interesting corollary of Theorem 5.7.3 is obtained by fixing r in (5.7.6). We
then have a simple representation in terms of uncorrelated random coefficients fml(r)

and spherical harmonics of an isotropic random field on the N -sphere of radius r . If
the random field is Gaussian, then the coefficients are actually independent, and we
will, essentially, have generated a Karhunen–Loève expansion. You can find many
more results of this kind, with much more detail, in [102].

One can keep playing these games for more and more special cases. For example,
it is not uncommon in applications to find random fields that are functions of “space’’
x and “time’’ t , so that the parameter set is most conveniently written as (t, x) ∈
R+×RN . Such processes are often stationary in t and isotropic in x, in the sense that

E{f (s, u)f (s + t, u+ x)} = C(t, |x|),

where C is now a function from R2 to C. In such a situation the methods of the
previous proof suffice to show that C can be written in the form

C(t, x) =
∫ ∞

−∞

∫ ∞

0
eitνGN(λx)μ(dν, dλ),

where

GN(x) =
(

2

x

)(N−2)/2

�

(
N

2

)
J(N−2)/2(x)

and μ is a measure on the half-plane R+ × RN .
By now it should be starting to become evident that all of these representations

must be special cases of some general theory, which might also be able to cover
non-Euclidean parameter spaces. This is indeed the case, although for reasons that
will soon be explained, the general theory is such that, ultimately, each special case
requires almost individual treatment.

5.8 Stationarity over Groups

We have already seen in Section 5.3 that the appropriate setting for stationarity is that
in which the parameter set has a group structure. In this case it made sense, in general,
to talk about left and right stationarity (cf. (5.3.2) and (5.3.3)). Simple “stationarity’’
requires both of these and so makes most sense if the group is abelian (commutative).

In essence, the spectral representation of a random field over a group is intimately
related to the representation theory of the group. This, of course, is far from being a
simple subject. Furthermore, its level of difficulty depends very much on the group
in question, and so it is correspondingly not easy to give a general spectral theory for
random fields over groups. The most general results in this area are in the paper by
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Yaglom [178] already mentioned above, and the remainder of this section is taken
from there.21

We shall make life simpler by assuming for the rest of this section that T is a
locally compact Abelian (LCA) group. As before, we shall denote the binary group
operation by +, while − denotes inversion. The Fourier analysis of LCA groups is
well developed (e.g., [133]) and based on characters. A homomorphism γ from T

to the multiplicative group of complex numbers is called a character if ‖γ (t)‖ = 1
for all t ∈ T and if

γ (t + s) = γ (t)γ (s), s, t ∈ T .

If T = RN under the usual addition, then the characters are given by the family{
γλ(t) = ei〈t,λ〉

}
λ∈RN

of complex exponential functions, which were at the core of the spectral theory of
fields over RN . If T = ZN , again under addition, the characters are as for T = RN ,
but λ is restricted to [−π, π ]N . If T = RN under rotation rather than addition, then
the characters are the spherical harmonics on SN−1.

The set of all continuous characters also forms a group, � say, called the dual
group, with composition defined by

(γ1 + γ2)(t) = γ1(t)γ2(t).

There is also a natural topology on � (cf. [133]) that gives � an LCA structure and

under which the map (γ, t)
�= γ (t) : � × T → C is continuous. The spectral

distribution theorem in this setting can now be written as

C(t) =
∫
�

(γ, t)ν(dγ ), (5.8.1)

where the finite spectral measure ν is on the σ -algebra generated by the topology on
�. The spectral representation theorem can be correspondingly written as

f (t) =
∫
�

(γ, t)W(dγ ), (5.8.2)

where W is a ν-noise on �.
Special cases now follow from basic group-theoretic results. For example, if T

is discrete, then � is compact, as we noted already for the special case of T = ZN .
Consequently, the integral in the spectral representation (5.8.2) is actually a sum and

21 There is also a very readable, albeit less exhaustive, treatment in Hannan [76]. In addition,
Letac [103] has an elegant exposition based on Gelfand pairs and Banach algebras for
processes indexed by unimodular groups, which, in a certain sense, give a generalization of
isotropic fields over R

N . Ylinen [179] has a theory for noncommutative locally compact
groups that extends the results in [178].
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as such will be familiar to every student of time series. Alternatively, if T is compact,
� is discrete. This implies that ν must be a sum of point masses and W is actually a
discrete collection of independent random variables.

An interesting and important special case that we have already met is T = SN−1.
Treating T as both an N -sphere and the rotation group O(N), we write the sum
θ1 + θ2, for θ1, θ2 ∈ SN−1, for the rotation of θ1 by θ2, the latter considered as an
element of O(N). In this case the characters are again the spherical harmonics, and
we have that

f (θ) =
∞∑

m=0

dm∑
l=1

Wmlh
(N−1)
ml (θ), (5.8.3)

where the Wml are uncorrelated with variance depending only on m. This, of course,
is simply (5.7.6) once again, derived from a more general setting. Similarly, the
covariance function can be written as

C(θ1, θ2) = C(θ12) =
∞∑

m=0

σ 2
mC

(N−1)/2
m (cos(θ12)), (5.8.4)

where θ12 is the angular distance between θ1 and θ2, and the CN
m are the Gegenbauer

polynomials.
Other examples for the LCA situation follow in a similar fashion from (5.8.1) and

(5.8.2) by knowing the structure of the dual group �.
The general situation is much harder and, as has already been noted, relies heavily

on knowing the representation ofT . In essence, given a representation ofGon GL(H)

for some Hilbert space H , one constructs a (left or right) stationary random field on
G via the canonical white noise on H . The construction of Lemma 5.3.2 with T = G

and H = L2(G,μ) can be thought of as a special example of this approach. For
further details, you should go to the references given earlier in this section.
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If you have not yet read the preface, then please do so now.
Since you have read the preface, you already know that central to much of what

we shall be looking at in Part III is the geometry of excursion sets:

Au ≡ Au(f, T )
�= {t ∈ T : f (t) ≥ u} ≡ f−1([u,∞))

for random fields f over general parameter spaces T .
In order to do this, we are going to need quite a bit of geometry. In fact, we are

going to need a lot more than one might expect, since the answers to the relatively
simple questions that we shall be asking end up involving concepts that do not, at
first sight, seem to have much to do with the original questions.

In Part III we shall see that an extremely convenient description of the geometric
properties of A is its Euler, or Euler–Poincaré, characteristic. In many cases, the
Euler characteristic is determined by the fact that it is the unique integer-valued
functional ϕ, defined on collections of nice A, satisfying

ϕ(A) =
{

0 if A = ∅,
1 if A is ball-like,

where by “ball-like’’ we mean homotopically equivalent22 to the unit N -ball, BN =
{t ∈ RN : |t | ≤ 1}, and with the additivity property that

ϕ(A ∪ B) = ϕ(A)+ ϕ(B)− ϕ(A ∩ B).

More global descriptions follow from this. For example, if A is a nice set in R2,
then ϕ(A) is simply the number of connected components of A minus the number
of holes in it. In R3, ϕ(A) is given by the number of connected components, minus
the number of “handles,’’ plus the number of holes. Thus, for example, the Euler
characteristics of a baseball, a tennis ball, and a coffee cup are, respectively, 1, 2,
and 0.

One of the basic properties of the Euler characteristic is that it is determined by
the homology class of a set. That is, smooth transformations that do not change
the basic “shape’’ of a set do not change its Euler characteristic. In Euclidean spaces
finer geometric information, which will change under such transformations, lies in the
so-called Minkowski functionals. However, even if we were to decide to do without
this finer information, we would still arrive at a scenario involving it. We shall see,
again in Part III, that the expected value of ϕ(Au(f, T )) will, in general, involve the
Minkowski functionals of T . This is what was meant above about simple questions
leading to complicated answers.

There are basically two different approaches to developing the geometry that we
shall require. The first works well for sets in RN that are made up of the finite union
of simple building blocks, such as convex sets. For many of our readers, we imagine
that this will suffice. The basic framework here is that of integral geometry.

The second, more fundamental approach is via the differential geometry of ab-
stract manifolds. As described in the preface, this more general setting has very con-
crete applications, and moreover, often provides more powerful and elegant proofs
22 The notion of homotopic equivalence is formalized below by Definition 6.1.4. However,

for the moment, “ball-like’’ will be just as useful a concept.
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for a number of problems related to random fields even on the “flat’’ manifold RN .
This approach is crucial if you want to understand the full theory. Furthermore, since
some of the proofs of later results, even in the integral-geometric setting, are more
natural in the manifold scenario, it is essential if you need to see full proofs. How-
ever, the jump in level of mathematical sophistication between the two approaches is
significant, so that unless you feel very much at home in the world of manifolds you
are best advised to read the integral-geometric story first.

Chapter 6 handles all the integral geometry that we shall need. The treatment
there is detailed, complete, and fully self-contained. This is not the case when we
turn to differential geometry, where the theory is too rich to treat in full. We start with
a quick and nasty revision of basic differential geometry in Chapter 7, most of which
is standard graduate-course material. Chapter 8 treats piecewise smooth manifolds,
which provide the link between the geometry of Chapter 6, with its sharp corners and
edges, and the smooth manifolds of Chapter 7. In Chapter 9 we look at Morse theory
in the piecewise smooth setting. While Morse theory in the smooth setting is, once
again, standard material, the piecewise smooth case is less widely known. In fact,
Chapter 9 actually contains some new results that, unlike most of the rest of Part II,
we were not able to find elsewhere.

In the passage from integral to differential geometry a number of things will
happen. Among them, the space T (time, or multidimensional time) will become
M (manifold)23 and the Minkowski functionals will become the Lipschitz–Killing
curvatures.

While Lipschitz–Killing curvatures are well-known objects in global differential
geometry, we do not imagine that they will be too well known to the probabilist reader.
Hence we devote Chapter 10 to a study of the so-called tube formulas, originally
due to Hermann Weyl [168] in Euclidean spaces. In addition, as we have already
noted in the preface, some of the proofs are different from what is found in the
standard geometry literature, in that they rely on properties of Gaussian distributions.
Furthermore, Chapter 10 also discusses a relatively new generalization of the Weyl
results to manifolds in Gauss space, due to JET [158].

The tube formulas of Chapter 10 can also be exploited to develop a formal ap-
proximation to the excursion probability

P

{
sup
t∈M

f (t) ≥ u
}

for certain Gaussian fields with finite orthonormal expansions,24 and we shall look at
this in Sections 10.2 and 10.6.

All of Part II, old and new, is crucial for understanding the general proofs of
Part III.

23 A true transition from T to M would also have the elements t of T becoming elements
p (points) of M . However, as we have already mentioned, this seems to be too heavy a
psychological price for a probabilist to pay, so we shall remain with points t ∈ M . For this
mortal sin of misnotation we beg forgiveness from our geometer colleagues.

24 The most general case will be treated in detail in Chapter 14 via Morse-theoretic techniques.



6

Integral Geometry

Our aim in this chapter is to develop a framework for handling excursion sets, which
we now redefine in a nonstochastic framework.

Definition 6.0.1. Let f be a measurable real-valued function on some measurable
space, and let T be a measurable subset of that space. Then, for each u ∈ R,

Au ≡ Au(f, T )
�= {t ∈ T : f (t) ≥ u} (6.0.1)

is called the excursion set of f in T over the level u.

Throughout this chapter, T will be a “nice’’ (in a sense to be specified soon) subset
of RN , and our tools will be those of integral geometry.

6.1 Basic Integral Geometry

Quite comprehensive studies of integral geometry are available in the monographs
of Hadwiger [74] and Santaló [139], although virtually all the results we shall derive
can also be found in the paper by Hadwiger [75]. Other very useful and somewhat
more modern and readable references are Schneider [141] and Klain and Rota [92].

Essentially, we shall be interested in the study of a class of geometric objects
known as basic complexes. Later on, we shall show that with probability one, the
excursion sets of a wide variety of random fields belong to this class, and the concepts
that we are about to discuss are relevant to random fields. We commence with some
definitions and simple results, all of which are due to Hadwiger [75].

Assume that we have equipped RN with a Cartesian coordinate system, so that the
N vectors ej (with 1 in the j th position and zeros elsewhere) serve as an orthonormal
basis. Throughout this and the following two sections, everything that we shall have to
say will be dependent on this choice of basis. The restriction to a particular coordinate
system will disappear in the coordinate-free approach based on manifolds.



128 6 Integral Geometry

We call a k-dimensional affine subspace of the form

E = {t ∈ RN : tj = aj , j ∈ J, − ∞ < tj < ∞, j /∈ J }

a (coordinate) k-plane of RN ifJ is a subset of sizeN−k of {1, . . . , N} and aj , j ∈ J ,
are fixed.

We shall call a compact set B in RN basic if the intersections E ∩ B are sim-
ply connected for every k-plane E of RN, k = 1, . . . , N . Note that this includes
the case E = RN . These sets, as their name implies, will form the basic build-
ing blocks from which we shall construct more complicated and interesting struc-
tures. It is obvious that the empty set ∅ is basic, as is any closed convex set. In-
deed, convex sets remain basic under rotation, a property that characterizes them.
Note that it follows from the definition that if B is basic, then so is E ∩ B for any
k-plane E.

A set A ⊂ RN is called a basic complex if it can be represented as the union of a
finite number of basic sets, B1, . . . , Bm, for which the intersections Bν1 ∩ · · · ∩ Bνk

are basic for any combination of indices ν1, . . . , νk , k = 1, . . . , m. The collection of
basic sets

p = p(A) = {B1, . . . , Bm}

is called a partition of A, and their number, m, is called the order of the partition.
Clearly, partitions are in no way unique, nor, despite the terminology, are the elements
of a partition necessarily disjoint.

The class of all basic complexes, which we shall denote by CB , or CN
B if we need

to emphasize its dimension, possesses a variety of useful properties. For example,
if A ∈ CB , then E ∩ A ∈ CB for every k-plane E. In fact, if E is a k-plane with
k ≤ N and A ∈ CN

B , we have E ∩ A ∈ Ck
B . To prove this it suffices to note

that if

p = {B1, . . . , Bm}

is a partition of A, then

p′ = {E ∩ B1, . . . , E ∩ Bm}

is a partition of E ∩ A, and since E ∩ Bj is a k-dimensional basic set for all
j , E ∩ A ∈ Ck

B .

Another useful property of CB is that it is invariant under those rotations of RN

that map the vectors e1, . . . , eN onto one another. It is not, however, invariant under
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all rotations, a point to which we shall return later.1 Furthermore, CB is additive, in
the sense that A,B ∈ CB and A ∩ B = ∅ imply2 A ∪ B ∈ CB .

These and similar properties make the class of basic complexes quite large, and,
in view of the fact that convex sets are basic, implies that they include the convex ring
(i.e., the collection of all sets formed via finite union and intersection of convex sets).

With a class of sets in mind, we can now begin our search for a way to describe
the shape of sets by looking for an integer-valued functional3 with the following two
basic properties:

ϕ(A) =
{

0 if A = ∅,
1 if A �= ∅ is basic,

(6.1.1)

and

ϕ(A ∪ B) = ϕ(A)+ ϕ(B)− ϕ(A ∩ B), (6.1.2)

whenever A, B, A ∪ B, A ∩ B ∈ CB .
An important result of integral geometry states that not only does a functional

possessing these two properties exist, but it is uniquely determined by them. We shall
prove this by obtaining an explicit formulation for ϕ, which will also be useful in its
own right.

Let p = p(A) be a partition of order m of some A ∈ CB into basic sets. Define
the characteristic of the partition to be

1 Anote for the purist: As noted earlier, our definition of CB is dependent on the choice of basis,
which is what loses us rotation invariance. An easy counterexample in C2

B
is the descending

staircase
⋃∞

j=1 Bj , where Bj = {(x, y) : 0 ≤ x ≤ 2−j , 1−21−j ≤ y ≤ 1−2−j }. This is
actually a basic set with relation to the natural axes, but not even a basic complex if the axes
are rotated 45 degrees, since then it cannot be represented as the union of a finite number
of basic sets.

Hadwiger’s [75] original definition of basic complexes was basis-independent but cov-
ered a smaller class of sets. In essence, basic sets were defined as above (but relative to a
coordinate system) and basic complexes were required to have a representation as a finite
union of basic sets for every choice of coordinate system. Thus our descending staircase is
not a basic complex in his scenario.

While more restrictive, Hadwiger’s approach gives a rotation-invariant theory. The
reasons for our choice will become clearer later on, when we return to a stochastic setting.
See, in particular, Theorem 11.3.3 and the comments following it. See also the axis-free
approach of Section 9.2.

2 Note that ifA∩B �= ∅, thenA∪B is not necessarily a basic complex. For a counterexample,
take A to be the descending staircase of the previous footnote, and let B be the line segment
{(x, y) : y = 1 − x, x ∈ [0, 1]}. There is no way to represent A∪B as the union of a finite
number of basic sets, essentially because of the infinite number of single point intersections
between A and B, or, equivalently, the infinite number of holes in A ∪ B.

3 A functional on a lattice of sets that satisfies (6.1.2) and ϕ(A) = 0 if A �= ∅ is called an
evaluation; cf. [92].
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κ(A, p) =
∑(1)

ε(Bj )−
∑(2)

ε(Bj1 ∩ Bj2)+ · · · (6.1.3)

+ (−1)n+1
∑(n)

ε(Bj1 ∩ · · · ∩ Bjn)+ · · ·
+ (−1)m+1ε(B1 ∩ · · · ∩ Bm),

where
∑(n) denotes summation over all subsets {j1, . . . , jn} of {1, . . . , m}, 1 ≤ n ≤

m, and ε is an indicator function for basic sets, defined by

ε(A) =
{

0 if A = ∅,
1 if A �= ∅ is basic.

Then, if a functional ϕ satisfying (6.1.1) and (6.1.2) does in fact exist, it follows
iteratively from these conditions and the definition of basic complexes that for any
A ∈ CB and any partition p,

ϕ(A) = κ(A, p). (6.1.4)

Thus, given existence, uniqueness of ϕ will follow if we can show that κ(A, p) is
independent of the partition p.

Theorem 6.1.1. Let A ⊂ RN be a basic complex and p = p(A) a partition of A.
Then the quantity κ(A, p) is independent of p. If we denote this by ϕ(A), then ϕ

satisfies (6.1.1) and (6.1.2), and ϕ(A) is called the Euler characteristic of A.

Proof. The main issue is that of existence, which we establish by induction. When
N = 1, basics are simply closed intervals or points, or the empty set. Thus, setting

ϕ(A) = number of disjoint intervals and isolated points in A

yields a function satisfying ϕ(A) = κ(A, p) for every p and A ⊂ C1
B for which

(6.1.1) and (6.1.2) are clearly satisfied.
Now let N > 1 and assume that for all spaces of dimension k less than N we have

a functional ϕk on Ck
B for which ϕk(A) = κ(A, p) for all A ∈ Ck

B and every partition
p of A. Choose one of the vectors ej , and for x ∈ (−∞,∞) let Ex (which depends
on j ) denote the (N − 1)-plane

Ex
�= {t ∈ RN : tj = x}. (6.1.5)

Let A ∈ CN
B and let p = p(A) = {B1, . . . , Bm} be one of its partitions. Then clearly

the projections ontoE0 of the cross-sectionsA∩Ex are all in CN−1
B , so that there exists

a partition-independent functional ϕx defined on {A ∩ Ex,A ∈ CN
B } determined by

ϕx(A ∩ Ex) = ϕN−1(projection of A ∩ Ex onto E0).

Via ϕx we can define a new partition-independent function f by
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f (A, x) = ϕx(A ∩ Ex). (6.1.6)

However, by the induction hypothesis and (6.1.6), we have from (6.1.3) that

f (A, x) =
∑(1)

ε(Bj1 ∩ Ex)−
∑(2)

ε(Bj1 ∩ Bj2 ∩ Ex)+ · · · .
Consider just one of the right-hand terms, writing

ε(x) = ε(Bj1 ∩ · · · ∩ Bjk ∩ Ex).

Assume that the intersection Bj1 ∩· · ·∩Bjk is nonempty. Otherwise, there is nothing
to prove. Since ε(x) is zero when the intersection of the Bji with Ex is empty and one
otherwise, we have for some finite a and b that ε(x) = 1 if a ≤ x ≤ b and ε(x) = 0
otherwise. Thus ε(x) is a step function, taking at most two values. Hence f (A, x),
being the sum of a finite number of such functions, is again a step function, with a
finite number of discontinuities. Thus the left-hand limits

f (A, x−) = lim
y↓0

f (A, x − y) (6.1.7)

always exist. Now define a function h, which is nonzero at only a finite number of
points x, by

h(A, x) = f (A, x)− f (A, x−) (6.1.8)

and define

ϕ(A) =
∑
x

h(A, x), (6.1.9)

where the summation is over the finite number of x for which the summand is nonzero.
Note that since f is independent of p, so are h and ϕ.

Thus we have defined a functional on CB , and we need only check that (6.1.1)
and (6.1.2) are satisfied to complete this section of the proof. Firstly, note that if B is
a basic set and B �= ∅, and if a and b are the extreme points of the linear set formed
by projecting B onto ej , then f (B, x) = 1 if a ≤ x ≤ b and equals zero otherwise.
Thus h(B, a) = 1, while h(B, x) = 0, x �= a, so that ϕ(B) = 1. This is (6.1.1)
since ϕ(∅) = 0 is obvious. Now let A,B,A ∪ B,A ∩ B all belong to CB . Then the
projections onto E0 of the intersections

A ∩ Ex, B ∩ Ex, (A ∪ B) ∩ Ex, A ∩ B ∩ Ex

all belong to CN−1
B , and so by (6.1.6) and the induction hypothesis,

f (A ∪ B, x) = f (A, x)+ f (B, x)− f (A ∩ B, x).

Replacing x by x− and performing a subtraction akin to that in (6.1.8) we obtain

h(A ∪ B, x) = h(A, x)+ h(B, x)− h(A ∩ B, x).
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Summing over x gives

ϕ(A ∪ B) = ϕ(A)+ ϕ(B)− ϕ(A ∩ B),

so that (6.1.2) is established and we have the existence of our functional ϕ. It may,
however, depend on the partition p used in its definition.

For uniqueness, note that since by (6.1.4), κ(A, p′) = ϕ(A) for any partition p′,
we have that κ(A, p′) is independent of p′ and so that ϕ(A) is independent of p. That
is, we have the claimed uniqueness of ϕ.

Finally, since κ(A, p) is independent of the particular choice of the vector ej
appearing in the proof, so is ϕ. ��

The proof of Theorem 6.1.1 actually contains more than we have claimed in
the statement of the result, since in developing the proof, we actually obtained an
alternative way of computing ϕ(A) for any A ∈ CB . This is given explicitly in the
following theorem, for which Ex is as defined in (6.1.5).

Theorem 6.1.2. For basic complexes A ∈ CN
B , the Euler characteristic ϕ, as defined

by (6.1.4), has the following equivalent iterative definition:

ϕ(A) =
{

number of disjoint intervals in A if N = 1,∑
x{ϕ(A ∩ Ex)− ϕ(A ∩ Ex−)} if N > 1,

(6.1.10)

where

ϕ(A ∩ Ex−) = lim
y↓0

ϕ(A ∩ Ex−y)

and the summation is over all real x for which the summand is nonzero.

This theorem is a simple consequence of (6.1.9) and requires no further proof.
Note that it also follows from the proof of Theorem 6.1.1 (cf. the final sentence there)
that the choice of vector ej used to define Ex is irrelevant.4

The importance of Theorem 6.1.2 lies in the iterative formulation it gives for ϕ,
for using this, we shall show in a moment how to obtain yet another formulation that
makes the Euler characteristic of a random excursion set amenable to probabilistic
investigation.

Figure 6.1.1 shows an example of this iterative procedure in R2. Here the vertical
axis is taken to define the horizontal 1-planes Ex . The values of ϕ(A ∩ Ex) appear
closest to the vertical axis, with the values of h to their left. Note in particular the set
with the hole “in the middle.’’ It is on sets like this, and their counterparts in higher
dimensions, that the characteristic ϕ and the number of connected components of
the set differ. In this example they are, respectively, zero and one. For the moment,
ignore the arrows and what they are pointing at.

4 It is also not hard to show that if A is a basic complex with respect to each of two coordinate
systems (which are not simple relabelings of one another) then ϕ(A) will be the same for
both. However, this is taking us back to the original formulation of [75], which we have
already decided is beyond what we need here.
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Fig. 6.1.1. Computing the Euler characteristic.

To understand how this works in higher dimensions, you should try to visualize
some N -dimensional examples to convince yourself that for the N -dimensional unit
ball, BN , and the N -dimensional unit sphere, SN−1,

ϕ(BN) = 1, ϕ(SN−1) = 1 + (−1)N−1. (6.1.11)

It is somewhat less easy (and, indeed, quite deep in higher dimensions) to see that
if KN,k denotes BN with k nonintersecting cylindrical holes drilled through it, then,
since both KN,k and its boundary belong to CN

B ,

ϕ(KN,k) = 1 + (−1)Nk,

while

ϕ(∂KN,k) = [1 + (−1)N−1](1 − k).

Finally, if we write K̄N,k to denote BN with k “handles’’ attached, then

ϕ(K̄N,k) = 1 − k.

In view of (6.1.11), knowing the Euler characteristic of balls means that we know
it for all basic sets. However, this invariance goes well beyond balls, since it can also
be shown that the Euler characteristic is the same for all homotopically equivalent
sets, i.e., sets that are geometrically “alike’’ in that they can be deformed into one
another in a continuous fashion. Here is a precise definition of this equivalence.

Definition 6.1.3. Let f and g be two mappings from A to B, both subsets of a Haus-
dorff space5 X. If there exists a continuous mapping, F : A × [0, 1] → X with the
following three properties, then we say that f is homotopic or deformable to g:

F(t, 0) = f (t) ∀t ∈ A,

F(t, τ ) ∈ X ∀t ∈ A, τ ∈ [0, 1],
F (t, 1) = g(t) ∀t ∈ A.

5 A Hausdorff space is a topological space T for which, given any two distinct points s, t ∈ T ,
there are open sets U,V ⊂ T with s ∈ U , t ∈ V and U ∩ V = ∅.
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Definition 6.1.4. Let A and B be subsets of (possibly different) Hausdorff spaces. If
there exist continuous f : A → B and g : B → A for which the composite maps
g ◦f : A → A and f ◦g : B → B are deformable, respectively, to the identity maps
on A and B, then A and B are called homotopically equivalent.

6.2 Excursion Sets Again

We now return briefly to the setting of excursion sets. Our aim in this section will
be to find a way to compute their Euler characteristics directly from the function f ,
without having to look at the sets themselves. In particular, we will need to find a
method that depends only on local properties of f , since later, in the random setting,
this (via finite-dimensional distributions) will be all that will be available to us for
probabilistic computation.

Since the main purpose of this section is to develop understanding and since we
shall ultimately use the techniques of the critical point theory developed in Chapter 9
to redo everything that will be done here in far greater generality, we shall not give
all the details of all the proofs. The interested reader can find most of them either
in GRF [2] or the review [4]. Furthermore, we shall restrict the parameter set T to
being a bounded rectangle of the form

T = [s, t] �=
N∏
i=1

[si, ti], −∞ < si < ti < ∞. (6.2.1)

For our first definition, we need to decompose T into a disjoint union of open sets,
starting with its interior, its faces, edges, etc. More precisely, a face J , of dimension
k, is defined by fixing a subset σ(J ) of {1, . . . , N} of size k and a sequence of N − k

zeros and ones, which we write as ε(J ) = {εj , j /∈ σ(J )}, so that

J =
{
v ∈ T : vj = (1 − εj )sj + εj tj if j /∈ σ(J ), (6.2.2)

sj < vj < tj if j ∈ σ(J )
}
.

Note that faces are always open sets.
In anticipation of later notation, we write ∂kT for the collection of faces of di-

mension k in T . This is known as the k-skeleton of T . Then ∂NT contains only T ◦,
while ∂0T contains the 2N vertices of the rectangle. In general, ∂kT has

Jk
�= 2N−k

(
N

k

)
(6.2.3)

elements. Note also that the usual boundary of T , ∂T , is given by the disjoint union

∂T =
N−1⋃
k=0

⋃
J∈∂kT

J.
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We start with some simple assumptions on f and, as usual, write the first- and
second-order partial derivatives of f as fj = ∂f/∂tj , fij = ∂2f/∂ti∂tj .

Definition 6.2.1. Let T be a bounded rectangle in RN and let f be a real-valued
function defined on an open neighborhood of T .

Then, if for a fixed u ∈ R the following three conditions are satisfied for each
face J of T for which N ∈ σ(J ), we say that f is suitably regular with respect to T

at the level u if the following conditions hold.

(A) f has continuous partial derivatives of up to second order
in an open neighborhood of T .

(6.2.4)

(B) f|J has no critical points at the level u. (6.2.5)

(C) If J ∈ ∂kT and DJ (t) denotes the symmetric (k − 1)× (k − 1)
matrix with elements fij , i, j ∈ σ(J ) \ {N}, then there are no
t ∈ J for which 0 = f (t)− u = det DJ (t) = fj (t) for all
j ∈ σ(J ) \ {N}.

(6.2.6)

The first two conditions of suitable regularity are meant to ensure that the boundary
∂Au = {t ∈ T : f (t) = u} of the excursion set is smooth in the interior T ◦ of T and
that its intersections with ∂T also is smooth. The last condition is a little more subtle,
since it relates to the curvature of ∂Au both in the interior of T and on its boundary.

The main importance of suitable regularity is that it gives us the following theorem.

Theorem 6.2.2. Let f : RN → R1 be suitably regular with respect to a bounded
rectangle T at level u. Then the excursion set Au(f, T ) is a basic complex.

The proof of Theorem 6.2.2 is not terribly long, but since it is not crucial to
what will follow, it can be skipped at first reading. The reasoning behind it is all in
Figure 6.2.1, and after understanding this you can skip to the examples immediately
following the proof without losing much.

For those of you remaining with us, we start with a lemma.

Lemma 6.2.3. Let f : RN → R1 be suitably regular with respect to a bounded
rectangle T at the level u. Then there are only finitely many t ∈ T for which

f (t)− u = f1(t) = · · · = fN−1(t) = 0. (6.2.7)

Proof. To start, let g = (g1, . . . , gN) : T → RN be the function defined by

g1(t) = f (t)− u, gj (t) = fj−1( t), j = 2, . . . , N. (6.2.8)

Let t ∈ T satisfy (6.2.7). Then, by (6.2.5), t /∈ ∂T ; i.e., t is in the interior of
T . We shall show that there is an open neighborhood of t throughout which no other
point satisfies (6.2.7), which we rewrite as g(t) = 0. This would imply that the points
in T satisfying (6.2.7) are isolated, and thus, from the compactness of T , we would
have that there are only a finite number of them. This, of course, would prove the
lemma.
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The inverse mapping theorem6 implies that such a neighborhood will exist if the
N × N matrix (∂gi/∂tj ) has a nonzero determinant at t . However, this matrix has
the following elements:

∂g1

∂tj
= fj (t) for j = 1, . . . , N,

∂gi

∂tj
= fi−1,j (t) for i = 2, . . . , N , j = 1, . . . , N.

Since t satisfies (6.2.7), all elements in the first row of this matrix, other than the N th,
are zero. Expanding the determinant along this row gives us that it is equal to

(−1)N−1fN(t) det D(t), (6.2.9)

whereD(t) is as defined in (6.2.6). Since (6.2.7) is satisfied, (6.2.5) and (6.2.6) imply,
respectively, that neither fN(t) nor the determinant of D(t) is zero, which, in view
of (6.2.9), is all that is required. ��
Proof of Theorem 6.2.2. When N = 1 we are dealing throughout with finite collec-
tions of intervals, and so the result is trivial.

Now take the case N = 2. We need to show how to write Au as a finite union of
basic sets.

Consider the set of points t ∈ T satisfying either

f (t)− u = f1(t) = 0 (6.2.10)

or

f (t)− u = f2(t) = 0. (6.2.11)

For each such point draw a line containing the point and parallel to either the horizontal
or vertical axis, depending, respectively, on whether (6.2.10) or (6.2.11) holds. These
lines form a grid over T , and it is easy to check that the connected regions ofAu within
each cell of this grid are basic. Furthermore, these sets have intersections that are
either straight lines, points, or empty, and Lemma 6.2.3 (applied to the original axes
and a 90◦ rotation of them) guarantees that there are only a finite number of them, so
that they form a partition of Au. (An example of this partitioning procedure is shown
in Figure 6.2.1. The dots mark the points where either (6.2.10) or (6.2.11) holds.)
This provides the required partition, and we are done.

6 The inverse mapping theorem goes as follows: Let U ⊂ R
N be open and g =

(g1, . . . , gN ) : U → R
N a function possessing continuous first-order partial derivatives

∂gi/∂tj , i, j = 1, . . . , N . Then if the matrix (∂gi/∂tj ) has a nonzero determinant at some
point t ∈ U , there exist open neighborhoods U1 and V1 of t and g(t), respectively, and a
function g−1 : V1 → U1, for which

g−1(g(t)) = t and g(g−1(s)) = s

for all t ∈ U1 and s ∈ V1.
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Fig. 6.2.1. Partitioning excursion sets into basic components.

For N > 2 essentially the same argument works, using partitioning (N − 1)
planes passing through points at which

f (t)− u = f1(t) = · · · = fN−1(t).

Lemma 6.2.3 again guarantees the finiteness of the partition. The details are left
to you.7 ��

We now attack the problem of obtaining a simple way of computing the Euler
characteristic of Au. As you are about to see, this involves looking at each Au ∩ J ,
J ∈ ∂kT , 0 ≤ k ≤ N , separately. We start with the simple example T = I 2, in
which ∂2T = T o, ∂1T is composed of four open intervals parallel to the axes, and
∂0T contains the four vertices of the square. Since this is a particularly simple case,
we shall pool ∂1T and ∂0T , and handle them together as ∂T .

Thus, let f : R2 → R1 be suitably regular with respect to I 2 at the level u.
Consider the summation (6.1.10) defining ϕ(Au(f, I

2)), that is,

ϕ(Au) =
∑

x∈(0,1]
{ϕ(Au ∩ Ex)− ϕ(Au ∩ Ex−)}, (6.2.12)

where now Ex is simply the straight line t2 = x, and so nx
�= ϕ(Au ∩Ex) counts the

number of distinct intervals in the cross-sectionAu∩Ex . The values of x contributing
to the sum correspond to values of x where nx changes.

It is immediate from the continuity of f that contributions to ϕ(Au) can occur
only when Ex is tangential to ∂Au (Type I contributions) or when f (0, x) = u or
f (1, x) = u (Type II contributions). Consider the former case first.

IfEx is tangential to ∂Au at a point t , thenf1(t) = 0. Furthermore, sincef (t) = u

on ∂Au, we must have that f2(t) �= 0, as a consequence of suitable regularity. Thus,
in the neighborhood of such a point and on the curve ∂Au, t2 can be expressed as an
implicit function of t1 by

f (t1, g(t1)) = u.

7 You should at least try the three-dimensional case, to get a feel for the source of the conditions
on the various faces of T in the definition of suitable regularity.
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The implicit function theorem8 gives us

dt2

dt1
= −f1(t)

f2(t)
,

so that applying what we have just noted about the tangency of Ex to ∂Au, we have
for each contribution of Type I to (6.2.12) that there must be a point t ∈ I 2 satisfying

f (t) = u (6.2.13)

and

f1(t) = 0. (6.2.14)

Furthermore, since the limit in (6.2.12) is one-sided, continuity considerations
imply that contributing points must also satisfy

f2(t) > 0. (6.2.15)

Conversely, for each point satisfying (6.2.13) to (6.2.15) there is a unit contribution
of Type I to ϕ(Au). Note that there is no contribution of Type I to ϕ(Au) from points
on the boundary of I 2 because of the regularity condition (6.2.5). Thus we have a one-
to-one correspondence between unit contributions of Type I to ϕ(Au) and points in the
interior of I 2 satisfying (6.2.13) to (6.2.15). It is also easy to see that contributions of
+1 will correspond to points for which f11(t) < 0 and contributions of −1 to points
for which f11(t) > 0. Furthermore, because of (6.2.6) there are no contributing
points for which f11(t) = 0.

Consider now Type II contributions to ϕ(A), which is best done by looking first
at Figure 6.2.2.

The eight partial and complete disks there lead to a total Euler characteristic of 8.
The three sets A, B, and C are accounted for by Type I contributions, since in each
case the above analysis will count +1 at their lowest points. We need to account for
the remaining five sets, which means running along ∂I 2 and counting points there.
In fact, what we need to do is count +1 at the points marked with a •. There is never

8 The implicit function theorem goes as follows: Let U ⊂ R
N be open and F : U → R

possess continuous first-order partial derivatives. Suppose at t∗ ∈ U,F(t∗) = u and
FN( t∗) �= 0. Then the equation

F(t1, . . . , tN−1, g(t1, . . . , tN−1)) = u

defines an implicit function g that possesses continuous, first-order partial derivatives in
some interval containing (t∗1 , . . . , t∗N−1), and such that g(t∗1 , . . . , t∗N−1) = t∗

N
. The partial

derivatives of g are given by

∂g

∂tj
= − Fj

FN
for j = 1, . . . , N − 1.

Furthermore, if F is k-times differentiable, so is g.
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B

C

A

Fig. 6.2.2. Contributing points to the Euler characteristic.

a need to count −1 on the boundary. Note that on the two vertical sections of ∂I 2 we
count +1 whenever we enter the set (at its intersection with ∂I 2) from below. There
is never a contribution from the top side of I 2. For the bottom, we need to count the
number of connected components of its intersection with the excursion set, which
can be done either on “entering’’ or “leaving’’ the set in the positive t1 direction. We
choose the latter, and so must also count a +1 if the point (1, 0) is covered.

Putting all this together, we have a Type II contribution to ϕ(A) whenever one of
the following four sets os conditions is satisfied:⎧⎪⎪⎨⎪⎪⎩

t = (t1, 0), f (t) = u, f1(t) < 0,
t = (0, t2), f (t) = u, f2(t) > 0,
t = (1, t2), f (t) = u, f2(t) > 0,
t = (1, 0), f (t) > u.

(6.2.16)

The above argument has established the following, which in Chapter 9, with com-
pletely different techniques and a much more sophisticated and powerful language,
will be extended to parameter sets in RN and on C2 manifolds with piecewise smooth
boundaries:

Theorem 6.2.4. Let f be suitably regular with respect to I 2 at the level u. Then the
Euler characteristic of its excursion set Au(f, I

2) is given by the number of points t
in the interior of I 2 satisfying

f (t)− u = f1(t) = 0, f2(t) > 0, and f11(t) < 0, (6.2.17)

minus the number of points satisfying

f (t)− u = f1(t) = 0, f2(t) > 0, and f11(t) > 0, (6.2.18)

plus the number of points on the boundary of I 2 satisfying one of the four sets of
conditions in (6.2.16).

This is what we have been looking for in a doubly simple case: The ambient
dimension was only 2, and the set T a simple square. There is another proof of
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Theorem 6.2.4 in Section 9.4, built on Morse theory. There you will also find a gener-
alization of this result to IN for all finite N , although the final point set representation
is a little different from that of (6.2.16). Morse theory is also the key to treating far
more general parameter spaces. Nevertheless, what we have developed so far, along
with some ingenuity, does let us treat some more general cases, for which we give
an example. You should be able to fill in the details of the computation by yourself,
although some hand waving may be necessary. Here is the example:

Fig. 6.2.3. Computing the Euler characteristic for a general shape.

Fig. 6.2.4. Points on a horizontal part of the boundary.

Consider the parameter space T to be the surrounding dumbell shape of Fig-
ure 6.2.3. Of the four components of the excursion set (the hatched objects), three
intersect ∂T . We already know how to characterize the small component in the top
left: We count a +1 for each •, −1 for each ◦, and sum. The problem is what to do
with the remaining two components. Worsley [174] showed that what needs to be
done is again to subtract from the number of points in the interior of T that satisfy
(6.2.17) the number satisfying (6.2.18) and then to go along ∂T and add a +1 for
each point marked with a •.

More precisely, the rules for marking are as follows:

(a) If t is in the interior of T , then apply the criteria (6.2.17) and (6.2.18) exactly as
before, marking • (+1) and ◦ (−1), respectively.
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(b) If t ∈ ∂T ∩ ∂Au, and the tangent to ∂T is not parallel to the horizontal axis, then
let fup(t) be the derivative of f in the direction of the tangent to ∂T pointing
in the positive t2 direction. (Two such tangent vectors appear as τC and τF in
Figure 6.2.3.) Furthermore, take the derivative of f with respect to t1 in the
direction pointing into T . Call this f⊥. (It will equal either f1 or −f1, depending
on whether the angles θ in Figure 6.2.3 from the horizontal to the τ vector develop
in a counterclockwise or clockwise direction, respectively.) Now mark t as a •
(and so count as +1) if f⊥(t) < 0 and fup(t) > 0. There are no ◦ points in this
class.

(c) If t ∈ ∂T ∩ ∂Au, and the tangent to ∂T is parallel to the horizontal axis, but t is
not included in an open interval ∂T that is parallel to this axis, then proceed as in
(b), simply defining f⊥ to be f1 if the tangent is above ∂T and −f1 otherwise.

(d) If t ∈ ∂T ∩∂Au belongs to an open interval of ∂T that is parallel to the horizontal
axis (as in Figure 6.2.4), then mark it as a • if T is above ∂T and f1(t) < 0.
(Thus, as in Figure 6.2.4, points such as B and C by which Au “hangs’’ from ∂T

will never be counted.)
(e) Finally, if t ∈ ∂T ∩ Au has not already been marked, and coincides with one of

the points that contribute to the Euler characteristic of T itself (e.g., A, B, and J

in Figure 6.2.3), then mark it exactly as it was marked in computing ϕ(T ).

All told, this can be summarized as follows.

Theorem 6.2.5 (Worsley [174]). Let T ⊂ R2 be compact with boundary ∂T that is
twice differentiable everywhere except, at most, at a finite number of points. Let f
be suitably regular for T at the level u. Let χ(Au(f, T )) be the number of points in
the interior of T satisfying (6.2.17) minus the number satisfying (6.2.18).

Denote the number of points satisfying (b)–(d) above as χ∂T , and denote the sum
of the contributions to ϕ(T ) of those points described in (e) by ϕ∂T . Then

ϕ(A) = χ(A)+ χ∂T + ϕ∂T . (6.2.19)

Theorem 6.2.5 can be extended to three dimensions (also in [174]). In principle, it
is not too hard to guess what has to be done in higher dimensions as well. Determining
whether a point in the interior of T and on ∂Au contributes a +1 or −1 will depend
on the curvature of ∂Au, while if t ∈ ∂T , both this curvature and that of ∂T will have
roles to play.

It is clear that these kinds of arguments are going to get rather messy very quickly,
and a different approach is advisable. This is provided via the critical point theory of
differential topology, which we shall develop in Chapter 9. However, before doing
this we want to develop some more geometry in the still relatively simple scenario of
Euclidean space and describe how all of this relates to random fields.

6.3 Intrinsic Volumes

The Euler characteristic of Section 6.1 arose as the unique additive functional (cf.
(6.1.2)) that assigned the value 1 to sets homotopic to a ball, and 0 to the empty set.
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It turned out to be integer-valued, although we did not demand this in the beginning,
and has an interpretation in terms of “counting’’ the various topological components
of a set. But there is more to life than mere counting, and one would also like to be
able to say things about the volume of sets, the surface area of their boundaries, their
curvatures, etc. In this vein, it is natural to look for a class of N additional position-
and rotation-invariant functionals {Lj }Nj=1 that are also additive in the sense of (6.1.2)
and scale with dimensionality in the sense that

Lj (λA) = λjLj (A), λ > 0, (6.3.1)

where λA
�= {t : t = λs, s ∈ A}.

Such functionals exist, and together with L0
�= ϕ, the Euler characteristic itself,

make up what are known as the intrinsic volumes defined on a suitable class of sets
A. The reason why the intrinsic volumes are of crucial importance to us will become
clear when we get to the discussion following Theorem 6.3.1, which shows that many
probabilistic computations for random fields are intimately related to them. They can
be defined in a number of ways, one of which is a consequence of Steiner’s formula
[92, 139], which, for convex9 subsets of RN , goes as follows:

For A ⊂ RN and ρ > 0, let

Tube(A, ρ) = {x ∈ RN : d(x,A) ≤ ρ} (6.3.2)

be the “tube’’ of radius ρ, or “ρ-tube,’’ around A, where

d(x,A)
�= inf

y∈A |x − y|

is the usual Euclidean distance from the point x to the set A. An example is given
in Figure 6.3.1, in which A is the inner triangle and Tube(A, ρ) the larger triangular
object with rounded-off corners.

With λN denoting, as usual, Lebesgue measure in RN , Steiner’s formula states10

that λN(Tube(A, ρ)) has a finite expansion in powers of ρ. In particular,

λN (Tube(A, ρ)) =
N∑
j=0

ωN−j ρ
N−jLj (A), (6.3.3)

where

ωj = λj (B(0, 1)) = πj/2

�
( j

2 + 1
) = sj

j
(6.3.4)

9 Moving from basic complexes down to the very special case of convex sets is a severe
restriction in terms of what we need, and we shall lift this restriction soon. Nevertheless,
convex sets are a comfortable scenario in which to first meet intrinsic volumes.

10 There is a more general version of Steiner’s formula for the case in which T and its tube
are embedded in R

N ′
, where N ′ > N = dim(A). In that case (6.3.2) still holds, but with

N replaced by N ′. See Theorem 10.5.6 for more details in the manifold setting.



6.3 Intrinsic Volumes 143

is the volume of the unit ball in Rj . (Recall that sj was the corresponding surface
area; cf. (5.7.5).)

We shall see a proof of (6.3.3) later on, in Chapter 10, in a far more general
scenario, but it is easy to see from Figure 6.3.1 from where the result comes.

Fig. 6.3.1. The tube around a triangle.

To find the area (i.e., two-dimensional volume) of the enlarged triangle, one needs
only to sum three terms:

• The area of the original, inner triangle.
• The area of the three rectangles. Note that this is the perimeter (i.e., “surface

area’’) of the triangle multiplied by ρ.
• The area of the three corner sectors. Note that the union of these sectors will

always give a disk of Euler characteristic 1 and radius ρ.

In other words,

area(Tube(A, ρ)) = πρ2ϕ(A)+ ρ perimeter(A)+ area(A).

Comparing this to (6.3.3), it now takes only a little thought to guess what the
intrinsic volumes must measure. If the ambient space is R2, then L2 measures area,
L1 measures boundary length, while L0 gives the Euler characteristic. In R3, L3
measures volume, L2 measures surface area, L1 is a measure of cross-sectional di-
ameter, and L0 is again the Euler characteristic. In higher dimensions, it takes some
imagination, but LN and LN−1 are readily seen to measure volume and surface area,
while L0 is always the Euler characteristic. Precisely why this happens, how it in-
volves the curvature of the set and its boundary, and what happens in less-familiar
spaces forms much of the content of Section 7.6 and is treated again, in fuller detail,
in Chapter 10.

In the meantime, you can try checking for yourself, directly from (6.3.3) and a
little first-principles geometry, that for an N -dimensional cube of side length T the
intrinsic volumes are given by

Lj

(
[0, T ]N

)
=
(
N

j

)
T j . (6.3.5)

It is also not hard to see that for N -dimensional rectangles,
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Lj

(
N∏
i=1

[0, Ti]
)

=
∑

Ti1 · · · Tij , (6.3.6)

where the sum is taken over the
(
N
j

)
different choices of subscripts i1, . . . , ij .

For handling BN
λ , the ball of radius λ, it useful to go beyond first principles.

Noting that Tube(BN
λ , ρ) = BN

λ+ρ , we have

λN

(
Tube

(
BN
λ , ρ

))
= (λ+ ρ)NωN =

N∑
j=0

(
N

j

)
λjρN−jωN

=
N∑
j=0

ωN−j ρ
N−j

(
N

j

)
λj

ωN

ωN−j

.

Comparing this to Steiner’s formula (6.3.3), it is immediate that

Lj

(
BN
λ

)
=
(
N

j

)
λj

ωN

ωN−j

. (6.3.7)

For SN−1
λ the sphere of radius λ in RN , a similar argument, using the fact that

Tube(SN−1
λ , ρ) = BN

λ+ρ − BN
λ−ρ,

yields

Lj (S
N−1
λ ) = 2

(
N

j

)
ωN

ωN−j

λj = 2

(
N − 1

j

)
sN

sN−j

λj (6.3.8)

if N − 1 − j is even and 0 otherwise.
Further examples can be found, for example, in [139].
A useful normalization of the intrinsic volumes are the so-called Minkowski func-

tionals, defined as
Mj (A) = (j !ωj )LN−j (A), (6.3.9)

so that, when expressed in terms of the Mj , Steiner’s formula now reads like a Taylor
series expansion

λN(Tube(A, ρ)) =
N∑
j=0

ρj

j ! Mj (A). (6.3.10)

It is an important and rather deep fact, due to Weyl [168] in the manifold setting,11

that the Lj are independent of the ambient space in which sets sit. Because of
the reversed numbering system and the choice of constants, this is not true of the
Minkowski functionals.12

11 See also [73, 92] and Chapter 10, where we develop this in detail.
12 To see why the Mj are dependent on the ambient space, let iNM be the standard in-

clusion of R
N into R

M , M ≥ N , defined by iNM(x) = (x1, . . . , xN , 0, . . . , 0) ∈ R
M
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There is another way to define intrinsic volumes that works just as well for our
main scenario of basic complexes as it does for convex sets, based on the idea of
kinematic density.13 Let GN = RN be the isometry group (of rigid motions) on
RN , and equip it with the Haar measure μN , normalized to be Lebesgue measure on
RN and the invariant probability measure on the rotation group O(N). A formula of
Hadwiger states that

Lj (A) =
[
N

j

] ∫
GN

ϕ(A ∩ gEN−j )μN(dg), (6.3.11)

where Ej is any j -dimensional affine subspace of RN ,[
N

j

]
= [N ]!

[N − j ]![j ]! =
(
N

j

)
ωN

ωN−jωj

, (6.3.12)

where [N ]! = N !ωN and ϕ is our old friend the Euler characteristic. The numbers
[
n

k

]
are known as flag coefficients [92]. Hadwiger’s formula is important, and we shall
return to it later.

Note, however, that although over the class of convex sets the two definitions of
intrinsic volumes are equivalent, Steiner’s formula no longer holds for these intrinsic
volumes over the class of basic complexes, or even over the convex ring. For a
counterexample, take the union of a vertical and horizontal line as in Figure 6.3.2
and consider the tube around it. Blindly applying Steiner’s formula, one finds that
there are two problems: The area of the quarter disk on the lower left corner has been
forgotten, and the area marked with a black square has been double counted. Since
these two areas are different, they do not cancel to give the right volume for the tube.

Fig. 6.3.2. A tube around the letter L.

The way around this will be to develop a somewhat different notion, that of
Lipschitz–Killing curvatures, which we shall do in Chapters 7 and 8 in the setting on

for x ∈ R
N . Consider M > N , and note that the polynomials λM(Tube(A, ρ)) and

λM(Tube(iNM(A), ρ)) lead to different geometric interpretations. For example, for a
curve C in R

2, M1(C) will be proportional to the arc length of C and M2(C) = 0, while
M2(i2,3(C)), rather than M1(i2,3(C)), is proportional to arc length.

13 We shall meet this again, in a slightly different format and in far more detail, as a special
case of Crofton’s formula, Theorem 13.1.1. In Chapter 13 we shall also develop a sig-
nificant extension of the Hadwiger formula (6.3.11), and use it to lift results about Euler
characteristics to results about Lipschitz–Killing curvatures.
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manifolds, and for which we shall develop in Chapter 10 an extension of Steiner’s
formula. One of the key differences between Lipschitz–Killing curvatures and the
intrinsic volumes that we have looked at so far will be that the former will also be
allowed to take negative values. This will allow, for example, for the subtraction of
the area of the double-counted square in Figure 6.3.2.

The time has now come to explain what all of the above has to do with random
fields. For this we need one more result from integral geometry, due to Hadwiger
[74], which also seems to be the only place to find a proof. However, unless you
have a weakness for classical German, you should turn to Schneider [141] to read
more about it. In Klain and Rota [92], a proof is given for continuous, invariant
functionals on the convex ring, which, as noted previously, is a subset of the basic
complexes. Zahle [182] has the most general result in terms of the classes of sets
covered, although with continuity replacing monotonicity among the conditions of
the theorem.

Theorem 6.3.1. Let ψ be a real-valued function on basic complexes in RN , invariant
under rigid motions, additive (in the sense of (6.1.2)) and monotone, in the sense that
for all pairs A,B, either A ⊆ B ⇒ ψ(A) ≤ ψ(B) or A ⊆ B ⇒ ψ(A) ≥ ψ(B).
Then

ψ(A) =
N∑
j=0

cjLj (A), (6.3.13)

where c0, . . . , cN are nonnegative (ψ-dependent) constants.

Now take an isotropic field f on RN and consider the set-indexed functional

ψ(A)
�= P

{
sup
t∈A

f (t) > u

}
. (6.3.14)

Then ψ is clearly monotone and rigid-motion-invariant. Unfortunately, it is not quite
additive, since even if A and B are disjoint,

ψ(A ∪ B) = ψ(A)+ ψ(B) (6.3.15)

− P

{(
sup
t∈A

f (t) > u
)
∩
(

sup
t∈B

f (t) > u
)}

.

Consider the last term here for large u. In that case both ψ(A) and ψ(B) will
be small. If A and B are disjoint, then it is reasonable to expect that the events
{supA f > u} and {supB f >} will be close to independent,14 and so the final term
in (6.3.15) would be a product of two very small terms, and so of smaller order than
either.

14 This would happen, for example, if A and B were sufficiently distant for the values of f in
A and B to be close to independent. It turns out that at least for Gaussian f , these heuristics
are true even if A and B are close, as long as u is large enough. We shall not treat these
results, but you can find examples in [17] and [97].
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On the other hand, if A ∩ B �= ∅ then one could argue as follows: Since it is
difficult for supA f to be greater than u, and it is difficult for supB f to be greater
than u, if both of these events are to happen, then it is most likely that the supremum
of the process will occur somewhere in A ∩ B, making the final term in (6.3.15)
approximately ψ(A ∩ B).

Putting the two cases together, it is therefore not unreasonable to expect that there
might be an invariant, additive, and monotone functional ψ̃u for which

P

{
sup
t∈A

f (t) > u
}
= ψ̃u(A)+ o(ψ̃u(A)), (6.3.16)

in which case, by Theorem 6.3.1, we would be able to conclude that

P

{
sup
t∈A

f (t) > u

}
=

N∑
j=0

cj (u)Lj (A)+ lower-order terms (6.3.17)

for some functions cj (u).
The fact that such a function does indeed exist, and is given by

ψ̃u = E{ϕ(Au(f,A))},
where ϕ is the Euler characteristic and Au an excursion set, is one of the main punch
lines of this book and of the last few years of research in Gaussian random fields.
Proving this, in wide generality, and computing the coefficients cj in (6.3.17) as
functions of u is what much of Part III of this book is about.

If you are interested mainly in nice Euclidean parameter spaces, and do not need
to see the details of all the proofs, you can now comfortably skip the rest of Part II,
with the exception of Section 9.4, which gives a version of Theorem 6.2.4 in general
dimensions. The same is true if you have a solid background in differential geometry,
even if you plan to follow all the proofs later on. You can return later when the need
to confirm notation arises.
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Differential Geometry

As we have said more than once, this chapter is intended to serve as a rapid and
noncomprehensive introduction to differential geometry, basically in the format of a
“glossary of terms.’’ Most will be familiar to those who have taken a couple courses
in differential geometry, and hopefully informative enough to allow the uninitiated1

to follow the calculations in later chapters. However, to go beyond merely following
the arguments there and to reach the level of a real understanding of what is going
on, it will be necessary to learn the material from its classical sources.2

Essentially all that we have to say is “well known,’’ in the sense that it appears
in textbooks of differential geometry. Thus, the reader familiar with these books will
be able to skim the remainder of this chapter, needing only to pick up our notation
and emphases.

7.1 Manifolds

A differentiable manifold is a mathematical generalization, or abstraction, of objects
such as curves and surfaces in RN . Intuitively, it is a smooth set with a locally defined,
Euclidean, coordinate system.

Manifolds without boundary
We call M a topological N -manifold if M is a locally compact Hausdorff space such
that for every t ∈ M , there exist an open U ⊂ M containing t , an open Ũ ⊂ RN ,
and a homeomorphism ϕ : U → Ũ .

1 For first-timers we have added numerous footnotes and simple examples along the way that
are meant to help them through the general theory. In general, we shall be satisfied with the
exposition as long as we have not achieved the double failure of both boring the expert and
bamboozling the novice. We also apologize to the experts for attempting the impossible:
to reduce their beautiful subject matter to a “glossary.’’

2 For the record, the books that we found most useful were Boothby [29], Jost [88], Millman
and Parker [114], Morita [116], and O’Neill [121]. The two recent books by Lee [100, 101]
stand out from the pack as being particularly comprehensive and easy to read, and we highly
recommend them as the right place to start.
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A (coordinate) chart on M is a pair (ϕ, U), where, as above, U ⊂ M is open and
ϕ : U → ϕ(U) ⊂ RN is a homeomorphism. A collection {ϕi : Ui → RN }i∈I of
charts is called Ck compatible if

ϕi ◦ ϕ−1
j : ϕj (Ui ∩ Uj) → ϕi(Ui ∩ Uj) (7.1.1)

is a Ck diffeomorphism3 for every i, j ∈ I for which Ui ∩ Uj �= ∅.
If a collection of charts gives a covering of M , i.e.,

⋃
i∈I Ui = M , then it is called

a (Ck) atlas forM . An atlas is called maximal if it is not contained in any strictly larger
atlas with homeomorphisms satisfying (7.1.1). A topological N manifold, together
with a Ck maximal atlas, is called a Ck differential manifold. The maximal atlas is
usually referred to as the differential structure of M .

The component functions x1, . . . , xN of a coordinate chart (ϕ, U), defined by
ϕ(t) = (x1(t), . . . , xN(t)), are called the local coordinates on U .

Manifolds with boundary
If some of the Ui map to subsets of the half-space HN �= RN−1 ×R+ in RN , then we
talk about a manifold with boundary, rather than a simple manifold. A manifold with
boundary can be thought of as a disjoint union of two manifolds: ∂M , its boundary,
an (N − 1)-dimensional manifold, and M◦, its interior, an N -dimensional manifold.

Continuous and differentiable functions on manifolds
The notions of continuous and differentiable functions on a Ck manifold M are
straightforward. A function f : M → R is said to be of class Ck if f ◦ ϕ−1 is of
class Ck , in the usual Euclidean sense, for every chart in the atlas.

Tangent spaces
For a manifold M embedded in RN , such as a curve or a surface, it is straightforward
to envision what is meant by a tangent vector at a point t ∈ M . It is no more than
a vector with origin at t , sitting in the tangent plane to M at t . Given such a vector,
v, one can differentiate functions f : M → R along the direction v. Thus, to each v

there corresponds a local derivative. For abstract manifolds, the basic notion is not
that of a vector sitting in a tangent plane, but rather that of a differential operator.

To see how this works, we start with the simplest case, in which M = RN and
everything reduces to little more than renaming familiar objects. Here we can manage
with the atlas containing the single chart (M, iNN), where iNN is the inclusion map.
We change notation after the inclusion, writing x = iNN(t) and M ′ = iNN(M)

(= RN ). To every vector Xx with origin x ∈ M ′, we can assign a linear map from
C1(M ′) to R as follows:

If f ∈ C1(M) and Xx is a vector of the form Xx = x + ∑N
i=1 aiei , where

{ei}1≤i≤N is the standard basis for RN , we define the first-order differential operator4

3 That is, both ϕi ◦ ϕ−1
j

and its inverse ϕj ◦ ϕ−1
i

are k-times differentiable as functions from

subsets of R
N to subsets of R

N .
4 Hopefully, the standard usage of Xx to denote both a vector and a differential operator will

not cause too much confusion. In this simple case, they clearly amount to essentially the
same thing. In general, they are the same by definition.
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Xx by its action on f :

Xxf =
N∑
i=1

ai
∂f

∂xi

∣∣∣∣
x

. (7.1.2)

It is elementary calculus that Xx satisfies the product rule Xx(fg) = fXxg+gXxf ,
and that for any two functions f, g that agree on a neighborhood of x we have
Xxf = Xxg.

For each x ∈ U , identifying ∂
∂xi

∣∣
x

with ei , we see that{
∂

∂xi

∣∣∣
x

}
1≤i≤N

forms a basis for an N -dimensional space of first-order differential operators, which
we call the tangent space at x and denote by TxRN . Returning to M , and identifying
TtR

N with TxRN , we have now defined the tangent space here as well.
Before turning to the case of an abstract manifold M , we need to be a little more

precise about the term “first-order differential operator’’ used above. While it may be
obvious what is meant in RN , we need to be a little more careful in general. Loosely
speaking, given an x ∈ RN and a neighborhood U of x, a first-order differential
operator is a linear operator on C1(U) that satisfies the product rule and depends
only on the derivatives of a function when evaluated at x. The looseness in the
term “depends only on the derivatives of a function when evaluated at x’’ can be
made precise by requiring that the operator be actually defined on the germ5 of C1

functions at x. Since this definition is local, it extends easily to manifolds. Thus,
choosing t ∈ M and a chart (U, ϕ) around t , we can define similarly a first-order
differential operator at t ∈ M as a linear operator (on the germs of C1 functions) that
satisfies the product rule.

Formally, if x ∈ ϕ(U) ⊂ RN for some chart (U, ϕ), then we can lift the basis of
TxRN (built as in the Euclidean case) to the point t = ϕ−1(x) via ϕ−1∗,t , the so-called
differential or push-forward of ϕ−1 at t . The map ϕ−1∗,t is a linear map that maps the
first-order differential operators (∂/∂xi) |ϕ(t), 1 ≤ i ≤ N , acting on C1(ϕ(U)) to
first-order differential operators on C1(U), and we define it by(

ϕ−1∗,t (Xϕ(t))
)
f = Xϕ(t)

(
f ◦ ϕ−1

)
(7.1.3)

for any f ∈ C1(M). Since ϕ−1∗,t is linear, it follows that the set{
ϕ−1∗,t

(
∂

∂xi

∣∣∣
ϕ(t)

)}
1≤i≤N

(7.1.4)

5 The germs of f at x are the (equivalence) class of functions g for which f ≡ g over some
open neighborhood U of x. All local properties of f at x depend only on the germs to which
f belongs.
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is linearly independent. We define the space it spans to be TtM , the tangent space
of M at t . Its elements Xt , while being differential operators, are called the tangent
vectors at t .

With some abuse of notation, in a chart (U, ϕ) with a coordinate system
(x1, . . . , xN) for ϕ(U) the basis (7.1.4) is usually written as{

∂

∂xi

∣∣∣
t

}
1≤i≤N

, (7.1.5)

and is referred to as the natural basis for TtM in the chart (U, ϕ).

Chain rule: The push-forward

The chain rule of vector calculus is a formula for differentiating the composition h◦g
for g ∈ C1(Rk;Rj ), h ∈ C1(Rj ;Rl ). In differential geometry, the chain rule is
expressed through the push-forward of differentiable functions. Specifically, given
two manifolds M and N and any g ∈ C1(M;N),6 we define its push-forward g∗ by
defining it on charts (U, ϕ) and (V ,ψ) of M and N , for which g(U) ∩ V �= ∅, as

(g∗Xt)h = Xt(h ◦ g),

for any h ∈ C1(N).

Vector fields

Since each Xt ∈ TtM is a linear map on C1(M) satisfying the product rule, we
can construct a first-order differential operator X, called a vector field , that takes Ck

functions (k ≥ 1) to real-valued functions, as follows:

(Xf )t = Xtf for some Xt ∈ TtM.

In other words, a vector field is a map that assigns, to each t ∈ M , a tangent vector
Xt ∈ TtM . Thus, in a chart (U, ϕ) with coordinates (x1, . . . , xN), a vector field can
be represented (cf. (7.1.5)) as

Xt =
N∑
i=1

ai(t)
∂

∂xi

∣∣∣∣
t

. (7.1.6)

If the ai are Ck functions, we can talk about Ck vector fields. Note that for j ≥ 1, a
Ck vector field maps Cj (M) to Cmin(j−1,k)(M).

6 Ck(M;N), the space of “k-times differentiable functions from M to N ,’’ is defined analo-
gously to C1(M). Thus f ∈ Ck(M;N) if for all t ∈ M , there are a chart (UM, ϕM) for M
and a neighborhood V of t with V ⊂ UM such that f (V ) ⊂ UN for some chart (UN , ϕN)

for N for which the composite map ϕN ◦ f ◦ (ϕM)−1 : ϕM(V ) → ϕN(f (V )) is Ck in the
usual, Euclidean, sense.
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Vector bundles

A Cl vector bundle is a triple (E,M,F), along with a map π : E → M , where
E and M are, respectively, (N + q)- and N -dimensional manifolds of class at least
Cl and F is a q-dimensional vector space. The manifold E is locally a product.
That is, every t ∈ M has a neighborhood U such that there is a homeomorphism
ϕU : U×F → π−1(U) satisfying (π ◦ϕU)(t, fU ) = t , for all fU ∈ F . Furthermore,
for any two such overlapping neighborhoods U,V with t ∈ U ∩ V , we require that

ϕU(t, fU ) = ϕV (t, fV ) ⇐⇒ fU = gUV (t) (fV ) ,

where gUV (t) : F → F is a nondegenerate linear transformation. The functions
gUV : U ∩ V → GL(F ) are called the transition functions of the bundle (E,M,F).
The manifold M is called the base manifold , and the vector space π−1(t), which is
isomorphic to F (as a vector space), is called the fiber over t . Usually, it is clear from
the context what M and F are, so we refer to the bundle as E. ACj , j ≤ l, section of
a vector bundle is a Cj map s : M → E such that π ◦ s is the identity map on M . In
other words, if one thinks of a vector bundle as assigning, to each point of t ∈ M , the
entire vector space π−1(t), then a Cj section is a rule for choosing from this space
in a smooth (Cj ) fashion.

We denote the space of Ck sections of a vector bundle E by �k(E).
In a similar fashion, one can define fiber bundles when the fibers F are not vector

spaces, although we shall not go through such a construction yet. Two such fiber
bundles that will be of interest to us are the sphere bundle S(M) and the orthonormal
frame bundle O(M) of a Riemannian manifold (M, g). These will be described below
once we have the definition of a Riemannian manifold.

Tangent bundles

Perhaps the most natural example of a vector bundle is obtained from the collection
of all tangent spaces TtM, t ∈ M . This can be parameterized in a natural way into a
manifold, T (M), called the tangent bundle.

In a chart (U, ϕ), any tangent vector Xt, t ∈ U , can be represented as in (7.1.6),
so the set of all tangent vectors at points t ∈ U is a 2N -dimensional space, with local
coordinates ϕ̃(Xt ) = (x1(t), . . . , xN(t); a1(t), . . . , aN(t)). Call this Et , and call the
projection of Et onto its last N coordinates Ft . Denote the union (over t ∈ M) of
the Et by E, and of the Ft by F , and define the natural projection π : E → M given
by π(Xt) = t , for Xt ∈ Et . The triple (E,M,F), along with π , defines a vector
bundle, which we call the tangent bundle of M and denote by T (M).

The tangent bundle of a manifold is itself a manifold, and as such can be given a
differential structure in the same way that we did for M . To see this, suppose M is a
Ck manifold and note that an atlas {Ui, ϕi}i∈I on M determines a covering on T (M),
the charts {π−1(Ui), ϕ̃i}i∈I of which determine a topology on T (M), the smallest
topology such that ϕ̃|π−1(U) are homeomorphisms. In any two charts (U, ϕU) with
local coordinates (x1, . . . , xN) and (V , ϕV ) with local coordinates (y1, . . . , yN) with
U ∩ V �= ∅, a vector Xt ∈ T (M) is represented by
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Xt = (x1(t), . . . , xN(t); a1(t), . . . , aN(t))

= (y1(t), . . . , yN(t); b1(t), . . . , bN(t)),

where we have the relation

bi(t) =
N∑
j=1

aj (t)
∂yi

∂xj
, (7.1.7)

and ∂yi/∂xj is the first-order partial derivative of the real-valued function yi with
respect to xj .

Since ϕU ◦ ϕ−1
V is a Ck diffeomorphism, we have that ϕ̃U ◦ ϕ̃−1

V is a Ck−1 diffeo-
morphism, having lost one order of differentiation because of the partial derivatives
in (7.1.7). In summary, the atlas {Ui, ϕi}i∈I determines a Ck−1 differential structure
on T (M) as claimed.

7.2 Tensor Calculus

Tensors are basically linear operators on vector spaces. They have a multitude of
uses, but there are essentially only two main approaches to setting up the (somewhat
heavy) definitions and notation that go along with them. When tensors appear in
applied mathematics or physics, the definitions involve high-dimensional arrays that
transform (as the ambient space is transformed) according to certain definite rules.
The approach we shall adopt, however, will be the more modern differential-geometric
one, in which the transformation rules result from an underlying algebraic structure
via which tensors are defined. This approach is neater and serves two of our purposes:
We can fit everything we need into only six pages, and the approach is essentially
coordinate-free.7 The latter is of obvious importance for the manifold setting. The
downside of this approach is that if this is the first time you see this material, it is very
easy to get lost among the trees without seeing the forest. Thus, since one of our main
uses of tensors will be for volume (and, later, curvature) computations on manifolds,
we shall accompany the definitions with a series of footnotes showing how all of
this relates to simple volume computations in Euclidean space. Since manifolds are
locally Euclidean, this might help a first-timer get some feeling for what is going on.

Tensors and exterior algebras

Given an N -dimensional vector space V and its dual V ∗, a map ω is called a tensor
of order (n,m) if

ω ∈ L(V ⊕ · · · ⊕ V︸ ︷︷ ︸
n times

⊕V ∗ ⊕ · · · ⊕ V ∗︸ ︷︷ ︸
m times

R),

7 Ultimately, however, we shall need to use the array notation when we come to handling
specific examples. It appears, for example, in the connection forms of (7.3.14) and the
specific computations of Section 7.7.
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where L(E;F) denotes the set of (multi)linear8 mappings between two vector spaces
E and F . We denote the space of tensors of order (n,m) by T n

m , where n is said to
be the covariant order and m the contravariant order.9

Let T (V ) = ⊕∞
i,j=1 T j

i (V ) be the direct sum of all the tensor spaces T i
j (V ).

The bilinear associative tensor product ⊗ : T (V ) × T (V ) → T (V ) is defined on
T i
j × T k

l as

(α ⊗ β)(v1, . . . , vi+k, v
∗
1 , . . . , v

∗
j+l )

�= α(v1, . . . , vi, v
∗
1 , . . . , v

∗
j )× β(vi+1, . . . , vi+k, v

∗
j+1, . . . , v

∗
j+l ).

The algebra (T (V ),⊗) can be split into two subalgebras, the covariant and con-
travariant tensors T ∗(V ) =⊕∞

i=1 T i
0 (V ) and T∗(V ) =⊕∞

i=1 T 0
i (V ).

Alternating and symmetric covariant tensors

A covariant tensor γ of order k (a (k, 0)-tensor) is said to be alternating if

γ (vσ(1), . . . , vσ(k)) = εσ γ (v1, . . . , vk) for all σ ∈ S(k),

where S(k) is the symmetric group of permutations of k letters and εσ is the sign of
the permutation σ . It is called symmetric if

γ (vσ(1), . . . , vσ(k)) = γ (v1, . . . , vk) for all σ ∈ S(k).

For example, computing the determinant of the matrix formed from N -vectors gives
an alternating covariant tensor of order N on RN .

For k ≥ 0, we denote by �k(V ) (respectively, Sym(T k
0 (V ))) the space of alter-

nating (symmetric) covariant k-tensors on V , and by

�∗(V ) =
∞⊕
k=0

�k(V ), Sym∗(V ) =
∞⊕
k=0

Sym(T k
0 (V )),

their direct sums. If k = 0 then both �0(V ) and Sym(T 0
0 (V )) are isomorphic to R.

Note that �∗(V ) is actually a finite-dimensional vector space, since �k(V ) ≡ {0} if
k > N .

There exist natural projections A : T ∗(V ) → �∗(V ) and S : T ∗(V ) →
Sym∗(V ) defined on each T k(V ) by

8 A multilinear mapping is linear, separately, in each variable. In general, we shall not bother
with the prefix.

9 For a basic example, let V = R
3. There are three, very elementary, covariant tensors

of order 1 operating on vectors v = (v1, v2, v3). These are θ1(v) = v1, θ2(v) = v2, and
θ3(v) = v3. Thus θj measures the “length’’of v in direction j , or, equivalently, the “length’’
of the projection of v onto the j th axis, where “length’’ is signed. The fact that the length
may be signed is crucial to all that follows. Not also that since R

3 is its own dual, we could
also treat the same θi as contravariant tensors of order 1.
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Aγ (v1, . . . , vk) = 1

k!
∑

σ∈S(k)
εσ γ (vσ(1), . . . , vσ(k)),

Sγ (v1, . . . , vk) = 1

k!
∑

σ∈S(k)
γ (vσ(1), . . . , vσ(k)).

Grassmann algebra

The bilinear, associative wedge product,10 or exterior product, ∧ : �∗(V ) ×
�∗(V ) → �∗(V ) is defined on �r(V )×�s(V ) by

α ∧ β = (r + s)!
r!s! A(α ⊗ β). (7.2.1)

The algebra (�∗(V ),∧) is called the Grassmann or exterior algebra of V .

Induced inner products on T ∗(V )

Any inner product on V induces, in a natural way, an inner product on T ∗(V ), and
correspondingly on any subspace of T ∗(V ). We shall be particularly interested in
�∗(V ) and so give the details for this case.

Specifically, given an inner product on V and an orthonormal basis BV ∗ =
{θ1, . . . , θN } for V ∗, then

B�∗(V ) = {θ0} ∪
N⋃
j=1

{
θi1 ∧ · · · ∧ θij : i1 < i2 < · · · < ij

}
, (7.2.2)

10 Continuing the example of footnote 9, take u, v ∈ R
3 and check that this definition gives

(θ1 ∧ θ2)(u, v) = (u1v2 − v1u2), which is, up to a sign, the area of the parallelogram
with corners 0, π(u), π(v), and π(u) + π(v), where π(u) is the projection of u onto the
plane spanned by the first two coordinate axes. That is, this particular alternating covariant
tensor of order 2 performs an area computation, where “areas’’ may be negative. Now take
u, v,w ∈ R

3, and take the wedge product of θ1 ∧ θ2 with θ3. A little algebra gives that
(θ1 ∧ θ2 ∧ θ3)(u, v,w) = det〈u, v,w〉, where 〈u, v,w〉 is the matrix with u in the first
column, etc. In other words, it is the (signed) volume of the parallelepiped three of whose
edges are u, v, and w. Extending this example to N dimensions, you should already be able
to guess a number of important facts, including the following:

(i) Alternating covariant tensors of order n have a lot to do with computing n-dimensional
(signed) volumes.

(ii) The wedge product is a way of combining lower-dimensional tensors to generate higher-
dimensional ones.

(iii) Our earlier observation that �k(V ) ≡ {0} if k > N translates, in terms of volumes, to the
trivial observation that the k-volume of an N -dimensional object is zero if k > N .

(iv) Since area computations and determinants are intimately related, so will be tensors and
determinants.
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where θ0 is a 0-form, is a basis11 for �∗(V ), which itself is a vector space of dimen-
sion

∑N
k=0

(
N
k

) = 2N .
The unique inner product on �∗(V ) that makes this basis orthogonal is the “cor-

responding’’ inner product to which we referred above.

Algebra of double forms
Define �n,m(V ) to be the linear span of the image of �n(V )×�m(V ) under the map
⊗, and define, with some abuse of notation, �∗(V ) ⊗ �∗(V ) = ⊕∞

n,m=0 �
n,m(V ).

An element of �n,m(V ) is called a double form of type (n,m). Note that an (n,m)

double form is alternating in its first n and last m variables.
The double wedge product · on �∗(V )⊗�∗(V ) is defined on tensors of the form

γ = α ⊗ β ∈ �∗(V )×�∗(V ) by

(α ⊗ β) · (α′ ⊗ β ′) = (α ∧ α′)⊗ (β ∧ β ′), (7.2.3)

and then extended by linearity. For γ ∈ �n,m(V ) and θ ∈ �p,q(V ) this gives
γ · θ ∈ �n+p,m+q(V ), for which

(γ · θ) ((u1, . . . , un+p

)
,
(
v1, . . . , vm+q

))
(7.2.4)

= 1

n!m!p!q!
∑

σ ∈ S(n+ p)
ρ ∈ S(m+ q)

εσ ερ

[
γ
((
uσ1 , . . . , uσn

)
,
(
vρ1 , . . . , vρm

))
× θ

((
uσn+1 , . . . , uσn+p

)
,
(
vρm+1 , . . . , vρm+q

)) ]
.

Note that a double form of type (n, 0) is simply an alternating covariant tensor, so that
comparing (7.2.4) with (7.2.1), it is clear that the restriction of · to

⊕N
j=0 �

j,0(V ) is
just the usual wedge product.

We shall be most interested in the restriction of this product to

�∗,∗(V )
�=

∞⊕
j=0

�j,j (V ).

The pair (�∗,∗(V ), ·) is then a commutative (sub)algebra.12

For a double form γ ∈ �∗,∗(V ), we define the polynomial γ j as the product of
γ with itself j times for j ≥ 1, and set γ 0 = 1. If γ is of type (k, k) then γ j is of
type (jk, jk). Furthermore, for powers, (7.2.4) simplifies somewhat. In particular,
if γ is a (1, 1) double form, then it is easy to check from (7.2.4) that

γ j
((
u1, . . . , uj

)
,
(
v1, . . . , vj

)) = j ! det
(
γ (uk, v�)k,�=1,...,j

)
. (7.2.5)

Note that if γ is of the simple form α ⊗ β, then it follows from either the above or
directly from (7.2.3) that γ j ≡ 0 for all j > 1.
11 The notation of the example of footnote 9 should now be clear. The 1-tensor θj defined by

θj (v) = vj is in fact the j th basis element of V ∗ if V is given the usual basis {ej }Nj=1.

Thus, in view of the fact that B�∗(V ) is a basis for �∗(V ), the examples of tensors of order
2 and 3 that we built are actually archetypal.

12 The product is not commutative on all of�∗(V )⊗�∗(V ), since in general, forα ∈ �n,m(V )

and β ∈ �p,q(V ) we have α · β = (−1)np+mqβ · α.
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Trace of a double form
As described above, any inner product on V induces a corresponding inner product
on �∗(V ). Therefore, any inner product on V also induces a real-valued map on
�∗,∗(V ), called the trace, defined on tensors of the form γ = α ⊗ β ∈ �k,k by

Tr(γ ) = 〈α, β〉
and then extended by linearity to the remainder of �∗,∗(V ). Given an orthonormal
basis (v1, . . . , vN) of V , a simple calculation shows that for γ ∈ �k,k(V ), k ≥ 1, we
have the following rather useful expression for Tr:

Tr(γ ) = 1

k!
N∑

a1,...,ak=1

γ
(
(va1 , . . . , vak ), (va1 , . . . , vak )

)
. (7.2.6)

If γ ∈ �0,0(V ), then γ ∈ R and we define Tr(γ ) = γ . One can also check that
while the above seemingly depends on the choice of basis, the trace operator is, in
fact, basis-independent, a property generally referred to as invariance.

There is also a useful extension to (7.2.6) for powers of symmetric forms in
γ ∈ �1,1. Using (7.2.5) to compute γ j , and (7.2.6) to compute its trace, it is easy to
check that

Tr
(
γ j
)
= j ! detrj

(
γ
(
vi, vj

))
i,j=1,...,N , (7.2.7)

where for a matrix A,

detrj (A)
�= sum over all j × j principal minors of A. (7.2.8)

When there is more than one inner product space under consideration, say V1 and
V2, we shall denote their traces by TrV1 and TrV2 .

For a more complete description of the properties of traces, none of which we
shall need, you could try [64, Section 2]. This is not easy reading, but is worth the
effort.

A useful trace formula
To each γ ∈ �k,k(V ) there corresponds a linear map Tγ : �k(V ) → �k(V ). The
correspondence is unique, and so one can think of γ and Tγ as equivalent objects. To
define Tγ , take a basis element of �k(V ) of the form θi1 ∧ · · · ∧ θik (cf. (7.2.2)) and
define its image under Tγ by setting

Tγ (θi1 ∧ · · · ∧ θik )(w1, . . . , wk) = γ (vi1 , . . . , vik , w1, . . . , wk) (7.2.9)

and extending linearly to all of �k(V ).
It is a simple computation to check that if k = 1 and we write

I =
N∑
i=1

θi ⊗ θi, (7.2.10)
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then TI is the identity from �1(V ) to �1(V ). In general, TIk is the identity from
�k(V ) to �k(V ).

We shall have need of the following useful formula (cf. [64, p. 425]) in Part III
when we calculate the expected Euler characteristic of a Gaussian random field on
M . For γ ∈ �k,k(V ), and 0 ≤ j ≤ N − k,

Tr(γ I j ) = (N − k)!
(N − k − j)! Tr(γ ). (7.2.11)

Tensor bundles, differential forms, and Grassmann bundles
Having defined the tangent bundle T (M) and, for a fixed vector space V , the tensor
spaces T n

m(V ), �∗(V ), and �∗,∗(V ), it is a simple matter to define corresponding
tensor bundles over M .

The basic observation is that given a Ck manifold M and its tangent space TtM

with dual T ∗
t M , we can carry out constructions of tensors on V = TtM , at every

t ∈ M , exactly as we did in the previous section. Then, just as we defined vector
fields as maps t �→ Xt ∈ TtM , t ∈ M , we can define tensor fields, covariant tensor
fields, alternating covariant tensor fields, etc.

It is also quite simple to associate a differential structure with these objects,
following the argument at the end of Section 7.1. In particular, since tensor fields of
order (n,m) are determined, locally, in the same way that vector fields are defined, any
atlas {Ui, ϕi}i∈I for M determines13 a Ck−1 differential structure14 on the collection

T n
m(M)

�=
⋃
t∈M

T n
m(TtM),

which itself is called the tensor bundle of order (n,m) over M .
Constructing the Grassmann algebra on each TtM and taking the union

�∗(M)
�=
⋃
t∈M

�∗(TtM)

gives what is known as the Grassmann bundle of M . As was the case for vector
fields, one can define Cj , j ≤ k − 1, sections of �∗(M), and these are called the Cj

differential forms15 of mixed degree.
13 The finite dimensionality of spaces T n

m(TtM), noted earlier, is crucial to make this con-
struction work.

14 Included in this “differential structure’’is a set of rules describing how tensor fields transform
under transformations of the local coordinate systems, akin to what we had for simple vector
fields in (7.1.7).

In fact, there is a lot hidden in this seemingly simple sequence of constructions. In
particular, recall that at the beginning of our discussion of tensors we mentioned that the
tensors of applied mathematics and physics are defined via arrays that transform according
to very specific rules. However, nowhere in the path we have chosen have these demands
explicitly appeared. They are, however, implicit in the constructions that we have just
carried out.

15 The reason for the addition of the adjective “differential’’will be explained later; cf. (7.3.16)
and the discussion following it.
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Similarly, carrying out the same construction over the �k(TtM) gives the bundle
of (differential) k-forms on M , while carrying it out for �∗,∗(TtM) yields the bundle
of double (differential) forms on M .

7.3 Riemannian Manifolds

If you followed the footnotes while we were developing the notion of tensors, you
will have noted that we related them to the elementary notions of area and volume in
the simple Euclidean setting of M = RN . In general, of course, they are somewhat
more complicated. In fact, if you think back, we do not as yet even have a notion
of simple distance on M , let alone notions of volume. For this, we need to add a
Riemannian structure to the manifold.

Riemannian manifolds

Formally, a Ck−1 Riemannian metric g on a Ck manifold M is a Ck−1 section of
Sym(T 2

0 (M)) such that for each t in M , gt is positive definite; that is, gt (Xt ,Xt ) ≥ 0
for all t ∈ M and Xt ∈ TtM , with equality if and only if Xt = 0. Thus a Ck−1

Riemannian metric determines a family of smoothly (Ck−1) varying inner products
on the tangent spaces TtM .

A Ck manifold M together with a Ck−1 Riemannian metric g is called a Ck

Riemannian manifold (M, g).

Sphere and orthonormal frame bundles

The first thing that a Riemannian metric gives us is the length gt (Xt ,Xt ) of tangent
vectors Xt ∈ TtM , and this allows us to define two rather important fiber bundles.

The sphere bundle S(M) of (M, g) is the set of all unit tangent vectors of M , i.e.,
elements Xt ∈ T (M), for some t ∈ M , with gt (Xt ,Xt ) = 1. This is an example of a
bundle with fibers that are not vector spaces, since the fibers are the spheres S(TtM).

Another example is the orthonormal frame bundle, O(M), the set of all sets of N
unit tangent vectors (X1

t , . . . , X
N
t ) ofM such that (X1

t , . . . , X
N
t ) form an orthonormal

basis for TtM .

Geodesic metric induced by a Riemannian metric

Despite its name, a Riemannian metric is not a true metric on M . However, it does
induce a metric τg on M . Since g determines the length of a tangent vector, we can
define the length of a C1 curve c : [0, 1] → M by

L(c) =
∫
[0,1]

√
gt (c

′
t , c

′
t ) dt

and define the metric τg by

τg(s, t) = inf
c∈D1([0,1];M)(s,t)

L(c), (7.3.1)
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where D1([0, 1];M)(s,t) is the set of all piecewise C1 maps c : [0, 1] → M with
c(0) = s, c(1) = t . When the Riemannian metric g is unambiguous, we write τg
as τ .

A curve in M connecting two points s, t ∈ M , along which the infimum in (7.3.1)
is achieved, is called a geodesic connecting them. Geodesics need not be unique.

Gradient of f ∈ C1((M, g))

The gradient of f is the unique continuous vector field on M such that

gt (∇ft ,Xt ) = Xtf (7.3.2)

for every vector field X.

Differentiating vector fields: Connections on vector bundles

Differentiating vector fields is considerably more subtle on manifolds than in simple
Euclidean space, and since it is crucial to all that follows, we shall spend some time
discussing it. In fact, it is already a delicate issue if the manifoldM is a simple surface
in R3, and so we look at this case first.

Suppose X and Y are two vector fields, and we want to “differentiate’’ Y , at the
point t ∈ M , in the direction Xt . Following the usual procedure, we need to “move’’
a distance δ in the direction Xt and compute the limit of the ratios (Yt − Yt+δXt )/δ.
There are three problems here. The first is that there is no guarantee (and it will not
generally be the case) that t + δXt lies on M , so that Yt+δXt is not well defined. Thus
we have to find a way of “moving in the direction Xt ’’ while staying on M . This in
itself is not a problem, and can be achieved by moving along any C1 curve c with
c(0) = t, ċ(0) = Xt . Then, instead of Yt+δXt , which may not be well defined, we
consider Yc(δ), and so need to evaluate the limit

lim
δ→0

Yc(δ) − Yt

δ
. (7.3.3)

The second problem is thatYc(δ) ∈ Tc(δ)R
3 andYt ∈ TtR

3, so that the above difference
is also not well defined. However, fixing a basis for R3, we can use the natural
identifications of TtR3 and Tc(δ)R

3 with R3 to define the difference Yc(δ)−Yt and so,
under appropriate conditions on Y , to also define the limit in (7.3.3).

The third problem is clearest in the case in which Y is also a tangent vector field,
and for reasons that will become clearer later we decide that we would like a notion
of derivative that also yields a tangent vector in TtM . The above construction will
not necessarily do this, even when (7.3.3) exists and yields a vector in TtR

3. This
last problem can, however, be easily solved by projecting (using the natural basis for
TtR

3) the limit (7.3.3) onto TtM ⊂ TtR
3.

This solves the problem of differentiating vector fields when M is embedded in a
general Euclidean space, since there is really nothing special about dimension three
in the above construction. We shall denote the result of the above construction by

∇XY ≡ (∇XY)(t),
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and call it the covariant derivative16 of Y in the direction X. Note that unless the
surface M is flat, ∇XY(t) is quite different from the usual derivative XtYt . In partic-
ular, while ∇XY(t) ∈ TtM , the same is not generally true of XtYt . Furthermore, in
general, ∇XY �= ∇YX.

It is not trivial to extend the above construction to general manifolds, and so we
shall adopt a path of definition by characterization, rather than by construction. As
a first step, we define the notion of a (linear) connection on the tangent bundle of a
manifold M as a bilinear mapping

∇ : �q(T (M))× �k(T (M)) → �min(q,k−1)(T (M))

satisfying the following three properties:

∇ is linear over R in Y : (7.3.4)
∇X(aY1 + bY2) = a∇XY + b∇XY for a, b ∈ R,

∇ is linear over R in Y: (7.3.5)
∇fX1+gX2Y = f∇X1Y + g∇X2Y for f, g ∈ C1(M),

∇ satisfies the product rule: (7.3.6)
∇X(f Y ) = (Xf )Y + f∇XY for f ∈ C1(M).

It is easy to check that the covariant derivative we defined above for the Euclidean
setting satisfies all of the above three requirements. Furthermore, it is quite easy to
generate connections on a general manifold.

In particular, given a chart (U, ϕ) on an N -dimensional manifold M , suppose that
we have N3 functions {�k

ij : U → R}1≤i,j,k≤N . If, using the natural bases for the
TtM , we define

∇ ∂
∂xi

∂
∂xj

=
N∑
k=1

�k
ij

∂
∂xk

, (7.3.7)

and extend ∇ to T (M) × T (M) by linearity, then it is easy to check that the three
conditions required of a connection are satisfied on U . It is then standard fare to patch
charts together to construct a connection on the full manifold, given enough functions
�k
ij . In other words, if we can determine the �k

ij for a given connection, then we have
determined the connection. Note, however, that there is uniqueness here in only one
direction. It is clear that the �k

ij determine a connection. It is neither clear nor in
general true that on a given Riemannian manifold there is only one connection.

For uniqueness, we need to demand a little more. We start by noticing that the con-
struction we gave of the Euclidean connection, with its projection onto tangent spaces,
actually determines a unique set of �k

ij . This follows from properties (7.3.4)–(7.3.6),
the representation (7.3.7), and the following two consequences of the construction:
16 Hopefully, the double usage of ∇ for both gradient and the covariant derivative (and, soon,

the Riemannian connection) will not cause too many difficulties. Note that, like the gradient,
the connnection “knows’’ about the Riemannian metric g. The reason for this will become
clear soon.
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∇ ∂
∂xi

∂
∂xj

= ∇ ∂
∂xj

∂
∂xi

, (7.3.8)

∂
∂xi

〈
∂

∂xj
, ∂
∂xk

〉
=
〈
∇ ∂

∂xi

∂
∂xj

, ∂
∂xk

〉
+
〈
∇ ∂

∂xi

∂
∂xk

, ∂
∂xj

〉
, (7.3.9)

where 〈 , 〉 is the usual Euclidean inner product.
Indeed, the above two equations actually determine the connection that we con-

structed, without any need to go back to the construction. The connection resulting
from these equations is now called the Levi-Civitá connection for M . The advantage
of using these equations over our previous construction is that they do not depend on
the embedding of M in Rl and so present a purely “intrinsic’’ (to M) approach.

This approach also works for general C3 Riemannian manifolds (M, g), and
yields the Levi-Civitá connection determined by the following two conditions, which
extend (7.3.8) and (7.3.9) to the non-Euclidean scenario:

∇ is torsion-free, i.e., (7.3.10)
∇XY − ∇YX − [X, Y ] = 0;

∇ is compatible with the metric g, i.e., (7.3.11)
Xg(Y,Z) = g(∇XY,Z)+ g(∇XZ, Y ),

where [X, Y ]f = XYf − YXf is the so-called Lie bracket17 of the vector fields X
and Y .18

It is a matter of simple algebra to derive from (7.3.10) and (7.3.11) that for C1

vector fields X, Y,Z,

2g(∇XY,Z) = Xg(Y,Z)+ Yg(X,Z)− Zg(X, Y ) (7.3.12)

+ g(Z, [X, Y ])+ g(Y, [Z,X])+ g(X, [Z, Y ]).
This equation is known as Koszul’s formula. Its importance lies in the fact that the
right-hand side depends only on the metric g and differential-topological notions.
Consequently, it gives a coordinate-free formula that actually determines ∇.

Another way to determine the Levi-Civitá connection is via an extension of
(7.3.7), which was written in terms of the natural bases of the TtM . For this, we
need the notion of a Ck orthonormal frame field {Ei}1≤i≤N , which is a Ck section
of the orthonormal (with respect to g) frame bundle O(M). Then, given a connec-
tion ∇, an orthonormal frame field E on M , and defining N3 functions �k

ij by the
relationships

∇Ei
Ej = �k

ijEk, (7.3.13)

17 The Lie bracket measures the failure of partial derivatives to commute, and is always zero
in the Euclidean case.

18 Actually, (7.3.11) is a little misleading, and would be more consistent with what has gone
before if it were written as

Xtg(Yt , Zt ) = gt ((∇XY)t , Zt )+ gt (Yt , (∇XZ)t ).

The preponderence of t’s here is what leads to the shorthand of (7.3.11).
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determines the connection by setting

∇Ei
Ej =

N∑
k=1

�k
ijEk,

and extending by linearity. The functions �k
ij are known as the Christoffel symbols

(of the second kind) of the connection ∇ (with respect to the given orthonormal frame
field).

Yet another way to determine the Levi-Civitá connection, which is essentially a
rewriting of the previous paragraph, is to define a collection of N2 1-forms {θji }Ni,j=1,
known as connection forms, via the requirement that

∇XEi =
N∑
j=1

θ
j
i (X)Ej . (7.3.14)

Since the connection forms must satisfy

θ
j
i (X) = g

(∇XEi, Ej

)
,

the importance of Koszul’s formula for determining the connection is now clear. We
shall see in detail how to compute the θji for some examples in Section 7.7. In general,
they are determined by (7.3.19) below, in which {θi}1≤i≤N denotes the orthonormal
dual frame corresponding to {Ei}1≤i≤N . To understand (7.3.19) we need one more
concept, that of the (exterior) differential of a k-form.

If f : M → R is C1, then its exterior derivative or differential, df , is the 1-form
defined by

df (Eit ) = fi(t)
�= Eitf. (7.3.15)

Alternatively, df is just the push-forward of f : M → R. Consequently, we can
write df , using the dual frame, as

df =
N∑
i=1

fiθi .

If θ =∑N
i=1 hiθi is a 1-form, then its exterior derivative is the 2-form

dθ
�=

N∑
i=1

dhi ∧ θi . (7.3.16)

Note that the exterior derivative of a 0-form (i.e., a function) gave a 1-form, and
that of a 1-form gave a 2-form. There is a general notion of exterior differentiation,
which in general takes k-forms to (k + 1)-forms,19 but which we shall not need.
19 This is why we used the terminology of “differential forms’’ when discussing Grassmann

bundles at the end of Section 7.1.
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We do now, however, have enough to define the 1-forms θji of (7.3.14). They are
the unique set of N2 1-forms satisfying the following two requirements:

dθi −
N∑
j=1

θj ∧ θij = 0, (7.3.17)

θ
j
i + θij = 0. (7.3.18)

The Riemannian metric g is implicit in these equations in that, as usual, it determines
the notion of orthonormality and so the choice of the θi . In fact, (7.3.17) is a conse-
quence of the compatibility requirement (7.3.11), while (7.3.18) is a consequence of
the requirement (7.3.10) that the connection be torsion-free.

Since it will occasionally be useful, we note that (7.3.18) takes the following form
if the tangent frame and its dual are not taken to be orthonormal:

dgij =
N∑
k=1

(
θikgkj + θ

j
k gki

)
, (7.3.19)

where gij = (Ei, Ej ) = g(Ei, Ej ).
Finally, we note that if M = RN and g is the usual Euclidean inner product, then

it is easy to check that ∇XY is no more than the directional derivative of the vector
field Y in the directions given by X. In this case ∇XY is known as the flat connection,
and the Christoffel symbols are all identically zero.

Exponential map and geodesics
As we noted earlier, a geodesic from t to s on (M, g) is a curve that locally minimizes
arc length among all curves between t and s. It is straightforward to show that a
geodesic c : (−δ, δ) → M satisfies

∇ċ ċ = 0.

Hence, for every ċ(0) ∈ TtM , there is a unique geodesic leaving t in the direction
ċ(0)/|ċ(0)|, obtained by solving the above second-order differential equation.

This procedure is formalized by the exponential map

exp ≡ exp(M,g) : TtM → M (7.3.20)

of a Riemannian manifold (M, g), which sends a tangent vector Xt ∈ TtM to the
geodesic of length |Xt | in the direction Xt/|Xt |.

The exponential map also allows us to choose a special coordinate system for
charts. An orthonormal basis {Ei} for TtM gives an isomorphism E : RN → TtM

by E(x1, . . . , xN) = ∑
i xiEi . If U is a small enough neighborhood of t in M we

can use E to define the coordinate chart

ϕt
�= E−1 ◦ exp−1 : U → RN. (7.3.21)

Any such coordinates are called (Riemannian) normal coordinates centered at t .
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Hessian of f ∈ C2((M, g))

The (covariant) Hessian ∇2f of a function f ∈ C2(M) on a Riemannian manifold
(M, g) is the bilinear symmetric map from C1(T (M))× C1(T (M)) to C0(M) (i.e.,
it is a double differential form) defined by20

∇2f (X, Y )
�= XYf − ∇XYf = g(∇X∇f, Y ), (7.3.22)

where∇X is the Levi-Civitá connection of (M, g). The equality here is a consequence
of (7.3.11) and (7.3.2).

Note the obvious but important point that if t is such that ∇f (t) = 0,21 then
Xf (t) = 0 for all X ∈ TtM (cf. (7.3.2)), and so by (7.3.22) it follows that
∇2f (X, Y )(t) = XYf (t). Consequently, at these points the Hessian is indepen-
dent of the metric g.

7.4 Integration on Manifolds

We now have the tools and vocabulary to start making mathematical sense out of
our earlier comments linking tensors and differential forms to volume computations.
However, rather than computing only volumes, we shall need general measures over
manifolds. Since a manifold M is a locally compact topological space, there is
no problem defining measures over it, and by Riesz’s theorem, these are positive,
bounded linear functionals on C0

c (M), the c denoting compact support. This descrip-
tion, however, does not have much of a geometric flavor to it, and so we shall take a
different approach. The branch of mathematics of “adding a geometric flavor’’ to this
description is known, appropriately, as geometric measure theory. A user-friendly
introduction to this beautiful area of mathematics can be found in Morgan’s book
[115]. The definitive treatment, however, is still to be found in Federer’s treatise
[65]. We shall not, however, have need for much of this rather heavy machinery.

Integration of differential forms

Recall that for any two manifolds M and N , a C1 map g : M → N induces a
mapping g∗ : T (M) → T (N), referred to as the push-forward (cf. (7.1.3)). Just as g∗
replaces the chain rule of vector calculus, another related mapping g∗ : �∗(T (N)) →
�∗(T (M)), called the pullback, replaces the change of variables formula. Actually,
the pullback is more than just a generalization of the change of variables formula,
although for our purposes it will suffice to think of it that way. We define g∗ on
(k, 0)-tensors by

20 ∇2f could also have been defined to be ∇(∇f ), in which case the first relationship in
(7.3.22) becomes a consequence rather than a definition. Recall that in the simple Euclidean
case the Hessian is defined to the N × N matrix Hf = (∂2f/∂xi∂xj )

N
i,j=1. Using Hf to

define the two-form ∇2f (X, Y ) = XHf Y
′, (7.3.22) follows from simple calculus.

21 These are the critical points of f , and will play a central role in the Morse theory of Chapter 9
and throughout Part III.
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(g∗α)(X1, . . . , Xk)
�= α(g∗X1, . . . , g∗Xk). (7.4.1)

The pullback has many desirable properties, the main ones being that it commutes
with both the wedge product of forms and the exterior derivative d (cf. (7.3.16)).

With the notion of a pullback defined, we can add one more small piece of nota-
tion. Take a chart (U, ϕ) of M , and recall the notation of (7.1.5) in which we used
{∂/∂xi}1≤i≤N to denote both the natural Euclidean basis ofϕ(U) and its push-forward
to T (U). We now do the same with the notation{

dx1, . . . , dxN
}
, (7.4.2)

which we use to denote both the natural dual coordinate basis in RN (so that dxi(v) =
vi) and its pullback under ϕ.

Now we can start defining integration, all of which hinges on a single definition:
If A ⊂ RN , and f : A → R is Lebesgue integrable over A, then we define∫

A

f dx1 ∧ · · · ∧ dxN
�=
∫
A

f (x) dx, (7.4.3)

where {dxi}1≤i≤N , as above, is the natural dual coordinate basis in RN , and the
right-hand side is simply Lebesgue integration.

Since the wedge products in the left-hand side of (7.4.3) generate all N -forms on
RN (cf. (7.2.2)), this and additivity solves the problem of integrating N -forms on RN

in full generality.
Now we turn to manifolds. For a given chart, (U, ϕ), and an N -form α on U , we

define the integral of α over V ⊂ U as∫
V

α
�=
∫
ϕ(V )

(
ϕ−1

)∗
α, (7.4.4)

where the right-hand side is defined by virtue of (7.4.3).
To extend the integral beyond single charts, we require a new condition, that of

orientability. A Ck manifold M is said to be orientable if there is there is an atlas
{Ui, ϕi}i∈I forM such that for any pair of charts (Ui, ϕi), (Uj , ϕj )with Ui∩Uj �= ∅,
the Jacobian of the map ϕi ◦ϕ−1

j has a positive determinant. For orientable manifolds
it is straightforward to extend the integral (7.4.4) to general domains by additivity.
This leads to the notion of an integrable N -form, essentially any N -form for which
(7.4.4) can be extended to all of M as a σ -finite signed measure. In particular, every
integrable form α determines such a measure, μα say, by setting

μα(A) =
∫
A

α. (7.4.5)

Given an oriented manifold M with atlas as above, one can also define the notion
of an oriented (orthonormal) frame field over M . This is a C0 (orthonormal) frame
field {E1t , . . . , ENt } over M for which, for each chart (U, ϕ) in the atlas, and at each
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t ∈ U , the push-forward {ϕ∗E1t , . . . , ϕ∗ENt } can be transformed to the standard
basis of RN via a transformation with positive determinant.

Given an oriented orthonormal frame field, there is a unique volume form, which
we denote either by � or by Volg , the latter if we want to emphasize the dependence
on the metric g, which plays the role of Lebesgue measure on M and which is defined
by the requirement that

(Volg)t (E1t , . . . , ENt ) ≡ �t(E1t , . . . , ENt ) = +1. (7.4.6)

From this, and the fact that � is a differential form, it follows that for Xi ∈ TtM ,

(Volg)t (X1, . . . , Xn) = det({gt (Xi, Ejt )}1≤i,j≤N). (7.4.7)

The integral of � is comparatively easy to compute. For a fixed (oriented) chart
(U, ϕ), with natural basis {∂/∂xi}1≤i≤N , write

gij (t) = gt

(
∂

∂xi
,

∂

∂xj

)
, (7.4.8)

where g is the Riemannian metric. This determines, for each t , a positive definite
matrix (gij (t))1≤i,j≤N . Then, for A ⊂ U ,∫

A

� ≡
∫
ϕ(A)

(ϕ−1)∗� (7.4.9)

=
∫
ϕ(A)

√
det(gij ◦ ϕ−1) dx1 ∧ · · · ∧ dxN

=
∫
ϕ(A)

√
det(gij ◦ ϕ−1) dx,

where the crucial intermediate term comes from (7.4.3)–(7.4.8) and some algebra.
Under orientability, both this integral and that in (7.4.4) can be extended to larger

subsets of M by additivity.22 This yields a σ -finite measure μ� associated to �,
called Riemannian measure, which, with some doubling up of notation, we shall also
write as Volg when convenient.

For obvious reasons, we shall often write the volume form � as dx1 ∧· · ·∧ dxN ,
where the 1-forms dxi are the (dual) basis of T ∗(M).

An important point to note is that Volg agrees with the N -dimensional Hausdorff
measure23 associated with the metric τ induced by g, and so we shall also often write

22 The last line of (7.4.9), when written out in longhand, should be familiar to most readers as
an extension of the formula giving the “surface area’’ of a regular N -dimensional surface.
The extension lies in the fact that an arbitrary Riemannian metric now appears, whereas in
the familiar case there is only one natural candidate for g.

23 If M is an N -dimensional manifold, treat (M, τ) as a metric space, where τ is the geodesic
metric given by (7.3.1). The diameter of a set S ⊂ M is then diam(S) = sup{τ(s, t) : s, t ∈
S}, and for integral n, the Hausdorff n-measure of A ⊂ M is defined by
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it as HN . In this case we shall usually write integrals as
∫
M
h(t) dHN(t) rather than∫

M
hHN , which would be more consistent with our notation so far.
We now return to the issue of orientability. In setting up the volume form �, we

first fixed an orthonormal frame field and then demanded that �t(E1t , . . . , ENt ) =
+1 for all t ∈ M (cf. (7.4.6)). We shall denote M , along with this orientation, by
M+. However, there is another orientation of M for which � = −1 when evaluated
on the orthonormal basis. We write this manifold as M−. On an orientable manifold,
there are only two such possibilities.

In fact, it is not just � that can be used to determine an orientation. Any non-
vanishing continuous N -form α on an orientable manifold can be used to determine
one of two orientations, with the orientation being determined by the sign of α on the
orthonormal basis at any point on M . We can thus talk about the “orientation induced
by α.’’

With an analogue for Lebesgue measure in hand, we can set up the analogues of
Borel measurability and (Lebesgue) integrability in the usual ways. Furthermore, it
follows from (7.4.3) that there is an inherent smoothness24 in the above construction.
In particular, if M is compact, then for any continuous, nonvanishing N -form α that
induces the same orientation onM as does�, there is an�-integrable function dα/d�
for which ∫

M

α =
∫
M

dα

d�
�.

For obvious reasons, dα/d� is called the Radon–Nikodym derivative of α.
From now on, and without further comment, we shall assume that all manifolds in

this book are orientable, and the frame fields and orientation chosen so as the make
the volume form positive.

Coarea formula

The following important result, due to Federer [64] and known as his coarea formula,
allows us to break up integrals over manifolds into iterated integrals over submanifolds
of lower dimension. Consider a differentiable map f : M → N between two

Hn(A)
�= ωn2−n lim

ε↓0
inf
∑
i

(diam Bi)
n,

where for each ε > 0, the infimum is taken over all collections {Bi} of open τ -balls in M

whose union covers A and for which diam(Bi) ≤ ε. As usual, ωn is the volume of the unit
ball in R

n. For the moment, we need only the case n = N . When both are defined, and the
underlying metric is Euclidean, Hausdorff and Lebesgue measures agree.

Later we shall need a related concept, that of Hausdorff dimension. If A ⊂ M , the
Hausdorff dimension of A is defined as

dim(A)
�= inf

{
α : lim

ε↓0
inf
∑
i

(diam Bi)
α = 0

}
,

where the conditions on the infimum and the Bi are as above.
24 This smoothness implies, for example, that N -forms cannot be supported, as measures, on

lower-dimensional submanifolds of M .
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Riemannian manifolds, with m = dim(M) ≥ n = dim(N). At each t ∈ M its
push-forward, f∗(t), is a linear map between two Hilbert spaces and can be written as

n∑
j=1

θ̃j (f (t))

m∑
i=1

A
f
ij (t)θi(t) (7.4.10)

for orthonormal bases {θj (t)}mi=1 of (TtM)∗ and {θ̃j (f (t))}nj=1 of Tf (t)N .

Writing {∂/∂t1, . . . , ∂/∂tm} for the corresponding basis of TtM , the A
f
ij are

given by

A
f
ij (t) = (∂/∂ti)fj (t). (7.4.11)

Similarly, the pullback f ∗, evaluated at t ∈ M , is a linear map from �∗(Tf (t)N)

to �∗(TtM). If we restrict f ∗(t) to �n(Tf (t)N), it can be identified with an element
in the linear span of �n(Tf (t)N)×�n(TtM).

Both the push-forward and the pullback share the same norm, which we write as
Jf (t) and which can be calculated by taking the square root of the sum of squares of
the determinants of the n × n minors of the matrix Af of (7.4.10). Alternatively, it
is given by

Jf (t)
�=
√

det
(〈∇fi(t),∇fj (t)〉

)
. (7.4.12)

Federer’s coarea formula [64] states that for differentiable25 f and for g ∈
L1(M,B(M),Hm),∫

M

g(t)Jf (t) dHm(t) =
∫
N

dHn(u)

∫
f−1(u)

g(s) dHm−n(s). (7.4.13)

Simplifying matters a little bit, consider two special cases. If M = RN and
N = R, it is easy to see that Jf = |∇f |, so that∫

RN

g(t)|∇f (t)| dt =
∫

R

du

∫
f−1{u}

g(s) dHN−1(s). (7.4.14)

There is not a great deal of simplification in this case beyond the fact that it is
easy to see what the functional J is. On the other hand, if M = N = RN , then
Jf = | det ∇f |, and∫

RN

g(t)| det ∇f (t)| dt =
∫

RN

du

∫
f−1{u}

g(s) dH0(s) (7.4.15)

=
∫

RN

⎛⎝ ∑
t :f (t)=u

g(t)

⎞⎠ du.

We shall return to (7.4.15) in Section 11.4 and to the coarea formula in general in
Chapter 15, where it will play a very important role in our calculations.
25 Federer’s setting is actually somewhat more general than this, since he works with Lipschitz

mappings. In doing so he replaces derivatives with “approximate derivatives’’ throughout.
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7.5 Curvature

We now come to what is probably the most central of all concepts in differential ge-
ometry, that of curvature. In essence, much of what we have done so far in developing
the calculus of manifolds can be seen as no more than setting up the basic tools for
handling the ideas to follow.

Curvature is the essence that makes the local properties of manifolds inherently
different from simple Euclidean space, where curvature is always zero. Since there
are many very different manifolds, and many different Riemannian metrics, there are
a number of ways to measure curvature. In particular, curvature can be measured
in a somewhat richer fashion for manifolds embedded in ambient spaces of higher
dimension than it can for manifolds for which no such embedding is given.26 A
simple example of this is given in Figure 7.5.1, where you should think of the left-
hand circle S1 as being embedded in the plane, while the right-hand circle exists
without any embedding. In the embedded case there are notions of “up’’and “down,’’
with the two arrows at the top and bottom of the circle pointing “up.’’ In one case the
circle curves “away’’ from the arrow, in the other, “toward’’ it, so that any reasonable
treatment of curvature has to be able to handle this difference. However, for the
nonembedded case, in which there is nothing external to the circle, the curvature
must be the same everywhere. In what follows, we shall capture the first, richer,
notion of curvature via the second fundamental form of the manifold, and the second
via its curvature tensor, which is related to the second fundamental form, when both
are defined, via the Gauss equation (7.5.9) below.

Fig. 7.5.1. Embedded and intrinsic circles.

26 We have used this term often already, albeit in a descriptive sense. The time has come to
define it properly: Suppose f : M → M̂ is C1. Take t ∈ M and charts (U, ϕ) and (V ,ψ)

containing t and f (t), respectively. The rank of f at t is defined to be the rank of the
mapping ψ ◦ f ◦ ϕ−1 : ϕ(U) → ψ(V ) between Euclidean spaces. If f is everywhere
of rank dim M , then it is called an immersion. If dim M = dim M̂ , then it is called a
submersion. Note that this is a purely local property of M .

If, furthermore, f is a one-to-one homeomorphism of M onto its image f (M) (with its
topology as a subset of M̂), then we call f an embedding of M in M̂ and refer to M as an
embedded (sub)manifold and to M̂ as the ambient manifold. This is a global property, and
amounts to the fact that M cannot “intersect’’ itself on M̂ .

Finally, let M and M̂ be Riemannian manifolds with metrics g and ĝ, respectively. Then
we say that (M, g) is an isometrically embedded Riemannian manifold of (M̂, ĝ) if, in
addition to the above, g = f ∗ĝ, where f ∗ĝ is the pullback of ĝ (cf. (7.4.1)).
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Riemannian curvature tensor

We start with the (Riemannian) curvature tensor. While less informative than the
second fundamental form, the fact that it is intrinsic (i.e., it is uniquely determined
by the Riemannian metric) actually makes it a more central concept to Riemannian
geometry.

Much in the same way that the Lie bracket [X, Y ] = XY−YXmeasures the failure
of partial derivatives to commute, the Riemannian curvature tensor, R, measures the
failure of covariant derivatives to commute. A relatively simple computation shows
that for vector fields X, Y it is not generally true that ∇X∇Y −∇Y∇X = 0. However,
rather than taking this difference as a measure of curvature, to ensure linearity, it is
convenient to define the (Riemannian) curvature operator27 as

R(X, Y )
�= ∇X∇Y − ∇Y∇X − ∇[X,Y ]. (7.5.1)

Note that if [X, Y ] = 0, as is the case when Xt and Yt are coordinate vectors in the
natural basis of some chart, then R(X, Y ) = ∇X∇Y − ∇Y∇X, and so the operator R
is the first measure of lack of commutativity of ∇X and ∇Y mentioned above.

The (Riemannian) curvature tensor, also denoted by R, is defined by

R(X, Y,Z,W)
�= g

(∇X∇YZ − ∇Y∇XZ − ∇[X,Y ]Z, W
)

(7.5.2)

= g(R(X, Y )Z, W),

where the R in the second line is, obviously, the curvature operator. It is easy to check
that for RN , equipped with the standard Euclidean metric, R ≡ 0.28

The definition (7.5.2) of R is not terribly illuminating, although one can read it
as “the amount, in terms of g and in the direction W , by which ∇X and ∇Y fail to
commute when applied to Z.’’ To get a better idea of what is going on, it is useful to
think of planar sections of TtM .

For any t ∈ M , we call the span of two linearly independent vectorsXt, Yt ∈ TtM

the planar section spanned by Xt and Yt , and denote it by π(Xt , Yt ). Such a planar
section is determined by any pair of orthonormal vectors E1t , E2t in π(Xt , Yt ), and

κ(π)
�= −R (E1t , E2t , E1t , E2t ) = R (E1t , E2t , E2t , E1t ) (7.5.3)

is called the sectional curvature of the planar section. It is independent of the choice of
basis. Sectional curvatures are somewhat easier to understand than the curvature ten-
sor, but essentially equivalent, since it is easy to check from the symmetry properties
of the curvature tensor that it is uniquely determined by the sectional curvatures.

We shall later need a further representation of R, somewhat reminiscent of the
representation (7.3.14) for the Riemannian connection. The way that R was defined

27 Note that the curvature operator depends on the underlying Riemannian metric g via the
dependence of the connection on g.

28 Manifolds for which R ≡ 0 are called flat spaces. However, not only Euclidean space is
flat. It is easy to check, for example, that the cylinder S1 × R is also flat when considered
as a manifold embedded in R

3 with the usual Euclidean metric.
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in (7.5.2) shows that it is clearly a covariant tensor of order 4. However, it is not
a difficult computation, based on (7.3.14), to see that it can also be expressed as a
symmetric double form of order (2, 2). In particular, if g is C2 and {θi}1≤i≤N is the
dual of a C2 orthonormal frame field, then R ∈ C0(�2,2(M)), and we can write

R = 1

2

N∑
i,j=1

�ij ⊗ (θi ∧ θj
)
, (7.5.4)

where the �ij are skew-symmetric C0 differential 2-forms (�ij = −�ji) known as
the curvature forms for the section {Ei}1≤i≤N and are defined by

�ij (X, Y ) = R
(
Ei,Ej ,X, Y

)
(7.5.5)

for vector fields X, Y .

Projection formula

Although it is more a result from linear algebra than differential geometry, since we are
about to start talking about projections, and these will appear frequently throughout
the book, we recall the following:

Suppose v is an element in a vector space V with inner product 〈·, ·〉, and
w1, . . . , wn are vectors in V . Then the projection of v onto the span of the wj is
given by

Pspan(w1,...,wn)v =
n∑

i,j=1

〈wi, v〉gijwj , (7.5.6)

where the gij are the elements of G−1, and G is the matrix with elements gij =
〈wi,wj 〉.

Second fundamental form

Let (M, g) be a Riemannian manifold embedded in an ambient Riemannian manifold
(M̂, ĝ) of codimension29 at least one. Write ∇ for the Levi-Civitá connection on M

and ∇̂ for the Levi-Civitá connection on M̂ . If t ∈ M , then the normal space to M

in M̂ at t is

T ⊥
t M

�= {Xt ∈ TtM̂ : ĝt (Xt , Yt ) = 0 for all Yt ∈ TtM}, (7.5.7)

and we also write T ⊥(M) = ⋃
t T

⊥
t M . Note that since TtM̂ = TtM ⊕ T ⊥

t M for
each t ∈ M , it makes sense to talk about tangential and normal components of an
element of TtM̂ and so of the orthogonal projections

PT (M) : π−1
M̂

M → T (M), P⊥
T (M) : π−1

M̂
M → T ⊥(M),

29 The codimension of M in M̂ is dim(M̂)−dim(M).
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where πM̂ is the canonical projection on the tangent bundle T (M̂), and T (M) and
T ⊥(M) are embedded subbundles of T (M̂).

The second fundamental form of M in M̂ can now be defined to be the operator
S from T (M)× T (M) to T ⊥(M) satisfying

S(X, Y )
�= P⊥

T (M)

(∇̂XY
) = ∇̂XY − ∇XY, (7.5.8)

where the equality here is known as Gauss’s formula.
When (M, g) isometrically embedded in (M̂, ĝ) there is a useful relation between

the second fundamental form and the curvature tensors R of (M, g) and R̂ of (M̂, ĝ),
known as the Gauss equation, and given by

ĝ(S(X,Z), S(Y,W))− ĝ(S(X,W), S(Y,W)) (7.5.9)

= 2
(
R̂(X, Y, Z,W)− R(X, Y,Z,W)

)
.

In the special case that M̂ is a manifold with smooth boundary ∂M̂ = M , the above
simplifies to

S2((X, Y ), (Z,W)) = −2
(
R∂M̂(X, Y,Z,W)− RM̂(X, Y,Z,W)

)
. (7.5.10)

Now let ν denote a unit normal vector field on M , so that νt ∈ T ⊥
t M for all

t ∈ M . Then the scalar second fundamental form of M in M̂ for ν is defined, for
X, Y ∈ T (M), by

Sν(X, Y )
�= ĝ (S(X, Y ), ν) , (7.5.11)

where the internal S on the right-hand side refers to the second fundamental form
(7.5.8). Note that despite its name, the scalar fundamental form is not a differential
form, since it is symmetric (rather than alternating) in its arguments. When there is
no possibility of confusion we shall drop the qualifier “scalar’’ and refer also to Sν as
the second fundamental form.

In view of the fact that ∇̂ is compatible with the metric g (cf. (7.3.11)), we also
have the so-called Weingarten equation that for X, Y ∈ T (M) is given by

Sν(X, Y ) = ĝ(∇̂XY, ν) = −ĝ(Y, ∇̂Xν). (7.5.12)

As we already noted, Sν is a symmetric 2-tensor, so that as for the curvature
tensor, we can view it as a symmetric section of �∗,∗(M). As such, it contains a lot
of information about the embedding of M in M̂ and thus curvature information about
M itself. For example, fix ν and, doubling up a little on notation, use the second
fundamental form to define an operator Sν : T (M) → T (M) by

ĝ(Sν(X), Y )
�= Sν(X, Y ),

for all Y ∈ T (M). Then Sν is known as the shape operator. It hasN real eigenvalues,
known as the principal curvatures of M in the direction ν, and the corresponding
eigenvectors are known as the principal curvature vectors.
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All of the above becomes quite familiar and particularly useful if M is a simple
surface determined by the graph of f : RN → R, with the usual Euclidean met-
ric. In this case, the principal curvatures are simply the eigenvalues of the Hessian
(∂2f/∂xi∂xj )

N
i,j=1 (cf. (7.3.22)). In particular, if (M, g) is a surface in R3 with the

induced Euclidean metric, then the product of these eigenvalues is known as Gauss-
ian curvature and it is Gauss’s Theorema Egregium that it is an isometry invariant of
(M, g), i.e., it is independent of the embedding of M in R3. In the next section we
shall see that the Gaussian curvature is not unique as far as isometric invariance goes
and that there are also other invariants, which can be obtained as integrals of mixed
powers of curvature and second fundamental forms over manifolds.

7.6 Intrinsic Volumes for Riemannian Manifolds

In Section 6.3, in the context of integral geometry, we described the notions of intrinsic
volumes and Minkowski functionals and how they could be used, via Steiner’s formula
(6.3.3), to find an expression for the tube around a convex Euclidean set. In Chapter 10
we shall extend these results considerably, looking at tubes around submanifolds of
some larger manifold. In doing so we shall encounter extensions of intrinsic volumes
known as Lipschitz–Killing curvatures, and study them in some depth.

However, while the detailed calculations of Chapter 10 are not needed for Part III,
the same is not true of Lipschitz–Killing curvatures, which will have a crucial role to
play there. Hence we define them now, with no further motivation.

Let (M, g) be a C2 Riemannian manifold. For each t ∈ M , the Riemannian
curvature tensor Rt given by (7.5.2) is in �2,2(TtM), so that for j ≤ dim(M)/2 it
makes sense to talk about the j th power Rj

t of Rt . We can also take the trace

TrM(Rj )(t)
�= TrTtM(R

j
t ).

Integrating these powers over M gives the Lipschitz–Killing curvature measures of
(M, g) defined, for measurable subsets U of M , by

Lj (M,U) =
⎧⎨⎩

(−2π)−(N−j)/2(
N−j

2

)
!

∫
U

TrM(R(N−j)/2)Volg if N − j is even,

0 if N − j is odd.
(7.6.1)

The Lipschitz–Killing curvature, or intrinsic volume, of (M, g) is defined as

Lj (M) = Lj (M,M). (7.6.2)

While (7.6.1) is a tidy formula, the integral is not always easy to compute. Perhaps
the easiest example is given by the Lipschitz–Killing curvatures of SN , which you
should be able to compute directly from (7.6.1). We shall carry out the computation
at the end of the following section, after having looked a little more carefully at some
of the components making up the trace in the integrand.
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7.7 A Euclidean Example

We close this chapter with what might be considered a “concrete’’ example, taking as
our manifold M a compact C2 domain in RN endowed with a Riemannian metric g.
We shall show how to explicitly compute both the curvature tensor R and the second
fundamental form S, as well as traces of their powers. This section can be skipped
on first reading, although you will probably want to come back to it once we start
looking at specific examples in later chapters.

Christoffel symbols
We first met Christoffel symbols back in Section 7.3, where we used them to motivate
the construction of Riemannian connections. Now, however, we want to work in the
opposite direction. That is, given M and g, which uniquely define a Levi-Civitá
connection, we want to represent this connection in a form conducive to performing
computations. In doing this we shall recover the Christoffel symbols of Section 7.3
as well as develop a related class of symbols.

We start with {Ei}1≤i≤N , the standard30 coordinate vector fields on RN . This
also gives the natural basis in the global chart (RN, i), where i is the inclusion map.
We now define31 the so-called Christoffel symbols of the first kind of ∇,

�ijk
�= g(∇Ei

Ej , Ek), 1 ≤ i, j, k ≤ N. (7.7.1)

We further define

gij = g(Ei, Ej ). (7.7.2)

Despite the possibility of some confusion, we also denote the corresponding matrix
function by g = (gij )

N
i,j=1, doubling up on the notation for the metric.

With this notation it now follows via a number of successive applications of
(7.3.10) and (7.3.11) that

�ijk = (
Ejgik − Ekgij + Eigjk

)
/2. (7.7.3)

We need two more pieces of notation, the elements gij of the inverse matrix g−1

and the Christoffel symbols of the second kind of ∇, defined by

�k
ij =

N∑
s=1

gks�ijs .

30 Note that while theEi might be “standard,’’ there is no reason why they should be the “right’’
coordinate system to use for a given g. In particular, they are no longer orthonormal, since
gij of (7.7.2) need not be a Kronecker delta. Thus, although we start here, we shall soon
leave this choice of basis for an orthonormal one.

31 An alternative, and somewhat better motivated, definition of the �ijk comes by taking the
vector fields {Ei} to be orthonormal with respect to the metric g. In that case, they can
be defined via their role in determining the Riemannian connection through the set of N2

equations ∇Ei
Ej =∑N

k=1 �ijkEk. Taking this as a definition, it is easy to see that (7.7.1)
must also hold. In general, the Christoffel symbols are dependent on the choice of basis.
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Riemannian curvature
With the definitions above, it is now an easy and standard exercise to show that if the
metric g is C2, then

RE
ijkl

�= R((Ei, Ej ), (Ek, El)) (7.7.4)

=
N∑
s=1

[
gsl
(
Ei

(
�s
jk

)− Ej

(
�s
ik

))+ �isl�
s
jk − �jsl�

s
ik

]
= Ei�jkl − Ej�ikl +

N∑
s,t=1

(
�iksg

st�jlt − �jksg
st�ilt

)
.

Returning to the definition of the curvature tensor, and writing {dei}1≤i≤N for the
dual basis of {Ei}1≤i≤N , it now follows (after some algebra) that the curvature tensor
itself can be written as

R = 1

4

N∑
i,j,k,l=1

RE
ijkl(dei ∧ dej )⊗ (dek ∧ del). (7.7.5)

Next, we express the curvature tensor in an orthonormal frame field. To this end,
let X = {Xi}1≤i≤N be a section of the orthonormal frame bundle O(M), having dual
frames {θi}1≤i≤N , so that

θi =
N∑

i′=1

g
1
2
ii′ dei′ , (7.7.6)

where g
1
2 is given by

(g
1
2 )ij = g(Ei,Xj )

and the notation comes from the easily verified fact that g
1
2 (g

1
2 )′ = g, so that g

1
2 is

a square root of g.
It follows that

R = 1

4

N∑
i,j,k,l=1

RX
ijkl(θi ∧ θj )⊗ (θk ∧ θl), (7.7.7)

where

RX
ijkl =

N∑
i′,j ′,k′,l′=1

RE
i′j ′k′l′g

− 1
2

ii′ g
− 1

2
jj ′ g

− 1
2

kk′ g
− 1

2
ll′ = R

(
(Xi,Xj ), (Xk,Xl)

)
,

and you are free to interpret the g
− 1

2
ij as either the elements of (g

1
2 )−1 or of a square

root of g−1.
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In (7.7.7) we now have a quite computable representation of the curvature tensor
for any orthonormal basis. Given this, we also have the curvature forms �ij (X, Y ) =
R
(
Ei,Ej ,X, Y

)
of (7.5.4), and so, via (7.5.5), we can rewrite the curvature tensor as

R = 1

2
�ij ⊗ (θi ∧ θj

)
.

With the product and general notation of (7.2.4) we can thus write Rk as

Rk = 1

2k

N∑
i1,...,i2k=1

(∧k
l=1�i2l−1i2l

)
⊗
(∧k

l=1(θi2l−1 ∧ θi2l )
)
,

where ∧k
l=1�i2l−1i2l (Xa1 , . . . , Xa2k )

= 1

2k
∑

σ∈S(2k)
εσ

k∏
l=1

�i2l i2l−1(Xaσ(2l−1) , Xaσ(2l) )

= 1

2k
∑

σ∈S(2k)
εσ

k∏
l=1

RX
i2l−1i2laσ(2l−1)aσ(2l)

.

It follows that

Rk
(
(Xa1 , . . . , Xa2k ), (Xa1 , . . . , Xa2k )

)
= 1

22k

N∑
i1,...,i2k=1

δ
(a1,...,a2k)
(i1,...,i2k)

⎛⎝ ∑
σ∈S(2k)

εσ

k∏
l=1

RX
i2l−1i2laσ(2l−1)aσ(2l)

⎞⎠ ,

where for all m,

δ
(c1,...,cm)
(b1,...,bm)

=
{
εσ if c = σ(b), for some σ ∈ S(m),

0 otherwise.

We are finally in a position to write down an expression for the trace of Rk , as
defined by (7.2.6):

Tr(Rk) = 1

(2k)!
N∑

a1,...,a2k=1

Rk
(
(Xa1 , . . . , Xa2k ), (Xa1 , . . . , Xa2k )

)
(7.7.8)

= 1

22k

n∑
a1,...,a2k=1

⎛⎝ ∑
σ∈S(2k)

εσ

k∏
l=1

RX
a2l−1a2laσ(2l−1)aσ(2l)

⎞⎠ .

This is the equation we have been searching for to give a “concrete’’ example of
the general theory.
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A little thought will show that while the above was presented as an example of
a computation on RN , it is, in fact, far more general. Indeed, you can reread the
above, replacing RN by a general manifold and the Ei by a family of local coordinate
systems that are in some sense “natural’’ for computations. Then (7.7.8) still holds,
as do all the equations leading up to it. Thus the title of this section is somewhat of a
misnomer, since the computations actually have nothing to do with Euclidean spaces!

The Lipschitz–Killing curvatures of SN−1
λ

We can now take a moment to look at the very familiar example of SN−1
λ , the sphere

of radius λ in RN , and compute its Lipschitz–Killing curvatures from what we have
just established.

In Chapter 6 we already computed what we called there the intrinsic volumes32

SN−1
λ . These were given by (6.3.8) as

Lj

(
SN−1
λ

)
= 2

(
N − 1

j

)
sN

sN−j

λj (7.7.9)

if N − 1 − j is even, and 0 otherwise. The argument that led to this was integral-
geometric, and involved no more than knowing how to compute the volume of N
balls and some trivial algebra.

We shall now rederive this from the integral (7.6.1) but shall have to work a little
harder. The advantage, of course, is that while the harder calculation generalizes to
more complex cases, the simple one does not.

Since it well known that SN−1
λ has constant curvature, the trace in (7.6.1) is

constant. Furthermore, since the volume element there is simply spherical measure,
it is immediate that (7.6.1) reduces to

Lj

(
SN−1
λ

)
= (−2π)−(N−1−j)/2(

N−1−j
2

)
!

λN−1sN TrS
N−1
λ

(
R
(N−1−j)/2
t

)

when N − 1 − j = 0, and zero otherwise. Here t is any point on SN−1
λ . Thus, all

we need to do is compute the trace. We shall indicate how to do this, and leave the
remaining algebra needed to obtain (7.7.9) to you.

The key point to note is that if X, Y,U, V are unit vectors in TtS
N−1
λ , then

R(X, Y,U, V ) =

⎧⎪⎨⎪⎩
−λ−2, (X, Y ) = (U, V ),

λ−2, (X, Y ) = (V ,U),

0 otherwise.

(7.7.10)

This can be checked, for example, by taking a parametric representation of SN−1
λ to

compute the Christoffel symbols of the first kind of (7.7.1) as the first step of the
32 We have not really shown that the integral-geometric intrinsic volumes of Chapter 6 are

the same as those that arise from differential-geometric considerations, of this and later
chapters. That this in indeed the case is nontrivial to establish in general. The current
calculation at least shows equivalence for SN−1

λ .
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computations described above. Alternatively, at least for the nonzero cases, you can
use the “well-known’’ (and easily checkable) result that the curvature of S2

λ is λ−2

and then use (7.5.3) to go from two to general dimensions.
Once we have (7.7.10), then (7.7.8) and a little counting gives

Tr
(
Rk
)
= (−1)kλ−2k2−k (N − 1)!

(N − 1 − 2k)! .

This, along with some more algebra, will yield (7.7.9), as required.

Second fundamental form
We close this chapter by doing for the scalar second fundamental form Sν what we did
for Riemannian curvature above and also going a little further, deriving an expression
for the trace of mixed powers of the form RkS

j
ν , (j ≤ N − 2k) on ∂M . We shall

need these soon for computing the Lipschitz–Killing curvatures of manifolds with
boundaries (cf. (10.7.1)).

We start much as we did for the curvature tensor, by choosing a convenient set of
bases. However, this time the “natural’’ Euclidean basis is no longer natural, since
our primary task is to parameterize the surface ∂M in a convenient fashion.

Thus, this time we start with {E∗
i }1≤i≤N−1, the natural basis determined by some

atlas on ∂M . This generates T (∂M). It is then straightforward to enlarge this to a
section E∗ = {E∗

i }1≤i≤N of S(M), the sphere bundle of M , in such a way that on
∂M , we have E∗

N = ν, the inward-pointing unit normal vector field on ∂M .
It then follows from the definition of the scalar second fundamental form (cf.

(7.5.11)) that

Sν =
N−1∑
i=1

γiN ⊗ de∗i , (7.7.11)

where, by (7.5.12), the connection forms γij (on RN ) satisfy

γij (Y ) = g(∇YE
∗
i , E

∗
j ). (7.7.12)

If we now define �∗
ijk = g(∇E∗

i
E∗
j , E

∗
k ), then the connection forms γiN can be

expressed33 as
33 It is often possible to write things in a format that is computationally more convenient. In

particular, if the metric is Euclidean and if it is possible to explicitly determine functions
aij , such that

E∗
it =

N∑
k=1

aik(t)Ekt ,

then it follows trivially from the definition of the �∗
jiN

that

�∗
jiN (t) =

N∑
k,l,m=1

ajk(t)
∂

∂tk

(
aNl(t)aim(t)gml(t)

)
.
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γiN =
N−1∑
j=1

�∗
jiNde

∗
j . (7.7.13)

If, as for the curvature tensor, we now choose a smooth section X of O(M) with
dual frames θ such that on ∂M , XN = ν, similar calculations yield that

Sν =
N−1∑
i,j=1

SX
ij θi ⊗ θj =

N−1∑
i=1

θiN ⊗ θi,

where

SX
ij

�=
N−1∑
i′,j ′=1

g
− 1

2
ii′ g

− 1
2

jj ′ �j ′i′N, θiN
�=

N−1∑
i=1

SX
ij θj .

Finally, on setting p = 2k + j , it follows that

RkSj
ν = 1

2k

N−1∑
a1,...,ap=1

(∧k
l=1�a2l−1,a2l

)
∧
(∧j

m=1θa2k+mN

)
⊗ (∧p

l=1θal
)
, (7.7.14)

a formula we shall need in Chapter 12.
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Piecewise Smooth Manifolds

So far, all that we have had to say about manifolds and calculus on manifolds has
been of a local nature; i.e., it depended only on what was happening in individual
charts. However, looking back at what we did in Sections 6.1–6.3 in the setting of
integral geometry, we see that this is not going to solve our main problem, which
is understanding the global structure of excursion sets of random fields now defined
over manifolds.

In order to handle this, we are going to need a reasonably heavy investment in
notation leading to various notions of piecewise smooth spaces.1 The investment
will be justified by ultimately producing results, in Part III, that are both elegant and
applicable. To understand the need for piecewise smooth spaces, two simple examples
should suffice: the sphere S2, which is a C∞ manifold without boundary, and the unit
cube I 3, a flat manifold with a boundary made up of six faces that intersect at twelve
edges, themselves intersecting at eight vertices. The cube, faces, edges, and vertices
are themselves flat C∞ manifolds, of dimensions 3, 2, 1, and 0, respectively.

In the first case, if f ∈ Ck(S2), the excursion set Au(S
2, f ) is made of smooth

subsets of S2, each one bounded by a Ck curve. In the second case, for f ∈ Ck(I 3),
while the individual components of Au(I

3, f ) will have a Ck boundary away from
∂I 3, their boundaries will also have faces, edges, and vertices where they intersect
with ∂I 3. We already know from Section 6.2 that when we attempt to find point
set representations for the Euler characteristics of excursion sets, these boundary
intersections are important (e.g., (6.2.16) for the case of I 2). This is even the case if
the boundary of the parameter set is itself smooth (e.g., Theorem 6.2.5). Consequently,
as soon as we permit as parameter spaces manifolds with boundaries, we are going to
require techniques to understand how these boundaries intersect with excursion sets.

1 We shall soon meet many types of piecewise smooth spaces, including stratified manifolds,
Whitney stratified manifolds, all in tame and locally convex (or not) versions. We shall
therefore use the term “piecewise smooth’’ in a loose generic sense, referring to any or all
of these examples. In the formal statements of results, however, we shall be careful about
specifying which case is under consideration. Unfortunately—since one would prefer a
general theory—this is necessary, since very often, results that appear at first as if they
should hold in wider generality than stated do not.
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Thus, what we are searching for is a framework that will cover basically smooth
spaces, which, however, are allowed to have edges, corners, etc. This will ultimately
involve blending both integral and differential geometry. There are many ways to do
this, none of which could be considered canonical. The two most popular approaches
are based on the related, but nonequivalent, theories of Whitney stratified manifolds,
for which the standard reference is the monograph by Goresky and MacPherson [72],
and sets of finite reach, as developed by Federer [64, 65] with extensions by Zähle
[182] and others. In this book we shall adopt an approach based on Whitney stratified
manifolds, and in the remainder of the chapter we shall define carefully what these
are, and then proceed, both here and in Chapter 9, to add some additional restrictions
needed to make the results of Part III work.

The resulting treatment is therefore occasionally unmotivated, and it would only
be natural for you to ask why we suddenly add one side condition or another, and if
this one, why not another. The rather unsatisfactory answer is that we add conditions
that we require to make later proofs work. Indeed, it is probably instructional for you
to know that although this and the following chapter are only the eighth and ninth out
of fifteen, they were the last to be finished, since we had to return here time and again
to tailor conditions to match what we could prove. Our only consolation is that this
phenomenon seems to be endemic to the integral/differential geometry interface in
general; i.e., one chooses a basic framework, and then appends conditions to generate
proofs that morally should not require the additional conditions but in practice, do.2

Note, however, that if you are interested only in parameter spaces that are man-
ifolds without boundary then you can go directly to Chapter 9 and skip the current
one. However, you will then have to forgo fully understanding how to handle excur-
sion sets over parameter spaces as simple as cubes, which, from the point of view of
applications, is a rather significant loss.

Finally, we note that as much of the material of this chapter is not completely
standard material in differential geometry, and even those readers comfortable with
Chapter 7 may find it useful, at least for establishing notation.

8.1 Whitney Stratified Spaces

Our first step toward classifying piecewise smooth spaces will be what are known as
Whitney stratified spaces. The basic reference for these is the monograph by Goresky
and MacPherson [72], although we shall occasionally also have need of material that
can be found in Pflaum [122].

We start with a topological subspace M of a Ck ambient manifold M̃ . The term
“stratified’’ refers to a decomposition of M into strata, which we shall take to be
smooth manifolds. A Whitney stratified space is a stratified subspace3 M ⊂ M̃

2 Although, as noted above, we shall adopt an approach based on Whitney stratified manifolds,
it is clear that the same fine-scale detailing would have arisen had we adopted an approach
based on sets of finite reach. In addition, while this might have given an approach both
powerful and mathematically elegant, it involves a heavier background investment than is
justified for our purposes.

3 We shall henceforth drop the term “subspace’’ in favor of space, with the understanding that
for our purposes, there is always some ambient M̃ in which M is embedded.



8.1 Whitney Stratified Spaces 185

with some additional regularity constraints imposed. These regularity conditions
are essential in setting up Morse theory for stratified spaces, which we describe in
Chapter 9.

More formally, a Cl , l ≤ k, stratified space, or decomposed space, M ⊂ M̃ is a
subspace of M̃ along with a partition Z of M such that the following conditions are
satisfied:

1. Each piece, or stratum, S ∈ Z is an embedded Cl submanifold of M̃ , without
boundary.

2. For R, S ∈ Z , if R ∩ S �= ∅ then R ⊂ S, and R is said to be incident to S.

We shall use the terminologies “stratified space’’ and stratified manifold interchange-
ably, and denote such spaces by (M,Z).

The partition Z has a natural partial order, namely R � S if R ⊂ S. Thus we can
treat Z either as a partition of M , or as an abstract partially ordered set.

To fix a concrete example of a stratified space take M = I 3. The natural decom-
position is to decompose I 3 into the eight zero-dimensional vertices, the eight one-
dimensional edges, the six two-dimensional faces, and the single three-dimensional
interior. Similarly, if M = ∂I 3, the natural stratification is to decompose ∂I 3 into
the vertices, the edges, and the faces.

In general, a stratified space M ⊂ M̃ with decomposition Z can be written as

M =
dim M⋃
l=0

∂lM,

where ∂lM is the l-dimensional boundary of M made up of the disjoint union of a
finite number of l-dimensional manifolds. Given 0 ≤ j ≤ dim M , the space

j⋃
l=0

∂lM

is again a decomposed space, with partition {S ∈ Z : dim(S) ≤ j}.
Although there is a natural decomposition of I 3, there are also many others, some

of which are similar and some of which are not. For example, in the “natural’’
decomposition we made above, we could further decompose the three-dimensional
interior of I 3 into the interior minus the point ( 1

2 ,
1
2 ,

1
2 ), and this point. For an even

simpler example note that R can be decomposed in many ways, three of which are

Z1 = {(−∞, 0), {0}, (0,∞)},
Z2 = {R \ {0}, {0}},
Z3 = R.

For the first two, the decompositions look locally the same at every point in R.
However, Z3 is fundamentally different at 0. A priori, this means that some of the
expressions for the intrinsic volumes described in Section 10.7 seem as if they may
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depend on the decomposition of M . That this is not the case is a somewhat subtle
issue, to which we shall return when the need arises.4

So far, we have not imposed any regularity on how the respective l-dimensional
boundaries ∂lM are “glued’’ together. In the case of I 3, and the natural decomposi-
tion described above, the pieces all fit together in a nice fashion. For more general
parameter spaces, we shall have to impose some further regularity on M .

Returning to I 3 for motivation, note that every point t ∈ I 3 has a neighborhood
that is isomorphic5 to the product of an open neighborhood of the stratum that contains
t and a cone. For example, each vertex of I 3 has a neighborhood that is isomorphic
to a closed octant in R3, and every point t in an edge of I 3 has a neighborhood
isomorphic to the product of an open interval around 0 and a closed quadrant in R2.

This “locally conic’’property of I 3 will be essential to the Morse theory developed
in Chapter 9, and that for general stratified spaces follows from Whitney’s conditions
(A) and (B) below. These conditions are regularity conditions imposed on a stratified
space that, in particular, imply that each point t ∈ M has a neighborhood isomorphic
to the product of an open subset of the stratum S containing t and a cone6 Cone(LS)

with base LS over a stratified space LS , the link of M at t .
A stratified space (M,Z), is said to satisfy Whitney condition (A) at t ∈ S if the

following holds for every S � S̃:

(A) If tn → t ∈ S such that tn ∈ S̃ for all n and the sequence of tangent spaces
Ttn S̃ converges in the Grassmannian7 bundle of dim(S̃)-dimensional tangent
(sub)spaces of M̃ to some τ ⊂ TtM̃ , then τ ⊃ TtS. A limit of such tangent
spaces is called a generalized tangent space of M at t .

4 This point is treated in detail in [122], where a distinction is also made between a decom-
position and a stratification, where the latter are equivalence classes of decompositions.
However, since any decomposition uniquely determines a stratification, for our purposes
we can assume that we are given a decomposition Z of M and talk about the stratifica-
tion induced by Z . Reference [122] also raises the possibility of parameterizing strata by
something known as “depth’’ rather than by dimension.

5 Two stratified spaces (M1,Z1) and (M2,Z2) of class Cl are said to be isomorphic if there
exists a map H : M1 → M2 that is an isomorphism of the partially ordered sets Z1 and Z2.
That is, for each S ∈ Z1, H(S) ∈ Z2, and this map is an isomorphism when S and H(S) are
considered as elements of the partially ordered sets Z1 and Z2, respectively. Furthermore,
H is such that for each S ∈ Z1, H|S : S → H(S) is a diffeomorphism of class Cl .

6 Recall that the cone Cone(L) over a topological space L is defined as the quotient space
Y = L× [0, 1), where y1 ∼ y2 ⇐⇒ y1 = (x1, 0), y2 = (x2, 0) for x1, x2 ∈ L.

If the topological space is also a real vector space V , then a cone is a subset K of V for
which λK = K for all λ > 0. (Technically, this is a positive cone, but all our cones will be
of this form, so we shall drop the qualifier.) Then K can be written in the form

K = {λx : x ∈ Kbase, λ ≥ 0} .
We refer to K as the cone over the base Kbase and denote it by Cone(Kbase).

7 The Grassmannian bundle referred to here is the natural one, namely the union of the
Grassmannian manifolds of dim(S̃)-dimensional subspaces of Tt M̃ , where the union is
taken over all t ∈ M̃ , and the collection is parameterized similarly to the tangent bundle.
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In a chart (U, ϕ) on M̃ containing t , a stratified space (M,Z) is said to satisfy
Whitney condition (B) at t ∈ S if the following is satisfied for every S � S̃:

(B) Let tn → t and sn → t be such that tn ∈ S, sn ∈ S̃, for all n. Furthermore,
suppose that the sequence of line segments ϕ(tn)ϕ(sn) converges in projective
space to a line � and the sequence of tangent spaces Tsn S̃ converges in the
Grassmannian to a subspace τ ⊂ TtM̃ . Then ϕ−1∗ (�) ⊂ τ .

It is easy to show that condition (B) implies condition (A), and it is not too much
more difficult to show that whether condition (B) is satisfied at t is independent of
the chart (cf. [122]). A stratified space (M,Z) is called a Whitney stratified space if
it satisfies Whitney condition (B) (and hence condition (A)) at every t ∈ M .

Examples of Whitney stratified spaces abound, and include the following:

• piecewise linear sets;
• finite simplicial complexes;
• Riemannian polyhedra;
• Riemannian manifolds (with boundary);
• closed semialgebraic (subanalytic) subsets of Euclidean spaces (i.e., sets that are

finite Boolean combinations of excursion sets of algebraic (analytic) functions);
• basic complexes with C2 boundary.

The last of these, of course, provides the link between this chapter and the integral
geometry of Chapter 6.

Furthermore, Whitney stratified spaces have many desirable properties, among
them these:

• Whitney stratified spaces can be triangulated.
• Whitney stratified spaces have a well-defined Euler characteristic.
• The intersection of two Whitney stratified spaces is generally a Whitney stratified

space, whose strata are the intersections of the strata of the two spaces.

These three properties will all be of key importance to us, so we shall discuss them a
little, including giving rough definitions of the terms we have used in stating them.

By a triangulation of a Whitney stratified space M we mean a covering of M by
diffeomorphic images of simplices of dimension no more than dim(M) such that if
two such images have a nonempty intersection, then the preimages of the intersection
must be full facets (subsimplices) of each of the original simplices.

The simplices of the triangulation can be joined to form a single simplicial complex
by joining them along the facets where their images intersected on M . We call this
a simplicial complex generated by M , and denote it by SM . There is, of course, no
uniqueness in such a triangulation. We can then define the Euler, or Euler–Poincaré,
characteristic of M as the alternating sum

ϕ(M)
�=

dim M∑
j=0

(−1)(N−j)αj (SM) , (8.1.1)
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where αj (SM) is the number of j -dimensional facets in SM . Despite the fact that
there is no uniqueness for triangulations and so the right-hand side here would seem
to depend on SM , it is a basic theory of algebraic topology that the Euler characteristic
is well defined and independent of the triangulation.

Finally, we turn to the issue of tranverse intersections. We say that two Whitney
stratified submanifolds, M1 and M2, subsets of the same ambient N -dimensional
manifold M̃ , intersect transversally if for each pair (j, k) with 0 ≤ j ≤ dim(M1)

and 0 ≤ k ≤ dim(M2), and each t ∈ ∂jM1 ∩ ∂kM2, the dimension of

span
{
Xt + Yt : Xt ∈ T ⊥

t ∂jM1, Yt ∈ T ⊥
t ∂kM2

}
(8.1.2)

is equal to 2N − j − k ≥ 0.
Now suppose that f ∈ Ck(M̃) is such that its excursion set over M̃ , Au(f, M̃) =

f−1[u,∞) is a Whitney stratified manifold. If M is a Whitney stratified submanifold
of M̃ , and if Au(f, M̃) and M intersect transversally, then Au(f,M) will also be a
Whitney stratified manifold with a stratification inherited from those of Au(f, M̃)

and M .
The punch line of the above paragraph is that if we start with Whitney stratified

manifolds as the parameter spaces of random fields, and if our random fields behave
well, then excursion sets will also be Whitney stratified manifolds. This closure,
together with the fact that Whitney stratified manifolds provide a natural setting for
both smooth and angular parameter spaces, is one of the main reasons that this class
of sets will be, for us, the right choice for Part III.

8.2 Locally Convex Spaces

For much of what follows, we are going to have to slightly limit Whitney stratified
manifolds to those that are, in an appropriate sense, locally convex.

To make this precise, we need the notion of the tangent to a curve c in a manifoldM .
Take a chart (U, ϕ) in the atlas of M̃ , a point t ∈ U∩M , and a curve c : [−1, 1] → M

for which c(0) = t . Then, at least for s sufficiently close to 0, we can write the
coordinate representation of c as c(s) = (c1(s), . . . , cN(s)), and the formula for
the push-forward in the natural coordinates corresponding to ϕ gives us the natural
definition

ċ(0)
�=

N∑
i=1

ċi (0)
∂

∂xi

∣∣∣
c(0)

for the tangent vector to c at 0.
If, for a manifold M , we now collect all limiting directions

StM
�= {

Xt ∈ TtM̃ : ∃δ > 0, c ∈ C1((−δ, δ), M̃), (8.2.1)

c(0) = t, ċ(0) = Xt, c(s) ∈ M for all s ∈ [0, δ)},
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we obtain a cone in TtM̃ known as the support cone of M at t . Support cones behave
predictably under intersections, in that

St (M1 ∩M2) = StM1 ∩ StM2. (8.2.2)

This follows from the simple observation that the support cone at t ∈ M1 ∩M2 is the
set of all directions in which one can leave t ∈ M1 ∩M2 while remaining in M1 ∩M2.
Thus each such direction must be contained in the support cones of both M1 and M2,
i.e., it must lie in the intersection of the two support cones.

Figure 8.2.1 shows a part of the (shaded) support cones for two domains in R2,
where the bases of the cones are the points at the base of the concavity in each domain.
Note that while neither of the domains is itself convex, the smooth domain always
has convex support cones, while the domain with the concave cusp does not.

Fig. 8.2.1. Convex and nonconvex support cones.

We now have all we need to define a family of Whitney stratified spaces that will
be important for us later.

Definition 8.2.1. A Whitney stratified space (M,Z) is called locally convex if the
support cone StM is convex for every t ∈ M .

Under this definition, the smooth domain of Figure 8.2.1 is locally convex, while
the domain with concave cusp is not. These examples are actually quite generic, since
the main import of the convex support cone assumption is to exclude sharp, concave
cusps. Similarly, while the N -cube IN is locally convex (and indeed, convex), its
boundary ∂IN is not.

With the notion of support cones fresh in our minds, this is probably a good place
to define their duals, for which we need to assume that M̃ has a Riemannian structure.
This we do, writing g̃ for the Riemannian metric on M̃ and g or g̃|∂jM for the metric
it induces on M or ∂jM .

This allows us to define a dual to each support cone StM , known as the normal
cone of M at t and defined by

NtM
�= {Xt ∈ TtM̃ : g̃(Xt , Yt ) ≤ 0 for all Yt ∈ StM}. (8.2.3)

In the two domains in Figure 8.2.1, assuming the usual Euclidean metric, the
normal cones at the base of the concavity are the outward normal in the first case, and
empty in the other.
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A more interesting example is given in Figure 8.2.2 for the tetrahedron. In this
case we have shown the (truncated) normal cones at (a) a vertex (b) a point on an edge,
and (c) a point on a face. What remains is a point in the interior of the tetrahedron, for
which the normal cone is empty. Note that in each case the dimension of the normal
cone is the codimension of the stratum in which the base point sits, with respect to
that of the ambient manifold (in this case, R3).

(a) (c)(b)

Fig. 8.2.2. Normal cones for a tetrahedron.

8.3 Cone Spaces

For technical reasons8 we shall soon have to place a further restriction on the Whitney
stratified manifolds with which we shall work, this being that they be C2 cone spaces.

To define these, recall that every point t in a stratum S of a Whitney stratified
space has a neighborhood U in M̃ homeomorphic to the product (S∩U)×Cone(LS),
where LS is its link in M . However, this homeomorphism is not necessarily differ-
entiable. (See the example of Neil’s parabola at the end of this section.) Requiring
differentiability is what leads to the notion of Cl,m cone spaces, which we define
following [122].9

Definition 8.3.1. Let M ⊂ M̃ be a Cl stratified space with stratification (Z, S), with
l a nonnegative integer. Then M is said to be a cone space of class Cl and depth 0 if
it is the topological sum of countably many connected Cl manifolds, the strata S of
which are the unions of connected components of equal dimension.10

A space M is said to be a cone space of class Cl,m (m ≥ 0) and depth d + 1
(d ≥ 0) if every t ∈ S ⊂ M has a neighborhood U ⊂ M̃ such that U ∩ M is Cm

diffeomorphic to (U ∩ S) × Cone(LS), where LS is a compact Cl cone space of

8 The point at which we shall need C2 cone spaces is in the proof of Theorem 9.2.6 in the
following chapter. It is not clear to us at this stage whether the assumption that the manifolds
there are also cone spaces is necessary for the result to hold, or merely a requirement of our
method of proof. However, we were unable to find a proof without this assumption.

9 In [122], cone spaces are defined only for m = 0, i.e., works only for homeomorphisms.
Unfortunately, we shall need a little more for the proof of Theorem 9.2.6.

10 Note that these are true manifolds, and not manifolds with boundary.
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depth d, and Cone(LS) denotes the cone. When m = 0, “Cm diffeomorphic’’ is to be
understood as “homeomorphic.’’

In general, the set (U ∩ S) × Cone(LS) can be thought of as a subset of StM

if we choose an appropriate chart (ϕ, U) on M̃ . In this sense, the set M is locally
approximated by (is homeomorphic to) the disjoint union⋃

t∈S
StM

of support cones.
For an example, consider the important special case of convex simplicial com-

plexes in Euclidean spaces. Such spaces have canonical stratifications given by the
facets. In this case, for a given t ∈ M , the “link’’ LS is naturally identified with the
unit normal vectors of the supporting hyperplanes at t , chosen to point toward the
interior of M . Furthermore, if we denote the span of a facet S by [S], it is clear that
[S] ⊕ Cone(LS) is StM , where ⊕ denotes Minkowski addition

A⊕ B = {x + y : x ∈ A, y ∈ B} (8.3.1)

(cf. [141]).
For a simple example of a C∞,0 cone space that is not C∞,m for any m ≥ 1,

consider the so-called Neil’s parabola (cf. [122]) given by

MNeil = {(s, t) ∈ R2 : s3 = t2}.
Its stratification is given by the origin and the two legs {(s, t) ∈ MNeil : t > 0} and
{(s, t) ∈ MNeil : t < 0}.

MNeil is clearly homeomorphic to Cone({−1, 1}), which we can identify with the
graph

{(s, t) ∈ R2 : s = |t |}.
However, there is no diffeomorphism of the plane that maps MNeil to Cone({−1, 1}).
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Critical Point Theory

In the preceding chapter we set up the two main geometric tools that we shall need
in Part III of the book. The first of these are piecewise smooth manifolds of one kind
or another, which will serve there as parameter spaces for our random fields, as well
as appearing in the proofs. The second are the Lipschitz–Killing curvatures that we
met briefly in Chapter 7 and shall look at far more closely, in the piecewise smooth
scenario, in Chapter 10. These will appear in the answers to the questions we shall
ask. Between the questions and the answers will lie considerable computation, and
the main geometric tool that we shall need there is the topic of this short chapter.

Critical point theory, also known as Morse theory, is a technique for describing
various global topological characteristics of manifolds via the local behavior, at crit-
ical points, of functions defined over the sets. We have already seen a version of
this back in Section 6.2, where we obtained point set representations for the Euler
characteristic of excursion sets (cf. Theorems 6.2.4 and 6.2.5, which gave point set
representations for excursion sets in R2, over squares and over bounded sets with C2

boundaries). Our aim now is to set up an analogous set of results for the excursion
sets of C2 functions defined over C3 piecewise smooth spaces. We shall show in
Section 9.4 how to specialize these back down to the known, Euclidean, examples of
Section 6.2.

A full development of this theory for manifolds, which goes well beyond what we
shall need, is in the classic treatise of Morse and Cairns [117], but you can also find
a very readable introduction to this theory in the recent monograph of Matsumoto
[112]. The standard theory, however, concentrates on smooth manifolds, as opposed
to the piecewise smooth case that we need. The standard reference in this case is the
excellent monograph of Goresky and MacPherson [72].

9.1 Critical Points

We begin with a general definition of critical points. Let (M,Z) be a Cl Whitney
stratified space embedded in aCk ambientN -manifold M̃ . For f̃ ∈ C2(M̃), a critical
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point of f̃ is a point t ∈ M̃ such that ∇f̃t = 0. Points that are not critical are called
regular.

Now takeM to be compact, N -dimensional, andC2 piecewise smooth, embedded
in a C3 ambient manifold (M̃, g̃), writing, as usual, g for the induced metric on M .
Extending the notion of critical points to f = f̃|M requires taking note of the fact that
the various boundaries in M are of different dimensions and so, in essence, involves
repeating the above definition for each f|∂jM . However, our heavy investment in
notation now starts to pay dividends, since it is easy to see from the general definition
that a point t ∈ ∂jM , for some 0 ≤ j ≤ N , is a critical point if and only if

∇f̃t ∈ T ⊥
t ∂jM (9.1.1)

(cf. (7.5.7) for notation). Thus we need work only with the single function f and not,
explicitly at least, with its various restrictions.1

This definition implies that all points in ∂0M are to be considered as critical points,
and, when dim(M) = dim(M̃), that critical points of f|∂NM ≡ f̃|M◦ are just critical
points of f̃ in the sense of the initial definition.

We call the set
N⋃
j=0

{t ∈ ∂jM : ∇f̃t ∈ T ⊥
t ∂jM}

the set of critical points of f|M . All other points are known as regular points.
A critical point t ∈ ∂jM of f|M is called nondegenerate if the covariant Hessian

∇2f|Tt ∂jM is nondegenerate, when considered as a bilinear mapping. A function
f ∈ C2(M̃) is said to be nondegenerate on M if all the critical points of f|M are
nondegenerate. The tangential Morse index

ιf,∂jM(t) (9.1.2)

of a nondegenerate critical point t ∈ ∂jM of f|M is the dimension of the largest
subspace L of Tt∂jM such that ∇2f (t)

∣∣
L

is negative definite. Thus, a point of
tangential Morse index zero is a local minimum of f on ∂jM , while a point of index
j is a local maximum. Other indices correspond to saddle points of various kinds.
Before defining Morse functions on stratified Whitney spaces, we need one further
concept: the normal Morse index, which, as its name suggests, complements the
tangential Morse index.

1 This assumes, however, that one remembers where all these spaces are sitting, or (9.1.1)
makes little sense. Assuming that the ambient space M̃ is N -dimensional (N = dim(M)),
we have, on the one hand, that ∇f̃ is also N -dimensional, whereas T⊥

t ∂jM is (N − j)-

dimensional. It is important, therefore, to think of T⊥
t ∂jM as a subspace of T⊥

t M for the
inclusion to make sense. Overall, all of these spaces are dependent on M̃ and its Riemannian
metric.
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9.2 The Normal Morse Index

The normal Morse index, α, is a measure of local change in the topology of the
manifold. In that sense it is very much like the Euler–Poincaré functional ϕ of
(6.1.10). However, unlike ϕ, it records this change for any normal direction, and later
we shall take averages over all directions. In this way we overcome the drawback of
the theory of Chapter 6, which was axis-dependent (cf. footnote 1 there).

Beyond its use in Morse theory, α will also play a key role in the definition of
Lipschitz–Killing curvature measures for Whitney stratified spaces in Chapter 10.

9.2.1 The Index

We start with another item of notation. If (M,Z) is a Whitney stratified submanifold
of an ambient Riemannian manifold (M̃, g̃), we write

T ⊥M =
⋃
S∈Z

T ⊥S

for the stratified normal bundle of (M,Z) (cf. (7.5.7)).
The next step in defining the normal Morse index involves moving everything to

Euclidean space. Thus, fixing a t ∈ M , take normal coordinates (Ut , ϕt ) (cf. (7.3.21))
on M̃ at t . Now fix a unit vector ν ∈ T ⊥

t S, and choose (δ0, ε0) small enough so that
the topology of

ϕt (Ut ∩M) ∩
{
x ∈ Rdim(M̃) : 〈x, ϕ∗ν〉 = −ε

}
∩ B

dim(M̃)
δ (9.2.1)

is unchanged for 0 < δ < δ0 and 0 < ε < ε0. This set is easily seen to be a
Whitney stratified manifold embedded in Rdim(M̃), and so has a well-defined Euler
characteristic given either via (8.1.1) or via the integral geometry of Chapter 6 if the
setup there happens to apply here as well. For 0 < δ < δ0 and 0 < ε < ε0, denote it
by χ(ν).

We then define the (normal) Morse index of M at t in the direction ν to be

α(ν) ≡ α(ν;M)
�= 1 − χ(ν). (9.2.2)

In fact, the normal Morse index is really dependent only on the structure of
the support cone StM , which, recall, we can express as TtS ⊕ Kt for some cone
Kt ⊂ TtS

⊥. Moreover, a little thought shows that it is actually the structure of the
cone Kt that is important, and so it therefore makes sense to work with

α(νt ;Kt)
�= α(νt ) = α(νt ;M).

Actually, it is not immediately clear that α(ν) is well defined, i.e., that the above
Euler characteristic depends only on the vector ν ∈ T ⊥S (more precisely on its
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identification with a covector canonically determined by g̃)2 and not on the choice of
chart ϕt . However, this is indeed the case, as is established in [72, Theorem 7.5.1].

The above definition of the Morse index is not as complex as it may at first
seem, as is seen from some simple examples. For example, if M = ([−1, 1] ×
{0}) ∪ ({0} × [−1, 1]) is a + in the plane, then α(ν) = −1 for all ν ∈ T0R2 unless
ν is parallel to one of the axes. In this case α(ν) = 0. If, on the other hand,
M = ([0, 1] × {0})∪ ({0} × [0, 1]), then α(ν) can take only one of the values −1, 0,
1, depending on the angle θ = θ(ν) that ν makes with the x-axis. Specifically,

α(ν) =

⎧⎪⎪⎨⎪⎪⎩
1, θ ∈ (0, π

2

)
,

0, θ ∈ [π2 , π] ∪ [ 3π
2 , 2π

]
,

−1, θ ∈
(
π, 3π

2

)
.

The Morse index takes a particularly simple form for convex polytopes. In this
case it is easy to check that

α(ν) =
{

1, −ν ∈ (NtM)◦,
0 otherwise,

(9.2.3)

where NtM is the normal cone of (8.2.3) under the Euclidean metric.
In fact, (9.2.3) also holds ifM is a Whitney stratified manifold with convex support

cones, that is, if M is a locally convex space. We shall use this fact heavily in Part III.
It is also not difficult to prove directly from the definition that α(νt , ·) is additive,

in the sense that for each νt ∈ TtS
⊥,

α(νt ;Kt ∪ K̃t ) = α(νt ;Kt)+ α(νt ; K̃t )− α(νt ;Kt ∩ K̃t ). (9.2.4)

Furthermore, since the support cones ofM1∩M2 for two Whitney stratified subspaces
are the intersections of the corresponding support cones of M1 and M2 (cf. (8.2.2)),
we can rewrite (9.2.4) as

α(νt ;M1 ∪M2) = α(νt ;M1)+ α(νt ;M2)− α(νt ;M1 ∩M2). (9.2.5)

9.2.2 Generalized Tangent Spaces and Tame Manifolds

We have avoided one technicality in the above discussion, related to what are known
as generalized tangent spaces. To define these, let S1 ⊂ S2 (S1 �= S2) be two strata
of a Whitney stratified manifold, and take t ∈ S1 ⊂ S2 and {tn} a sequence of points
in S1 converging to t . Then a generalized tangent space at t is any limit

lim
tn→t

TtnS1.

2 Note that the Morse index can actually be defined independently of the Riemannian metric,
although then we would need to define it on the stratified conormal bundle of M . Since
all our examples are Riemannian, we prefer to think of α as an integer-valued map on the
stratified normal bundle instead.



9.2 The Normal Morse Index 197

We shall say that a vector ν annihilates a generalized tangent space of M at t if
g̃(ν,X) = 0 for all X in the space.

Vectors ν for which there exist such generalized tangent spaces are referred to as
degenerate tangent vectors3 and all others as nondegenerate.

A little thought shows that there can be problems in defining the normal Morse
index for degenerate vectors. We shall therefore (almost surely) assume these prob-
lems away.

Definition 9.2.1. If C is a positive integer, then a closed stratified manifold M em-
bedded in an ambient manifold M̃ is said to be “C-tame,’’ or simply “tame,’’ 4 if it
satisfies the Whitney condition (B) as well as the following two conditions:

(i) If S is a stratum of M , then the collection{
lim
tn→t

TtnS : t ∈ ∂S

}
of all generalized tangent spaces coming from S has Hausdorff dimension less
than dim(S) in the appropriate Grassmannian.5

(ii) Wherever the normal Morse index is defined, we have

|α(νt ;M)| ≤ C.

The requirement that a manifold be tame is not, in general, a serious restriction. In
particular, all the examples of Whitney stratified manifolds that we gave in Section 8.1
are tame.

However, tameness has an important consequence for the degenerate tangent
vectors of a manifold. In particular, note that for fixed t , the set of degenerate tangent
vectors is a closed cone in TtM̃ and the collection of all degenerate tangent vectors,⋃

t∈M

{
νt ∈ TtM̃ : νt is a degenerate tangent vector of M at t

}
, (9.2.6)

glued together across each t ∈ M is a locally conic space. If M is tame, then it is
immediate that this space has Hausdorff dimension strictly less than dim(M̃) − 1
(cf. [33]).

This property will be important when we come to discuss the Morse theory of
excursion sets of random fields on manifolds in Chapter 12, as well as for defining
the Lipschitz–Killing curvatures of Whitney stratified spaces in Chapter 10.

3 For example, if we decompose R ⊂ R
2 as (−∞, 0)× {0}, {(0, 0)}, (0,∞)× {0}, then the

set of degenerate tangent vectors at 0 corresponds to the y-axis, since there is only one
generalized tangent space, the x-axis.

4 The classic use of the adjective “tame,’’without theC, actually relates to stratified manifolds
satisfying a slightly milder (integral) condition on the normal indices (cf. [33]) than the
condition (ii) that we assume. However, since we shall later need to assume boundedness
in any case, we shall assume it already now and adopt the same term.

5 Cf. footnote 7 of Chapter 8.
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Another consequence of nondegeneracy, which we note now but, again, is for
later use, is the fact that if ν is nondegenerate then

{Xt ∈ StM : 〈Xt, ν〉 = −ε} ∩ BTtM̃
(0, δ) (9.2.7)

/ {Xt ∈ Kt : 〈Xt, ν〉 ≤ 0} ∩ S(TtM̃),

where here, and in the future, / refers to homotopy equivalence.

9.2.3 Regular Stratified Manifolds

We now come to a simple definition, to which, since it is so central to all that fol-
lows, we have devoted an entire subsection. Recall that cone spaces are defined in
Definition 8.3.1, local convexity at Definition 8.2.1, and tame spaces were defined
above.

Definition 9.2.2. LetM be aC2 Whitney stratified manifold, embedded in an ambient
manifold M̃ . Assume that M is also a C2,1 cone space of arbitrary depth and that M
is C-tame for some finite C. Then M is called a regular stratified manifold.

If, in addition, M is locally convex, then, not surprisingly, it is called a locally
convex, regular manifold.

In general, we shall not require that our manifolds be locally convex, although
many formulas (and some proofs) become easier in this case. However, this will be
a crucial assumption for Chapter 14, where we shall prove what is our main result
about excursion probabilities for smooth Gaussian fields.

9.2.4 The Index on Intersections of Sets

An issue that will recur often throughout Part III of the book will be the geometry of
a set M1 ∩M2, where both M1 and M2 are stratified spaces. The simplest and almost
ubiquitous example will arise when we look at excursion sets, which we can write as

Au(f,M) = M ∩ f−1[u,∞),

where we think of both M and f−1[u,∞) as submanifolds of an ambient space M̃ .
Another class of examples, which will be at the core of the generalized Crofton

formulas of Chapter 13, is provided by sets of the form

M ∩ f−1(u),

which are boundaries of excursion sets, but still stratified manifolds.
In all these cases we shall need to relate the normal Morse index α(·;M1 ∩M2) of

the intersection to those of the individual Mj , that is, to the α(·;Mj). The final result
is given in Theorem 9.2.6 below, and is simple to understand without the technicalities
leading to its proof.
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While it is logically consistent to present and prove these results now, we do
warn you that the arguments are rather technical and of no interest to the rest of
the book beyond their application in establishing Theorem 9.2.6. Consequently, we
recommend that you pass them on first (at least) reading, and return only when you
have seen why, and how, we use the result.6 However, despite all of this, because
Theorem 9.2.6 itself will be very important for us, since we could not find anything
quite like it anywhere in the literature, and since the proof is definitely not trivial, we
give some details.

To start, we note that since normal Morse indices are always computed on the
Euclidean image of a stratified manifold under its coordinate charts (7.3.21) (cf.
(9.2.1)), it actually suffices to leave the setting of general manifolds and work rather
with cones in Euclidean7 space.

In particular, we shall start with two Euclidean cones K̃1 and K̃2, which may
contain subspaces8 and which we therefore write as

K̃1 = K1 ⊕ L1, K̃2 = K2 ⊕ L2, (9.2.8)

where each Lj is the largest proper subspace contained in K̃j .
We begin with the case that K1 and K2 are simplicial cones, for which we have

the following.

Theorem 9.2.3. With the above setup, suppose9 that

K1 =
{

n∑
i=1

aivi : ai ≥ 0, 1 ≤ i ≤ n

}
,

K2 =
{

m∑
i=1

aiwi : ai ≥ 0, 1 ≤ i ≤ m

}
,

for two sets of linearly independent vectorsV = {v1, . . . , vn}andW = {w1, . . . , wm},
where 0 ≤ n ≤ Codim(L1) and 0 ≤ m ≤ Codim(L2).

Suppose that

6 To be honest, we should point out that this indeed was how this section was written. We
completed the book presuming that Theorem 9.2.6 was true, and then returned to prove it
only when, to our surprise, we could not find it in the literature.

7 Actually, Theorem 9.2.3 and its proof could be stated in any Hilbert space, but we gain little
by doing so.

8 Note that we assume nothing about the dimensions of any of the sets here. All we shall
need, assumed implicitly in what follows, is that each Codim(Lj ) is finite. Thus, in terms
of the Hilbert space example of the previous footnote, all sets could be infinite dimensional,
as long as the required codimensions were finite.

Note also that one or both of the Kj could be equal to 0, the zero vector.
9 In view of the previous footnote, we could replace the conditions defining K1 and K2 by the

equivalent but notationally simpler requirement that they be cones over simplices. However,
since we need the additional notation for the definition of the operator TL2 below, we take
the longer definition already here.
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Codim (L1 ∩ L2) = Codim (L1)+ Codim (L2) . (9.2.9)

Then, for almost10 every11 ν ∈ (L1 ∩ L2)
⊥,

α(ν; K̃1 ∩ K̃2) = α(ν;PL2K̃1) · α(ν;PL1K̃2). (9.2.10)

Furthermore, suppose we enlarge W to a set

W̃ = {w1, . . . , wm, . . . , wCodim(L2)}
that W̃ spans L⊥

2 , and then define12 a linear transformation TL2 : (L1 ∩ L2)
⊥ →

L⊥
1 by

TL2ν
�= P⊥

L1
ν −

Codim(L2)∑
i,j=1

〈PL1ν, PL1wi〉g̃ijP⊥
L1
wj , (9.2.11)

where the g̃ij are the entries of the inverse of the matrix with elements

g̃ij = 〈PL1wi, PL1wj 〉, wi, wj ∈ W̃ . (9.2.12)

Then, again for almost every ν ∈ (L1 ∩ L2)
⊥,

α(ν; K̃1 ∩ K̃2) = α(TL2ν; K̃1) · α(ν;PL1K̃2). (9.2.13)

Proof. While (9.2.10) may seem like a tidier and more natural result than (9.2.13),
the latter result will actually be rather important for us, and we shall also prove it first.

We start with a little notation, for which we fix a point t ∈ L̃1 ∩ L̃2 and look at
a variety of vectors, matrices, and spaces at t . However, since the notation is heavy
enough with carrying the dependence on t , it will not appear explicitly in any of what
follows. Note, however, that as far as the cones K1 and K2 are concerned, t is always
at the apex of the cone.

Enlarge the set V to

Ṽ = {
v1, . . . , vn, vn+1, . . . , vCodim(L1)

}
in such a way that span(Ṽ ) = L⊥

1 and

vn+i ∈ span(K̃1)
⊥, 1 ≤ i ≤ Codim(L1)− n.

10 The vectors that cause us problems at this stage are those that may annihilate generalized
tangent spaces, which in the current simple scenario have measure zero.

11 Since we normally write the Morse index as depending on a vector νt emanating from a
point t , and here there is no reference to t , note that we are implicitly assuming that given
a ν ∈ (L1 ∩ L2)

⊥, the relevant t is the point in L1 ∩ L2 from which it emanates.
12 The fact that wj ∈ L⊥

2 for all 1 ≤ j ≤ m comes from the orthogonal structure in (9.2.8).
It is also straightforward to check that the transformation TL2 is independent of the choice
of extension of W to W̃ .
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Next, let Ĝ be the Codim(L1)× Codim(L1) matrix with elements

ĝij = 〈vi, vj 〉
and ĝij the elements of Ĝ−1. Define the dual vectors, v∗i ∈ L⊥

1 , by

v∗i =
Codim(L1)∑

j=1

ĝij vj , 1 ≤ i ≤ n.

It is straightforward to check that this set of vectors forms a basis for the normal
cone K̃∗

1 , which we can now write as

K̃∗
1 =

{
n∑

i=1

aiv
∗
i : ai ≤ 0, 1 ≤ i ≤ n

}
⊕
{
v : Pspan(K̃1)

v = 0
}

=
⎧⎨⎩

Codim(L1)∑
i=1

aiv
∗
i : ai ≤ 0, 1 ≤ i ≤ n

⎫⎬⎭ .

Similarly, define a set of vectors w∗
i ∈ L⊥

2 , starting with the wi rather than with
the vi , and use these to write an analogous representation for the normal cone K̃∗

2
of K̃2.

Given this notation, we are now in a position to start the proof.
Since intersections of simplicial cones are simplicial cones and simplicial cones

are convex, it follows from (9.2.3) that their normal Morse index is actually an
indicator function. Specifically, for ν ∈ (L1 ∩ L2)

⊥,

α(ν; K̃1 ∩ K̃2) = 1(K̃1∩K̃2)
∗(−ν), (9.2.14)

where
(K̃1 ∩ K̃2)

∗ = K̃∗
1 ⊕ K̃∗

2 .

In particular, for ν ∈ (L1 ∩ L2)
⊥,

−ν ∈ K̃∗
1 ⊕ K̃∗

2

if and only if the coefficients of ν in the basis13

B = {
b1, . . . , bCodim(L1∩L2)

} �=
{
v∗1 , . . . , v∗Codim(L1)

, w∗
1, . . . , w

∗
Codim(L2)

}
corresponding to {v∗1 , . . . , v∗n, w∗

1, . . . , w
∗
m} are nonnegative.

To determine whether a vector is a nonnegative combination of these particular
elements of B, it suffices to compute the coefficients of ν in the basis B. However,
these coefficients can also be written as 〈ν, b∗i 〉, where

13 The linear independence follows from the assumption that Codim(L1∩L2) = Codim(L1)+
Codim(L2).
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b∗i =
Codim(L1∩L2)∑

j=1

gij bj (9.2.15)

is the dual basis of B and
gij = 〈bi, bj 〉

is the matrix of cross products of the bi’s with ĝ in its upper left corner and

〈wi,wj 〉, 1 ≤ i, j ≤ Codim(L2),

in its lower right corner. As usual, the gij are the elements of the inverse of the matrix
of gij .

Note, for later use, that the above construction implies that for 1 ≤ i ≤ Codim(L1)

and Codim(L1)+ 1 ≤ j ≤ Codim(L1 ∩ L2),

〈vi, b∗j 〉 = 〈b∗i , wj 〉 = 0. (9.2.16)

With the above notation, we can now write the normal Morse index of K̃1 ∩ K̃2 as

α(ν; K̃1 ∩ K̃2) =
⎛⎝ n∏

j=1

1[0,∞)(〈ν, b∗j 〉)
⎞⎠ ·

⎛⎝ Codim(L1)+m∏
j=Codim(L1)+1

1[0,∞)(〈ν, b∗j 〉)
⎞⎠ .

(9.2.17)
Our goal now is to relate each factor in the product to the factors on the right-hand
sides of (9.2.10) and (9.2.13). We start with (9.2.13).

Recall that the dual basis (9.2.15) is also uniquely determined by the orthonor-
mality relationship

〈b∗i , bj 〉 = δij

for all bi ∈ B. Therefore, for any sequence of reals, cj ,〈
ν +

∑
l �=j

clbl, b
∗
j

〉
=
〈
ν, b∗j

〉
.

In particular, taking ν ∈ (L1 ∩ L2)
⊥ and 1 ≤ l ≤ n, and noting that the wj are then

orthogonal to b∗l , we have

〈
ν, b∗l

〉 = 〈
ν −

Codim(L2)∑
i,j=1

〈PL1ν, PL1wi〉g̃ijwj , b
∗
l

〉
(9.2.18)

=
〈
P⊥
L1
ν −

Codim(L2)∑
i,j=1

〈PL1ν, PL1wi〉g̃ijP⊥
L1
wj , b

∗
l

〉
.

The last line follows from expressing ν ∈ (L1 ∩ L2)
⊥ as
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ν = P⊥
L1
ν + PL1ν = P⊥

L1
ν +

Codim(L2)∑
i,j=1

〈PL1ν, PL1wi〉g̃ijPL1wj ,

where the matrix g̃ was defined in (9.2.12), and the representation of PL1ν fol-
lows from the fact that the codimension assumptions of the theorem ensure that the
{PL1wj }j=1,...,Codim(L2) are linearly independent and span the orthogonal comple-
ment of L⊥

1 in (L1 ∩ L2)
⊥.

Returning to (9.2.18), noting the definition (9.2.11) of the mapping TL2 and the
fact that TL2ν ∈ L⊥

1 , we now have〈
ν, b∗l

〉 = 〈TL2ν, b
∗
l 〉 = 〈TL2ν, P

⊥
L1
b∗l 〉 = 〈TL2ν, v

∗
l 〉, (9.2.19)

where the final equality follows from the observation that for 1 ≤ i, l ≤ n,

〈vi, P⊥
L1
b∗l 〉 = 〈vi, b∗l 〉 = δil

(cf. (9.2.16)). By the uniqueness of the dual basis this implies that P⊥
L1
b∗l = v∗l .

Substituting (9.2.19) into (9.2.17), we find that the first term on the right-hand
side there, and so also in (9.2.13), is given by

n∏
l=1

1[0,∞)(〈TT2ν, v
∗
l 〉) = 1K∗

1
(−TL2ν) = α(TL2ν, K̃1),

and so we are half-done.
We turn now to the second term. Note first that it follows from (9.2.16) that

b∗j ∈ L1 for Codim(L1)+ 1 ≤ j ≤ Codim(L1 ∩ L2).
Therefore, for 1 ≤ i, j ≤ Codim(L2),〈

PL1wi, b
∗
Codim(L1)+j

〉
=
〈
wi, b

∗
Codim(L1)+j

〉
= δij ,

and so the vectors {b∗Codim(L1)+j
} are dual to the {PL1wi}. If we choose the extension

of W to W̃ in such a way that

wm+i ∈ span(K2)
⊥, 1 ≤ i ≤ Codim(L2)−m,

then the vectors {b∗Codim(L1)+i
, 1 ≤ i ≤ m} are dual to {PL1wi, 1 ≤ i ≤ m}, and so

we can write
m∏
i=1

1[0,∞)(〈ν, b∗Codim(L1)+i〉) = 1PL1K
∗
2
(−ν) = α(ν, PL1K̃2).

This takes care of the second term in (9.2.13).
To complete the proof, it remains only to check that (9.2.10) also holds. But this

is now easy, since by symmetry with respect to K̃1 and K̃2, we have

α
(
ν;PL1K̃2

) = α
(
TL1ν; K̃2

)
,

α
(
ν;PL2K̃1

) = α
(
TL2ν; K̃1

)
.

Substituting into (9.2.13) immediately yields (9.2.10) and we are done. ��
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The following two corollaries are now reasonably straightforward.

Corollary 9.2.4. Suppose that

K̃1 = K1 ⊕ L1,

K̃2 = K2 ⊕ L2,

where K1 and K2 are cones in RN for which the following conditions hold:

(i) There exist sequences K1,n and K2,n of cones over simplicial complexes with
Kj,n → Kj in the Hausdorff metric.

(ii) For each j and almost all ν we have α(ν;Kj,n ⊕ Lj ) → α(ν;Kj ⊕ Lj ) as
n → ∞.

Let Codim (L1 ∩ L2) = Codim (L1) + Codim (L2). Then, for almost every ν ∈
(L1 ∩ L2)

⊥,

α(ν; K̃1 ∩ K̃2) = α(TL2ν; K̃1) · α(ν, PL1K̃2)

= α(ν;PL2K̃1) · α(ν, PL1K̃2).

Proof. Note first that the result of Theorem 9.2.3 extends trivially to the case in which
the simplicial cones K1 and K2 are replaced by cones over simplicial complexes.
This follows from footnote 9, on applying Theorem 9.2.3 to the individual simplices
making up the complex and then exploiting the additivity (9.2.4).

Thus the result holds when each K̃j is replaced by a Kj,n ⊕ Lj . Conditions (i)
and (ii) of the theorem now imply the result in general. ��

Before turning to our main result, we note the following corollary to the preceding
results.

Corollary 9.2.5. Suppose that

K̃1 = K1 ⊕ L1,

where K1 satisfies the conditions of Theorem 9.2.3 or Corollary 9.2.4 and

K̃2 = L2,

where L1 and L2 are subspaces of RN . If Codim(L1 ∩ L2) = Codim(L1) +
Codim(L2), then for almost every ν ∈ (L1 ∩ L2)

⊥,

α(ν; K̃1 ∩ K̃2) = α(ν; K̃1 ∩ L2) = α(TL2ν; K̃1).

Proof. First note that PL1K̃2 = PL1L2 / L1 ∩ L2 is a subspace of less than full
dimension in RN and so has normal Morse index one at every point, and in all normal
directions.

Note also that PL2K̂1 / K1 ∩ L2. Now apply the appropriate theorem or corol-
lary. ��
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Now that we have a set of basic results for cones, we can turn to the manifold
version of these results, which is what we shall actually need, but for which we offer
only an outline of a proof.

Theorem 9.2.6. Let M1 and M2 be regular stratified manifolds with stratifications

M1 =
dim M1⋃
j=0

M1j , M2 =
dim M2⋃
k=0

M2k.

Suppose that for each j and k, M1j and M2k intersect transversally and

Codim
(
M1j ∩M2k

) = Codim
(
M1j

)+ Codim (M2k) . (9.2.20)

Fix a t ∈ M1j ∩M2k . Then, for every such t and almost every νt ∈ Tt (M1j ∩M2k)
⊥,

α (νt ;St (M1 ∩M2)) = α (νt ;StM1 ∩ StM2) (9.2.21)

= α
(
νt ;PTtM2kStM1

) · α (νt ;PTtM1j StM2
)

= α
(
Tjkνt ;StM1

) · α (νt ;PTtM1j StM2
)
,

where Tjk : Tt (M1j ∩M2k)
⊥ → TtM

⊥
1j is defined by

Tjkν = P⊥
TtM1j

ν −
Codim(M2k)∑

r,s=1

〈PTtM1j ν, PTtM1j wr 〉g̃rsP⊥
TtM1j

ws,

where {w1, . . . , wCodim(M2k)} is a collection of vectors spanning TtM
⊥
2k and the g̃rs

are the entries of the inverse of the matrix with elements

g̃rs = 〈PTtM1j wr , PTtM1j ws〉, 1 ≤ r, s ≤ Codim(M2k).

Furthermore, if St (M2) is a half-space, then for almost every νt ∈ Tt (M1,j ∩
M2,k)

⊥,

α (νt ;St (M1 ∩M2)) = α
(
νt ;PTtM2,kStM1

)
(9.2.22)

= α
(
TTjk νt ;StM1

)
.

Proof. Starting the proof is easy; finishing it is, to say the least, “tedious.’’
To start it, note that the fact that St (M1 ∩M2) = StM1 ∩ StM2 is an immediate

consequence of the definition of support cones, and so the first equality in (9.2.21) is
trivial.

To continue, note that α(·,M) was actually defined on the Euclidean image of M
under the exponential map. Thus we can assume that we are in Euclidean space.

The rest (i.e., both (9.2.21) and (9.2.22)) would now follow with very little work
from Theorem 9.2.3 and Corollary 9.2.5 if it were true thatM1 andM2 were simplicial
complexes. Unfortunately, this, in general, is not the case.
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There are, however, a number of standard techniques for approximating tame
Whitney stratified manifolds by simplicial complexes.14 Furthermore, there are many
techniques15 for showing that results that hold for the simplicial approximations carry
over to the manifolds, as long as they are not too badly behaved.

In essence, one needs results akin to our Corollary 9.2.4, but whereas there we
were able to assume much about the convergence of approximations to make things
work, now we have to show that these assumptions are justified. Among other things,
one needs to show that the Morse indices of the approximations converge to those of
the limit, and it is precisely here that we need the condition that M1 and M2 be C2,1

cone spaces.
All of this is, while standard fare in integrodifferential geometry, would take us

far beyond the level of this book, and so we shall not attempt a detailed proof.16 ��

9.3 Morse’s Theorem for Stratified Spaces

In this section, we give an extension of the point set representation of the Euler
characteristic developed in Sections 6.1 and 6.2 to Whitney stratified spaces. The
extension is one of the central results of differential geometry and is known as Morse’s
theorem.

9.3.1 Morse Functions

The last definition we need before stating Morse’s theorem is that of a Morse function.

Definition 9.3.1. A functionf ∈ C2(M̃), whereM is aC2 Whitney stratified manifold
embedded in a C3 ambient manifold M̃ , is called a Morse function on M if it satisfies
the following two conditions on each stratum ∂kM , k = 0, . . . , dim(M):

(i) f|∂kM it is nondegenerate on ∂kM .
(ii) The restriction of f to ∂kM =⋃k

j=0 ∂jM has no critical points on
⋃k−1

j=0 ∂jM .

Note that (ii) is equivalent to requiring the following:

(iii) At each critical point t of f|∂kM , ∇f|∂kM,t is a nondegenerate tangent vector.17

14 There are many references that could be given here, but perhaps the most appropriate
approximation is due to Cheeger et al. [39]. To see how to use it in the setting of tame
manifolds, see the papers by Zähle [182] and Bröcker and Kuppe [33].

15 In our case the approach of Zähle [182] is probably the most appropriate.
16 You might ask, why, if we had not planned to prove Theorem 9.2.6, we bothered with the

proof of Theorem 9.2.3 and its corollaries.
The reason is that we could not find anything like Theorem 9.2.3 in the literature, and,

since the product result here for the Morse index is crucial for later parts of the book, we
felt duty bound to prove it. On the other hand, the move from simplicial complexes to tame
manifolds, while certainly not easy, is more standard fare, and so a description of the proof
as “tedious but straightforward’’ is not unjustified.

17 Cf. (9.2.6) and the discussion preceding it.
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9.3.2 Morse’s Theorem

With all the definitions cleared up, we have the necessary ingredients to state the
following version of Morse’s theorem, due to Goresky and MacPherson [72].

Theorem 9.3.2 (Morse’s theorem). Let (M,Z) be a compact C2 Whitney stratified
space embedded in aC3 Riemannian manifold (M̃, g̃) and let f̃ ∈ C2(M̃) be a Morse
function on M . Then, setting f = f̃|M ,

ϕ(M) =
N∑
j=0

∑
{t∈∂jM:∇ft∈T ⊥

t ∂jM}
(−1)ιf,∂jM(t)

α(P⊥
Tt ∂jM

∇ft ;M), (9.3.1)

where P⊥
Tt ∂jM

is the orthogonal projection onto (Tt∂jM)⊥, ϕ(M) is the Euler char-
acteristic of M , and the ιf,∂jM(t) are the tangential Morse indices of (9.1.2).

If the support cones StM are convex for each t ∈ M , i.e., M is locally convex,
then (cf. (9.2.3)) the above theorem reads as follows.

Corollary 9.3.3 (Morse’s theorem for locally convex manifolds). Let (M,Z) be a
compact C2, locally convex, Whitney stratified space embedded in a C3 Riemannian
manifold (M̃, g̃) and let f̃ ∈ C2(M̃) be a Morse function on M . Then, setting
f = f̃|M ,

ϕ(M) =
N∑
j=0

∑
{t∈∂jM:∇ft∈T ⊥

t ∂jM}
(−1)ιf,∂jM(t)

1{−∇ft∈NtM}, (9.3.2)

where ϕ(M) is the Euler characteristic of M .

The points counted in the above corollary are given a special name.

Definition 9.3.4. In the above setup, we call a point t ∈ M an extended inward
critical point of f = f̃|M if

−∇ft ∈ Nt(M),

where Nt(M) is the normal cone of (8.2.3). Similarly, t is an extended outward
critical point if ∇ft ∈ Nt(M).

Morse’s theorem is a deep and important result in differential topology and is
actually somewhat more general than as stated here, since in its full form it also gives
a series of inequalities linking the Betti numbers18 ofM to the critical points of Morse
functions on M . We shall make no attempt to prove Morse’s theorem, which, given

18 Betti numbers are additional geometrical quantifiers of M of somewhat less straightfor-
ward interpretation than the Euler characteristic, and not unrelated to the Lipshitz–Killing
curvatures of Section 7.6.
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our definition of the Euler characteristic, relies on arguments of homology theory
and algebraic geometry. As mentioned above, [112] and [117] have all the details.
Theorem 9.3.2, as presented here, is essentially proven in [148], although the notation
and terminology there are a little different from ours.

Soon, in Section 9.4, we shall see how all of this affects simple Euclidean exam-
ples, in which case we shall recover the integral-geometric results of Section 6.2 for
which we did give full proofs.

What we shall prove now is the following corollary, which is actually what we
shall be using in the future. The proof is included, since, unlike that for Morse’s
theorem itself, it does not seem to appear in the literature. Note that we shall have
to add tameness to the list of conditions (by demanding regularity) since the proof
depends, in its last line, on Theorem 9.2.6.

Corollary 9.3.5. Let M be a regular stratified manifold embedded in a C3 manifold
M̃ . Let f̃ ∈ C2(M̃) be a Morse function on M , and let u ∈ R be a regular value of
f|∂jM for all j = 0, . . . , N . Then, writing f = f̃|M ,

ϕ(M ∩ f−1[u,∞)) (9.3.3)

=
N∑
j=0

∑
{t∈∂jM:ft≥u,∇ft∈T ⊥

t ∂jM}
(−1)ι−f,∂jM

(t)
α(−P⊥

Tt ∂jM
∇ft ;M).

If M is also locally convex, then

ϕ(M ∩ f−1[u,∞)) (9.3.4)

=
N∑
j=0

∑
{t∈∂jM:ft>u,∇ft∈T ⊥

t ∂jM}
(−1)ι−f,∂jM

(t)
1{∇ft∈NtM}.

Proof. As usual, write Au = M ∩ f̃−1[u,∞). If −f̃ were a Morse function on
Au, and if we changed the condition f̃t > u to f̃t ≥ u on the right-hand side of
(9.3.3), then the corollary would merely be a restatement of Morse’s theorem, and
there would be nothing to prove. However, the change is not obvious, and −f̃ is not
a Morse function on Au, since it is constant on the strata of Au that are subsets of
M ∩ f̃−1{u}.

The bulk of the proof involves finding a Morse function f̂ on Au that agrees with
−f̃ on “most’’ of this set (thus solving the problem of the “non-Morseness’’ of f̃ )
and that, at the same time, has critical points in a one-to-one correspondence with the
critical points of f on M above the level u. (This allows us to replace f̃t ≥ u with
f̃t > u).

The space M ∩ f−1[u,∞) can be decomposed into j -dimensional strata of the
form ∂jM ∩ f−1(u,∞) and ∂j+1M ∩ f−1{u}. More formally, consider f̃ as a
function on M̃ , which, since it is a manifold, has no boundary. Then
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∂N

(
f̃−1[u,∞)

)
= f̃−1(u,∞),

∂N−1

(
f̃−1[u,∞)

)
= f̃−1{u},

∂j

(
f̃−1[u,∞)

)
= ∅ for j = 0, . . . , N − 2.

Since f̃ is a Morse function and u is a regular point for f|∂kM for all k, it follows that
M and f−1[u,∞) intersect transversally as subsets of M̃ . Therefore Au is a (locally
convex) regular subspace of M̃ that can be decomposed as

Au =
N⋃
j=0

(
∂jM ∩ f̃−1(u,∞)

)
∪
(
∂j+1M ∩ f̃−1{u}

)
(9.3.5)

=
⎛⎝ N⋃

j=0

∂jM ∩ f̃−1(u,∞)

⎞⎠ ∪
⎛⎝N−1⋃

j=0

∂j+1M ∩ f̃−1{u}
⎞⎠ .

It is the last term here that gives rise to problems, since it is here that f̃|Au loses its
property of being a Morse function (on Au). Thus we search for a replacement to f

that is well behaved on this boundary set.
Since f̃ is a Morse function on M , it has only finitely many critical points inside

a relatively compact neighborhood V of M . Furthermore, exploiting the fact that u
is a regular value of f|∂kM for every k, there exists an ε > 0 such that

Uε = f̃−1(u− ε, u+ ε) ∩M ∩ V

contains no critical points of f|M . It is standard fare that there exists an h ∈ C2(M̃)

that is a Morse function on f−1{u} and that is zero outside of Uε. Furthermore, since
V is compact, there exist Kf and Kh such that |∇h| < Kh and

|PTt ∂jM∇f̃ | > Kf ,

for all t ∈ ∂jM ∩ Uε, 1 ≤ j ≤ N .
It then follows that the function

f̂
�= −f̃ + Kf

3Kh

h

is a Morse function on Au. By our choice of h, the critical points of f̂|Au agree with
those of f on M ∩ Uc

ε . Furthermore, ∇f|∂jM ≡ πTt ∂jM∇f can never be zero on
Uε ∩ ∂kM , and so there are no critical points of f̂ at all in this region. Consequently,
the critical points of f̂ on M ∩ f̃−1[u,∞) are in one-to-one correspondence with
those of f̃ on M ∩ f̃−1(u,∞).

The result then follows from the fact that by Theorem 9.2.6 (cf. (9.2.22)) the
normal Morse indices at these points are the same for M as they are for M ∩
f−1[u,∞). ��
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9.4 The Euclidean Case

With basic Morse theory for piecewise smooth spaces under our belt, it is now time to
look at one rather important example for which everything becomes quite simple. The
example is that of the N -dimensional cube IN = [0, 1]N , and the ambient space is
RN with the usual Euclidean metric. In particular, we want to recover Theorem 6.2.4,
which gave a point set representation for the Euler characteristic of the excursion set
of smooth functions over the square.

To recover Theorem 6.2.4 for the unit square we use Morse’s theorem 9.3.2 in its
original version. Reserving the notation f for the function of interest that generates
the excursion sets, write the f of Morse’s theorem as fm. We are interested in
computing the Euler characteristic of the set

Au = {t ∈ I 2 : f (t) ≥ u}
and will take as our Morse function the “height function’’

fm(t) = fm(t1, t2) = t2.

Now assume thatf is “suitably regular’’in the sense of Definition 6.2.1. This is almost
enough to guarantee that fm is a Morse function over I 2 for the ambient manifold
R2. Unfortunately, however, all the points along the top and bottom boundaries of I 2

are degenerate critical points for fm. We get around this by replacing I 2 with a tilted
version, I 2

ε , obtained by rotating the square through ε degrees, as in Figure 9.4.1.

Fig. 9.4.1. The Euler characteristic via Theorem 9.3.2.

To compute ϕ(Au) we now apply (9.3.1), and so need to characterize the various
critical points and their indices. The first fact to note is that, using the usual coordinate
system, we have ∇fm = (0, 1), and so there are no critical points of fm in A◦

u. Thus
we can restrict interest to the boundary ∂Au which we break into three parts:

(i) points t ∈ (I 2
ε )

◦ ∩ ∂Au;
(ii) points t ∈ ∂I 2

ε ∩ Au, but not vertices of the square;
(iii) the four vertices of the square.
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An example of each of these three classes appears in Figure 9.4.1, where the excursion
set of f appears along with contour lines in the interiors of the various components.

At points of type (i), f (t) = u. Furthermore, since the normal cone Nt(Au) is
then the one-dimensional vector space normal to ∂Au, −∇fm = (0,−1) ∈ Nt(Au) at
points for which ∂f/∂t1 = 0 and ∂f/∂t2 > 0. Such a point is at the base of the arrow
coming out of the disk in Figure 9.4.1. Differentiating between points that contribute
+1 and −1 to the Euler characteristic involves looking at ∂2f/∂t2

1 . Comparing with
Theorem 6.2.4, we see that we have characterized the contributions of (6.2.17) and
(6.2.18) to the Euler characteristic.

We now turn to points of type (ii). Again due constancy of ∇fm, this time on
∂I 2

ε , there are no critical points to be counted on (∂I 2
ε ∩ Au)

◦
. We can therefore add

the endpoints of the intervals making up ∂I 2
ε ∩Au to those of type (iii). One of these

appears as the base of the leftmost arrow on the base of Figure 9.4.1. The rightmost
arrow extends from such a vertex.

For points of these kinds, the normal cone is a closed wedge in R2, and it is left
to you to check that the contributions of these points correspond (on taking ε → 0)
to those of those described by (6.2.16).

This gives us Theorem 6.2.4, which trivially extends to any rectangle in R2. You
should now check that Theorem 6.2.5, which computed the Euler characteristic for a
subset of R2 with piecewise C2 boundary, also follows from Morse’s theorem, using
the same fm.

The above argument was really unnecessarily complicated, since it did not use
Corollary 9.3.5, which we built specifically for the purpose of handling excursion
sets. Nevertheless, it did have the value of connecting the integral-geometric and
differential-geometric approaches.

Now we apply Corollary 9.3.5. We again assume that f is suitably regular at the
level u in the sense of Definition 6.2.1, which suffices to guarantee that it is a Morse
function over the C2 piecewise smooth space IN for the ambient manifold RN and
that the conditions of the corollary apply.

Write Jk ≡ ∂kI
N for the collection of faces of dimension k in IN (cf. (6.2.2)).

With this notation, we can rewrite the sum (9.3.3) as

ϕ(Au(f, I
N)) =

N∑
k=0

∑
J∈Jk

k∑
i=0

(−1)iμi(J ), (9.4.1)

where, for i ≤ dim(J ),

μi(J )
�= #{t ∈ J : ∇f|J (t) = 0, ι−f,J (t) = i}.

Recall that to each face J ∈ Jk there corresponds a subset σ(J ) of {1, . . . , N},
of size k, and a sequence of N − k zeros and ones ε(J ) = {ε1, . . . , εN−k} such that

J = {t ∈ IN : tj = εj if j /∈ σ(J ), 0 < tj < 1 if j ∈ σ(J )}.
Set ε∗j = 2εj − 1. Working with the definition of the Ci , it is then not hard to see that
μi(J ) is given by the number of points t ∈ J satisfying the following four conditions:
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f (t) ≥ u, (9.4.2)

fj (t) = 0, j ∈ σ(J ), (9.4.3)

ε∗j fj (t) > 0, j /∈ σ(J ), (9.4.4)

index(fmn(t))(m,n∈σ(J )) = k − i, (9.4.5)

where, as usual, subscripts denote partial differentiation, and, consistent with the
definition of the index of a critical point, we define the index of a matrix to be the
number of its negative eigenvalues.

Fig. 9.4.2. The Euler characteristic via Corollary 9.3.5.

In Figure 9.4.2 there are three points that contribute to ϕ(Au(f, I
2)). One, in

the center of the upper left disk, contributes via J = (I 2)◦ = J2. That on the right
side contributes via J = “right side’’ ∈ J1, and that on the lower left corner via
J = {0} ∈ J0.

The representation (9.4.1) of the Euler characteristic of an excursion set, along
with the prescription in (9.4.2)–(9.4.5) as to how to count the contributions of various
points to the sum, is clearly a tidier way of writing things than what we obtained via
integral-geometric methods. Nevertheless, it is now clear that the two are essentially
different versions of the same basic result. However, it is the compactness of (9.4.1)
that will be of importance to us in the upcoming computations for random excursion
sets in Part III of the book.
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Volume of Tubes

In Chapters 7 and 8 we invested a good deal of time and energy in developing the many
results we need from differential geometry. The time has now come to begin to reap
the benefits of our investment, while at the same time developing some themes a little
further for later exploitation. This chapter focuses on the celebrated volume-of-tubes
formula of Weyl [73, 168], which expresses the Lebesgue volume of a tube of radius
ρ around a set M embedded in Rl or S(Rl ) in terms of the radius of the tube1 and
the Lipschitz–Killing curvatures of M (see Theorem 10.5.6). It is an interesting fact,
particularly in view of the fact that2 this is a book about probability that is claimed
to have applications to statistics, and despite the fact that Weyl’s formula is today the
basis of a large literature in geometry, that the origins of the volume-of-tubes formulas
were inspired by a statistical problem. This problem, along with its solution due to
Hotelling [79], were related to regression analysis and involved the one-dimensional
volume-of-tubes problem on a sphere, not unrelated to the computation we shall do
in a moment.

Much of the work in using Weyl’s tube formula and its generalizations lies in
deriving explicit expressions for Lipschitz–Killing curvature measures. This being
the case, even if you are comfortable with the material of Chapter 7 and are not
interested in the volume-of-tubes approximation per se, you will find it useful to read
Sections 10.7 and 10.9 of this chapter. These describe the Lipschitz–Killing curvature
measures of stratified Whitney spaces and the generalized Lipschitz–Killing curvature
measures that will be needed in Chapter 15.

Beginning in the late 1980s and early 1990s, the usefulness of the tube formula
in statistics was rediscovered, and there were a number of works applying these
formulas to statistical problems, as in [87, 93]. A particularly interesting paper for
us was a 1993 paper by Jiayang Sun [147], which came out of a thesis under David
Siegmund. It had an early version (albeit not easily recognizable as such) of the

1 A word on notation: If (T , d) is a metric space, then the sphere of radius λ in T is denoted
by Sλ(T ), with S(T ) ≡ S1(T ). When T = R

N we continue, when convenient, to use the
notation SN−1

λ and SN−1 for Sλ(RN) and S(RN), respectively.
2 Despite current appearances!
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simple3 approximation

P

{
sup
t∈M

ft ≥ u

}
≈

N∑
j=0

ρj (u)Lj (ψ(M)). (10.0.1)

Here f is a sufficently nice, centered, unit-variance Gaussian field over a sufficiently
nice N -dimensional parameter space M . The functionals Lj are Lipschitz–Killing
curvatures on a Euclidean sphere equipped with the Euclidean geodesic metric and
are defined in (10.5.4). The functions ρj are defined as

ρj (u)
�=
{

1 −�(u), j = 0,

(2π)−(j+1)/2Hj−1(u)e
−u2/2, j ≥ 1,

where Hj is the j th Hermite polynomial, which we shall meet in more detail later in
Chapter 11 (cf. (11.6.9)). Finally, ψ is a mapping from the parameter space M to a
unit sphere. Exactly which mapping and a sphere of which dimension will be clear
after you have read Sections 10.2 and 10.6.

As we shall soon see, the above approximation, given enough side conditions, is
actually rather simple to derive using volume-of-tube techniques. Furthermore, when
both are defined, it agrees with the approximation that we shall derive in Chapter 14,
which is based on the expected Euler characteristic and which is much harder to es-
tablish. Unfortunately, however, the volume-of-tubes approach has the disadvantage
of being restricted to a somewhat small class of Gaussian processes, in that they
are required to possess a finite Karhunen–Loève expansion. Specifically, these are
processes defined on a manifold M that can be expressed as

f (t, ω) = 〈ψt , ξ(ω)〉Rl =
l∑

j=1

ξj (ω)ψj (t), (10.0.2)

for some smooth mapping ψ : M → S(Rl ),4 where the ξj are independent, standard
Gaussians.

The volume-of-tubes-based derivation of the approximation (10.0.1) also has the
disadvantage that all results on its accuracy are very distributional in nature and there
is no known way to even begin thinking about how to extend them to non-Gaussian
processes. In any case, we shall not address the accuracy of the approximation in
this chapter, since it will follow as a corollary to the accuracy of the expected Euler
characteristic approach in Chapter 14 and the equivalence of the two approaches [148]
for finite Karhunen–Loève processes.

3 This is “simple’’ as long as you are also comfortable applying the same adjective to
Lipschitz–Killing curvatures, defined below in (10.5.4).

4 While if M = IN , this expansion may indeed arise from the L2(IN ) expansion of a
covariance function as in Section 3.2, this is not necessary, the main issue being the existence
of a finite orthogonal expansion of some kind. Consequently, these processes are more
appropriately referred to as finite orthogonal expansion processes, although we shall retain
the nomenclature “finite Karhunen–Loève expansion processes’’ for historical reasons.
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What we shall do in this chapter is describe the volume-of-tubes approximation to
(10.0.1) in detail and also derive Weyl’s tube formula for locally convex subspaces of
Rl andS(Rl ). In our development of this approximation, we also consider the volume-
of-tubes problem in a slightly more general setting, necessary for the calculations of
Chapter 15.

In the following section we shall give a very brief description of the volume-
of-tubes problem in a general setting, specializing only later to the case of locally
convex spaces embedded in Rl or S(Rl ), where one can develop very precise results.
Before getting into details, however, we shall describe in Section 10.2 the connection
between tubes and (10.0.1) so that you can see why all of this might be related to
probability in general and Gaussian processes in particular. However, if you do not
require the motivation, feel free to skip Section 10.2.

10.1 The Volume-of-Tubes Problem

For a metric space (T , τ ) the tube of radius ρ around A ⊂ T is, as we have already
seen in the Euclidean setting, defined as

Tube(A, ρ)
�= {x ∈ T : τ(x,A) ≤ ρ} =

⋃
y∈A

Bτ (y, ρ), (10.1.1)

where
τ(x,A)

�= inf
y∈A τ(x, y) (10.1.2)

is the usual distance function of the set A.
The volume-of-tubes problem5 seeks to compute, when possible,

μ (Tube(A, ρ))

for some measure μ, as a function of ρ. When this is not possible, it seeks approxi-
mations to μ(Tube(A, ρ)).

Of course, the possibility of such a computation, or the accuracy and validity of
such an approximation, will depend on the properties of the measure μ as well as
the set A. The simplest spaces to work on are the metric spaces Rl with its natural
metric structure and S(Rl ) with the geodesic metric from the induced Riemannian
structure on S(Rl ). The natural measures to consider in these examples are Lebesgue
measure on Rl and surface measure on S(Rl ), which agree with the Riemannian
measures induced by the canonical Riemannian structures. These are the two main
examples that we shall consider. In addition, in Section 10.9 we shall also investigate
the Gaussian volume of tubes, where the metric space is Rl with its standard metric

5 Since μ is a general measure, it would really be more appropriate to talk of the measure of
tubes rather than their “volumes.’’ However, we shall stay with the more standard “volume’’
terminology.’’
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and the measure6 μ = γRl the distribution of a random vector W ∼ N(0, Il×l ). This
example will play a crucial role in the important computations of Chapter 15.

As for what type of setsA we need to consider, in order to derive explicit formulas
for μ (Tube(A, ρ)), we shall have to restrict ourselves to sets A that are embedded
piecewise C2 submanifolds of Rl or S(Rl ). For much of the discussion we shall
also limit ourselves to Lebesgue measure in the first case and surface measure in the
second. Both of these, of course, are the volume, or Hausdorff, measure induced by
the standard Euclidean metric in Rl (cf. footnote 23 of Chapter 7). In the final section
of the chapter we shall see what happens when μ is Gauss measure on Rl .

10.2 Volume of Tubes and Gaussian Processes

We now start a discussion of the connection between the excursion probability (10.0.1)
and the volume of tubes for finite Karhunen–Loève processes. We shall conclude it
only in Section 10.6, when we shall have more information on tube formulas.

Take a Gaussian process f , which is a restriction to a locally convex submanifold
M of a process f̃ on an ambient manifold M̃ that has the representation (10.0.2),
that is,

f̃ (t, ω) = 〈ψt , ξ(ω)〉Rl =
l∑

j=1

ξj (ω)ψj (t). (10.2.1)

Note that we have introduced a new parameter here. Whereas we still use N to
denote dim(M) = dim(M̃), the new parameter l denotes the order of the orthogonal
expansion.

Note also that the vector ξ/|ξ | is uniformly distributed on S(Rl ), independently
of |ξ |, which is distributed as the square root of a χ2

l random variable. We shall write
ηl to denote the distribution of ξ/|ξ |, that is, the uniform measure over S(Rl ).

Finally, we shall assume that f̃ has constant unit variance, so that (10.2.1) imme-
diately implies

|ψ(t)|2 �=
l∑

j=1

ψ2
j (t) = 1, (10.2.2)

for all t ∈ M̃ . This being the case, we can define the mapψ : t → (ψi(t), . . . , ψl(t)),
an embedding of M in S(Rl ). More significantly, we can define a random field f on
ψ(M) ∈ S(Rl ) by setting

6 For a finite-dimensional Hilbert space, H , we shall use γH to denote the canonical Gaussian
random vector on H . That is, if X ∼ γH , then for any orthonormal basis ζ1, . . . , ζdim(H),
the sequence (〈ζ1, X〉H , . . . , 〈ζdim(H),X〉H

)
is a sequence of independent, standard Gaussians.



10.2 Volume of Tubes and Gaussian Processes 217

f (x)
�= f̃

(
ψ−1(x)

)
, (10.2.3)

for all x ∈ ψ(M). Note that f has the simple covariance function

C(x, y) = E {f (x)f (y)} = 〈x, y〉, (10.2.4)

and thus there is no problem taking a version of it on all of S(Rl ) with this covariance
function. This process is known as the canonical (isotropic) Gausssian field on
S(Rl ). Apart from our need of it now, it will play a central role in the calculations of
Chapter 15, and more details on it can be found in Section 15.6.

For our current purposes, we note that since it is trivial that

sup
t∈M

f̃ (t) ≡ sup
x∈ψ(M)

f (x),

it is clear that in computing excursion probabilities for unit-variance finite Karhunen–
Loève expansion fields, we lose no generality by treating only the canonical process
over subsets of S(Rl ).

Returning to tubes, when the metric space (T , τ ) isS(Rl )with the geodesic metric,
i.e., when

τ(x, y) = cos−1 (〈x, y〉) ,

then a tube of radius ρ around a closed set A can be expressed as

Tube(A, ρ) =
{
x ∈ S(Rl ) : τ(x,A) ≤ ρ

}
=
{
x ∈ S(Rl ) : ∃y ∈ A such that〈x, y〉 ≥ cos(ρ)

}
=
{
x ∈ S(Rl ) : sup

y∈A
〈x, y〉 ≥ cos(ρ)

}
.

(10.2.5)

If we think of X being a random vector uniformly distributed on S(Rl ) with
distribution ηl , then (10.2.5) implies that

P

{
sup
y∈A

〈X, y〉 ≥ cos(ρ)

}
= ηl

({
x ∈ S(Rl ) : sup

y∈A
〈x, y〉 ≥ cos(ρ)

})
= ηl (Tube(A, ρ)) .

We now have enough to write out the basic equation in the volume-of-tubes
approach for such processes:
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P

{
sup
t∈M

ft ≥ u

}
=
∫ ∞

0
P

{
sup
t∈M

ft ≥ u

∣∣∣∣|ξ | = r

}
P|ξ |(dr)

=
∫ ∞

0
P

{
sup
t∈M

〈ψt , ξ 〉 ≥ u

∣∣∣∣|ξ | = r

}
P|ξ |(dr)

=
∫ ∞

u

P

{
sup
t∈M

〈ψt , ξ 〉 ≥ u

∣∣∣∣|ξ | = r

}
P|ξ |(dr)

=
∫ ∞

u

P

{
sup
t∈M

〈ψt , ξ/r〉 ≥ u/r

∣∣∣∣|ξ | = r

}
P|ξ |(dr)

=
∫ ∞

u

P

{
sup

s∈ψ(M)

〈s, ξ/r〉 ≥ u/r

∣∣∣∣|ξ | = r

}
P|ξ |(dr)

=
∫ ∞

u

ηl

(
Tube(ψ(M), cos−1(u/r))

)
P|ξ |(dr)

= �
(
l
2

)
2πl/2

∫ ∞

u

Hl−1

(
Tube(ψ(M), cos−1(u/r))

)
P|ξ |(dr)

= �
(
l
2

)
2πl/2

E

{
Hl−1

(
Tube(ψ(M), cos−1(u/|ξ |))

)
1{|ξ |≥u}

}
.

(10.2.6)
Therefore, the excursion probability (10.0.1) is a weighted average of the volume

of tubes around ψ(M) of varying radii, and being able to compute

Hl−1 (Tube(ψ(M), ρ))

will go a long way to computing (10.0.1). In particular, if it were true that, in some
approximate sense,

Hl−1 (Tube(ψ(M), ρ)) ≈
∑
j

G̃j,l(ρ)Lj (ψ(M)) (10.2.7)

for some functions G̃j,l , then the right-hand side of (10.2.6), and hence (10.0.1),
would be approximately

�
(
l
2

)
2πl/2

∑
j

E

{
G̃j,l(cos−1(u/|ξ |))1{|ξ |≥u}

}
Lj (ψ(M)). (10.2.8)

Much of the rest of this chapter is devoted to justifying this approximation7

and obtaining explicit representations for G̃j,l . The justification is based on Weyl’s
tube formula on Sλ(R

l ), given below in Theorem 10.5.7. Weyl’s formula states that
(10.2.7) is exact for ρ small enough if ψ(M) is a locally convex space. Furthermore,
it identifies the functions G̃j,l(ρ).

7 Note that we can really expect the approximation to work only for large u. The issue is
that we expect tube expansion (10.2.7) to hold only for small ρ. Since ρ is replaced by
cos−1(u/|ξ |) in (10.2.8), we can therefore expect the tube approximation to work well only
if, given |ξ | ≥ u, |ξ | is close to u with high probability. This will happen only if u is large.
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Deriving Weyl’s formula requires an understanding of the local properties of
tubes, to which we devote the following section.

10.3 Local Geometry of Tube(M, ρ)

This section, as its title suggests, describes the local geometry of Tube(M, ρ), where
throughout, we shall assume that M is a locally convex, C2, Whitney stratified man-
ifold. To formally define the local geometry of the tube, we first have to specify the
ambient space in which M is assumed to be embedded and the metric space in which
the tube lives. Although this sounds rather pedantic, it is important in appreciating
the intrinsic nature of the final form of the volume-of-tubes formula. As a locally
convex space, M by definition needs an ambient space M̃ in which to be embedded,
but M̃ itself might be embedded in a Riemannian manifold (M̂, ĝ), so that we have
the inclusion8

M ⊂ M̃ ⊂ M̂.

In this case,

Tube(M, ρ) = {
x ∈ M̂ : dM̂(x,M) ≤ ρ

}
, (10.3.1)

where dM̂ is geodesic distance on M̂ .
One of the main conclusions of Weyl’s formula is that if M̂ is either Rl or S(Rl ),

then the volume of Tube(M, ρ) is intrinsic in the sense of the following definition.

Definition 10.3.1. A quantity Q(M) is intrinsic to a stratified manifold M embedded
in (M̃, g̃) if it can be computed based solely on the Riemannian metric of (M̃, g̃).
That is, if M̃ is isometrically embedded in (M̂, ĝ), and i(M) is the image of M under
the inclusion i : M̃ → M̂ , then Q(M) is intrinsic if and only if

Q(M) = Q(i(M)).

Aparticularly important example of intrinsic quantities is that of the Lipschitz–Killing
curvature measures Li (M; ·), defined in (10.5.4).

The property of being intrinsic is arguably what has made Weyl’s tube formula
so useful, because it implies that it is enough to know only local properties of M as
it sits in M̃ , without needing to know anything about how it sits in M̂ .

With the triple M ⊂ M̃ ⊂ M̂ in mind, we establish the following convention
about notation: In general, ·̂ will denote an object when we are considering M as
being embedded in M̂ . For instance, ŜtM is the support cone of M at t ∈ M̂ , as
opposed to StM , the support cone of M at t ∈ M̃ . Sometimes, there is no distinction
to be made, as in fact is the case when one is dealing with support cones, since it is

8 To clarify things, think of M = S1 = S(R2), a one-dimensional circle embedded in the
two-dimensional plane M̃ = R

2. If M̂ = R
3, then the tube around M , as defined by

(10.3.1), is a solid torus.
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easy to see that StM and ŜtM are isomorphic. However, there is a difference between
NtM and N̂tM . Specifically,

N̂tM = NtM ⊕ TtM̃
⊥ =

{
Xt ∈ TtM̂ : Xt = Vt + Yt , Vt ∈ NtM, Yt ∈ TtM̃

⊥} ,
where TtM̃

⊥ is the orthogonal complement of TtM̃ in TtM̂.

10.3.1 Basic Structure of Tubes

We now begin to describe the local structure of Tube(M, ρ), beginning with a lin-
earization of M̂ near t ∈ M , which we use as motivation for an explicit description
of Tube(M, ρ). Our ultimate goal is to come up with an explicit parameterization of
the tube that we can use to compute its volume via the differential-geometric tools of
Chapter 7.

As with all linearizations, there will be a region over which it works well, and
so we shall need to define various notions of critical radius for Tube(M, ρ). As we
shall see, Weyl’s tube formula is valid only for values of ρ smaller than the critical
radius of M , since for larger ρ the explicit parameterization of the tube breaks down.

The linearization we shall use is essentially a linearization of the metric projection
ξM : M̂ → M given by

ξM(s)
�= argmint∈M d̂(s, t), (10.3.2)

which parameterizes the tube as

Tube(M, ρ) =
⋃
t∈M

{
s ∈ M̂ : ξM(s) = t, d̂(s, t) ≤ ρ

}
,

where the union is disjoint if ρ is small enough.
Actually, we shall need more than this, since we shall also need an explicit de-

scription of the level sets {
s ∈ M̂ : ξM(s) = t

}
of ξM . To do this, we start by approximating ξM with the projection onto the convex
cone ŜtM , defined on TtM̂ by

PŜtM
(Xt ) = argminYt∈ŜtM

|Xt − Yt | = argminYt∈StM
|PTt M̃

Xt − Yt |. (10.3.3)

A simple convexity argument then shows that Xt projects to the origin if and only
if PTt M̃

Xt ∈ NtM . Alternatively, if PTt M̃
Xt /∈ NtM , then there exists some point

Yt �= 0 ∈ StM such that |PTt M̃
Xt − Yt | < |Xt |.

This argument is based on a local linearization of M̂ and M at t ∈ M; hence it
holds only locally. However, using the fact that near t , M can be approximated by
StM , it is sufficient to establish that
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s ∈ M̂ : ξM(s) = t, d̂(s, t) ≤ ρ

}
= expM̂

({
Xt ∈ TtM̂ : PTt M̃

Xt ∈ NtM, |Xt | ≤ ρ
})

.

Therefore, for ρ small enough,

Tube(M, ρ) =
⋃
t∈M

⋃
{Xt∈Tt M̂:|Xt |≤ρ}

expM̂ (t, Xt ) (10.3.4)

=
⋃
t∈M

⋃
{Xt∈N̂tM:|Xt |≤ρ}

expM̂ (t, Xt ).

The second equality is based on the local linearization described above, i.e., if Xt /∈
N̂tM then there exists a point s ∈ M such that

d̂(expM̂ (t, Xt ), s) < d̂(expM̂ (t, Xt ), t).

Therefore, we can leave out all vectors Xt such that Xt /∈ N̂tM .
At this point, we have not yet quantified how small ρ should be for the above

argument to work. First of all, ρ should be small enough so that

expM̂ : B(TtM̂, ρ) → M̂

is a diffeomorphism onto its range. This means that ρ should be less than

ρ̂c(M̂)
�= sup

{
r : expM̂ : B(TtM̂, r) → M̂ (10.3.5)

is a diffeomorphism for all t ∈ M̂
}
,

the radius of injectivity of M̂ .
In general, we shall have to take ρ even smaller, since we want the final expression

in (10.3.4) to be a disjoint union. Suppose, then, that ρ < ρ̂c(M̂). The geodesic with
origin t and direction Xt ∈ S(TtM̂) can be extended only so far without overlapping
itself or a geodesic emanating from another point. We define ρc,l : M × (N̂tM ∩
S(TtM̂)) → R, the local critical radius of M in M̂ at t in the direction Xt , as

ρc,l(t, Xt )
�= sup

{
r : d̂(expM̂ (t, rXt ),M) = r

}
. (10.3.6)

For r < ρc,l(t, Xt ) the point expM̂ (t, rXt ) projects uniquely to the point t .
Taking the infimum over NtM , we define ρc : M → R, the local critical radius

of M in M̂ at t , as

ρc(t)
�= inf

Xt∈N̂tM∩S(Tt M̂)

ρc,l(t, Xt ), (10.3.7)

and finally, the critical radius of M in M̂ as

ρc(M, M̂)
�= inf

t∈M ρc(t). (10.3.8)
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Therefore, for ρ ≤ min(ρc(M, M̂), ρ̂c(M̂)), the final expression in (10.3.4) is a
disjoint union. Consequently, for such ρ, Tube(M, ρ) is the image of the region{

(t, Xt , r) : Xt ∈ N̂tM ∩ S(TtM̂), 0 ≤ r < ρ
}

under the bijection (for such ρ) F̂ defined by

F̂ (t, Xt , r)
�= expM̂ (t, rXt ).

For values of ρ larger than min(ρc(M, M̂), ρ̂c(M̂)), the map F̂ may not be one-
to-one. However, it is always one-to-one when restricted to the region{

(t, Xt , r) : Xt ∈ N̂tM ∩ S(TtM̂), 0 ≤ r < min
(
ρ, ρc,l(t, Xt )

)}
. (10.3.9)

10.3.2 Stratifying the Tube

We now turn to describing the region (10.3.9) in more detail, essentially stratifying
Tube(M, ρ). After this, computing the volume of Tube(M, ρ) reduces to computing
an integral over each of its strata.

As usual, we assume thatM is anN -dimensional, stratifiedWhitney space (M,Z),
decomposed as a disjoint union

M =
N⋃
j=0

∂jM,

where the manifolds ∂jM are (possibly empty) j -dimensional, C2, submanifolds of a
Riemannian N -manifold (M̃, g̃). Recall that each ∂jM will in general contain many
connected components, namely, all those sets in the partition Z of M of dimension j .

For each stratum ∂jM for 0 ≤ j ≤ l fix an orthonormal frame field

η = (
η1, . . . , ηl−j

)
for T̂t ∂jM

⊥
as t varies over ∂jM . The region (10.3.9) can then be expressed as the

image of the disjoint union of the regions

Dj(ρ)
�=
⋃

t∈∂jM

⋃
s∈S(Rl−j )

⋃
0≤r≤min(ρ,ρc,l(t,

∑
i siηi (t)))

{
(t, s, r) :

∑
i

siηi(t) ∈ N̂tM

}
(10.3.10)

under the maps

Gj : (t, s, r) →
(
t,
∑
i

siηi(t), r

)
.
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Finally, Tube(M, ρ) is the disjoint union of the sets Dj(ρ) under the maps Fj
�=

F̂ ◦Gj , so that we have

Fj : (t, s, r) → expM̂

(
t, r

∑
i

siηi(t)

)
. (10.3.11)

That is,

Tube(M, ρ) =
⋃
j

Fj (Dj (ρ)). (10.3.12)

Note that while this gives the tube in M̂ around M , the same construction gives the
tube in M̃ around M if we merely replace expM̂ in (10.3.11) by expM̃ , although the
critical radius of M in M̃ is in general different from the critical radius of M in M̂ .

10.4 Computing the Volume of a Tube

10.4.1 First Steps

In the previous section, we decomposed Tube(M, ρ) into strata corresponding to
the strata of M . The strata of Tube(M, ρ) are open sets in M̂ , and to compute
μ(Tube(M, ρ))we are left with an integral over each stratum of Tube(M, ρ). That is,

μ(Tube(M, ρ)) =
∑
j

μ(Fj (Dj (ρ))). (10.4.1)

Assume now that μ is a measure associated to an integrable l-form αμ (see (7.4.5)).
Then it can be expressed as fμ · VolM̂ , where VolM̂ is the Riemannian volume form
on M̂ and fμ is bounded. Applying the coarea formula (7.4.13) to the distance
function of M (which is almost everywhere9 C1 with Lipschitz gradient of norm 1)
on Fj (Dj (ρ)), we find that

μ(Fj (Dj (ρ))) =
∫ ρ

0

∫
Sj (r)

1Fj (Dj (ρ))
(x)fμ(x)�j,r dr, (10.4.2)

where
Sj (r)

�= {s ∈ M̂ : dM̂(s, ∂jM) = r}, (10.4.3)

and �j,r is the volume form induced on Sj (r) by αμ.
Alternatively, we can pull back (cf. (7.4.1))�j,r to the level sets making upDj(ρ)

to obtain

9 Note that whereas we stated the coarea theorem for differentiable functions, the distance
function to ∂jM can be nondifferentiable on a set of dimension up to l−1. This, however, is
a set of too small dimension to affect the integral in (10.4.2). See footnote 25 in Chapter 7.
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μ(Fj (Dj (ρ))) =
∫ ρ

0

∫
∂jM×S(Rl−j )

1Dj (ρ)
(t, s, r)fμ(Fj,r (t, s))F

∗
j,r (�j,r ) dr,

(10.4.4)
where Fj,r is the partial map

Fj,r (t, s)
�= Fj (t, s, r).

We are left with computing the pullback F ∗
j,r (�j,r ), as well as the integration

over Dj(ρ).

10.4.2 An Intermediate Computation

Although the details on how best to compute F ∗
j,r (�j,r ) tend to be problem-specific,

there are some general preliminaries that will help for the two cases that we wish to
consider in detail, in which M̂ is either Rl or S(Rl ).

Fixing a point (t, s) ∈ ∂jM×S(Rl−j ), recall that by the definition of the pullback
(7.4.1) and from (7.4.7),

F ∗
j,r (�j,r )

(
X1,(t,s), . . . , Xl−1,(t,s)

)
(10.4.5)

= �j,r

(
Fj,r∗X1,(t,s), . . . , Fj,r∗Xl−1,(t,s)

)
= det

(〈
Fj,r∗Xk,(t,s),Wm,Fj,r (t,s)

〉)
1≤k,m≤l−1

,

where Xj,(t,s) ∈ T(t,s)∂jM × S(Rl−j ) and (W1,Fj,r (t,s), . . . ,Wl−1,Fj,r (t,s)) is any
(suitably oriented) orthonormal basis of the tangent space at Fj,r (t, s) to the level set
(10.4.3), a hypersurface in M̂ . The inner product here is, of course, that of M̂ .

Therefore, in order to evaluate F ∗
j,r (�j,r ) it will, in general, be necessary

to choose a suitably oriented orthonormal basis (W1,Fj,r (t,s), . . . ,Wl−1,Fj,r (t,s)) of
TFj,r (t,s)Sj (r).

We now treat two specific cases, in both of which the exponential map has an
explicit form that makes computations feasible.10

Furthermore, we shall ultimately want to replace the integral in (10.4.4) by an
integral with respect to the natural volume form on ∂jM × S(Rl−j ), and so we note
here, for later use, the fact that if α is an n-form on an n-dimensional Riemannian
manifold with volume form �, and X1, . . . , Xn is an orthonormal basis for TtM , then

α (V1, . . . , Vn) = �(V1, . . . , Vn) · α (X1, . . . , Xn) (10.4.6)

for any collection of vectors Vj ∈ TtM .

10 Indeed, this is true of many spaces of constant curvature. In general, when M̂ is an arbitrary
manifold, the Jacobian of Fj , which is needed to continue from (10.4.4), is difficult to
compute, since the map expM̂ has no simple closed form. In [73] the Jacobian is expressed
in terms of the solution to a Riccati differential equation, but we shall not pursue this
approach here.
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10.4.3 Subsets of Rl

We now treat the case in which the ambient space is M̂ = Rl . Our aim is to compute
the determinant in (10.4.5).

In this case, since the exponential map is the identity, Fj,r is particularly simple
and is given by

Fj,r (t, s) = t + r

l−j∑
i=1

siηi(t). (10.4.7)

This allows us to establish the following lemma, which will be a major step toward
computing (10.4.5).

Lemma 10.4.1. For any coordinate systems u on ∂jM and w on S(Rl−j ) and any
orthonormal frames (ηi)1≤i≤l−j normal to ∂jM , the following relations hold:

Fj,r∗
(

∂

∂uk

)
= ∂

∂uk
+ r

l−j∑
i=1

si∇ ∂
∂uk

ηi(t (u)), (10.4.8)

Fj,r∗
(

∂

∂wk

)
= 0 + r

l−j∑
i=1

∂si

∂wk

ηi(t (u)). (10.4.9)

As a consequence, we have〈
Fj,r∗

(
∂

∂uk

)
,

l−j∑
i=1

si(w)ηi(t (u))

〉
= 0, (10.4.10)

〈
Fj,r∗

(
∂

∂wk

)
,

l−j∑
i=1

si(w)ηi(t (u))

〉
= 0. (10.4.11)

Proof. Note first that throughout the proof, hopefully without too much ambiguity,
we shall identify tangent vectors Xy ∈ TyRl with vectors in Rl . Not doing so would
lead to even more unwieldy notation.

To verify (10.4.8) and (10.4.9), let (U, ϕ) be a chart on M , in which case we can
rewrite (10.4.7) locally as a mapping from U × S(Rl−j ) by defining

F̃j,r (u,w) = ϕ(u)+ r

l−j∑
i

si(w)ηi(ϕ(u)). (10.4.12)

With the usual abuse of notation that identifies ∂/∂uk and ϕ∗(∂/∂uk) we can
compute Fj,r∗(∂/∂uk) from F̃j,r∗(∂/∂uk) ≡ F̃j,r∗(ϕ∗(∂/∂uk)). To see how to do
this, take the standard basis (e1, . . . , el) on Rl and start by noting that for 1 ≤ m ≤ l,
1 ≤ k ≤ l − j ,
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∂

∂uk
F̃j,r (u, s)

)
m

=
(
∂ϕ(u)

∂uk

)
m

+ r

l−j∑
i

si
∂〈ηi(ϕ(u)), em〉

∂uk

=
(
ϕ∗
(

∂

∂uk

))
m

+ r

l−j∑
i

si

〈(
ϕ∗
(

∂

∂uk

)
ηi

)
(ϕ(u)), em

〉

=
(

∂

∂uk

)
m

+ r

l−j∑
i

si
∂

∂uk
〈ηi(ϕ(u)), em〉 ,

where in this case the notational abuse appears in the passage between the last two
lines. Note, however, that from the “compatability’’ property of the Levi-Civitá
connection (cf. (7.3.11)), we have

∂

∂uk
〈ηi(ϕ(u)), em〉 = 〈∇∂/∂ukηi(ϕ(u)), em〉 + 〈∇∂/∂uk em, ηi(ϕ(u)), 〉

∂

∂em

= 〈∇∂/∂ukηi(ϕ(u)), em〉,
since ∇∂/∂uk em ≡ 0.

Substituting this in the above leads to

Fj,r∗
(

∂

∂uk

)
= F̃j,r∗

(
∂

∂uk

)
=

l∑
m=1

(
∂

∂uk
F̃j,r (u, s)

)
m

∂

∂em

= ∂/∂uk + r
∑
i

si
∑
m

∂

∂uk
〈ηi(ϕ(u)), em〉 ∂

∂em

= ∂/∂uk + r
∑
i

si
∑
m

(〈∇∂/∂ukηi(ϕ(u)), em〉
) ∂

∂em

= ∂/∂uk + r
∑
i

si∇∂/∂ukηj (ϕ(u)),

which gives (10.4.8). A similar argument gives (10.4.9).
We now turn to (10.4.10) and (10.4.11). To verify (10.4.10), first note that by the

definition of the pullback,

Fj,r∗
(

∂

∂uk

)
∈ TFj,r (t,s)Sj (r),

while by (10.4.9),

l−j∑
i=1

si(w)ηi(t (u)) ∈ T ⊥
Fj,r (t,s)

Sj (r).
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Equation (10.4.10) is now immediate.
To verify (10.4.11) note that we can express the first term there as

Fj,r∗
(

∂

∂wk

)
=

l−j∑
i=1

aki(s(w))ηi(t (u)),

where the aki are given by

aki(s(w)) = ∂si(w)

∂wk

, (10.4.13)

and so for all 1 ≤ k ≤ l − j − 1 satisfy

l−j∑
i=1

aki(s(w))si(w) = 0. (10.4.14)

Therefore, 〈
Fj,r∗

(
∂

∂wk

)
,

l−j∑
i=1

si(w)ηi(t (u))

〉

=
〈
l−j∑
n=1

akn(s(w))ηn(t (u)),

l−j∑
i=1

si(w)ηi(t (u))

〉

=
l−j∑
i=1

aki(s(w))si(w)

= 0. ��
We now return to our main task, the computation of the pullback and, specifically,

the determinant in (10.4.5). By (10.4.6), it will suffice to do this for an orthonormal
basis of T(t,s)∂jM × S(Rl−j ). To this end, let (X1,t , . . . , Xj,t ) be an orthonormal
basis of Tt∂jM , and for 1 ≤ m ≤ l − j − 1, let

X̃m,s =
l−j∑
i=1

ami(s)
∂

∂si
,

with the ami as in (10.4.13), be an orthonormal basis for TsS(Rl−j ).
We now need to choose an orthonormal basis(

W1,Fj,r (t,s), . . . ,Wl−1,Fj,r (t,s)

)
for TFj,r (t.s)Sj (r). By Lemma 10.4.1, it is clear that such a basis is an orthonormal
basis for the orthogonal complement, in TFj,r (t,s)R

l , of the vector
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η(t, s) =
l−j∑
i=1

siηi(t), (10.4.15)

with base at t ∈ ∂jM and going through the point Fj,r (t, s).11

This motivates the following choice, with the Xj,t and X̃m,s as above: For 1 ≤
m ≤ j , let

Wm,Fj,r (t,s) = Xm,t

and, for 1 ≤ m ≤ l − j − 1, define

Wj+m,Fj,r (t,s) =
l−j∑
i=1

ami(s)ηi(t).

It is not difficult to see that the set {W1,Fj,r (t,s), . . . ,Wl−1,Fj,r (t,s)} is an orthonor-
mal basis of TFj,r (t,s)Sj (r) since it is an orthonormal set and all elements are orthog-
onal to η(t, s).

Returning to (10.4.5), we can now compute

det
(〈
Fj,r∗Xk,(t,s),Wm,Fj,r (t,s)

〉)
1≤k,m≤l−1

, (10.4.16)

for the Wm,Fj,r (t,s) just constructed, and taking X1,t , . . . , Xj,t , X̃1,s , . . . , X̃l−j−1,s as
our choice for the vectors Xk,(t,s). In view of (10.4.6), this will suffice.

The matrix in (10.4.16) can be broken into four blocks. For the first, we take
1 ≤ k,m ≤ j , so that in the notation on Lemma 10.4.1, and for some collection of
coefficients bik(t), it has elements〈

Fj,r∗Xk,t ,Wm,Fj,r (t,s)

〉
=
〈
Fj,r∗

⎛⎝ j∑
i=1

bik(t)
∂

∂ui

⎞⎠ , Xm,t

〉

=
j∑

i=1

bik(t)

〈⎛⎝ ∂

∂ui
+ r

l−j∑
n=1

sn∇ ∂
∂ui

ηn

⎞⎠ , Xm,t

〉

=
〈
Xk,t + r

l−j∑
n=1

sn∇Xk,t
ηn,Xm,t

〉
,

the second equality here following from (10.4.8) of Lemma 10.4.1 and where η =
η(s, t) is the normal vector of (10.4.15).

However, noting the orthonormality of the Xk,t and applying the Weingarten
equation (7.5.12), it is immediate that the above is equal to

11 Recall our convention of identifying tangent vectors Xy ∈ TyR
l with vectors in R

l .
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δkm − r · Sη(Xk,t , Xm,t ),

where S is the scalar second fundamental form of ∂jM in Rl (cf. (7.5.11)).
Applying similar arguments based on Lemma 10.4.1 to the remaining terms in

(10.4.16), it is now easy to check that the determinant there has the form

det

(
Ij×j − r · {Sη(Xk,t , Xm,t )

}
k,m=1,...,j . . .

0 r · I(l−j−1)×(l−j−1)

)
. (10.4.17)

To compute this determinant recall first the standard formula

det

(
A B

0 C

)
= det(A) det(C)

for A and C square matrices, so that (10.4.17) simplifies to

rl−j−1 det
(
Ij×j − r

{
Sη(Xk,t , Xm,t )

})
. (10.4.18)

To evaluate the remaining determinant, we can either use standard, matrix-theoretic,
formulas for evaluating det(A + λI), or, more formally, we can view S as a double
form and use (7.2.11). Since we shall use the latter approach for more difficult
calculations later, we use it here as well. Therefore,

det

(
Ij×j − r

{
Sη(Xk,t , Xm,t )

}
. . .

0 rI(l−j−1)×(l−j−1)

)
= rl−j−1 1

j ! TrTt ∂jM
(
(I − rSη)

j
)

=
j∑

i=0

rl−j+i−1 1

i!(j − i)! TrTt ∂jM
(
I j−iSi−η

)

=
j∑

i=0

rl−j+i−1 1

i! TrTt ∂jM
(
Si−η

)
,

where we have used (7.2.11) in going from the third to the fourth line.
Putting the above together, we have proven the following theorem, which is one

of the two main results of this section.

Theorem 10.4.2. Suppose thatM is aC2, locally convex, Whitney stratified manifold
embedded in theN -manifold (M̃, g̃) that is isometrically embedded in M̂ = Rl . Then

F ∗
j,r (�j,r )

(
X1,t , . . . , Xj,t , X̃1,s , . . . , X̃l−j−1,s

)
=

j∑
i=0

rl−j−1+i 1

i! TrTt ∂jM(Si−η),

where S is the scalar second fundamental form of ∂jM in Rl .
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In particular, if μ is the measure associated to an integrable (l − 1)-form αμ on
S(Rl ), then

μ (Tube(M, ρ)) =
l∑

j=0

j∑
i=0

∫
∂jM

∫
S(Rl−j )

∫ ρ

0
1Dj (ρ)

(t, s, r)fμ(Fj,r (t, s))

× rl−j−1+i 1

i! TrTt ∂jM(Si−η) drHl−j−1(ds)Hj (dt),

(10.4.19)

where Hl−j−1 is standard surface measure on S(Rl−j ) and Hj is the volume measure
induced on ∂jM by the Riemannian metric g̃.

10.4.4 Subsets of Spheres

In this section, we treat the case M̂ = Sλ(R
l ), the sphere of radius λ in Rl . This case

is very similar to the previous one, so we need only go over the major differences.
The geodesic metric on Sλ(R

l ) is given by

d̂λ(t, s) = λ cos−1(λ−2〈t, s〉).
The exponential mapping expSλ(Rl ) is also explicitly computable in this case. For a
unit vector Xt ∈ TtSλ(R

l ) and r > 0,

expSλ(Rl )(t, rXt ) = cos(r/λ)t + λ sin(r/λ)Xt .

The maps Fj,r are of the form

Fj,r (t, s) = cos(r/λ)t + λ sin(r/λ)
l−1−j∑
i=1

siηi(t)

for some orthonormal frame (η1(t), . . . , ηl−1−j (t)) spanning ̂Tt∂jM⊥, the orthogonal
complement of Tt∂jM in TtM̂ = TtSλ(R

l ).
The orthogonality relations (10.4.10) and (10.4.11) still hold in this case, with the

minor change that the Wi of the previous subsection now give a coordinate system
on S(Rl−1−j ) instead of S(Rl−j ).

To be more specific, to construct an orthonormal basis on TFj,r (t,s)Sj (r), we set

Wm,Fj,r (t,s) = Xj,t

as before, for 1 ≤ m ≤ j , and for 1 ≤ m ≤ l − 2 − j we set

Wj+m,Fj,r (t,s) =
l−j−1∑
i=1

ami(s)ηi(t),
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where

X̃m(s) =
l−j−1∑
i=1

ami(s)
∂

∂si
, 1 ≤ m ≤ l − 2 − j,

is an orthonormal basis of TsS(Rl−1−j ).
Turning to the determinant (10.4.5) in F ∗

j,r (�j,r ), we have that it is now given by

det

(
cos(r/λ)I + λ sin(r/λ)S−η(Xk,t , Xm,t ) . . .

0 λ sin(r/λ)I

)

=
j∑

i=0

λl−2−j+i cos(r/λ)j−i sin(r/λ)l−j−2+i TrTt ∂jM(Si−η),

(10.4.20)

where the first unit matrix is of size j and the second of size l − j − 1. The vector
η = η(s, t) is as in the previous subsection and S is now the scalar second fundamental
form of ∂jM in Sλ(R

l ) (cf. (7.5.11)).
We thus have the following result.

Theorem 10.4.3. Suppose thatM is aC2, locally convex, Whitney stratified manifold
embedded in the N -manifold (M̃, g̃) that is isometrically embedded in M̂ = Sλ(R

l ).
Then

F ∗
j,r (�j,r )

(
X1,t , . . . , Xj,t , X̃1,s , . . . , X̃l−j−1,s

)
=

j∑
i=0

λl−2−j+i cos(r/λ)j−i sin(r/λ)l−j−2+i TrTt ∂jM(Si−η),

where S−η is the scalar second fundamental form of ∂jM in S(Rl ).
In particular, if μ is the measure associated to an integrable (l − 1)-form αμ on

S(Rl ), then

μ (Tube(M, ρ)) =
l−1∑
j=0

j∑
i=0

∫
∂jM

∫
S(Rl−1−j )

∫ ρ

0
1Dj (ρ)

(t, s, r)fμ
(
Fj,r (t, s)

)
× λl−2−j+i cos(r/λ)j−i sin(r/λ)l−j−2+i 1

i!
× TrTt ∂jM(Si−η) drHl−j−2(ds)Hj (dt),

where Hl−j−2 and Hj are as in (10.4.19).

10.5 Weyl’s Tube Formula

As we have written them, Theorems 10.4.2 and 10.4.3 are not in the form of classic
Weyl’s tube formulas, since the remaining integrals there, since they depend on Sη,
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are not intrinsic. On the other hand, they are a little more general than the classic
Weyl’s tube formulas, for which μ is either Hl or Hl−1.

In order to obtain an intrinsic formulation of these results, and so rederive the
classic Weyl’s tube formulas, we need to specialize down to Hl or Hl−1 and prove
that only intrinsic quantities arise when the integrals in Theorems 10.4.2 and 10.4.3
are evaluated. This is the deep part of Weyl’s tube formula,12 and it is one of the first
appearances of Lipschitz–Killing curvatures.

The derivation that follows is a little unusual, since it involves expectations of
random Gaussian forms, and so is not what you will find in a standard textbook.
Nevertheless, it does fit in nicely with the theme of this book, which attempts to
integrate both geometry and probability.

The drawback of this approach is that the following argument depends on
Lemma 12.3.1, which is still two chapters into the future. With only minor effort,
we could rearrange things so that the lemma appeared here rather than there, but it is
in Chapter 12, where it logically belongs. To make things a little easier for you, we
shall “precall’’ one definition now.

Let V be a vector space and μ ∈ �1,1(V ) a double form on V . Furthermore, let
Cov : (V ⊗ V ) × (V ⊗ V ) → R be bilinear, symmetric, and nonnegative definite.
We think of μ as a mean function and Cov as a covariance function, and call W a
random, Gaussian 2-form on V ⊗ V with mean function μ and covariance function
Cov if for all finite collections of pairs (vi1 , vi2) ∈ V ⊗ V , the W(vi1 , vi2) have a
joint Gaussian distribution with means

E
{
W(vi1 , vi2)

} = μ(vi1 , vi2)

and covariances

E
{(
W(vi1 , vi2)− μ(vi1 , vi2)

) · (W(vj1 , vj2)− μ(vj1 , vj2)
)}

= Cov
(
(vi1 , vi2), (vj1 , vj2)

)
.

Lemma 12.3.1 is about computing expectations of powers of such Gaussian forms,
where the powers are computed via the double wedge tensor product of (7.2.4).

To return to our main task, what remains in order to derive Weyl’s tube formula
is proving that for ρ small enough,∫

∂jM

∫
S(Tt ∂jM

⊥)

∫ ρ

0
1Dj (ρ)

(t, s, r)Tr∂jM(Si−η) dr ds dt = C̃(j, i, l)Q(∂jM),

for some constant C̃ and some intrinsic quantity Q(∂jM), which will turn out to be
related to the intrinsic volumes of M .13

12 In fact, of the computations of Sections 10.3 and 10.4, albeit in the case of manifolds in R
l

and S(Rl ) without boundary, and for Hl and Hl−1, Weyl wrote that “so far we have hardly
done more than what could have been accomplished by any student in a course of calculus.’’

13 Read Volg̃|S(Tt ∂jM⊥)
(ds) and Volg̃|∂jM (dt) for ds and dt here.
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Recall that in the Euclidean case, we have S(Tt∂jM
⊥) = S(Rl−j ), while for the

spherical case, S(Tt∂jM⊥) = S(Rl−j−1).
As a first step, define the constants

C(m, i)
�=
{

(2π)i/2

sm+i
, m+ i > 0,

1, m = 0,
(10.5.1)

where as usual, sm = 2πm/2/�
(
m
2

)
is the surface area of the unit sphere in Rm.

Our first result relating the quantities in Theorem 10.4.2 to intrinsic quantities is
the following.

Lemma 10.5.1. Suppose that M is a C2, locally convex, Whitney stratified manifold
embedded in the N -manifold (M̃, g̃) that is isometrically embedded in Rl . Then, for
j < l the following quantities are intrinsic, for each t ∈ M:

C(l − j, i)

∫
S(Rl−j )

1
N̂tM

(η)
1

i! TrTt ∂jM(Si−η)Hl−j−1(ds) (10.5.2)

=
 i

2 !∑
m=0

C(N − j, i − 2m)(−1)i
(−1)m

m!(i − 2m)!

×
∫
S(Tt ∂jM

⊥)
TrTt ∂jM

(
R̃mS̃i−2m−νN−j

)
1NtM

(νN−j )HN−j−1(dνN−j ),

where S is the scalar second fundamental form of ∂jM as it sits in Rl , Tt∂jM⊥ is the
orthogonal complement of Tt∂jM in TtM̃ , R̃ is the curvature tensor of (M̃, g̃), S̃ is
the scalar second fundamental form ∂jM as it sits in M̃ , and

η = η(s, t) =
∑
i

siηi(t),

with {ηi(t)}1≤i≤l−j an orthonormal basis of T̂t ∂jM
⊥

, the orthogonal complement of
Tt∂jM in Rl .

Remark 10.5.2. Above, if j = l, then M̃ is essentially an open subset of Rl , so
that N = l and the left- and right-hand sides of (10.5.2) are not defined. This of
course plays havoc with our notation, since we would be integrating over the sphere
in the zero subspace of TtM̃ . We therefore adopt the following somewhat strange but
convenient convention: for any zero-dimensional space 0 and any function h on 0,∫

S(0)

h(ν) dν
�= h(0).

This is well defined since 0 has only one element and is effectively equivalent to
defining S(0) = 0. We also adopt the convention, for the scalar second fundamental
form, that
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S
j

0
=
{

1, j = 0,

0 otherwise.

Finally, we define the volume of the unit ball in 0 to be 1, i.e.,

ω0
�= 1.

These issues will, thankfully, arise only when we define the Lipschitz–Killing curva-
tures. The conventions are pedantic, but are important to ensure that the Lipschitz–
Killing curvature measures for locally convex spaces, defined in (10.5.4), agree with
the Lipschitz–Killing curvature measures for smooth manifolds defined in (7.6.1).

The corresponding version of Lemma 10.5.1 for subsets of a hypersphere is as
follows.

Lemma 10.5.3. Suppose that M is a C2, locally convex, Whitney stratified manifold
embedded in an N -manifold (M̃, g̃) that is isometrically embedded in Sλ(R

l ). Then,
for j < l, the following quantities are intrinsic, for each t ∈ M:

C(l − 1 − j, i)

∫
S(Rl−1−j )

1
N̂tM

(η)
1

i! TrTt ∂jM(Si−η)Hl−j−2(ds) (10.5.3)

=
 i

2 !∑
m=0

C(N − j, i − 2m)(−1)i
(−1)m

m!(i − 2m)!

×
∫
S(Tt ∂jM

⊥)
TrTt ∂jM

((
λ−2

2
I 2 + R̃

)m

S̃i−2m−νN−j

)
× 1NtM

(νN−j )HN−j−1(dνN−j ),

where S is the scalar second fundamental form of ∂jM as it sits in Sλ(R
l ) and

everything else is as in Lemma 10.5.1.

Remark 10.5.4. Above, if j = l− 1, then M̃ is essentially an open subset of Sλ(Rl ),

so that N = l − 1 and the left- and right-hand sides of (10.5.3) are not defined. We
therefore again adopt the conventions of Remark 10.5.2.

The proofs of Lemmas 10.5.1 and 10.5.3 are virtually identical and are based on
the following lemma, for which we recall that γRm denotes Gauss measure on Rm

and ηm denotes uniform measure over S(Rm).

Lemma 10.5.5. Let W ∼ γRm , let Pi be a homogeneous function of order i on Rm,
and let A be a cone in Rm. Then

E{Pi(W)1A(W)} = C(m, i)

∫
S(Rm)

Pi(ν)1A(ν)Hm−1(dν).
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Proof.

E

{
Pi(W)1A(W)

}
= E

{
|W |iPi(W/|W |)1A(W/|W |)

}
=
∫ ∞

0
ri
∫
S(Rm)

Pi(ν)1A(ν)ηm(dν)P|W |(dr)

= �
(
m
2

)
2πm/2

∫ ∞

0
riP|W |(dr)

∫
S(Rm)

Pi(ν)1A(ν)Hm−1(dν)

= 1

2
(2π)−m/22(i+m)/2�

(
m+ i

2

)∫
S(Rm)

Pi(ν)1A(ν)Hm−1(dν),

which, on comparing with the definition of the C(m, i) at (10.5.1), proves the
lemma. ��
Proof of Lemma 10.5.1. Our proof is somewhat indirect and, as mentioned above,
proceeds via Gaussian random forms, which are not generally found in geometric
arguments. Rather than taking one expression in (10.5.2) and showing that it is equal
to the other, we shall show that both are given by a certain expectation.

One of the nice aspects of this approach is that it immediately shows that both
sides of (10.5.2) are truly intrinsic,14 since the expectation will, a priori, involve only
intrinsic quantities.

We start with the case j < N , leaving the easier case of j = N for later.
Therefore, let Xl−j ∼ γ

T̂t ∂jM
⊥ be a canonically distributed Gaussian random

vector on ̂Tt∂jM⊥, the orthogonal complement of Tt∂jM in TtM̂ . For a fixed or-

thonormal basis of ̂Tt∂jM⊥, the random variable

1

i! TrTt ∂jM(Si−Xl−j
)

is a homogeneous polynomial of degree i in the components of Xl−j in this basis.
Hence, by Lemma 10.5.5,

1

i!E
{

TrTt ∂jM(Si
−Xl−j

)1
N̂tM

(Xl−j )
}

= C(l − j, i)

∫
S(T̂t ∂jM)

1
N̂tM

(νl−j )
1

i! TrTt ∂jM(Si−νl−j
)Hl−j−1(νl−j )

= C(l − j, i)

∫
S(Rl−j )

1
N̂tM

(η)
1

i! TrTt ∂jM(Si−η)Hl−j−1(ds),

which is the left-hand side of (10.5.2).
14 Of course, this would also follow from any proof that (10.5.2) held, since while the left-hand

side—which seems to depend on the nonintrinsic parameter l—is not obviously intrinsic,
the right-hand side depends only on intrinsic quantities.
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On the other hand, Xl−j can be decomposed as

Xl−j = PTt M̃
Xl−j + P⊥

Tt M̃
Xl−j

�= XN−j +Xl−N.

With this notation, and noting that the scalar fundamental form Sη is linear in η, we
can write

1

i! TrTt ∂jM(Si−Xl−j
) =

i∑
m=0

1

m!(i −m)! TrTt ∂jM
(
Sm−Xl−N

Si−m
−XN−j

)
,

where the double forms S−XN−j
and S−Xl−N

are independent, since XN−j and
Xl−N are.

Furthermore,

1
N̂tM

(Xl−j ) = 1NtM
(XN−j ).

Consequently, we have

E

{
1

i! TrTt ∂jM(Si−Xl−j
)1

N̂tM
(Xl−j )

}
=

i∑
m=0

1

m!(i −m)! TrTt ∂jM
(
E

{
Sm−Xl−N

Si−m
−XN−j

1NtM
(XN−j )

})

=
i∑

m=0

1

m!(i −m)! TrTt ∂jM
(
E

{
Sm−Xl−N

}
E

{
S̃i−m
−XN−j

1NtM
(XN−j )

})
,

where replacing S by S̃ is justified by the Weingarten equation (7.5.12).
The second expectation here is easily computed, as above, via Lemma 10.5.5. For

the first, we shall apply Lemma 12.3.1, but to do this we need to know the “means’’
and “covariances’’ of S. From symmetry arguments, the expected value is clearly 0.
That is, for any Xt, Yt , Zt ,Wt ∈ TtM̃ ,

E
{
S−Xl−N

(Xt , Yt )
} = 0.

As for the “variance’’ term, by (7.5.8),

E

{
1

2
S2−Xl−N

((Xt , Yt ), (Zt ,Wt ))

}
= E

{
S̃−Xl−N

(Xt , Zt )S̃−Xl−N
(Yt ,Wt )

− S̃−Xl−N
(Xt ,Wt )S̃−Xl−N

(Yt , Zt )
}

= E
{〈
PTt M̃⊥∇̂XtZt ,Xl−N

〉 〈
PTt M̃⊥∇̂YtWt ,Xl−N

〉
− 〈PTt M̃⊥∇̂XtWt ,Xl−N

〉 〈
PTt M̃⊥∇̂Yt Zt , Xl−N

〉}
= 〈

PTt M̃⊥∇̂XtZt , PTt M̃⊥∇̂YtWt

〉− 〈PTt M̃⊥∇̂XtWt , PTt M̃⊥∇̂Yt Zt

〉
= R̂(Xt , Yt , Zt ,Wt )− R̃(Xt , Yt , Zt ,Wt )

= −R̃(Xt , Yt , Zt ,Wt ),



10.5 Weyl’s Tube Formula 237

where the second-to-last line follows from the Gauss equation (7.5.9) and the last
from the fact that M̂ = Rl , and Rl is flat.

Consequently, applying Lemmas 10.5.5 and 12.3.1, we have

E

{
1

i! TrTt ∂jM(Si−Xl−j
)1

N̂tM
(Xl−j )

}

=
 i

2 !∑
m=0

(−1)m

m!(i − 2m)! TrTt ∂jM
(
R̃mE

{
S̃i−2m
−XN−j

1NtM
(XN−j )

})

=
 i

2 !∑
m=0

(−1)m

m!(i − 2m)!E
{

TrTt ∂jM
(
R̃mS̃i−2m

−XN−j

)
1NtM

(XN−j )
}

=
 i

2 !∑
m=0

C(N − j, i − 2m)
(−1)m

m!(i − 2m)!

×
∫
S(Tt ∂jM

⊥)
TrTt ∂jM

(
R̃mS̃i−2m−νN−j

)
1NtM

(νN−j )HN−j−1(dνN−j ),

which is the right-hand side of (10.5.2), and so we are done when j < N .
When j = N we need the conventions that we adopted in Remark 10.5.2 to sort

things out. If j = N < l then NtM = 0 ⊂ TtM̃ , and by our conventions,

 i
2 !∑

m=0

C(N − j, i − 2m)
(−1)m

m!(i − 2m)!

×
∫
S(Tt ∂jM

⊥)
TrTt ∂jM

(
R̃mS̃i−2m−νN−j

)
1NtM

(νN−j )HN−j−1(dνN−j )

=
{

TrTt M̃ (R̃k), i = 2k is even,

0, i is odd.

On the other hand, if j = N = l, then, again by our conventions,

E

{
1

i! TrTt ∂jM(Si−Xl−j
)1

N̂tM
(Xl−j )

}
=
{

1, i = 0,

0 otherwise.

The right-hand side of (10.5.2) is also 0 in this case, by our conventions and the fact
that R̃ = 0, and so we are done. ��

The proof of Lemma 10.5.3 is virtually identical and so we omit it. As in the
previous proof, there are some special cases (j = N = l − 1 and j < N = l) to
be checked, but the conventions established in Remark 10.5.4 again suffice to handle
these.

We are now almost ready to complete the derivation of Weyl’s tube formula on Rl

and Sλ(R
l ). For 0 ≤ j ≤ k and l − k ≤ i ≤ l define the (signed) Lipschitz–Killing

curvature measures [64] of a locally convex space M for 0 ≤ i ≤ N by
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Li (M,A) =
N∑
j=i

(2π)−(j−i)/2
 j−i

2 !∑
m=0

C(N − j, j − i − 2m)
(−1)m

m!(j − i − 2m)!
(10.5.4)

×
∫
∂jM∩A

∫
S(Tt ∂jM

⊥)
TrTt ∂jM

(
R̃mS̃j−i−2m

νN−j

)
× 1NtM

(−νN−j )HN−j−1(dνN−j )Hj (dt),

where as usual, N is the dimension of the ambient manifold. We define Li (M; ) to
be 0 if i > dim(M).

The above formula is somewhat simpler if M is embedded in Rl and endowed
with the canonical Riemannian structure on Rl . Then, by Lemma 10.5.1 and the
flatness of Rl (which implies that R ≡ 0 and so only the terms with m = 0 remain in
(10.5.4)), the curvature measures (10.5.4) can be written as

Li (M,A) =
N∑
j=i

(2π)−(j−i)/2C(l − j, j − i) (10.5.5)

×
∫
∂jM∩A

∫
S(Rl−j )

1

(j − i)! TrTt ∂jM(Sj−i
η )

× 1
N̂tM

(−η)Hl−j−1(dη)Hj (dt),

where S is the scalar second fundamental form of ∂jM as it sits in Rl , Tt∂jM⊥ is the

orthogonal complement of Tt∂jM in TtR
l , and N̂tM is the normal cone at t ∈ ∂jM

as it sits in TtR
l .

As before, the (signed) total masses of the curvature measures give the intrinsic
volumes

Li (M)
�= Li (M,M). (10.5.6)

Theorem 10.5.6 (Weyl’s tube formula on Rl). Suppose M ⊂ Rl is a C2, locally
convex, Whitney stratified manifold. For ρ < ρc(M,Rl ),

Hl (Tube(M, ρ)) =
N∑
i=0

ρl−iωl−iLi (M). (10.5.7)

The upper limit of the sum can be taken as infinity, since Li (M) ≡ 0 for i > N .

Proof. Changing the second index of summation in (10.4.19) and setting fμ ≡ 1,
we have that

Hl (Tube(M, r))

=
N∑
j=0

j∑
i=0

∫
∂jM

∫
S(Rl−j )

∫ ρ

0
1Dj (ρ)

(t, s, r)
rl−i−1

(j − i)! TrTt ∂jM(S
j−i
−η ) dr ds dt.
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By assumption, ρ < ρc(M,Rl ), so that

Dj(ρ) =
⋃

t∈∂jM

⋃
s∈S(Rl−j )

⋃
0≤r≤ρ

{
(t, s, r) :

∑
i

siηi(t) ∈ NtM, r < ρ

}
.

Applying Lemma 10.5.1 to each term in the above summation, followed by integration
with respect to r on [0, ρ], yields the desired conclusion. ��

In preparation for Weyl’s tube formula on spheres, we need to extend the
Lipschitz–Killing measures slightly to obtain a one-parameter family of measures.
As we shall see in a moment, the κth such measure is particularly useful for generating
a comparatively simple formula for tube volumes on a sphere of radius 1/

√
κ . The

definition, for κ ∈ R, is given by

Lκ
i (M,A)

�=
N∑
j=i

(2π)−(j−i)/2
 j−i

2 !∑
m=0

(−1)mC(N − j, j − i − 2m)

m!(j − i − 2m)! (10.5.8)

×
∫
∂jM∩A

∫
S(Tt ∂jM

⊥)
TrTt ∂jM

((
R̃ + κ

2
I 2
)m

S̃j−i−2m
νN−j

)
× 1NtM

(−νN−j )HN−j−1(dνN−j )Hj (dt).

Note that L0
i (M, ·) ≡ Li (M, ·).

As for Li (M), we define the one-parameter family of intrinsic volumes

Lκ
i (M)

�= Lκ
i (M,M). (10.5.9)

Furthermore, if κ > 0 and M ⊂ Sκ−1/2(Rl ), then, as in (10.5.5), there is a sim-
plification. This time it is due to the fact that for vectors Ej in an orthonor-
mal frame field, R̃(Ei, Ej , Ei, Ej ) = −κ (cf. (7.7.10)), which implies that (R̃ +
κ
2 I

2)(Ei, Ej , Ei, Ej ) = 0, so that on taking a trace, only the terms in (10.5.8) with
m = 0 remain. The result is

Lκ
i (M,A) =

N∑
j=i

(2π)−(j−i)/2C(l − 1 − j, j − i) (10.5.10)

×
∫
∂jM∩A

∫
S(Tt ∂jM

⊥)

1

(j − i)! TrTt ∂jM(Sj−i
η )

× 1
N̂tM

(−η)Hl−j−2(dη),

where S is the scalar second fundamental form of ∂jM as it sits in Sκ−1/2(Rl ), Tt∂jM⊥

is the orthogonal complement of Tt∂jM in TtSκ−1/2(Rl ), and N̂tM is the normal cone
at t ∈ ∂jM as it sits in TtSκ−1/2(Rl ).

A slight modification of the proof of Theorem 10.5.6 is enough to complete the
derivation of Weyl’s tube formula on Sλ(R

l ).
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Theorem 10.5.7 (Weyl’s tube formula on Sλ(R
l)). Suppose M is a C2, locally

convex, Whitney stratified submanifold of Sλ(Rl ). For ρ < ρc(M, Sλ(R
l )),

Hl−1 (Tube(M, ρ))

=
∞∑
i=0

λl−1−iGi,l−1−i (ρ/λ)Lλ−2

i (M)

=
∞∑
j=0

⎛⎜⎝ j
2 !∑

n=0

(−4π)−n λ
l−1+j

n!
j !

(j − 2n)!Gj−2n,l−1+2n−j (ρ/λ)

⎞⎟⎠Lj (M),

where

Ga,b(ρ)
�= πb/2

b�
(
b
2 + 1

) ∫ ρ

0
cosa(r) sinb−1(r) dr

= πb/2

�
(
b
2

)IB(a+1)/2,b/2(cos2 ρ),

with

IB(a+1)/2,b/2(x)
�=
∫ 1

x

x(a−1)/2(1 − x)(b−2)/2 dx

the tail of the incomplete beta function.

Finally, we note the following result for use in Chapter 15.

Lemma 10.5.8. The following equivalences hold between the standard and extended
Lipschitz–Killing curvatures:

Lκ
i (·) =

∞∑
n=0

(−κ)n

(4π)n
(i + 2n)!

n!i! Li+2n(·) (10.5.11)

and

Li (·) =
∞∑
n=0

κn

(4π)n
(i + 2n)!

n!i! Lκ
i+2n(·). (10.5.12)

Before starting the proof, we note that, at least for some examples, it is easier
to compute the Lκ

j than the Lj . For example, suppose we use (10.5.10) to compute

L1
j (S(R

l )). Then, since the scalar second fundamental form is zero for S(Rl ) as it
sits in itself, the only nonzero curvature is the highest-order one, and this is given by

L1
l−1(S(R

l )) = sl .
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From this and (10.5.12) it is now just a little algebra to check that

Lj (S(R
l )) = 2

(
l − 1

j

)
sl

sl−j

for l − 1 − j even, and 0 otherwise, a result that we already computed from first
principles back in Chapter 6 (cf. (6.3.8)).

Proof. We shall prove only (10.5.11), since (10.5.12) follows from an almost identical
argument. In both cases the argument is primarily algebraic and rather elementary,
but since keeping track of combinatorial coefficients is not always trivial, and this
lemma will be rather important later, we give the details.

By the definition (10.5.8), Lκ
i (M,A) is given by

N∑
j=i

(2π)−(j−i)/2
 j−i

2 !∑
m=0

C(N − j, j − i − 2m)
(−1)m

m!(j − i − 2m)!

×
∫
∂jM∩A

∫
S(Tt ∂jM

⊥)
TrTt ∂jM

((
R̃ + κ

2
I 2
)m

S̃j−i−2m
νN−j

)
× 1NtM

(−νN−j )HN−j−1(dνN−j )Hj (dt)

=
N∑
j=i

(2π)−(j−i)/2
 j−i

2 !∑
m=0

m∑
n=0

(−κ/2)n
(
m

n

)
C(N − j, j − i − 2m)

m!(j − i − 2m)!

×
∫∫

TrTt ∂jM
(
I 2n(−R̃)m−nS̃j−i−2m

νN−j
1NtM

(νN−j )
)

× HN−j−1(dνN−j )Hj (dt)

=
N∑
j=i

(2π)−(j−i)/2
 j−i

2 !∑
n=0

 j−i
2 !∑

m=n

(−κ/2)n
(
m

n

)
C(N − j, j − i − 2m)

m!(j − i − 2m)!

×
∫∫

TrTt ∂jM
(
I 2n(−R̃)m−nS̃j−i−2m

νN−j
1NtM

(νN−j )
)

× HN−j−1(dνN−j )Hj (dt)

=
N∑
j=i

(2π)−(j−i)/2
 j−i

2 !∑
n=0

 j−i−2n
2 !∑

m=0

(−κ/2)n

n!
C(N − j, j − i − 2m− 2n)

m!(j − i − 2m− 2n)!

×
∫∫

TrTt ∂jM
(
I 2n(−R̃)mS̃j−i−2m−2n

νN−j
1NtM

(νN−j )
)

× HN−j−1(dνN−j )Hj (dt),

where we have used (7.2.11) in obtaining the last line.
Continuing, the last line can be rewritten as
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 N−i
2 !∑

n=0

(4π)−n(−κ)n

n!
(i + 2n)!

i!
k∑

j=i+2n

(2π)−(j−i−2n)/2

×
 j−i−2n

2 !∑
m=0

C(N − j, j − i − 2m− 2n)

m!(j − i − 2m− 2n)!

×
∫∫

TrTt ∂jM
(
(−R̃)mS̃j−i−2m−2n

νN−j
1NtM

(νN−j )
)

× HN−j−1(dνN−j )Hj (dt)

=
 N−i

2 !∑
n=0

(4π)−n(−κ)n

n!
(i + 2n)!

i! Li+2n(M,A)

=
∞∑
n=0

(−4π/κ)−n

n!
(i + 2n)!

i! Li+2n(M,A),

which is what we require. ��

10.6 Volume of Tubes and Gaussian Processes, Continued

With Weyl’s tube formula established for submanifolds of Sλ(Rl ) we are now able to
continue with the volume-of-tubes approximation (10.0.1) to excursion probabilities
for Gaussian processes. In (10.2.6), we established that for a Gaussian process f

with an orthogonal expansion of order l,

P

{
sup
t∈M

ft ≥ u

}
= �

(
l
2

)
2πl/2

E

{
Hl−1

(
Tube(ψ(M), cos−1(u/|ξ |))

)
1{|ξ |≥u}

}
,

where ξ2 ∼ χ2
l . On the other hand, Theorem 10.5.7 gives an explicit expression for

Hl−1

(
Tube(ψ(M), cos−1(u/|ξ |))

)
for cos−1(u/|ξ |) < ρc(M, S(Rl )). However, as |ξ | → ∞, the radius of this tube
grows and may surpass ρc(M, S(Rl )), in which case Weyl’s formula is not exact.
Formally ignoring this fact, we arrive at the following result.

Theorem 10.6.1. Let f be a finite Karhunen–Loève process such that ψ(M) is a C2,
locally convex, Whitney submanifold ofS(Rl ), l ≥ N . The formal tube approximation
is given by

P

{
sup
t∈M

ft ≥ u

}
≈

N∑
j=0

ρj (u)Lj (ψ(M)), (10.6.1)
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where

ρj (u)
�=
{

1 −�(u), j = 0,

(2π)−(j+1)/2Hj−1(u)e
−u2/2, j ≥ 1,

and Hj is the j th Hermite polynomial (11.6.9).

Remark 10.6.2. It is important to understand the (im)precise meaning of (10.6.1).
The “≈’’ does not indicate approximate equality, asymptotic equality, or any other
relationship that at this stage equates the left- and right-hand sides. Rather, it indi-
cates that the right-hand side comes from taking an expression that is eqivalent to the
left-hand side, and substituting into it expressions that, while sometimes equivalent,
are sometimes definitely wrong. Only in Chapter 14 shall we show, via completely
different methods, that the purely formal equivalence in (10.6.1) can be replaced by
asymptotic, in u, equivalence, with specific bounds on the error of doing so.

Proof. Since the approximation formally ignores the condition ρ < ρc(M) in The-
orem 10.5.7, we have

P

{
sup
t∈T

ft ≥ u

}

≈ �
(
l
2

)
2πl/2

N∑
j=0

Lj (ψ(M))

× E

⎧⎪⎨⎪⎩
 j

2 !∑
n=0

(−4π)−n

n!
j !

(j − 2n)!Gj−2n,l−1+2n−j (cos−1(u/|ξ |))1{|ξ |≥u}

⎫⎪⎬⎪⎭ ,

and all that remains is to prove that ρj (u) is equal to

�
(
l
2

)
2πl/2

 j
2 !∑

n=0

E

{
(−4π)−n

n!
j !

(j − 2n)!Gj−2n,l−1+2n−j (cos−1(u/|ξ |))1{|ξ |≥u}
}
.

We artificially decompose ξ as

|ξ |2 = X1 +X2,

where X1 ∼ χ2
j−2n+1, X2 ∼ χ2

l−1+2n−j are independent, so that

X1

X1 +X2
∼ Beta ((j − 2n+ 1)/2, (l − 1 + 2n− j)/2) ,

independently of |ξ |2. It follows that

Gj−2n,l−1+2n−j (cos−1(u/|ξ |2))

=
�
(
j−2n+1

2

)
�
(
l
2

) π(l−1+2n−j)/2P

{
X1

X1 +X2
≥ u2

|ξ |2
∣∣∣∣|ξ |2} .
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Continuing with the calculation,

(−4π)−n�
(
l
2

)
2πl/2

E

{
Gj−2n,l−1+2n−j (cos−1(u/|ξ |))1{|ξ |≥u}

}
=

(−4π)−n�
(
j−2n+1

2

)
2

π−(j−2n+1)/2

× E

{
P

{
X1

X1 +X2
≥ u2

|ξ |2
∣∣∣∣|ξ |2} 1{|ξ |≥u}

}

=
(−4π)−n�

(
j−2n+1

2

)
2

π−(j−2n+1)/2P

{
X1 ≥ u2

}
=

(−4π)−n�
(
j−2n+1

2

)
2

π−(j−2n+1)/2
∫ ∞

u2

x(j−2n−1)/2e−x/2

2(j−2n+1)/2�
(
j−2n+1

2

) dx

= (2π)−(j+1)/2 (−1)n

2n

∫ ∞

u

xj−2ne−x2/2 dx.

Finally,

�
(
l
2

)
2πl/2

 j
2 !∑

n=0

E

{
(−4π)−n

n!
j !

(j − 2n)!Gj−2n,l−1+2n−j (cos−1(u/|ξ |))1{|ξ |≥u}
}

= (2π)−(j+1)/2
 j

2 !∑
n=0

j !(−1)n

n!(j − 2n)!2n
∫ ∞

u

xj−2ne−x2/2 dx

= (2π)−(j+1)/2
∫ ∞

u

Hj (x)e
−x2/2 dx

= ρj (u),

as required, with the last line following from the basic properties of Hermite polyno-
mials (cf. (11.6.12)). ��

10.7 Intrinsic Volumes for Whitney Stratified Spaces

So far, we have defined intrinsic volumes for the convex sets of Section 6.315 via
integral-geometric techniques, and for the Riemannian manifolds of Section 7.6 and
this chapter via Lipschitz–Killing curvatures, for spaces that possess a local convexity
property. However, for our computations in Part III we shall also need intrinsic
volumes of Whitney stratified spaces for which no convexity of any kind need hold.

15 We also gave a possible, but not very promising, extension to basic complexes via kinematic
integrals at (6.3.11).
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Thus, in the current section, after describing the basic conditions under which
they can be defined, we shall define intrinsic volumes in a more general setting. The
defining expression will be a natural generalization of (10.5.4), which covered the
locally convex scenario.

However, while most of what we have done so far was devoted to and motivated
by the relationship between Weyl’s formula and intrinsic volumes, this will no longer
be the case. In fact, as we shall soon see in Section 10.8, Weyl’s formula need not
hold in the non–locally convex setting, and so we need alternative motivation for the
new curvatures. You can find this, among other details, in the differential geometry
literature (e.g., [24, 33]) or you can wait for Chapter 12, where Lipschitz–Killing
curvatures will arise when we compute the expected Euler characteristic of excursion
sets. The extended definition follows, after we make one remark about conventions
concerning the normal Morse index α of Section 9.2.

Remark 10.7.1. Referring to the convention adopted in Remark 10.5.2, we define

α(0) = 1.

Definition 10.7.2. Let M be an N -dimensional, C2 Whitney stratified manifold em-
bedded in a manifold (M̃, g̃). Assume that the set (9.2.6) of degenerate tangent
vectors16 has Hausdorff dimension less than or equal to dim(M̃) − 1, and that the
conventions of Remarks 10.5.2 and 10.7.1 are adopted. Then the Lipschitz–Killing
curvature measures of M are defined by

Li (M,A) =
N∑
j=i

(2π)−(j−i)/2
 j−i

2 !∑
m=0

(−1)mC(N − j, j − i − 2m)

m!(j − i − 2m)! (10.7.1)

×
∫
∂jM∩A

∫
S(Tt ∂jM

⊥)
TrTt ∂jM

(
R̃mS̃j−i−2m

νN−j

)
× α(νN−j )HN−j−1(dνN−j )Hj (dt),

where Hj is the volume form on ∂jM and Hl−j−1 the volume form17 on S(Tt∂jM
⊥),

both determined by g̃.

We shall assume that all the signed measures defined here are finite.18

As we did before (cf. Lemma 10.5.8), we can again extend these measures to
a one-parameter family of Lipschitz–Killing curvature measures, which we do by
setting

16 The assumption on the set of degenerate tangent vectors is prompted by the same issue that
arose in Section 9.2, that α may not be well defined in vectors that annihilate a generalized
tangent space.

17 Of course, Hl−j−1 really depends on t , but we have more than enough subscripts already.
18 A priori, there is no reason for the Lj (M, ·) to be finite. However, for all the examples we

consider in this section and indeed, all situations of interest in this book, that will in fact be
the case. We therefore invoke this as a standing assumption for the remainder of the book.



246 10 Volume of Tubes

Lκ
i (M,A)

�=
∞∑
n=0

(−κ)−n

(4π)n
(i + 2n)!

n!i! Li+2n(M,A). (10.7.2)

Furthermore, we can define Lipschitz–Killing curvatures, or intrinsic volumes, of
M by

Lj (M)
�= Lj (M,M), Lκ

j (M)
�= Lκ

j (M,M). (10.7.3)

Although it is not at all obvious from the definition (10.7.1), it can be shown that
the measures Lκ

j (M; ) are independent of the stratification of M . Furthermore, Lκ
j is

a finitely additive valuation in its first variable and a (signed) measure in the second
one (cf. [24]).

The Lipschitz–Killing curvature L0(M) is actually the Euler–Poincaré charac-
teristic of M , as defined via (8.1.1) and a triangulation. The fact that the curvature
integral and the Euler characteristic are equivalent is a celebrated result, known as
the Chern–Gauss–Bonnet theorem.

To get a feel for the fact that (10.7.1) is not quite as forbidding as it seems, you
might want to look at the simple example19 of the unit cube in RN now to see how it
works for familiar sets.
19 Consider, for our first example, a rectangle in R

N equipped with the standard Euclidean
metric. Thus, we want to recover (6.3.5), that is,

Lj

(
[0, T ]N

)
=
(
N

j

)
T j . (10.7.4)

Since we are in the Euclidean scenario, both the Riemannian curvature and second fun-
damental form are identically zero, and so the only terms for which the final integral in
(10.7.1) is nonzero are those for which l = k − j = 0. Thus all of the sums collapse and
(10.7.1) simplifies to

π−(N−j)/2�

(
N − j

2

)
2−1

∫
∂jM

Hj (dt)

∫
S(T ⊥

t ∂jM)
α(ν)HN−j−1(dν).

Note the following:

(i) Referring to the convex polytope discussion in Section 9.2, α(ν) = 1Nt∂jM
(−ν) is

zero except on a (1/2N−j )th part of the sphere S(T⊥∂jM), and the measure HN−j−1

is surface measure on S(T⊥∂jM). Consequently,∫
S(T ⊥

t ∂jM)
α(ν)HN−j−1(dν) = 2π(N−j)/22−(N−j)

�
(
N−j

2

) .

(ii) There are 2N−j
(N
j

)
disjoint components to ∂jM , each one a j -dimensional cube of

edge length T .
(iii) The volume form on ∂jM is Lebesgue measure, so that each of the cubes in (ii) has

volume T j .

Now combine all of the above, and (10.7.4) follows.
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The formulas simplify considerably if M is a C2 domain of RN with the induced
Riemannian structure, since then the ambient curvature tensor is identically zero. In
that case LN(M,U) is the Lebesgue measure of U and

Lj (M,U) =
∫
∂M∩U

1

sN−j (N − 1 − j)! Tr(SN−1−j
νt

)Vol∂M,g, (10.7.5)

for 0 ≤ j ≤ N − 1, where sj is given by (5.7.5) and νt is the inward normal at t .
Using this formula, you might want to check how to compute the Lipschitz–Killing
curvatures for an N -dimensional ball,20 although it would really be easier to wait
for (10.7.6).

In this setting (10.7.5) can also be written in another form that is often more
conducive to computation. If we choose an orthonormal frame field (E1, . . . , EN−1)

on ∂M , and then extend this to one on M in such a way that EN is the inward normal,
then it follows from (7.2.7) that

Lj (M,U) = 1

sN−j

∫
∂M∩U

detrN−1−j (Curv)Vol∂M,g, (10.7.6)

where detrj is given by (7.2.8) and the curvature matrix Curv is given by

Curv(i, j)
�= SEN

(Ei, Ej ). (10.7.7)

It is important to note that while the elements of the curvature matrix may de-
pend on the choice of basis, detrN−1−j (Curv) is independent of the choice, as will
be Lj (M,U).

Since all of the simplifications (and examples in the footnotes) that we have just
looked at are locally convex, in the sense that they have convex support cones, we now
describe how to compute the Lipschitz–Killing curvatures for one highly nonconvex
example, a many-pointed star.

By a star, we mean the union of a finite collection line segments L1, . . . , Lr

emanating from a point v0 with endpoints (vj )1≤j≤r . The ambient space is R2. The
space M =⋃

j=1 Lr has a natural stratification

∂1M =
r⋃

j=1

L◦
r , ∂0M =

r⋃
j=0

vj .

20 For the ball BN(T ) we want to recover (6.3.7). It is easy to check that the second funda-
mental form of ∂BN(T ) = SN−1(T ), with respect to the inner normal, is a constant T−1

over the sphere. Thus the term involving its trace can be taken out of the integral in (10.7.5)
leaving only the volume of SN−1(T ), given by sNT N−1. To compute the trace we use
(7.2.11), to see that Tr SN−1−j = T−(N−j−1)(N − 1)!/j !, so that

Lj (B
N(T )) = sNT N−1T−(N−j−1)(N − 1)!

sN−j (N − 1 − j)!j ! = T j

(
N − 1

j

)
sN

sN−j
= T j

(
N

j

)
ωN

ωN−j
,

which is (6.3.7).
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First, we note that

Lj (M, ) = 0, j ≥ 2,

and

L1(M,A) =
r∑

j=1

H1(Lj ∩ A),

so it remains to compute the measure L0(M, ). Clearly, L0(M, ) concentrates on the
vertices of M , and considering the case of one segment alone, it follows easily from
(10.7.1) that

L0(M, vj ) = 1

2
, 1 ≤ j ≤ r.

As for L0 (M, v0), note that for ν a unit vector emanating from v0,

α(ν) = 1 −
r∑

j=1

1{〈ν,Lj 〉<0},

so that it again follows easily from (10.7.1) that

L0(M, v0) = 1 − r

2
.

Putting all this together gives the Euler characteristicL0(M) as 1−r/2+r×(1/2) = 1,
which is as it should be by Chapter 6.

Here is one more example that is simple but informative. You should find it easy
to check, using the fact that Lipschitz–Killing curvature measures are additive in M .
For 0 ≤ φ ≤ 2π , and (r(x, y), θ(x, y)) the polar representation of (x, y) ∈ R2, let

Mφ =
{
(x, y) ∈ R2 : 0 ≤ r(x, y) ≤ 1, 0 ≤ θ(x, y) ≤ φ

}
be a solid angle in the plane of angle φ. Let v0 = (0, 0), v1 = (1, 0), v2 =
(cosφ, sin φ) be the three vertices of Mφ . Then,

L2(Mφ,U) = H2(U ∩Mφ),

L1(Mφ,U) = 1

2
H1(U ∩ ∂Mφ),

L0(Mφ,U) = 1

2π
H1(U ∩Mφ ∩ S(R2))

− φ − π

2π
1U(v0)+ 1

4
1U(v1)+ 1

4
1U(v2).
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10.7.1 Alternative Representation of the Curvature Measures

We conclude this section by noting an alternative representation of the curvature
measures of subsets of Rl and S(Rl ). This representation is sometimes easier to work
with, and we shall use it in Chapter 15. Its proof follows from a straightforward
application of Lemma 10.5.5.

Lemma 10.7.3. Let M be a Whitney stratified subspace of Rl . Then

Li (M,A) =
l∑

j=i

(2π)−(j−i)/2 1

(j − i)! (10.7.8)

×
∫
∂jM∩A

E

{
TrTt ∂jM(SXl−j,t

)j−iα(Xl−j,t )
}

Hj (dt),

where for each t ∈ ∂jM , Xl−j,t ∼ γTt ∂jM⊥ and α is the normal Morse index at t ∈ M

as it sits in Rl .
If M is a Whitney stratified space in S√κ(R

l ), then

Lκ
i (M,A) =

l−1∑
j=i

(2π)−(j−i)/2 1

(j − i)!
∫
∂jM∩A

(10.7.9)

× E

{
TrTt ∂jM(SXl−1−j,t

)j−iα(Xl−1−j,t )
}

Hj (dt),

where for each t ∈ ∂jM , Xl−1−j,t ∼ γTt ∂jM⊥ , where Tt∂jM
⊥ is the orthogonal

complement of Tt∂jM in TtS
√
κS(R

l ), α is the normal Morse index at t ∈ M as it

sits in S√κ(R
l ), and S is the second fundamental form of M as it sits in S√κ(R

l ).

In general, suppose that M ⊂ (M̃, g) of dimension l is a Whitney stratified space.
Then

Lκ
i (M,A) =

l∑
j=i

(2π)−(j−i)/2
 j−i

2 !∑
m=0

1

m!(j − i − 2m)!
∫
∂jM∩A

(10.7.10)

× E

{
TrTt ∂jM((−R̃ + κI 2/2)mS̃j−i−2m

Xl−j,t
)α(Xl−j,t )

}
Hj (dt),

where for each t ∈ ∂jM , Xl−j,t ∼ γTt ∂jM⊥ , where Tt∂jM
⊥ is the orthogonal

complement of Tt∂jM in TtM̃ , α is the normal Morse index at t ∈ M as it sits in M̃ ,
R̃ is the curvature tensor of (M̃, g), and S̃ is the shape operator of M as it sits in M̃ .

10.8 Breakdown of Weyl’s Tube Formula

While the next three paragraphs may seem to be too brief to demand their own
numbered section, the observation that they make is important enough that the honor
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is deserved. From the definition of the Lipschitz–Killing curvatures for Whitney
stratified spaces, one may be tempted to extend Weyl’s tube formula to compute
the volume of a tube around all Whitney stratified spaces (M,Z) embedded in Rl .
Specifically, one may be tempted to conclude that

Hl (Tube(M, ρ)) =
l∑

j=0

ρl−jωl−jLj (M)

even if M does not have convex support cones.
However, this is not true in general, and the same example that appeared in

Figure 6.3.2 suffices to provide a counterexample.
It is essentially for this reason that in Chapter 14, we shall have to restrict our

attention to locally convex spaces to obtain strong results about the accuracy of the
volume-of-tubes approach to computing excursion probabilities, as well as that of the
approximation via expected Euler characteristics.

10.9 Generalized Lipschitz–Killing Curvature Measures

As we saw in the earlier sections, the measures Lj (M; ) are signed measures on M

that determine the coefficients in a (Lebesgue) volume-of-tubes expansion around
M when M is embedded in Rl . These measures are adequate to derive Weyl’s tube
formula, but they will need to be generalized to continue our general study of the
volume-of-tubes problem, that is, computing μ(Tube(M, ρ)) for measures other than
Lebesgue.

Our interest in general measures μ is not purely academic, for the main result in
Chapter 15, which treats non-Gaussian random fields, relies heavily on the coefficients
in the tube expansion

γRl (Tube(M, ρ)).

Since this is the main expansion that we shall need, for this section we shall assume
that the dimensions of both the underlying manifold and its ambient Euclidean space
are l. That is, in our earlier notation,

M̃ = M̂ = Rl , dim(M) = N = l = dim(M̂).

The generalization of the measures Lj (M, ·) is needed to deal with the term
fμ(Fj,r (t, s)) in Theorem 10.4.2, which was, conveniently, identically 1 in Weyl’s
tube formula. The general strategy is to assume that fμ is smooth enough so that
there is a Taylor series expansion for fμ(Fj,r (t, s)) of the form

fμ(Fj,r (t, s)) = fμ (t + rη(t, s)) =
∞∑

m=0

rm

m!
dm

dηm
fμ(t), (10.9.1)
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where, as in (10.4.15), η ≡ η(t, s) is the unit vector from t to Fj,r (t, s), and by
dmf/dηm we mean the mth-order derivative of f in the direction η(t, s).

Using this expansion, we proceed to integrate

dm

dηm
fμ(t)

over Sj (r), the hypersurface at distance r from ∂jM for 0 ≤ j ≤ l. After integrat-
ing over Sj (r), we integrate r over [0, ρ], much as we did in deriving Weyl’s tube
formula (10.5.7).

We begin by defining generalized Lipschitz–Killing curvature measures on
SB(Rl ), the sphere bundle of Rl . These measures have finer information than the
basic Lipschitz–Killing curvature measures in that, up to a constant, they encode
surface measure on the hypersurfaces at distance r from M .

10.9.1 The Generalized Curvature Measures

Before we explicitly define these measures, we note that they should be measures
on SB(Rl ), the sphere bundle of Rl , which is canonically isomorphic to the product
S(Rl )×Rl . For simplicity, however, we choose to define the generalized Lipschitz–
Killing measures on S(Rl ) × Rl rather than on SB(Rl ), keeping this canonical iso-
morphism in mind. We also note that when it is convenient, we shall think of them
as measures on SB(Rl ).

Definition 10.9.1. Let (M,Z) ⊂ Rl be an l-dimensional Whitney stratified space
satisfying the requirements of Definition 10.7.2. The generalized Lipschitz–Killing
curvature measures of M , defined on Borel sets A ⊂ Rl , B ⊂ S(Rl ) and supported
on M × S(Rl ), are defined, for 0 ≤ i ≤ l − 1, by

L̃i (M,A× B)
�=

l∑
j=i

(2π)−(j−i)/2
 j−i

2 !∑
m=0

(−1)mC(l − j, j − i − 2m)

m!(j − i − 2m)! (10.9.2)

×
∫
∂jM∩A

∫
S(T ⊥∂jM)∩B

TrTt ∂jM
(
R̃mS̃j−i−2m

νl−j

)
× α(νl−j )Hl−j−1(dνl−j )Hj (dt),

where α is the normal Morse index of Section 9.2.
For any Borel function f : Rl × S(Rl ) → R we use the standard notation

L̃i (M, f )

to denote the integral of f with respect to L̃i (M, ·). If i = l, we define L̃l (M, ·) only
on Borel functions on Rl × S(Rl ) that are constant over S(Rl ). Specifically,

L̃l (M, f )
�=
{∫

M
f (t, ν)Hl (dt), f ∈ B(Rl )× S(Rl ),

0 otherwise,
(10.9.3)
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for some fixed but arbitrary ν ∈ S(Rl ), where

B(Rl )× S(Rl ) =
{
A× S(Rl ) : A ∈ B(Rl )

}
is the subsigma algebra of B(Rl )⊗B(S(Rl )) generated by functions that are constant
over S(Rl ).

The generalized curvature measures L̃j (M, ·) can also be represented nonintrin-
sically as in (10.5.5) and (10.5.10), though we leave this generalization to the reader.
The following two results are immediate corollaries of Definition 10.9.1.

Corollary 10.9.2. Let (M,Z) ⊂ Rl be a Whitney stratified space satisfying the re-
quirements of Definition 10.7.2. Then, for any Borel set A ⊂ Rl ,

Lj (M,A) = L̃j (M,A× S(Rl )).

Corollary 10.9.3. If (M,Z) is a locally convex, Whitney stratified space satisfying
the requirements of Definition 10.7.2, then (10.9.2) holds with α(νl−j ) replaced by
1NtM

(−νl−j ).

10.9.2 Surface Measure on the Boundary of a Tube

Having defined the measures {L̃j (M, )}0≤j≤l , we now proceed to describe how they
can be used to integrate over ∂ Tube(M, r), the hypersurface of distance r from a
locally convex space M .

Before we attack this task in earnest, we revisit the Minkowski functionals, which
we defined, in the context of integral geometry, in Section 6.3. Recall that they were
defined as

Mj (M) = (
j !ωj

)
Ll−j (M),

although in Chapter 6 we treated only the case dim(M) = N = l = dim(M̃).
Steiner’s formula (6.3.10), extended to the case N ≤ l (or, equivalently, Weyl’s

tube formula (10.5.7)) gives

Hl (Tube(M, r)) =
l∑

j=0

rj

j !Mj (M).

That is, Weyl’s tube formula can be expressed as a (finite) power series with the
Mj (M) as coefficients. This motivates our definition of Minkowski curvature mea-
sures as

Mj (M,A)
�= (j !ωj )Ll−j (M,A), (10.9.4)

and generalized Minkowski curvature measures as

M̃j (M,A× B)
�= (j !ωj )L̃l−j (M,A× B). (10.9.5)
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The reason we turn to (generalized) Minkowski curvature measures now, instead of
(generalized) Lipschitz–Killing curvature measures, is primarily one of notational
convenience, and they will mesh in well with the power series expansions of fμ to
come. Ultimately, this will also turn out to be the most convenient approach for the
results of Chapter 15.

We now return to describing surface measure on ∂ Tube(M, r). In Section 10.4,
we invested a substantial amount of effort in computing F ∗

j,r (�j,r ), the pullback of
the volume form on Sj (r), the hypersurface of distance r from ∂jM . In Section 10.5
we combined this formula with our explicit description of the regions Dj(ρ) to derive
(10.5.7), Weyl’s formula for locally convex manifolds in Rl . In describing regions,
we used the maps Fj,r (cf. (10.4.7)), which, when taken together and when r is small
enough, form a bijection

l⋃
j=0

⋃
t∈∂jM

{t} × S(NtM)
Fr

� ∂ Tube(M, r) / M × S(Rl ),

which can explicitly be expressed as

Fr(t, ν) = t + rν,

F−1
r (s) = (ξM(s), (s − ξM(s))/r) ,

where ξM is the metric projection of M , defined in (10.3.2).
By pulling pieces from Sections 10.4 and 10.5, it is now not difficult to prove the

following theorem.

Theorem 10.9.4. Let (M,Z) ⊂ Rl be a C2, locally convex, Whitney stratified space.
For any Borel set A ⊂ Rl such that

Hl (A ∩M) = 0,

and for any r < ρc(M,Rl ), the surface area of the intersection ofAwith ∂ Tube(M, r)

can be written as21

Hl−1 (A ∩ ∂ Tube(M, r)) =
l−1∑
j=0

rj

j !M̃j+1

(
M,F−1−r (A ∩ ∂ Tube(M, r))

)
.

(10.9.6)

Proof. We do not provide a detailed proof, since nearly all of the work needed has
already appeared in Sections 10.4 and 10.5. In fact, the present case is even simpler,
since the integration over r is no longer necessary.

Essentially, all we need to do is to decomposeA∩∂ Tube(M, r) into cross-sections
of ∂ Tube(M, r). That is, we first find the image of A under the metric projection ξM .
Next, for each t in ξM(A), we find all points in A∩ ∂ Tube(M, r) that projected to t .
Then, we sum the contribution of all these points, resulting in the integral against the
generalized Minkowski curvature measures M̃j+1(M, ·). ��
21 The slightly awkward usage of F−r instead of Fr in (10.9.6) is a notational consequence of

having used Sνl−j and α(νl−j ) in Definition 10.9.1 rather than S−νl−j and α−νl−j .
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10.9.3 Series Expansions for the Gaussian Measure of Tubes

We are now ready to prove the main result of this section, in which we derive a power
series expansion for

μ(Tube(M, ρ))

when μ has a bounded, analytic density with respect to Lebesgue measure. It is
possible to replace analytic functions with Schwarz functions, although the power
series expansion below is then only formal (cf. [158]).

Theorem 10.9.5. Let (M,Z) ⊂ Rl be a C2, locally convex, Whitney stratified mani-
fold, and μ a measure on Rl that has a bounded density fμ with respect to Lebesgue
measure. Assume that

μ(Tube(M, ρ)) =
∫

Tube(M,ρ)

fμ(x) dHl (x) < ∞.

Then, for ρ < ρc(M,Rl ),

μ(Tube(M, ρ)) =
∫ ρ

0

l−1∑
j=0

rj

j !M̃j+1(M, fμ ◦ F−r ) dr. (10.9.7)

Suppose, in addition, that fμ is analytic and for every ε > 0 there exists a compact
K(ε) ⊂ Rl such that∫ ρ

0

l−1∑
j=0

rj

j ! |M̃j+1|
(
M, 1K(ε)c ◦ F−r ×

∣∣∣∣∣
n∑

m=0

(−r)m

m!
dm

dηm
fμ

∣∣∣∣∣
)

dr < ε, (10.9.8)

uniformly in n, where |M̃j | is the (positive) measure corresponding to the signed
measure M̃j and we interpret dm

dηm
as in (10.9.1). Then

∫
Tube(M,ρ)

fμ(x) dHl (x) =
∫ ρ

0

l−1∑
j=0

rj

j !M̃j+1

(
M,

∞∑
m=0

(−r)m

m!
dm

dηm
fμ

)
dr

= μ(M)+
∞∑
j=1

ρj

j ! M
μ
j (M), (10.9.9)

where

Mμ
j (M)

�=
j−1∑
m=0

(
j − 1

m

)
(−1)j−1−mM̃m+1

(
M,

dj−1−m

dηj−1−m
fμ

)
. (10.9.10)

Proof. The equality in (10.9.7) is a straightforward application of the coarea formula
(7.4.13) with the Lipschitz map over whose level sets we integrate being the distance
function dRl (M, ·), along with (10.9.6).
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As far as (10.9.9) is concerned, there are two things to show. The first is that the
first equality is valid, and the second that the final expression is equal to that on the
line above it. The first inequality arises by formally replacing fμ ◦ F−r in (10.9.7)
by its Taylor series expansion as in (10.9.1), that is,

fμ(F−r (t, s)) =
∞∑

m=0

(−r)m

m!
dm

dηm
fμ(t).

We do, however, need to check that the resulting series expansion in (10.9.9) con-
verges nicely. Fix ε > 0 and choose K(ε) satisfying (10.9.8). Since we long ago
agreed that we consider only tubes of finite measure, we can, without loss of gener-
ality, assume that

μ(Tube(M, ρ) ∩K(ε)c) < ε,

so that we need focus our concentration only on what happens on K(ε). On
F−1−r (K(ε)), the convergence

n∑
m=0

(−r)m

m!
dm

dηm
fμ(t)

n→∞→ fμ(t − rη)

is uniform in n. Alternatively, on K(ε) the convergence

f n
μ(s) =

n∑
m=0

r(s)m

m!
dm

dη(s)m
fμ(t (s))

n→∞→ fμ(s)

holds uniformly in s. By the boundedness of fμ and compactness of K(ε) we can
therefore choose n(ε) large enough so that∣∣∣∣μ(Tube(M, ρ) ∩K(ε))

−
∫ ρ

0

l−1∑
j=0

rj

j !M̃j+1

⎛⎝M, 1K(ε) ×
n(ε)∑
m=0

(−r)m

m!
dm

dηm
fμ

⎞⎠ dr

∣∣∣∣
=
∣∣∣∣ ∫

Tube(M,ρ)∩K(ε)

∞∑
m=n(ε)+1

(−r(s))m

m!
dm

dη(s)m
fμ(t (s)) dHl (s)

∣∣∣∣
< ε.

Thus there are no problems with the convergence in (10.9.9). As for the equality
between the two expressions there, note that
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Tube(M,ρ)

fμ(x) dHl (x)

= μ(M)+
∫ ρ

0

l−1∑
j=0

rj

j !M̃j+1

(
M,

∞∑
m=0

(−r)m

m!
dm

dηm
fμ

)
dr

= μ(M)+
l−1∑
j=0

∞∑
m=0

(−1)m
ρj+1+m

j !m!(j + 1 +m)
M̃j+1

(
M,

dm

dηm
fμ

)

= μ(M)+
l∑

j=1

∞∑
m=j

ρm

m!
(
m− 1

j − 1

)
(−1)m−jM̃j+1

(
M,

dm−j

dηm−j
fμ

)

= μ(M)+
∞∑

m=1

ρm

m!
m−1∑
j=0

(
m− 1

j

)
(−1)m−j−1M̃j

(
M,

dm−j−1

dηm−j−1
fμ

)
,

which, except for the fact that m and j have switched roles, is precisely what we
need. ��

We conclude with a corollary to Theorem 10.9.5, which gives an explicit power
series representation of

γRl (Tube(M, ρ))

for suitable locally convex spaces (M,Z) ⊂ Rl . This expansion will be crucial for
our analysis of non-Gaussian processes in Chapter 15.

Corollary 10.9.6. Suppose (M,Z) ⊂ Rl is a C2, locally convex, Whitney stratified
manifold, and that for every ε > 0 there exists K(ε) ⊂ Rl compact such that

∫ ρ

0

l−1∑
j=0

rj

j ! |M̃j+1|
(
M, 1K(ε)c ◦ F−r

∣∣∣∣∣
n∑

m=0

rm

m!Hm (〈η, t〉) e−|t |2/2

∣∣∣∣∣
)

dr

is less than ε, uniformly in n, where Hm is the mth Hermite polynomial (11.6.9).
Then,

γRl (Tube(M, ρ)) = γRl (M)+
∞∑
j=1

ρj

j ! M
γ

Rl

j (M), (10.9.11)

where

Mγ
Rl

j (M)
�= (2π)−l/2

j−1∑
m=0

(
j − 1

m

)
M̃m+1

(
M,Hj−1−m (〈η, t〉) e−|t |2/2).

(10.9.12)
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Proof. Comparing the above with Theorem 10.9.5, it is clear (cf. (10.9.10)) that all
we need show is that

dj−1−m

dηj−1−m
fμ(t) = (−1)j−1−mHj−1−m (〈η, t〉) e−|t |2/2.

However, this is easy to check from the generating function definition of Hermite
polynomials at (11.6.11). ��

To see how this expansion works in the simplest of cases, take M = [u,∞) ⊂ R.
Since all the M̃k are then identically zero for k ≥ 2, there is only one term appearing
in the sum defining Mγ

Rl

j (M). Furthermore, since Tube([u,∞), ρ) = [u− ρ,∞)),

we have that M̃1 is supported on {u}× {+1} (+1 being the right-pointing unit vector
at u), and so

Mγ
Rl

j ([u,∞)) = Hj−1(u)
e−u2/2

√
2π

. (10.9.13)

It is elementary calculus to check that this gives the same expansion, when substituted
into (10.9.11), that comes from a simple Taylor series expansion of the Gaussian tail
probability � of (1.2.1). If you want to see the details, we shall go through them in
Section 15.10.1 for expository reasons.

We close with the following simple, but rather important, comment.

Remark 10.9.7. Unlike the usual Minkowski functionals, the functionals Mγ
Rl

j are

actually normalized independently of the dimension Rl , in the sense that for all
integers k > 0,

Mγ
Rl

j (·) = Mγ
Rl+k

j (· × Rk).

Hence, from now on, we shall drop the Rl in the definition of Mγ
Rl

j , using the sim-

pler notation Mγ

j . Furthermore, although these functionals were derived under the
assumption of local convexity, it actually turns out they can also be defined for non–
locally convex sets, as long as the integrals with respect to the measures M̃j (M, ·)
are finite.

We defer the examples of the applications of the results of this last section to
Chapter 15, where you finally will have a chance to see why we care about these
power series expansions.
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You could not possibly have gotten this far without having read the preface, so you
already know that you have finally reached the main part of this book. It is here that
the important results lie and it is here that, after over 250 pages of preparation, there
will also be new results.

With the general theory of Gaussian processes behind us in Part I, and the geometry
of Part II now established, we return to the stochastic setting.

There are three main (classes of) results in this part. The first is an explicit formula
for the expected Euler characteristic of the excursion sets of smooth Gaussian random
fields. In the same way that we divided the treatment of the geometry into two parts,
Chapter 11 will cover the theory of random fields defined over simple Euclidean
domains and Chapter 12 will cover fields defined over Whitney stratified manifolds.
Unlike the case in Chapter 6, however, even if you are primarily interested in the
manifold scenario you will need to read the Euclidean case first, since some of the
manifold computations will be lifted from this case via atlas-based arguments.

As an aside, in the final section (Section 12.6) of Chapter 12 we shall return to a
purely deterministic setting and use our Gaussian field results to provide a probabilistic
proof of the classical Chern–Gauss–Bonnet theorem of differential geometry using
nothing22 but Gaussian processes. This really has nothing to do with anything else
in the book, but we like it too much not to include it.

In Chapter 13 we shall see how to lift the results about the mean Euler charac-
teristics of excursion sets to results about mean Lipschitz–Killing curvatures. The
argument will rely on a novel extension of the classical Crofton formulas about av-
eraged cross-sections of Euclidean sets to a scenario in which the cross-sections are
replaced by intersections of the set with certain random manifolds, and the averaging
is against a Gaussian measure. This new “Gaussian Crofton’’ formula is completely
new and would seem to be of significant independent interest.

The second main result appears in Chapter 14, where we shall finally prove the
result promised long ago, that not only is the difference∣∣∣∣P{sup

t∈M
f (t) ≥ u

}
− E{ϕ(Au(f,M))}

∣∣∣∣
extremely small for large u, but it can even be bounded in a rigorous fashion. Not only
will this justify our claims that the mean Euler characteristic of excursion sets yields
an excellent approximation to excursion probabilities, but, en passant, we shall also
show that the volume-of-tubes approximation of Chapter 10 can be made rigorous
as well.

In the closing Chapter 15 we finally leave the Gaussian scenario and develop
the third main result, an explicit formula for both the expected Euler characteristics

22 Of course, this cannot really be true. Establishing the Chern–Gauss–Bonnet theorem without
any recourse to algebraic topology would have been a mathematical coup that might even
have made probability theory a respectable topic within pure mathematics. What will be
hidden in the small print is that everything relies on the Morse theory of Section 9.3, and
this, in turn, uses algebraic geometry. However, our approach will save myopic probabilists
from having to read the small print.
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and Lipschitz–Killing curvatures of excursion sets for a wide range of non-Gaussian
random fields, working in the general environment of differential, rather than integral,
geometry. The proof and approach of this chapter are quite different from those of
Chapters 11–13, and much of it is entirely new.

In fact, the results of Chapter 15 will actually incorporate most of the results of
Chapters 11–13, using only a small part of what is developed there. Consequently,
you could actually skip these chapters and go straight to the punch line in Chapter 15,
although you will, occasionally, have to backtrack to pick up some material from the
missed chapters. In doing so, however, you will miss a lot of interesting and useful
additional material, and so we advise against this.



11

Random Fields on Euclidean Spaces

The main result of this chapter is Theorem 11.7.2 and its corollaries, which give
explicit formulas for the mean Euler characteristic of the excursion sets of smooth
Gaussian fields over rectangles in RN .

The chapter develops in a number of distinct stages. Initially, we shall develop
rather general results that give integral formulas for the expected number of points at
which a vector-valued random field takes specific values. These are Theorem 11.2.1
and its corollaries. Aside from their basic importance in the current setting, these
results will also form the basis of corresponding results for the manifold setting of
Chapter 12. In view of the results of Chapter 6, which relate the global topology of
excursion sets of a function to its local behavior, it should be clear what this has to do
with Euler characteristic computations. However, the results are important beyond
this setting and indeed beyond the setting of this book, so we shall develop them
slowly and carefully.

Before we tackle all this, however, we shall take a moment to look at the classic
Rice formula, which is the simplest special case of our main result and the proof of
which incorporates many of the components of the general scenario.

11.1 Rice’s Formula

Let f be a real-valued stochastic process on the interval [0, T ], and u ∈ R. Consider
the number of upcrossings by f of the level u in [0, T ], denoted by

N+
u (0, T )

�= #{t ∈ [0, T ] : f (t) = u, f ′(t) > 0}. (11.1.1)

In this section, we are going to assume that N+
u (0, T ) is well defined1 and finite,

without worrying about conditions that ensure this. These will appear in the following
sections, in horrid detail.

1 Upcrossings are, of course, an example of a point process, with which we imagine most of
you will be familiar. For those who are not, a point process defined over a measurable space
(X ,F) is a collection of nonnegative, integer-valued random variables N(B), B ∈ F . The
x ∈ X for which N({x}) ≥ 1 are called the atoms, or points of N , and if N({x}) ∈ {0, 1}
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Indeed, we shall commit even more serious crimes, including exchanging delicate
orders of integration, sometimes involving the Dirac delta function. All will be
justified later.

As a first step, we would like to compute E{N+
u (0, T )}. To this end, let δx be the

Dirac delta function at x, “defined’’by the fact that, for any reasonable test function g,∫
R

δx(y)g(y) dy = g(x).

Suppose that the upcrossing points of f , i.e., those t ∈ [0, T ] at which f (t) = u and
f ′(t) > 0, are isolated, so that each one can be covered by a small interval I in which
there are no other upcrossings and throughout which f ′ > 0.

Then, treating δ as if it were a smooth function, a simple change of variable
argument gives that

1 =
∫

R

δu(y) dy =
∫
I

δu(f (t)) · f ′(t) dt.

Of course, this needs justification, but that is what Theorem 11.2.1 does. Concate-
nating all such intervals I , and noting that there is no contribution to the following
integral from outside of them, we obtain

N+
u (0, T ) =

∫ T

0
δu(f (t)) · 1[0,∞](f ′(t)) · f ′(t) dt.

Now take expectations, freely exchanging orders of integration and assuming
that the pairs of random variables (f (t), f ′(t)) have joint probability densities pt , to
see that

E
{
N+

u (0, T )
} =

∫ T

0
dt

∫ ∞

−∞
dx

∫ ∞

0
dyyδu(x)pt (x, y) (11.1.2)

=
∫ T

0

∫ ∞

0
ypt (u, y) dy dt.

This is what could be called Rice’s formula in its most basic form, and it holds for all
processes on R for which the various operations above are justifiable. Note, however,
that it requires no specific distributional assumptions on the process f .

However, it turns out to be remarkably difficult to compute the integral in (11.1.2)
unlessf is either Gaussian or a function of Gaussian processes. The case that is central
to the remainder of this book is that in which f is indeed Gaussian, and has zero mean
and constant variance, which for notational convenience we assume is 1. (Otherwise,
the variance can be absorbed into u in all the following formulas.) In that case we
know from Section 5.6 that f (t) and f ′(t) are independent for each t , and so, denoting
the variance of f ′(t) by λt , it immediately follows that in this case,2

for all x then the point process is called simple. All the point processes that will appear in
this book will be simple. For further information on point processes, see, for example, [90].

2 To see an expression in the fully nonstationary case, look at [42, formula (13.2.1)]. Note,
however, that this expression is not of closed form, but remains as a rather complicated
integral over [0, T ].
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E{N+
u (0, T )} = e−u2/2

2π

∫ T

0

∫ ∞

0
y
e−y2/2λt
√
λt

dy dt (11.1.3)

= e−u2/2

2π

∫ T

0
λ

1/2
t dt.

If f is actually stationary, so that λt ≡ λ2, where λ2 is the second spectral moment
(cf. (5.5.2)), then (11.1.3) simplifies even further to

E{N+
u (0, T )} = λ

1/2
2 T

2π
e−u2/2, (11.1.4)

which is the classic Rice formula.3

To see how the Rice formula is related to excursion sets Au and their Euler
characteristics ϕ(Au), note the trivial fact that

ϕ(Au(f, [0, T ])) ≡ 1f0≥u +N+
u (0, T ), (11.1.5)

so that

E{ϕ(Au(f, [0, T ]))} = P{f0 ≥ u} + E{N+
u (0, T )} (11.1.6)

= �(u)+ T λ
1/2
2

2π
e−u2/2,

the second line holding only in the stationary case.
The role of the second spectral moment λ2 here is quite easy to understand. It

follows from the spectral theory of Section 5.4 that increasing λ2 increases the “high-
frequency components’’ of f . In other words, the sample paths become locally much
rougher. For example, Figure 11.1.1 shows realizations of the very simple Gaussian
process with discrete spectrum

a√
2
δ±√

200(λ)+
√

1 − a2
√

2
δ±√

1,000(λ), (11.1.7)

for a = 0 and a = 5
13 , which gives second spectral moments of λ2 = 1,000 and

λ2 = 200, respectively.
From the figure it should be reasonably clear what this means in sample path

terms: higher second spectral moments correspond to an increased number of level
crossings generated by local fluctuations. Similar phenomena occur also in higher
dimensions, as we shall see soon.

3 Rice’s formula is really due to both Rice [131] and Kac [89] in the early 1940s, albeit
in slightly different settings. Over the years it underwent significant improvement, being
proven under weaker and weaker conditions. In its final form, the only requirement on f

(in the current stationary, zero-mean Gaussian scenario) is that its sample paths be, almost
surely, absolutely continuous with respect to Lebesgue measure. This is far less than we
shall demand in the rigorous proof to follow, since it does not even require a continuous
sample path derivative, let alone a continuous second derivative. Furthermore, (11.1.4)
turns out to hold whether λ2 is finite, whereas we have implicitly assumed λ2 < ∞. For
details see, for example, [97].
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Fig. 11.1.1. Realizations of Gaussian sample paths with the spectrum (11.1.7) and second
spectral moments λ2 = 200 (left) and λ2 = 1,000 (right).

Most of the current chapter concentrates on extending (11.1.6) from processes on
R to random fields on RN , still in the stationary case. Along the way, we shall also
handle all the technical issues that we ignored above.

The nonstationary case in higher dimensions is qualitatively different4 from that
in one dimension and requires the setting of Riemannian manifolds. We shall turn to
this only in Chapter 12, in particular when we look at the nonstationary examples of
Section 12.5.

11.2 An Expectation Metatheorem

We start with a metatheorem about the expected number of points at which a vector-
valued random field takes values in some set. For the moment, we gain nothing by
assuming that our fields are Gaussian and so do not do so. Here is the setting:

For some N,K ≥ 1 let f = (f 1, . . . , f N) and g = (g1, . . . , gK), respectively,
be RN - and RK -valued N -parameter random fields. We need two sets, T ⊂ RN and
B ⊂ RK . As usual, T is a compact parameter set, but now we add the assumption
that its boundary ∂T has finite HN−1-measure (cf. footnote 23 in Chapter 7). As for
B, we shall assume that it is open and that its boundary ∂B = B̄ \ B has Hausdorff
dimension K − 1.

As usual, ∇f denotes the gradient of f . Since f takes values in RN , this is now
an N ×N matrix of first-order partial derivatives of f ; i.e.,

(∇f )(t) ≡ ∇f (t) ≡ (f i
j (t))i,j=1,...,N ≡

(
∂f i(t)

∂tj

)
i,j=1,...,N

.

All the derivatives here are assumed to exist in an almost sure sense.5

4 One might guess that in moving to constant variance, but otherwise nonstationary, random
fields on R

N all that might happen would be that the λt of (11.1.3) might be replaced
with some other local derivative, or perhaps determinant of derivatives, of the covariance
function at the point (t, t). This, however, is not the case, and the actual situation, as we
shall soon see, is far more complicated.

5 This is probably too strong an assumption, since, at least in one dimension, Theorem 11.2.1
is known to hold under the assumption that f is absolutely continuous, and so has only a
weak-sense derivative (cf. [109]). However, since we shall need a continuous sample path
derivative later for other things, we assume it now.
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Theorem 11.2.1. Letf , g, T andB be as above. Assume that the following conditions
are satisfied for some u ∈ RN :

(a) All components of f , ∇f , and g are a.s. continuous and have finite variances
(over T ).

(b) For all t ∈ T , the marginal densities pt (x) of f (t) (implicitly assumed to exist)
are continuous at x = u.

(c) The conditional densities6 pt (x|∇f (t), g(t)) of f (t) given g(t) and ∇f (t)

(implicitly assumed to exist) are bounded above and continuous at x = u, uni-
formly in t ∈ T .

(d) The conditional densities pt (z|f (t) = x) of det ∇f (t) given f (t) = x, are
continuous for z and x in neighborhoods of 0 and u, respectively, uniformly in
t ∈ T .

(e) The conditional densities pt (z|f (t) = x) of g(t) given f (t) = x, are continuous
for all z and for x in a neighborhood u, uniformly in t ∈ T .

(f) The following moment condition holds:

sup
t∈T

max
1≤i,j≤N

E

{∣∣∣f i
j (t)

∣∣∣N} < ∞. (11.2.1)

(g) The moduli of continuity with respect to the usual Euclidean norm (cf. (1.3.6)) of
each of the components of f , ∇f , and g satisfy

P {ω(η) > ε} = o
(
ηN
)

as η ↓ 0 (11.2.2)

for any ε > 0.

Then, if
Nu ≡ Nu(T ) ≡ Nu(f, g : T ,B)

denotes the number of points in T for which

f (t) = u ∈ RN and g(t) ∈ B ⊂ RK,

and pt (x,∇y, v) denotes the joint density of (ft ,∇ft , gt ), we have, with D =
N(N + 1)/2 +K ,

E{Nu} =
∫
T

∫
RD

|det ∇y| 1B(v)pt (u,∇y, v)d(∇y) dv dt. (11.2.3)

It is sometimes more convenient to write this as

E{Nu} =
∫
T

E{| det ∇f (t)|1B(g(t))|f (t) = u}pt (u) dt, (11.2.4)

where the pt here is the density of f (t).
6 Standard notation would demand that we replace the matrix ∇y by the N(N + 1)/2-

dimensional vector vech(∇y) both here and, even more so, in (11.2.3) following, where
the differential d(∇y), which we shall generally write in even greater shorthand as d∇y, is
somewhat incongruous. Nevertheless, on the basis that it is clear what we mean, and that
it is useful to be able to easily distinguish between reals, vectors, and matrices, we shall
always work with this slightly unconventionial notation.
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While conditions (a)–(g) arise naturally in the proof of Theorem 11.2.1, they all
but disappear in one of the cases of central interest to us, when the random fields f and
g are Gaussian. In these cases all the marginal and conditional densities appearing
in the conditions of Theorem 11.2.1 are also Gaussian, and so their boundedness
and continuity are immediate, as long as all the associated covariance matrices are
nondegenerate, which is what we need to assume in this case. This will also imply
that all variances are finite and that the moment condition (11.2.1) holds. Thus the
only remaining conditions are the a.s. continuity of f , ∇f , and g, and condition
(11.2.2) on the moduli of continuity.

Note first, without reference to normality, that if ∇f is continuous, then so must7

be f . Thus we have only the continuity of ∇f and g to worry about. However,
we spent a lot of time in Chapter 1 finding conditions that will guarantee this. For
example, we can apply Theorem 1.4.1.

WriteCi
f = Ci

f (s, t) for the covariance function off i , so thatCi
fj

= ∂2Ci
f /∂sj ∂tj

is the covariance function of f i
j = ∂f i/∂tj . Similarly, let Ci

g denote the covariance

function of gi . Then, by (1.4.4), ∇f and g will be a.s. continuous if

max
i,j

|Ci
fj
(t, t)+ Ci

fj
(s, s)− 2Ci

fj
(s, t)| ≤ K| ln |t − s||−(1+α),

max
i

|Ci
g(t, t)+ Ci

g(s, s)− 2Ci
g(s, t)| ≤ K| ln |t − s||−(1+α),

(11.2.5)

for some finite K > 0, some α > 0, and all |t − s| small enough.
All that now remains to check is condition (11.2.2) on the moduli of continuity.

Here the Borell–TIS inequality—Theorem 2.1.1—comes into play. Write h for any
of the components of ∇f or g, and H for the random field on T × T defined by
H(s, t) = h(t)− h(s). Then, writing

ω(η) = sup
s,t :|t−s|≤η

|H(s, t)|,

we need to show, under (11.2.5), that for all ε > 0,

P{ω(η) > ε} ≤ o(ηN). (11.2.6)

The Borell–TIS inequality gives us that

P{ω(η) > ε} ≤ 2 exp{−(ε − E{ω(η)})2/2σ 2
η }, (11.2.7)

where σ 2
η = sups,t :|t−s|≤η E{(H(s, t))2}. But (11.2.5) immediately implies that

σ 2
η ≤ K| ln η|−(1+α), while together with Theorem 1.4.1 it implies a bound of similar

order for E{ω(η)}. Substituting this into (11.2.7) gives an upper bound of the form
Cεη

| ln η|α , and so (11.2.6) holds with room to spare, in that it holds for any N and not
just N = dim(T ).

Putting all of the above together, we have that Theorem 11.2.1 takes the following
much more user friendly form in the Gaussian case.

7 The derivative can hardly exist, let alone be continuous, if f is not continuous! In fact, this
condition was vacuous all along and was included only for “symmetry’’ considerations.
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Corollary 11.2.2. Let f and g be centered Gaussian fields over a T that satis-
fies the conditions of Theorem 11.2.1. If for each t ∈ T , the joint distributions of
(f (t),∇f (t), g(t)) are nondegenerate, and if (11.2.5) holds, then so do (11.2.3)
and (11.2.4).

We now turn to the proof of Theorem 11.2.1. We shall prove it in a number of
stages, firstly by setting up a result that rewrites the random variable Nu in an integral
form, more conducive to computing expectations. Indeed, we could virtually end the
proof here if we were prepared to work at a level of rigor that would allow us to treat
the Dirac delta function with gay abandon and exchange delicate orders of integration
without justification. Since it is informative to see how such an argument works, we
shall give it, before turning to a fully rigorous proof.

The rigorous proof comes in a number of steps. In the first, we use the integral
representation to derive an upper bound to E{Nu}, which actually gives the correct
result. (The upper bound actually involves little more than replacing the “gay aban-
don’’ mentioned above with Fatou’s lemma.) The second step involves showing that
this upper bound is also a lower bound. The argument here is far more delicate, and
involves locally linear approximations of the fields f and g. Both of these steps will
involve adding conditions to the already long list of Theorem 11.2.1, and so the third
and final step involves showing that these additional conditions can be lifted under
the conditions of the theorem.

To state the first result, let δε : RN → R be constant on the N -ball B(ε) = {t ∈
RN : |t | < ε}, zero elsewhere, and normalized so that∫

B(ε)

δε(t) dt = 1. (11.2.8)

Theorem 11.2.3. Let f : RN → RN , g : RN → RK be deterministic, T ⊂ RN

closed, and B ⊂ RK open. Suppose, furthermore, that the following conditions are
all satisfied for u ∈ RN :
(a) The components of f , g, and ∇f are all continuous.
(b) There are no points t ∈ T satisfying both f (t) = u and either g(t) ∈ ∂B or

det ∇f (t) = 0.
(c) There are no points t ∈ ∂T satisfying f (t) = u.

Then

Nu(f, g; T ,B) = lim
ε→0

∫
T

δε(f (t)− u)1B(g(t))| det ∇f (t)| dt. (11.2.9)

Proof. To save on notation, and without any loss of generality, we take u = 0.
Consider those t ∈ T for which f (t) = 0. We first note that from (b) there is only
a finite number of such points,8 and none of them lie in ∂T . Consequently, each
one can be surrounded by an open ball, of radius η, say, in such a way that the balls

8 It is a standard result that if there are no points t ∈ T satisfying both f (t) = u and
det ∇f (t) = 0, then there is only a finite number of points t ∈ T satisfying f (t) = u.
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neither overlap nor intersect ∂T . Furthermore, because of (b), we can ensure that η
is small enough so that within each ball, g(t) always lies in either B or the interior of
its complement, but never both.

Let σ(ε) be the ball |f | < ε in the image space of f . From what we have just
established, we claim that we can now choose ε small enough for the inverse image
of σ(ε) in T to be contained within the union of the η spheres. (In fact, if this were
not so, we could choose a sequence of points tn in T not belonging to any η sphere,
and a sequence εn tending to zero such that f (tn) would belong to σ(εn) for each
n. Since T is compact, the sequence tn would have a limit point t∗ in T , for which
we would have f (t∗) = 0. Since t∗ /∈ ∂T by (c), we must have t∗ ∈ T . Thus t∗ is
contained in the inverse image of σ(ε) for any ε, as must be infinitely many of the tn.
This contradiction establishes our claim.)

Furthermore, by (b) and the inverse mapping theorem (cf. footnote 6 of Chapter 6)
we can choose ε, η so small that for each η sphere in T , σ(ε) is contained in the f

image of the η sphere, so that the restriction of f to such a sphere will be one-to-one.
Since the Jacobian of the mapping of each η sphere by f is | det ∇f (t)|, it follows
that we can choose ε small enough so that

N0 =
∫
T

δε(f (t))1B(g(t))| det ∇f (t)| dt.

This follows since each η sphere in T over which g(t) is in B will contribute exactly
one unit to the integral, while all points outside the η spheres will not be mapped onto
σ(ε). Since the left-hand side of this expression is independent of ε, we can take the
limit as ε → 0 to obtain (11.2.9) and thus the theorem. ��

Theorem 11.2.3 does not tell us anything about expectations. Ideally, it would be
nice simply to take expectations on both sides of (11.2.9) and then, hopefully, find an
easy way to evaluate the right-hand side of the resulting equation. While this requires
justification and further assumptions, let us nevertheless proceed in this fashion, just
to see what happens. We then have

E{N0} = lim
ε→0

E

∫
T

δε(f (t))1B(g(t))| det ∇f (t)| dt

=
∫
T

∫
RN(N+1)/2

∫
RK

1B(v)| det ∇y|

×
{

lim
ε→0

∫
RN

δε(x)pt (x,∇y, v) dx

}
d∇y dv dt,

To see this, suppose that t is such that f (t) = u. (If there are no such t , there is nothing
more to prove.) The fact that f ∈ C1 implies that there is a neighborhood of t in which
f is locally linear: that is, it can be approximated by its tangent plane. Furthermore, since
det ∇f (t) �= 0, not all the partial derivatives can be zero, and so the tangent plane cannot be
at a constant “height.’’ Consequently, throughout this neighborhood there is no other point
at which f = u. Since T is compact, there can therefore be no more than a finite number
of t satisfying f (t) = u.
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where the pt are the obvious densities. Taking the limit in the innermost integral
yields

E{N0} =
∫
T

∫ ∫
1B(v)| det ∇y|pt (0,∇y, v) d∇y dv dt (11.2.10)

=
∫
T

E{| det ∇f (t)|1B(g(t))|f (t) = 0}pt (0) dt.

Of course, interchanging the order of integration and the limiting procedure re-
quires justification. Nevertheless, at this point we can state the following tongue-in-
cheek “corollary’’ to Theorem 11.2.3.

Corollary 11.2.4. If the conditions of Theorem 11.2.3 hold almost surely, as well as
“adequate’’ regularity conditions, then

E{Nu} =
∫
T

∫
RN(N+1)/2

∫
RK

| det ∇x|1B(v)pt (u,∇x, v) d∇x dv dt

=
∫
T

E{| det ∇f (t)|1B(g(t))|f (t) = u}pt (u) dt.

(11.2.11)

As will be seen below, “adequate’’ regularity conditions generally require no more
than that the density pt above be well behaved (i.e., continuous, bounded) and that
enough continuous derivatives of f and g exist, with enough finite moments.

At this point we suggest that if you are not the kind of person who cares too much
about rigor then you move directly to Section 11.6, where we begin the preparations
for using the above results. Indeed, there is probably much to be said in favor of even
the mathematically inclined doing the same on the first reading.

We now turn to the rigorous upper bound, and start with a useful lemma. It is
easily proven via induction started from Hölder’s inequality.

Lemma 11.2.5. Let X1, . . . , Xn be any real-valued random variables. Then

E{|X1 · · ·Xn|} ≤
n∏

i=1

[E{|Xi |n}]1/n. (11.2.12)

Theorem 11.2.6. Letf , g,B, andT be as in Theorem 11.2.3, but withf andg random
and conditions (a)–(d) there holding in an almost sure sense. Assume, furthermore,
that conditions (b)–(g) of Theorem 11.2.1 hold, with the notation adopted there. Then

E{Nu(f, g; T ,B)} ≤
∫
T

dt

∫
B

dv

∫
RN(N+1)/2

| det ∇y|pt (u,∇y, v) d∇y.

(11.2.13)

Proof. Again assume that u = 0. Start by setting, for ε > 0,

Nε =
∫
T

δε(f (t))1B(g(t))| det ∇f (t)| dt,
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where δε is as in (11.2.8). By expanding the determinant, applying (11.2.12), and
recalling the moment assumption (11.2.1), we have that everything is nicely finite,
and so Fubini’s theorem gives us that

E{Nε(T )} =
∫
T

dt

∫
RN×RN(N+1)/2×B

δε(x)| det ∇y|pt (x,∇y, v) dx d∇y dv

=
∫
T

dt

∫
RN(N+1)/2×B

| det ∇y|pt (∇y, v) d∇y dv

×
∫

RN

δε(x)pt (x
∣∣∇y, v) dx.

Since all densities are assumed continuous and bounded, the innermost integral clearly
converges to

pt (0
∣∣∇y, v)

as ε → 0. Furthermore,∫
RN

δε(x)pt (x
∣∣∇y, v) dx ≤ sup

x
pt (x

∣∣∇y, v)

∫
RN

δε(x) dx

= sup
x

pt (x|∇y, v),

which, by assumption, is bounded.
Again noting the boundedness of E{| det ∇ft |}, it follows from (11.2.9), domi-

nated convergence, and Fatou’s lemma that

E{N0} ≤ lim
ε→0

E{Nε}

=
∫
T

dt

∫
B

dv

∫
RN(N+1)/2

| det ∇y|pt (0,∇y, v) d∇y.

This, of course, proves the theorem. ��

We can now turn to the more difficult part of our problem: showing that the upper
bound for E{N(T )} obtained in the preceding theorem also serves as a lower bound
under reasonable conditions. We shall derive the following result.

Theorem 11.2.7. Assume the setup and assumptions of Theorem 11.2.6, along with
(11.2.2) of Theorem 11.2.1, that is, that the moduli of continuity of each of the com-
ponents of f , ∇f , and g satisfy

P{ω(η) > ε} = o(ηN) as η ↓ 0, (11.2.14)

for all ε > 0. Then (11.2.13) holds with the inequality sign reversed, and so is an
equality.
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Since the proof of this theorem is rather involved, we shall start by first describing
the principles underlying it. Essentially, the proof is based on constructing a pathwise
approximation to the vector-valued process f and then studying the zeros of the
approximating process. The approximation is based on partitioning T and replacing
f within each cell of the partition by a hyperplane tangential tof at the cell’s midpoint.
We then argue that if the approximating process has a zero within a certain subset of
a given cell, then f has a zero somewhere in the full cell. Thus the number of zeros
of the approximating process will give a lower bound to the number of zeros of f .

In one dimension, for example, we replace the real-valued function f on T =
[0, 1] by a series of approximations f (n) given by

f (n)(t) = f

((
j + 1

2

)
2−n

)
+
[
t −

(
j + 1

2

)
2−n

]
f ′
((

j + 1

2

)
2−n

)
,

for j2−n ≤ t < (j + 1)2−n, and study the zeros of f (n) as n → ∞. Although this
is perhaps not the most natural approximation to use in one dimension, it generalizes
easily to higher dimensions.

Proof of Theorem 11.2.7. As usual, we take the level u = 0, and start with some
notation. For each n ≥ 1 let Zn denote the lattice of points in RN whose components
are integer multiples of 2−n, i.e.,

Zn = {t ∈ RN : tj = i2−n, j = 1, . . . , N, i ∈ Z}.
Now fix ε > 0, and for each n ≥ 1 define two half-open hypercubes centered on an
arbitrary point t ∈ RN by

�n(t) = {s ∈ RN : −2−(n+1) ≤ sj − tj < 2−(n+1)},
�ε

n(t) = {s ∈ RN : −(1 − ε)2−(n+1) ≤ sj − tj < (1 − ε)2−(n+1)}.
Set

Int =
{

1 if N0(f, g;�n(t), B) ≥ 1 and �n(t) ⊂ T ,

0 otherwise,

and define approximations Nn to N0(f, g; T ,B) by

Nn =
∑
t∈Zn

Int .

Note (since it will be important later) that only those �n(t) that lie wholly within T

contribute to the approximations. However, since the points being counted are, by
assumption, almost surely isolated, and none lie on ∂T , it follows that

Nn a.s.→ N0(f, g; T ,B) as n → ∞.

Since the sequence Nn is nondecreasing in n, monotone convergence yields
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E{N0} = lim
n→∞ E{Nn} ≥ lim

n→∞
∑

P{N0(�n(t)) > 0}, (11.2.15)

where the summation is over all t ∈ Zn for which �n(t) ⊂ T .
The remainder of the proof involves determining the limiting value of

P{N0(�n(t)) > 0}. Fix δ > 0 small, and K > 0 large. For given realizations
of f and g define the function ω∗

f (n) by

ω∗
f (n) = max

[
max
j

ωf j (2−n), max
ij

ω(∇f )ij (2
−n), max

j
ωgj (2

−n)

]
,

where the moduli of continuity are all taken over T . Furthermore, define Mf by

Mf = max

[
max

1≤j≤N
sup
t∈T

|f j (t)|, max
1≤i,j≤N

sup
t∈T

∣∣∣(∂f i/∂tj

)
(t)

∣∣∣] .
Finally, set

η = δ2ε

2N !(K + 1)N−1
.

Then the conditions of the theorem imply that as n → ∞,

P{ω∗(n) > η} = o
(

2−Nn
)
. (11.2.16)

Choose now a fixed n and t ∈ Zn for which �n(t) ⊂ T . Assume that

ω∗
f (n) < η (11.2.17)

and that the event GδK occurs, where

GδK =
{
| det ∇f (t)| > δ, Mf < K/N, g(t) ∈

{
x ∈ B : inf

y∈∂B ‖x − y‖1 > δ
}}

,

where ‖x‖1 = ∑
i |xi | is the usual �1 norm. Finally, define t∗ to be the solution of

the following equation, when a unique solution in fact exists:

f (t) = (t − t∗) · ∇f (t). (11.2.18)

We claim that if both ω∗
f (n) < η and GδK occur, then, for n large enough,

t∗ ∈ �ε
n(t) implies

N0(�n(t)) > 0 (11.2.19)

and

‖f (t)‖1 ≤ 2−nK. (11.2.20)

These two facts, which we shall establish in a moment, are enough to make the
remainder of the proof quite simple. From (11.2.19), it follows that by choosing n

large enough for (11.2.16) to be satisfied we have
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P{N0(�n(t)) > 0} ≥ P{GδK ∩ [t∗ ∈ �ε
n(t)]} + o(2−nN).

Using this, making the transformation t → t∗ given by (11.2.18), and using the
notation of the theorem, we obtain

P{N0(�n(t)) > 0}
≥
∫
GδK∩{t∗∈�ε

n(t)}
| det ∇y|pt ((t − t∗)∇y,∇y, v) dt∗ d∇ydv + o(2−nN).

Noting (11.2.20), the continuity and boundedness assumptions on pt , and the bound-
edness assumptions on the moments of the f i

j , it follows that, as n → ∞, the last
expression, summed as in (11.2.15), converges to

(1 − ε)N
∫
T

dt

∫
GδK

| det ∇y|pt (0,∇y, v) d∇y dv.

Letting ε → 0, δ → 0, K → ∞ and applying monotone convergence to the above
expression, we obtain from (11.2.15) that

E{N0(T )} ≥
∫
T

dt

∫
B

dv

∫
RN(N+1)/2

| det ∇y|pt (0,∇y, v) d∇y.

This, of course, completes the proof, barring the issue of establishing that (11.2.19)
and (11.2.20) hold under the conditions preceding them.

Thus, assume that ω∗(n) < η, GδK occur, and the t∗ defined by (11.2.18) satisfies
t∗ ∈ �ε

n(t). Then (11.2.20) is immediate. The hard part is to establish (11.2.19). To
this end, note that (11.2.18) can be rewritten as

t − f (t)[∇f (t)]−1 ∈ �ε
n(t). (11.2.21)

Let τ be any other point in �n(t). It is easy to check that

| det ∇f (τ)− det ∇f (t)| < εδ2

2
, (11.2.22)

under the conditions we require. Thus, since det ∇f (t) > δ, it follows that
det ∇f (τ) �= 0 for any τ ∈ �n(t) and so the matrix ∇f (τ) is invertible throughout
�n(t). Similarly, one can check that g(τ) ∈ B for all τ ∈ �n(t).

Consider first (11.2.19). We need to show that t∗ ∈ �ε
n(t) implies the existence

of at least one τ ∈ �n(t) at which f (τ) = 0.
The mean value theorem9 allows us to write

9 In the form we need it, here is the mean value theorem for Euclidean spaces. A proof can
be found, for example, in [13].

Lemma 11.2.8 (mean value theorem for R
N ). Let T be a bounded open set in R

N and
let f : T → R

N have first-order partial derivatives at each point in T . Let s and t be two
points in T such that the line segment
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f (τ)− f (t) = (τ − t)∇f (t1, . . . , tN ) (11.2.24)

for some points t1(τ ), . . . , tN (τ ) lying on the line segment L(t, τ ), for any t and
τ , where ∇f (t1, . . . , tN ) is the matrix function ∇f with the elements in the kth
column evaluated at the point tk . Using similar arguments to those used to establish
(11.2.22) and the invertibility of ∇f (τ) throughout �n(t), invertibility can be shown
for ∇f (t1, . . . , tN ) as well. Hence we can rewrite (11.2.24) as

f (τ)[∇f (t1, . . . , tN )]−1 = f (t)[∇f (t1, . . . , tN )]−1 + (τ − t). (11.2.25)

Suppose we could show that f (t)[∇f (t1, . . . , tN )]−1 ∈ �n(0) if t∗ ∈ �ε
n(t).

Then by the Brouwer fixed point theorem10 it would follow that the continuous
mapping of �n(t) into �n(t) given by

τ → t − f (t)[∇f (t1, . . . , tN )]−1, τ ∈ �n(t),

has at least one fixed point. Thus, by (11.2.25), there would be at least one τ ∈ �n(t)

for which f (τ) = 0. In other words,

{ω∗
f (n) < η, GδK, t∗ ∈ �ε

n(t), n large} ⇒ N(T ∩�n(t)) > 0.

But f (t)[∇f (t1, . . . , tN )]−1 ∈ �n(0) is easily seen to be a consequence of
t∗ ∈ �ε

n(t) and GδK simply by writing

f (t)[∇f (t1, . . . , tN )]−1

= f (t)[∇f (t)]−1∇f (t)[∇f (t1, . . . , tN )]−1

= f (t)[∇f (t)]−1
(
I +

(
∇f (t)− ∇f (t1, . . . , tN )

)
[∇f (t1, . . . , tN )]−1

)
,

noting (11.2.21) and bounding the rightmost expression using basically the same
argument employed for (11.2.22). This completes the proof. ��

L(s, t) = {u : u = θs + (1 − θ)t, 0 < θ < 1}

is wholly contained in T . Then there exist points t1, . . . , tN on L(s, t) such that

f (t)− f (s) = ∇f (t1, . . . , tN ) · (t − s), (11.2.23)

where by ∇f (t1, . . . , tN ) we mean the matrix-valued function ∇f with the elements in the
kth column evaluated at the point tk .

10 In the form we need it, the Brouwer fixed point theorem is as follows. Proofs of this result
are easy to find (e.g., [146]).

Lemma 11.2.9. Let T be a compact, convex subset of R
N and f : T → T a continuous

mapping of T into itself. Then f has at least one fixed point; i.e., there exists at least one
point t ∈ T for which f (t) = t .
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We now complete the task of this section, i.e., the proof of Theorem 11.2.1, which
gave the expression appearing in both Theorems 11.2.6 and 11.2.7 for E{Nu}, but
under seemingly weaker conditions than those we have assumed. What remains to
show is that conditions (b)–(d) of Theorem 11.2.3 are satisfied under the conditions
of Theorem 11.2.1. Condition (c) follows immediately from the following rather
intuitive result, taking h = f , n = N − 1, and identifying the T of the lemma with
∂T in the theorems. The claims in (b) and (d) are covered in the three remaining
lemmas of the section. Lemma 11.2.10 has roots going back to Bulinskaya [35].

Lemma 11.2.10. Let T be a compact set of Hausdorff dimension n. Let h : T →
Rn+1 be, with probability one, C1 with bounded partial derivatives. Furthermore,
assume that the univariate probability densities of h are bounded in a neighborhood
of u ∈ Rn+1, uniformly in t . Then, for such u, there are a.s. no t ∈ T with h(t) = u.
That is,

P{h−1(u) = ∅} = 1. (11.2.26)

Proof. We start with the observation that under the conditions of the lemma, for any
ε > 0, there exists a finite Cε such that

P

{
max
ij

sup
T

∂hi(t)/∂tj < Cε

}
> 1 − ε.

Writing ωh for the modulus of continuity of h, it follows from the mean value theo-
rem that

P{Eε} > 1 − ε, (11.2.27)

where

Eε
�= {

ωh(η) ≤
√
nCεη for small enough η

}
.

Take now a sequence {δm} of positive numbers converging to 0 as m → ∞. The
fact that T has Hausdorff dimension n implies that for any any δ > 0, and m large
enough, there exists a collection of Euclidean balls {Bmj } covering T such that∑

j

(
diam(Bmj )

)n+δ
< δm. (11.2.28)

Define the events

A = {∃t ∈ T : h(t) = u} , Amj = {∃t ∈ Bmj : h(t) = u
}
.

Fix ε > 0 and note that

P{A} ≤
∑
j

P
{
Amj ∩ Eε

}+ P
{
Ec
ε

}
. (11.2.29)

In view of (11.2.27) it suffices to show that the sum here can be made arbitrarily
small.
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To see this, let tmj be the center point of Bmj . Then, if both Amj and Eε occur, it
follows that for large enough m,∣∣h(tmj )− u

∣∣ ≤ √
nCε diam(Bmj ).

Since ht has a bounded density, it thus follows that

P{Amj ∩ Eε} ≤ M(
√
nCε diam(Bmj ))

n+1,

where M is a bound on the densities. Substituting into (11.2.29) and noting (11.2.28)
we are done. ��

We now turn to the second part of condition (b) of Theorem 11.2.3, relating to
the points t ∈ T satisfying f (t) − u = det ∇f (t) = 0. Note firstly that this would
follow easily from Lemma 11.2.10 if we were prepared to assume that f ∈ C3(T ).
This, however, is more than we are prepared to assume. That the conditions of
Theorem 11.2.1 contain all we need is the content of the following lemma.

Lemma 11.2.11. Let f and T be as in Theorem 11.2.1, with conditions (a), (b), (d),
and (g) of that theorem in force. Then, with probability one, there are no points t ∈ T

satisfying f (t)− u = det ∇f (t) = 0.

Proof. As for the proof of the previous lemma, we start with an observation. In
particular, for any ε > 0, there exists a continuous function ωε for which ωε(η) ↓
0 as η ↓ 0, and a finite positive constant Cε, such that P{Eε} > 1 − ε, where now

Eε
�=
{

max
ij

sup
t∈T

|f i
j (t)| < Cε, max

ij
ωf i

j
(η) ≤ ωε(η), for 0 < η ≤ 1

}
.

To see this, the following simple argument11 suffices: For ease of notation, set

ω∗(η) = max
ij

ωf i
j
(η).

It then follows from (11.2.2) that there are sequences {cn} and {ηn}, both decreas-
ing to zero, such that

P
{
ω∗(ηn) < cn

}
> 1 − 2−nε.

Defining ωε(η) = cn for ηn+1 ≤ η < ηn, Borel–Cantelli then gives, for some
η1 > 0, that

P
{
ω∗(η) < ωε(η), 0 < η ≤ η1

}
> 1 − ε/2.

If η1 < 1, set ωε = c0 for η1 < η ≤ 1, where c0 is large enough so that

11 Note that this event tells us less about theω
f i
j

than in the corresponding event in the previous

lemma, and so we shall have to work harder to show that P{Eε} > 1 − ε. The problem is
that this time, we are not assuming that the f i

j
, unlike the hi of the previous lemma, are C1.
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P
{
ω∗(η) < c0, η1 < η ≤ 1

}
> 1 − ε/2.

Now choose Cε large enough so that

P

{
sup
t∈T

|f (t)| < Cε

}
> 1 − ε/2,

and we are done.
We now continue in a similar vein to that of the previous proof. Let the Bmj and

tmj be as defined there, although (11.2.28) is now replaced with∑
j

(
diam Bmj

)N → cNλN(T ) < ∞ (11.2.30)

as m → ∞ for some dimension-dependent constant cN .
Define the events

Amj = {∃t ∈ Bmj : f (t)− u = det ∇f (t) = 0
}
.

Fixing ε > 0, as before, we now need only show that
∑

j P
{
Amj ∩ Eε

}
can be made

arbitrarily small.
Allowing CN to be a dimension-dependent constant that may change from line to

line, if Amj and Eε occur, then, by expanding the determinant, it is easy to see that

| det ∇f (tmk)| ≤ CN (max(1, Cε))
N−1 ωε(

√
N diam(Bmj )),

and that, as before,

|f (tmj )− u| ≤ CNCε diam(Bmj ).

It therefore follows that

P{Amj ∩ Eε} ≤
∫

P

{
| det ∇f (tmj )| ≤ (CN (max(1, Cε))

N−1 ωε(
√
N diam(Bmj ))∣∣ f (tmj ) = x

}
ptmj (x) dx,

where pt is the density of f (t) and the integral is over a region in RN of volume no
greater than CN diam(Bmj )

N .
By assumption (g) of Theorem 11.2.1 the integrand here tends to zero as m → ∞,

and so can be made arbitrarily small. Furthermore, pt is uniformly bounded. Putting
all of this together with (11.2.30) proves the result. ��

We now turn to the first part of condition (b) of Theorem 11.2.3, relating to the
points t ∈ T satisfying f (t) = 0 and g(t) ∈ ∂B. These are covered by the following
lemma, whose proof is almost identical to that of Lemma 11.2.11 and so is left to you.

Lemma 11.2.12. Let f and T be as in Theorem 11.2.1, with conditions (a), (b), (e),
and (g) of that theorem in force. Then, with probability one, there are no points t ∈ T

satisfying f (t)− u = 0 and g(t) ∈ ∂B.
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11.3 Suitable Regularity and Morse Functions

Back in Chapter 6 we laid down a number of regularity conditions on determin-
istic functions f for the geometric analyses developed there to be valid. In the
integral-geometric setting they were summarized under the “suitable regularity’’ of
Definition 6.2.1. In the manifold setting, we moved to the “Morse functions’’ of
Section 9.3.

We shall soon (in Section 11.7) need to know when a random f is, with probability
one, either suitably regular or a Morse function over a finite rectangle T ⊂ RN and
later (in Section 12.4) when it is a Morse function over a piecewise smooth manifold.

Despite the fact that this is (logically) not the right place to be addressing these
issues, we shall nevertheless do so, while the details of the previous section are
still fresh in your mind. In particular, without much further effort, Lemmas 11.2.10
and 11.2.11 will give us what we need.

We consider Morse functions over rectangles first, since here the conditions are
tidiest. We start with a reminder (and slight extension) of notation: As usual, ∂kT is
the k-dimensional boundary, or skeleton, of T . Since T is a rectangle, each ∂kT is
made up of 2N−k

(
N
k

)
open rectangles, or “faces,’’ of dimension k.

Morse functions can then be defined via the following three characteristics:

(i) f is C2 on an open neighborhood of T .
(ii) The critical points of f|∂kT are nondegenerate for all k = 0, . . . , N .

(iii) f|∂kT has no critical points on
⋃k−1

j=0 ∂jT for all k = 1, . . . , N .

Recall that in the current Euclidean setting, critical points are those t for which
∇f (t) = 0, and “nondegeneracy’’ means that the Hessian ∇2f (t) has nonzero de-
terminant. Note also that in both conditions (ii) and (iii) there is a strong dependence
on dimension. In particular, in (ii) the requirement is that the Rk+1-valued function
(∇(f|∂kT ), det ∇2(f|∂kT )) not have zeros over a k-dimensional parameter set. Re-
garding (iii), the requirement is that the Rk-valued function ∇(f|∂kT ) defined on a
k-dimensional set not have zeros on a subset of dimension k − 1.

In this light, (ii) and (iii) are clearly related to Lemma 11.2.11, and we leave it to
you to check the details that give us the following theorem.

Theorem 11.3.1. Let f be a real-valued random field over a bounded rectangle T

of RN with first- and second-order partial derivatives fi and fij . Then f is, with
probability one, a Morse function over T if the following conditions hold for each
face J of T :
(a) f is, with probability one, C2 on an open neighborhood of T , and all second

derivatives have finite variance.
(b) For all t ∈ J , the marginal densities pt (x) of ∇f|J (t) are continuous at 0,

uniformly in t .
(c) The conditional densities pt (z|x) of det ∇2f|J (t) given ∇f|J (t) = x are contin-

uous for (z, x) in a neighborhood of 0, uniformly in t ∈ T .
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(d) On J , the moduli of continuity of f and its first- and second-order partial deriva-
tives all satisfy, for any ε > 0,

P {ω(η) > ε} = o
(
ηdim(J )

)
as η ↓ 0.

As usual, we also have a Gaussian corollary (cf. Corollary 11.2.2). It is even
simpler than usual, since Gaussianity allows us drop the references to the specific
faces J that so cluttered the conditions of the theorem.

Corollary 11.3.2. Let f be a centered Gaussian field over a finite rectangle T . If for
each t ∈ T , the joint distributions of (fi(t), fij (t))i,j=1,...,N are nondegenerate, and
if for some finite K and all s, t ∈ T ,

max
i,j

∣∣Cfij (t, t)+ Cfij (s, s)− 2Cfij (s, t)
∣∣ ≤ K |ln |t − s||−(1+α) , (11.3.1)

then the sample functions of f are, with probability one, Morse functions over T .

The next issue is to determine when sample functions are, with probability one,
suitably regular in the sense of Definition 6.2.1. This is somewhat less elegant because
of the asymmetry in the conditions of suitable regularity and their dependence on a
particular coordinate system. Nevertheless, the same arguments as above work here
as well and it is easy (albeit a little time consuming) to see that the following suffices
to do the job.

Theorem 11.3.3. Under the conditions of Corollary 11.3.2 the sample functions of f
are, with probability one, suitably regular over bounded rectangles.

A little thought will show that the assumptions of this theorem would seem to
give more than is required. Consider the case N = 2. In that case, condition (6.2.6)
of suitable regularity requires that there be no t ∈ T for which f (t) − u = f1(t) =
f11(t) = 0. This is clearly implied by Theorem 11.3.3. However, the theorem also
implies that f (t)− u = f2(t) = f22(t) = 0, which is not something that we require.
Rather, it is a consequence of a desire to write the conditions of the theorem in a
compact form.

In fact, Theorem 11.3.3 goes even further, in that it implies that for every fixed
choice of coordinate system, the sample functions of f are, with probability one,
suitably regular over bounded rectangles.12

We now turn to what is really the most important case, that of determining suf-
ficient conditions for a random field to be, almost surely, a Morse function over a
piecewise C2 Riemannian manifold (M, g). Writing our manifold as usual as

M =
N⋃
j=0

∂jM (11.3.2)

12 Recall that throughout our discussion of integral geometry there was a fixed coordinate
system and that suitable regularity was defined relative to this system.
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(cf. (9.3.5)), conditions (i)–(iii) still characterize whether f will be a Morse function.
The problem is how to generalize Theorem 11.3.1 to this scenario, since its proof
was based on the results of the previous section, all of which were established in a
Euclidean setting. The trick, of course, is to recall that each of the three required
properties is of a local nature. We can then argue as follows:

Choose a chart (U, ϕ) from a countable atlas covering M . Let t∗ ∈ U be a
critical point of f , and note that this property is independent of the choice of local
coordinates. Working therefore with the natural basis for TtM , it is easy to see that
ϕ(t∗) is also a critical point of ϕ(U). Furthermore, the covariant Hessian ∇2f (t∗)
will be degenerate if and only if the same is true of the regular Hessian of f ◦ ϕ−1,
and since ϕ is a diffeomorphism, this implies that t∗ will be a degenerate critical point
of f if and only if ϕ(t∗) is for f ◦ ϕ−1. It therefore follows that even in the manifold
case, we can manage, with purely Euclidean proofs, to establish the following result.
The straightforward but sometimes messy details are left to you.

Theorem 11.3.4. Let f be a real-valued random field over a piecewise C2, compact
Riemannian submanifold (M, g) of aC3 manifold M̃ . Assume thatM has a countable
atlas. Then f is, with probability one, a Morse function over M if the following
conditions hold for each submanifold ∂jM in (11.3.2). Throughout ∇ and ∇2 are to
be understood in their Riemannian formulations and implicitly assumed to have the
dimension of the ∂jM where they are being applied.

(a) f is, with probability one, C2 on an open neighborhood of M in M̃ , and
E{(XYf )2} < ∞ for X, Y ∈ TtM , t ∈ M .

(b) For each ∂jM , the marginal densities pt (x) of ∇f|∂jM(t) are continuous at 0,
uniformly in t .

(c) The densities pt (z|x) of Tr∂jM ∇2f|∂jM(t) given ∇f|∂jM(t) = x are continuous
for (z, x) in a neighborhood of 0, uniformly in t ∈ M .

(d) On ∂jM , the moduli of continuity of f , ∇f|∂jM , and ∇2f|∂jM(X, Y ) all satisfy,
for any ε > 0,

P {ω(η) > ε} = o
(
ηdim(∂jM)

)
as η ↓ 0 (11.3.3)

for all X, Y ∈ S(M) ∩ Tt∂jM , where S(M) is the sphere bundle of M and
the modulus of continuity is taken with respect to the distance induced by the
Riemannian metric g.

As usual, there is a Gaussian corollary to Theorem 11.3.4, which requires only
nondegeneracies and condition (d). There are two ways that we could go about attack-
ing condition (d). The more geometric of the two would be to return to the entropy
conditions of Section 1.3 and find a natural entropy condition for (11.3.3) to hold.
This, however, involves adding a notion of “canonical distance’’ (under the canonical
metric d on M) to the already existing distance corresponding to the Riemannian
metric induced by f . The details of carrying this out, while not terribly difficult,
would involve some work. Perhaps more importantly, the resulting conditions would
not be in a form that would be easy to check in practice.
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Thus, we take another route, given conditions that are less elegant but easier to
establish and generally far easier to check in practice. As for Theorem 11.3.4 itself,
we leave it to you to check the details of the (straightforward) proof of the corollary.

Corollary 11.3.5. Take the setup of Theorem 11.3.4 and let f be a centered Gaussian
field over M . Let A = (Uα, ϕα)α∈I be a countable atlas for M such that for every
α, the Gaussian field fα = f ◦ ϕ−1

α on ϕα(Ua) ⊂ RN satisfies the conditions of
Corollary 11.3.2 with T = ϕα(Uα), f = fα and some Kα > 0. Then the sample
functions of f are, with probability one, Morse functions over M .

11.4 An Alternate Proof of the Metatheorem

The proof of the “metatheorem’’ Theorem 11.2.1 given in the previous section is but
the latest tale in a long history.

The first proof of this kind is probably due to Rice [131] in 1945, who worked in
the setting of real-valued processes on the line. His proof was made rigorous by Itô
[81] and Ylvisaker [180] in the mid 1960s. Meanwhile, in 1957, Longuet-Higgins
[106, 107] was the first to extend it to the setting of random fields and used it to
compute the expectations of such variables as the mean number of local maxima of
two- and three-dimensional Gaussian fields. Rigorous versions of Theorem 11.2.1, at
various levels of generality and with various assumptions, appeared only in the early
1970s as in [1, 7, 16, 108] with the proof of Section 11.2 being essentially that of [1].

Recently, however, Azais and Wschebor [15] have developed a new proof, based
on Federer’s coarea formula. We bring it up here for two reasons. First of all, it is
intrinsically interesting, and secondly, at first glance, it seems to avoid many of the
technicalities inherent in the point process approach that we have adopted.

Retaining the notation of the previous section, Federer’s coarea formula, in the
form (7.4.15), can be rewritten as∫

RN

⎛⎝ ∑
t :f (t)=u

α(t)

⎞⎠ du =
∫

RN

α(t)| det ∇f (t)| dt,

assuming that f and α : RN → RN are sufficiently smooth.
Take α(t) = ϕ(f (t))1T (t), where ϕ is a smooth (test) function. (Of course, α

is now no longer smooth, but we shall ignore this for the moment.) The above then
becomes ∫

RN

ϕ(u)Nu(f : T ) du =
∫
T

ϕ(f (t))| det ∇f (t)| dt.

Now take expectations (assuming that this is allowed) of both sides to obtain∫
RN

ϕ(u)E{Nu(f : T )} du

=
∫
T

E {ϕ(f (t))| det ∇f (t)|} dt
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=
∫

RN

ϕ(u)

∫
T

E
{| det ∇f (t)|∣∣f (t) = u

}
pt (u) dtdu.

Since ϕ was arbitrary, this implies that for (Lebesgue) almost every u,

E{Nu(f : T )} =
∫
T

E
{| det ∇f (t)|∣∣f (t) = u

}
pt (u) dt, (11.4.1)

which is precisely (11.2.4) of Theorem 11.2.1 with the g there identically equal to 1.
Modulo this restriction on g, which is simple to remove, this is the result we have
worked so hard to prove. The problem, however, is that since it is true only for almost
every u, one cannot be certain that it is true for a specific value of u.

To complete the proof, we need only show that both sides of (11.4.1) are con-
tinuous functions of u and that the assumptions of convenience made above are no
more than that. This, of course, is not as trivial as it may sound. Going through the
arguments actually leads to repeating many of the technical points we went through
in the previous section, and eventually Theorem 11.2.1 reappears with the same long
list of conditions. However (and this is the big gain), the details have no need of the
construction, in the proof of Theorem 11.2.7, of the linear approximation to f .

You can find all the details in [15] and decide for yourself which proof you prefer.

11.5 Higher Moments

While not at all obvious at first sight, hidden away in Theorem 11.2.1 is another result,
about higher moments of the random variable Nu(f, g : T ,B). To state it, we need,
for integral k ≥ 1, the kth partial factorial of a real x defined by

(x)k
�= x(x − 1) · · · (x − k + 1).

Theorem 11.5.1. Let f , g, T , and B be as in Theorem 11.2.1, and assume that
conditions (a), (f), and (g) there still hold. For k ≥ 1, write

T k = {̃t = (t1, . . . , tk) : tj ∈ T , ∀1 ≤ j ≤ k},
f̃ (̃t) = (f (t1), . . . , f (tk)) : T k → RNk,

g̃(̃t) = (g(t1), . . . , g(tk)) : T k → RKk.

Replace assumptions (b), (c), and (d) of Theorem 11.2.1 by the following, assumed
to hold for each t ∈ T k \ {t ∈ T k : ti = tj for some i �= j}:
(b′)The marginal densities p̃t of f̃ (̃t) are continuous at ũ

�= (u, . . . , u).

(c′) The conditional densities of f̃ (̃t) given g̃(̃t) and ∇f̃ (̃t) are bounded above and
continuous at ũ.

(d′)The conditional densities p̃t (z|f̃ (̃t) = x) of det ∇f̃ (̃t) given f̃ (̃t) = x are con-
tinuous for z and x in neighborhoods of 0 and ũ, respectively.
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Then,

E{(Nu)k} =
∫
T k

E

⎧⎨⎩
k∏

j=1

∣∣det ∇f (tj )
∣∣ 1B(g(tj ))

∣∣∣f̃ (̃t) = ũ

⎫⎬⎭ p̃t (ũ) dt̃ (11.5.1)

=
∫
T k

∫
RkD

k∏
j=1

∣∣det Dj

∣∣ 1B(vj )p̃t (ũ, D̃, ṽ) dD̃ dṽ dt̃,

where

(i) p̃t (x̃) is the density of f̃ (̃t).
(ii) p̃t (x̃, D̃, ṽ) is the joint density of f̃ (̃t), D̃(̃t), and g̃(̃t).

(iii) D̃(̃t) represents the Nk×Nk matrix ∇f̃ (̃t). Note that D̃(̃t) is a diagonal block
matrix, with the j th block Dj (̃t) containing the matrix ∇f (tj ), where tj ∈ T is
the j th component of t̃ .

(iv) D = N(N + 1)/2 +K .

Proof. For each δ > 0 define the domain

T k
δ

�= {̃t ∈ T k : |ti − tj | ≥ δ for all 1 ≤ i < j ≤ k}.

Then the field f̃ satisfies all the assumptions of Theorem 11.2.1, uniformly over the
parameter set T k

δ .
It therefore follows from (11.2.3) and (11.2.4) that E{Nũ(f̃ , g̃ : T k

δ , B
k)} is given

by either of the integrals in (11.5.1), with the outer integrals taken over T k
δ rather

than T k .
Let δ ↓ 0. Then, using the fact that f = u only finitely often (cf. footnote 8), it

is easy to see that with probability one,

Nũ(f̃ , g̃ : T k
δ , B

k) ↑ (Nu(f, g : T ,B))k.

The monotonicity of the convergence then implies covergence of the expectations
E{Nũ(f̃ , g̃ : T k

δ , B
k)}.

On the other hand, the integrals in (11.5.1) are trivially the limit of the same
expressions with the outer integrals taken over T k

δ rather than T k , and so we are
done. ��

As for the basic expectation result, Theorem 11.5.1 takes a far simpler form if f
is Gaussian, and we have the following.

Corollary 11.5.2. Let f and g be centered Gaussian fields over a T that satisfies the
conditions of Theorem 11.2.1. If for each t̃ = (t1, . . . , tk) ∈ T k , the joint distributions
of {(f (tj ),∇f (tj ), g(tj ))}1≤j≤k are nondegenerate for all choices of distinct tj ∈ T ,
and if (11.2.5) holds, then so does (11.5.1).
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11.6 Preliminary Gaussian Computations

In the following section we shall begin our computations of expectations for the Euler
characteristics of excursion sets of Gaussian fields. In preparation, we need to collect
a few facts about Gaussian integrals. Some are standard, others particularly tailored
to our specific needs. However, since all are crucial components for the proofs of the
main results of this chapter, we shall give proofs for all of them.

The first, in particular, is standard fare.

Lemma 11.6.1 (Wick formula). Let X1, X2, . . . , Xn be a set of real-valued ran-
dom variables having a joint Gaussian distribution and zero means. Then for any
integer m,

E{X1X2 · · ·X2m+1} = 0, (11.6.1)

E{X1X2 · · ·X2m} =
∑

E{Xi1Xi2} · · ·E{Xi2m−1Xi2m}, (11.6.2)

where the sum is taken over the (2m)!/m!2m different ways of grouping X1, . . . , X2m
into m pairs.

Note that this result continues to hold even if some of the Xj are identical, so that

the lemma also applies to compute joint moments of the form E{Xi1
1 · · ·Xik

k }.
Proof. Recall from (1.2.4) that the joint characteristic function of the Xi is

φ(θ) = E

{
ei
∑

i θiXi

}
= eQ, (11.6.3)

where

Q = Q(θ) = −1

2

n∑
i=1

n∑
j=1

θiE{XiXj }θj .

Following our usual convention of denoting partial derivatives by subscripting, we
have, for all l, k, j ,

Qj = −
n∑

k=1

E{XjXk}θk, (11.6.4)

Qkj = −E{XjXk},
Qlkj = 0.

Successive differentiations of (11.6.3) yield

φj = φQj , (11.6.5)

φkj = φkQj + φQkj ,

φlkj = φlkQj + φkQlj + φlQkj ,

...

φ12...n = φ12...(j−1)(j+1)...nQj +
∑
k �=j

φr1...rn−2Qkj ,
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where in the last equation, the sequence r1, . . . , rn−2 does not include the two numbers
k and j .

The moments of various orders can now be obtained by setting θ = 0 in the
equations of (11.6.5). Since from (11.6.4) we have Qj(0) = 0 for all j , the last (and
most general) equation in (11.6.5) thus leads to

E{X1 · · ·Xn} =
∑
k �=j

E{Xr1 · · ·Xrn−2}E{XjXk}.

From this relationship and the fact that the Xj all have zero mean it is easy to
deduce the validity of (11.6.1) and (11.6.2). It remains only to determine exactly the
number, M say, of terms in the summation (11.6.2). We note first that while there are
(2m)! permutations of X1, . . . , X2m, since the sum does not include identical terms,
M < (2m)!. Secondly, for each term in the sum, permutations of them factors result in
identical ways of breaking up the 2m elements. Thirdly, since E{XjXk} = E{XkXj },
an interchange of the order in such a pair does not yield a new pair. Thus

M(m!)(2m) = (2m)!,
implying

M = (2m)!
m!2m

as stated in the lemma. ��
For the next lemma we need some notation. Let�N be a symmetricN×N matrix

with elements �ij such that each �ij is a zero-mean normal variable with arbitrary
variance but such that the following relationship holds:

E{�ij�kl} = E(i, j, k, l)− δij δkl, (11.6.6)

where E is a symmetric function of i, j , k, l, and δij is the Kronecker delta. Write
|�N | for the determinant of �N .

Lemma 11.6.2. Let m be a positive integer. Then, under (11.6.6),

E{|�2m+1|} = 0, (11.6.7)

E{|�2m|} = (−1)m(2m)!
m!2m . (11.6.8)

Proof. Relation (11.6.7) is immediate from (11.6.1). Now

|�2m| =
∑
P

η(p)�1i1 · · ·�2m,i2m,

where p = (i1, i2, . . . , i2m) is a permutation of (1, 2, . . . , 2m), P is the set of the
(2m)! such permutations, and η(p) equals +1 or −1 depending on the order of the
permutation p. Thus by (11.6.2) we have
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E{|�2m|} =
∑
P

η(p)
∑
Q

E{�1i1�2i2} · · ·E{�2m−1,i2m−1�2m,i2m},

where Q is the set of the (2m)!/m!2m ways of grouping (i1, i2, . . . , i2m) into pairs
without regard to order, keeping them paired with the first index. Thus, by (11.6.6),

E{|�2m|} =
∑
P

η(p)
∑
Q

{E(1, i1, 2, i2)− δ1i1δ2i2} × · · ·

× {E(2m− 1, i2m−1, 2m, i2m)− δ2m−1,i2m−1δ2m,i2m}.
It is easily seen that all products involving at least one E term will cancel out because
of their symmetry property. Hence

E{|�2m|} =
∑
P

η(p)
∑
Q

(−1)m
(
δ1i1δ2i2

) · · · (δ2m−1,i2m−1δ2m,i2m

)
= (−1)m(2m)!

(m!)2m ,

the last line coming from changing the order of summation and then noting that for
only one permutation in P is the product of delta functions nonzero. This completes
the proof. ��

Note that (11.6.8) in no way depends on the specific (co)variances among the
elements of �N . These all disappear in the final result due to the symmetry of E .

Before stating the next result we need to introduce the family of Hermite polyno-
mials. The nth Hermite polynomial is the function

Hn(x) = n!
 n/2!∑
j=0

(−1)j xn−2j

j !(n− 2j)!2j , n ≥ 0, x ∈ R, (11.6.9)

where  a! is the largest integer less than or equal to a. For convenience later, we also
define

H−1(x) =
√

2π�(x)ex
2/2, x ∈ R, (11.6.10)

where � is the tail probability function for a standard Gaussian variable (cf. (1.2.1)).
With the normalization inherent in (11.6.9) the Hermite polynomials form an orthog-
onal (but not orthonormal) system with respect to standard Gaussian measure on R,
in that

1√
2π

∫
R

Hn(x)Hm(x)e
−x2/2 dx =

{
n!, m = n,

0, m �= n.

An alternative definition of the Hermite polynomials is via a generating function
approach, which gives
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Hn(x) = (−1)nex
2/2 dn

dxn

(
e−x2/2

)
, n ≥ 0. (11.6.11)

From this it immediately follows that∫ ∞

u

Hn(x)e
−x2/2 dx = Hn−1(u)e

−u2/2, n ≥ 0. (11.6.12)

The centrality of Hermite polynomials for us lies in the following corollary to
Lemma 11.6.2.

Corollary 11.6.3. Let�N be as in Lemma 11.6.2, with the same assumptions in force.
Let I be the N ×N unit matrix, and x ∈ R. Then

E{det (�N − xI)} = (−1)NHN(x).

Proof. It follows from the usual Laplace expansion of the determinant that

det(�N−xI) = (−1)N [xN−S1(�N)x
N−1+S2(�N)x

N−2+· · ·+(−1)NSN(�N)],
(11.6.13)

where Sk(�N) is the sum of the
(
N
k

)
principal minors of order k in |�N |. The result

now follows trivially from (11.6.7) and (11.6.8). ��

11.7 The Mean Euler Characteristic

We now assume f to be a centered, stationary Gaussian process on a rectangle T ⊂
RN and satisfying the conditions of Corollary 11.3.2. As usual, C : RN → R

denotes the covariance function, and ν the spectral measure. Then f has variance
σ 2 = C(0) = ν(RN). We change notation a little from Section 5.4, and introduce
the second-order spectral moments

λij =
∫

RN

λiλj ν(dλ). (11.7.1)

Since we shall use it often, denote the N ×N matrix of these moments by �.
Denoting also differentiation via subscripts, so thatfi = ∂f/∂ti , fij = ∂2f/∂ti∂tj ,

etc., we have, from (5.5.5), that

E{fi(t)fj (t)} = λij = −Cij (0). (11.7.2)

Thus � is also the variance–covariance matrix of ∇f . We could, of course, define the
components of � using only derivatives of C, without ever referring to the spectrum.

The covariances among the second-order derivatives can be similarly defined.
However, all we shall need is that

Eijk� �= E{fij (t)fkl(t)} =
∫

RN

λiλjλkλ�ν(dλ) (11.7.3)
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is a symmetric function of i, j, k, �.
Finally, note, as shown in Section 5.4, that f and its first-order derivatives are

independent (at any fixed point t) as are the first- and second-order derivatives (from
one another). The field and its second-order derivatives are, however, correlated, and

E{f (t)fij (t)} = −λij . (11.7.4)

Finally, denote the N ×N Hessian matrix (fij ) by ∇2f , and recall that the index
of a matrix is defined as its number of negative eigenvalues.

Lemma 11.7.1. Let f and T be as described above, and set

μk = #{t ∈ T : f (t) ≥ u, ∇f (t) = 0, index(∇2f ) = k}. (11.7.5)

Then for all N ≥ 1,

E

{
N∑
k=0

(−1)kμk

}
= (−1)N |T ||�|1/2

(2π)(N+1)/2σN
HN−1

( u
σ

)
e−u2/2σ 2

. (11.7.6)

Before turning to the proof of the lemma, there are some crucial points worth
noting. The first is the rather surprising fact that the result depends on the covariance
of f only through some of its derivatives at zero, that is, only through the variance
and second-order spectral moments. This is particularly surprising in view of the fact
that the definition of the μk depends quite strongly on the fij , whose distribution
involves fourth-order spectral moments.

As will become clear from the proof, the disappearance of the fourth-order spectral
moments has a lot to do with the fact that we compute the mean of the alternating
sum in (11.7.6) and do not attempt to evaluate the expectations of the individual μk .
Doing so would indeed involve fourth-order spectral moments. As we shall see in
later chapters, the fact that this is all we need is extremely fortunate, for it is actually
impossible to obtain closed expressions for any of the E{μk}.
Proof. We start with the notationally simplifying assumption that E{f 2

t } = σ 2 = 1.
It is clear that if we succeed in establishing (11.7.6) for this case, then the general
case follows by scaling. (Note that scaling f also implies scaling ∇f , which, since
� contains the variances of the elements of ∇f , gives the factor of σ−N in (11.7.6).)

Our second step is to simplify the covariance structure among the elements of
∇f . Let Q be any square root of �−1, so that

Q′�Q = diag(1, . . . , 1). (11.7.7)

Note that det Q = (det �)−1/2. Now take the transformation of RN given by t →
tQ−1, under which T → T Q = {τ : τ = tQ−1 for some t ∈ T } and define
fQ : T Q → R by

fQ(t)
�= f (tQ).

The new process fQ has covariance function
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CQ(s, t) = C(sQ, tQ) = C((t − s)Q)

and so is still stationary, with constant, unit variance. Furthermore, simple differen-
tiation shows that ∇fQ = (∇f )Q, from which it follows that

�Q �= E{((∇fQ)(t))′((∇fQ)(t))} = Q′�Q = I. (11.7.8)

That is, the first-order derivatives of the transformed process are now uncorrelated
and of unit variance. We now show that it is sufficient to work with this, much simpler,
transformed process.

Firstly, it is crucial to note that the μk of (11.7.5) for f over T are identical to
those for fQ over T Q. Clearly, there is a trivial one-to-one correspondence between
those points of T at which f (t) ≥ u and those of T Q at which fQ(t) ≥ u. We
do, however, need to check more carefully what happens with the conditions on ∇f

and ∇2f .
Since ∇fQ = (∇f )Q, we have that (∇fQ)(t) = 0 if and only if ∇f (tQ) = 0.

In other words, there is also a simple one-to-one correspondence between critical
points. Furthermore, since ∇2fQ = Q′(∇2f )Q and Q is a positive definite matrix,
∇2fQ(t) and ∇2f (tQ) have the same index.

Consequently, we can now work with fQ rather than f , so that by (11.2.4) the
expectation (11.7.6) is given by∫

T Q

pt (0) dt
N∑
k=0

(−1)k

× E{| det ∇2fQ(t)|1Dk
(∇2fQ(t))1[u,∞)(f

Q(t))|∇fQ(t) = 0},
(11.7.9)

where pt is the density of ∇fQ and Dk is set of square matrices of index k. Now
note the following:

(i) Since f , and so fQ, are stationary, the integrand does not depend on t , and we
can ignore the t’s throughout. The remaining integral then gives the Lebesgue
volume of T Q, which is simply | det Q|−1|T | = |�|1/2|T |.

(ii) The term pt (0) is simply (2π)−N/2, and so can be placed to the side for the
moment.

(iii) Most importantly, on the event Dk , the matrix ∇2fQ(t) has k negative eigenval-
ues, and so has sign (−1)k . We can combine this with the factor (−1)k coming
immediately after the summation sign, and so remove both it and the absolute
value sign on the determinant.

(iv) Recall that from the discussion on stationarity in Section 5.4 (especially (5.5.5)–
(5.5.7)), we have the following relationships between the various derivatives of
fQ, for all i, j, k ∈ {1, . . . , N}:
E{fQ(t)f

Q
i (t)} = 0, E{fQ

i (t)f
Q
jk(t)} = 0, E{fQ(t)f

Q
ij (t)} = −δij ,

where δij is the Kronecker delta. The independence of the first derivatives from
all the others means that the conditioning on ∇fQ in (11.7.9) can be ignored,
and so all that remains is to evaluate
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u

e−x2/2

√
2π

E{det �x} dx, (11.7.10)

where by (1.2.7) and (1.2.8), �x is a matrix of Gaussian random variables whose
elements �ij have means −xδij and covariances

E{�ij�k�} = E{fQ
ij (t)f

Q
k� (t)} − δij δk� = EQ(i, j, k, �)− δij δk�.

By (11.7.3), EQ is a symmetric function of its parameters.

This puts us directly into the setting of Corollary 11.6.3, from which it now follows
that (11.7.10) is equivalent to

(−1)N√
2π

∫ ∞

u

HN(x)e
−x2/2 dx = (−1)N√

2π
HN−1(u)e

−u2/2,

by (11.6.12).
Recalling (i), (ii), and (iv) above, substituting into (11.7.9), and lifting the restric-

tion that σ 2 = 1 gives us (11.7.6) and we are done. ��
With the proof behind us, it should now be clear why it is essentially impossible

to evaluate the individual E{μk}. In doing so, we would have had to integrate over
the various subsets Dk ⊂ RN(N+1)/2 of (11.7.9), and, with only the rarest exceptions,
such integrals do not have explicit forms.

A careful reading of the proof also shows that we never really used the full power
of stationarity, but rather only the existence of the matrix Q of (11.7.7) and a number
of relationships between f and its first- and second-order derivatives. Actually, given
the simplicity of the final result, which depends only on σ 2 and �, one is tempted
to conjecture that in the nonstationary case one could replace Q by a family Qt of
such matrices. The final result might then be much the same, with the term |T ||�|1/2

perhaps being replaced by an integral of the form
∫
T
|�t |1/2dt , where �t would be

a local version of �, with elements (�t )ij = E{fi(t)fj (t)}. That this is not the
case will be shown later, when we do tackle the (far more complicated) nonstationary
scenario as a corollary of results related to fields on manifolds in the following chapter
(cf. the discussion of nonstationary fields in Section 12.5).

We can now turn to our first mean Euler characteristic computation, for which we
need to set up a little notation, much of it close to that of Section 9.4. Nevertheless,
since there are some slight changes, we shall write it all out again. We start with

T =
N∏
i=1

[0, Ti],

a rectangle in RN . As in Section 9.4, write Jk = Jk(T ) for the collection of the
2N−k

(
N
k

)
faces of dimension k in T . As opposed to our previous conventions, we

take these faces as closed. Thus, all faces in Jk are subsets of some face in Jk′ for
all k′ > k. (For example, JN contains only T while J0 contains the 2N vertices of
T .) Let Ok denote the

(
N
k

)
elements of Jk which include the origin.
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We need one more piece of notation. Take J ∈ Jk . With the λij being the spectral
moments of (11.7.1), write �J for the k × k matrix with elements λij , i, j ∈ σ(J ).

This is enough to state the following result.

Theorem 11.7.2. Let f be as described at the beginning of this section and T as
above. For real u, let Au = Au(f, T ) = {t ∈ T : f (t) ≥ u} be an excursion set,
and let ϕ be the Euler characteristic. Then

E {ϕ (Au)} = e−u2/2σ 2
N∑
k=1

∑
J∈Ok

|J ||�J |1/2

(2π)(k+1)/2σk
Hk−1

( u
σ

)
+�

( u
σ

)
. (11.7.11)

Note that the k-dimensional volume |J | of any J ∈ Jk is given by |J | =∏
i∈σ(J ) Ti .

Since (11.7.11) and its extension to manifolds in Section 12.4 is, for our purposes,
probably the single most important equation in this book, we shall take a little time
to investigate some of its consequences, before turning to a proof. To do so, we first
note that it simplifies somewhat if f is isotropic. In that case we have the following
corollary.

Corollary 11.7.3. In addition to the conditions of Theorem 11.7.2, let f be isotropic
and T the cube [0, T ]N . If λ2 denotes the variance of fi (independent of i by iso-
tropy), then

E {ϕ (Au)} = e−u2/2σ 2
N∑
k=1

(
N
k

)
T kλ

k/2
2

(2π)(k+1)/2σk
Hk−1

( u
σ

)
+�

( u
σ

)
. (11.7.12)

The simplification follows immediately from the spherical symmetry of the spec-
tral measure in this case, which (cf. (5.7.3)) implies that each matrix �J is equal to
λ2I . In fact, looking back into the proof of Lemma 11.7.1, which is where most of
the calculation occurs, you can see that the transformation to the process fQ is now
rather trivial, since Q = λ−1/2I (cf. (11.7.7)). Looked at in this light, it is clear that
one of the key points of the proof was a transformation that made the first derivatives
of f behave as if they were those of an isotropic process. We shall see this again, but
at a far more sophisticated level, when we turn to the manifold setting.

Now consider the case N = 1, so that T is simply the interval [0, T ]. Then, using
the definition of the Hermite polynomials given by (11.6.9), it is trivial to check that

E {ϕ (Au(f, [0, T ])} = �(u/σ)+ T λ
1/2
2

2πσ
e−u2/2σ 2

, (11.7.13)

so that we have recovered (11.1.6) and with it, the Rice formula. Figure 11.7.1 gives
two examples, with σ 2 = 1, λ2 = 200, and λ2 = 1,000.

Note from (11.7.13) that as u → −∞, we have E{ϕ(Au)} → 1. The excursion
set geometry behind this is simple. Once u < inf T f (t), we have Au ≡ T , and
so ϕ(Au) = ϕ(T ), which in the current case is 1. This is, of course, a general
phenomenon, independent of dimension or the topology of T .
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Fig. 11.7.1. E{ϕ(Au)} : N = 1.

To see this analytically, simply look at the expression (11.7.13), or even (11.7.11)
for general rectangles. In both cases it is trivial that as u → −∞ all terms other than
�(u/σ) disappear, while �(u/σ) → 1.

It thus seems not unreasonable to expect that when we turn to a more general
theory (i.e., for T a piecewise smooth manifold) the term corresponding to the last
term in (11.7.11) might be ϕ(T )�(u/σ). That this is in fact the case can be seen from
the far more general results of Section 12.4 below.

We now turn to two dimensions, in which case the right-hand side of (11.7.12)
becomes, for σ 2 = 1, [

T 2λ2

(2π)3/2
u+ 2T λ1/2

2

2π

]
e−u2/2 +�(u). (11.7.14)

Figure 11.7.2 gives two examples, again with λ2 = 200 and λ2 = 1,000.

Fig. 11.7.2. E{ϕ(Au)} : N = 2.

Many of the comments that we made for the one-dimensional case have similar
analogues here and we leave them to you. Nevertheless, we emphasize three points:
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(i) You should note, for later reference, how the expression before the exponential
term can be thought of as one of a number of different power series: one in T ,
one in u, and one in

√
λ2.

(ii) The geometric meaning of the negative values of (11.7.14) are worth under-
standing. They are due to the excursion sets having, in the mean, more holes
than connected components for (most) negative values of u.

(iii) The impact of the spectral moments is not quite as clear in higher dimensions
as it is in one. Nevertheless, to get a feel for what is happening, look back at
the simulation of a Brownian sheet in Figure 1.4.1. The Brownian sheet is, of
course, both nonstationary and nondifferentiable, and so hardly belongs in our
current setting. Nevertheless, in a finite simulation, it is impossible to “see’’ the
difference between nondifferentiability and large second spectral moments,13 so
consider the simulation in the latter light. You can then see what is happening.
Large spectral moments again lead to local fluctuations generating large numbers
of small islands (or lakes, depending on the level at which the excursion set is
taken), and this leads to larger variation in the values of E{ϕ(Au)}.

In three dimensions, the last case that we write out, (11.7.12) becomes, for σ 2 = 1,[
T 3λ

3/2
2

(2π)2
u2 + 3T 2λ2

(2π)3/2
u+ 3T λ1/2

2

2π
− T 3λ

3/2
2

(2π)2

]
e−u2/2 +�(u).

Figure 11.7.3 gives the examples with λ2 = 200 and λ2 = 1,000.

Fig. 11.7.3. E{ϕ(Au)} : N = 3.

Note that once again there are a number of different power series appearing here,
although now, as opposed to the two-dimensional case, there is no longer a simple
correspondence between the powers of T ,

√
λ2, and u.

The two positive peaks of the curve are due to Au being primarily composed of a
number of simply connected components for large u and primarily of simple holes for

13 Ignore the nonstationarity of the Brownian sheet, since this has no qualitative impact on the
discussion.
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negative u. (Recall that in the three-dimensional case the Euler characteristic of a set
is given by the number of components minus the number of handles plus the number
of holes.) The negative values of E{ϕ(Au)} for u near zero are due to the fact that
Au, at those levels, is composed mainly of a number of interconnected, tubular-like
regions, i.e., of handles.

An example14 is given in Figure 11.7.4 that shows an impression of typical ex-
cursion sets of a function on I 3 above high, medium, and low levels.

Fig. 11.7.4. Three-dimensional excursion sets above high, medium, and low levels. For obvious
reasons, astrophysicists refer to these three cases (from left to right) as “meatball,’’ “sponge,’’
and “bubble’’ topologies.

We have one more—extremely important—observation to make before we turn
to the proof of Theorem 11.7.2. Recall (6.3.5), which gave that the intrinsic volumes,
or Lipschitz–Killing curvatures, of [0, T ]N were given by

(
N
j

)
T j . With this in mind,

simplifying to the case σ 2 = λ2 = 1, (11.7.12) can be written far more tidily as

E {ϕ (Au(f, T ))} =
N∑
k=0

Lk(T )ρk(u), (11.7.15)

where

ρk(u) = (2π)−(k+1)/2Hk−1(u)e
− u2

2 , k ≥ 0,

since H−1(u) =
√

2π�(u)eu
2/2 (cf. (11.6.10)).

In fact, the above holds also when T is an N -dimensional, piecewise smooth
manifold, and f has constant variance (i.e., there are no assumptions of isotropy,
or even stationarity). The Lipschitz–Killing curvatures, however, will be somewhat
more complex, depending on a Riemannian metric related to f . This will be the
content of Sections 12.2 and 12.4 of the next chapter. Now, however, we (finally)
turn to the following proof.

Proof of Theorem 11.7.2. We start by recalling that each k-dimensional face J ∈ Jk

is determined by a subset σ(J ) of {1, . . . , N}, of size k, and a sequence of N − k

zeros and ones, which we write as ε(J ) = {εj , j /∈ σ(J )}, so that
14 Taken, with permission, from Keith Worsley’s entertaining and illuminating Chance article

[175].
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J =
{
t ∈ RN : tj = εjTj , if j /∈ σ(J ), 0 ≤ tj ≤ Tj , if j ∈ σ(J )

}
.

Corresponding to each sequence ε(J ) we define a set ε∗(J ) of ±1’s, according to the
rule ε∗j = 2εj − 1.

Now recall15 from Section 9.4 (cf. (9.4.1)–(9.4.5)) that the Euler characteristic of
Au is given by

ϕ(Au(f, T )) =
N∑
k=0

k∑
i=0

(−1)i
∑
J∈Jk

μi(J ), (11.7.16)

where, for i ≤ dim(J ), μi(J ) is the number of t ∈ J for which

f (t) ≥ u, (11.7.17)

fj (t) = 0, j ∈ σ(J ), (11.7.18)

ε∗j fj (t) ≥ 0, j /∈ σ(J ), (11.7.19)

I (t)
�= Index(fmn(t))(m,n∈σ(J )) = k − i, (11.7.20)

where, as usual, the index of a matrix is the number of its negative eigenvalues.
Our first and main step will hinge on stationarity, which we exploit to replace

the expectation of the sum over J ∈ Jk in (11.7.16) by something simpler.16 Fix a
particular J ∈ Ok—i.e., a face containing the origin—and let P(J ) denote all faces
in Jk (including J itself) that are affine translates of (i.e., parallel to) J . There are
2N−k faces in each such P(J ). We can then rewrite the right-hand side of (11.7.16) as

N∑
k=0

k∑
i=0

(−1)i
∑
J∈Ok

∑
J ′∈P(J )

μi(J
′). (11.7.21)

Consider the expectation of the innermost sum. By Theorem 11.2.1 (cf. (11.2.4)) we
can rewrite this as∑

J ′∈P(J )

∫
J ′

E{| det ∇2f|J ′(t)|1{I (t)=k−i}1EJ ′ (t)|∇f|J ′(t) = 0}p∇f|J ′ (0) dt,

where EJ (t) denotes the event that (11.7.17) and (11.7.19) hold.
Further simplification requires one more item of notation. For J ∈ Ok , let Pε(J )

denote the collections of all sequences {εj , j /∈ σ(J )} of ±1’s. The elements of
Pε(J ) can be identified with the sequences ε∗(J ′) with J ′ ∈ P(J ).

15 “Recall’’ includes extending the results there from cubes to rectangles and changing the
order of summation, but both these steps are trivial.

16 Our approach here is not unlike the first-principles geometry used to prove that

Lj ([0, T ]N) =
(
N

j

)
T j .
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With this notation, and calling on stationarity, we can replace the last expression by∑
ε∗∈Pε(J )

∫
J

E{| det ∇2f|J (t)|1{I (t)=k−i}1Eε∗ (t)|∇f|J (t) = 0}p∇f|J (0) dt,

where Eε∗(t) denotes the event that (11.7.17) and (11.7.19) hold for ε∗.
Now note the trivial fact that for any J ,⋃

ε∗∈Pε(J )

{ε∗j fj (t) ≥ 0 for all j /∈ σ(J )}

is the sure event, i.e., has probability one. Applying this to the last sum, we see that
it simplifies considerably to∫

J

E

{∣∣∣det ∇2f|J (t)
∣∣∣ 1{I (t)=k−i}1{f (t)≥u}

∣∣∣∇f|J (t) = 0
}
p∇f|J (0) dt.

Going back to Theorem 11.2.1, we have that this is no more that the expected number
of points in J for which

f (t) ≥ u, ∇f (t) = 0, Index(∇2f ) = k − i.

If we call the number of points satisfying these conditions μ′
k−i (J ), then putting

all of the above together and substituting into (11.7.16) we see that we need the
expectation of

N∑
k=0

∑
J∈Ok

(−1)k
k∑

i=0

(−1)k−iμ′
k−i (J ).

Lemma 11.7.1 gives us a precise expression for the expectation of the innermost
sum, at least for k ≥ 1, namely,

(−1)k|J ||�J |1/2

(2π)(k+1)/2σk
Hk−1

( u
σ

)
e−u2/2σ 2

.

It is left to you to check that for the case k = 0 (i.e., when Jk contains the 2N

vertices of T ), the remaining term is given by �(u/σ). Putting all this together
immediately gives (11.7.11), and so the proof is complete. ��

11.8 Mean Intrinsic Volumes

So far, this entire chapter has concentrated on finding the mean value of the Euler
characteristic of Gaussian excursion sets. However, the Euler characteristic is only
one of N + 1 intrinsic volumes, and it would be useful to know how the remaining
N behave. We shall prove, in the setting of manifolds, in Chapter 13, that
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E
{
Lj (Au(f, T ))

} =
N−j∑
l=0

[
j + l

l

]
ρl(u)Lj+l (T ), (11.8.1)

where
[
n

k

]
is the flag coefficient defined by (6.3.12).

As noted above, the proof appears only after we have moved to the manifold
setting. Nevertheless, the proof of (11.8.1) in the case of an isotropic field over an
N -dimensional rectangle requires none of the manifold material, and so, if you wish,
you can read it now in Section 13.2.

11.9 On the Importance of Stationarity

Before leaving the setting of random fields defined over N -dimensional rectangles,
it is worthwhile, once again, to recall how crucial stationarity was for our ability to
carry out the precise computations that led to Theorem 11.7.2.

In fact, stationarity appeared twice. We first used some consequences of station-
arity (although not its full force) in making the crucial transformation to the process
fQ (cf. (11.7.7)) in the proof of Lemma 11.7.1, which is where the really detailed
Gaussian calculations were made. The second time, we exploited the full power of
stationarity in the proof of Theorem 11.7.2 for handling the expectation of the awk-
ward summation of (11.7.16). At this stage, our argument also relied rather heavily
on the assumption that our parameter space was a rectangle.

It should be reasonably clear that handling nonstationary fields and/or nonrectan-
gular domains is going to require new tools. The tools for nonrectangular domains
are, not surprisingly, those that will arise in the following chapter, where we turn to
the setting of (Riemannian) manifolds. What is a perhaps more than a little surprising,
however, are that these will be precisely the tools needed for handling nonstationary
fields as well.





12

Random Fields on Manifolds

In essence, this chapter will repeat, for random fields on manifolds, what we have
already achieved in the Euclidean setting.

As there, our first step will be to set up a “metatheorem’’ for computing the mean
number of points at which a random field takes a certain value under specific side
conditions. This turns out to be rather easy to do, involving little more than taking the
Euclidean result and applying it, chart by chart, to the manifold. This is the content
of the first section.

Actually computing the resulting expression for special cases—such as finding the
mean Euler characteristic of excursion sets over Whitney stratified manifolds—turns
out to be somewhat more complicated. We start the computation in Section 12.2,
where, for the second time,1 we shall begin to see why we need our heavy investment
in the Riemannian geometry of Chapter 7. The main contribution of this section will
be to take the parameter space on which our Gaussian process is defined, endow it
with a Riemmanian metric induced by the process, and study this metric a little.

Section 12.3 is devoted to some general Gaussian computations, including the
moment formulas for random Gaussian forms that we used when looking at volume-
of-tube formulas. The real work is done in Section 12.4, which puts all the preceding
material together to devlop mean Euler characteristic formulas.

The strength of the general approach is shown by the examples of Section 12.5,
and, as we have already mentioned, we indulge ourselves somewhat with a fun proof
of the Chern–Gauss–Bonnet theorem in Section 12.6.

12.1 The Metatheorem on Manifolds

To formulate the metatheorem for manifolds, we need one small piece of notation.

1 The first was in the volume-of-tubes approximation of Chapter 10, which was something of
an aside. It is in the current chapter that we shall see the real need for Riemannian geometry
in a general setting, and not just geometry of R

N or S(RN)with the usual Euclidean metrics.
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Let (M, g) be an N -dimensional Riemannian manifold, and let f : M → RN

be C1. Fix an orthonormal frame field E. Then ∇fE denotes the vector field whose
coordinates are given by

(∇fE)i ≡ ∇fEi
�= (∇f )(Ei) ≡ Eif, (12.1.1)

where ∇ is the gradient operator defined in (7.3.2). If f = (f 1, . . . , f N) takes values
in RN , then ∇fE denotes the N ×N matrix with elements ∇f

j
Ei .

Theorem 12.1.1. Let M be a compact, oriented, N -dimensional C1 manifold with
a C1 Riemannian metric g. Let f = (f 1, . . . , f N) : M → RN and h =
(h1, . . . , hK) : M → RK be random fields on M . For an open set B ⊂ RK for
which ∂B has dimension K − 1 and a point u ∈ RN , let

Nu ≡ Nu(M) ≡ Nu(f, h;M,B)

denote the number of points t ∈ M for which

f (t) = u and h(t) ∈ B.

Assume that the following conditions are satisfied for some orthonormal frame fieldE:

(a) All components of f , ∇fE , and h are a.s. continuous and have finite variances
(over M).

(b) For all t ∈ M , the marginal densities pt (x) of f (t) (implicitly assumed to exist)
are continuous at x = u.

(c) The conditional densities pt (x|∇fE(t), h(t)) of f (t) given h(t) and (∇fE)(t)

(implicitly assumed to exist) are bounded above and continuous at x = u, uni-
formly in t ∈ M .

(d) The conditional densities pt (z|f (t) = x) of det(∇f i
Ej (t)) given f (t) = x are

continuous for z and x in neighborhoods of 0 and u, respectively, uniformly in
t ∈ M .

(e) The conditional densities pt (z|f (t) = x) of h(t) given f (t) = x are continuous
for all z and for x in a neighborhood u, uniformly in t ∈ M .

(f) The following moment condition holds:

sup
t∈M

max
1≤i,j≤N

E

{∣∣∣∇f
j
Ei(t)

∣∣∣N} < ∞. (12.1.2)

(g) The moduli of continuity with respect to the (canonical) metric induced by g (cf.
(7.3.1)) of each component of h, each component of f , and each ∇f

j
Ei all satisfy,

for any ε > 0,

P {ω(η) > ε} = o
(
ηN
)

as η ↓ 0. (12.1.3)

Then
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E{Nu} =
∫
M

E

{
|det (∇fE)| 1B(h)

∣∣∣f = u
}
p(u)Volg, (12.1.4)

where p is the density2 of f and Volg the volume element on M induced by the
metric g.

Before turning to the proof of the theorem, there are a few points worth noting. The
first is that the conditions of the theorem do not depend on the choice of orthonormal
frame field. Indeed, as soon as they hold for one such choice, not only will they hold
for all orthonormal frame fields but also for any bounded vector field X. In the latter
case the notation will change slightly, and ∇f

j
Ei needs to be replaced by (Xf j )i .

Once this is noted, you should note that the only place that the metric g appears in
the conditions is in the definition of the neighborhoods Bτ (t, h) in the final condition.
A quick check of the proof to come will show that any neighborhood system will
in fact suffice. Thus the metric does not really play a role in the conditions beyond
convenience.

Furthermore, the definition of the random variable Nu is totally unrelated to the
metric. From this it follows that the same must be true of its expectation. Conse-
quently, although we require a metric to be able to define the integration in (12.1.4),
the final expression must actually yield a result that is independent of the choice of
g and so be a function only of the “physical’’ manifold and the distribution of f .
However, choosing an appropriate g can greatly simplify the calculation.

Proof. Since M is compact it has a finite atlas. Let (U, ϕ) be one of its charts and
consider the random fields f̄ : ϕ(U) ⊂ RN → RN and h̄ : ϕ(U) ⊂ RN → RK

defined by

f̄
�= f ◦ ϕ−1, h̄

�= h ◦ ϕ−1.

It is immediate from the definition of Nu that

Nu(f, h;U,B) ≡ Nu(f̄ , h̄;ϕ(U), B),

and so the expectations of both of these random variables are also identical.
Recall the comments made prior to the proof: All conditions in the theorem that

involve the orthonormal frame field E also hold for any other bounded vector field on
U ⊂ M . In particular, they hold for the natural coordinate vector field {∂/∂xi}1≤i≤N

determined by ϕ.

2 Of course, what is implicit here is that for each t ∈ M , we should really write p as pt , since
it is the density of ft . There are also a number of additional places in (12.1.4) where we
could append a t , but since it has been our habit to drop the subscript when working in the
setting of manifolds, we leave it out here as well.

Note that it is implicitly assumed that the integrand in (12.1.4) is a well-defined N -
form on M , or, equivalently, that the expectation term is a well-defined Radon–Nikodym
derivative. That this is the case will follow from the proof.
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Comparing conditions (a)–(g) of the current theorem with those in Theo-
rem 11.2.1, it is clear that f̄ and h̄ satisfy3 the conditions of Theorem 11.2.1. Conse-
quently,

E{Nu(f, h;U,B)} =
∫
ϕ(U)

E

{∣∣det ∇f̄ (x)
∣∣ 1B(h̄(x))

∣∣∣f̄ (x) = u
}
p̄x(u) dx,

where p̄x is the density of f̄ (x).
All that remains is to show that this is equivalent to (12.1.4) with the domain of

integration restricted to U , and that we can replace U by M throughout. Consider
the right-hand side above, and rewrite it in terms of an integral over U . To this end,
note that (

∇f̄ j (x)
)
i
=
(

∂

∂xi
f j

)
t=ϕ−1(x)

,

where ∂/∂xi is the push-forward under ϕ−1 of the natural basis on ϕ(U). Together
with the definition of integration of differential forms in Section 7.4 this gives us that

E{Nu(f, h;U,B)}
=
∫
U

E

{∣∣∣det
(
∂/∂xif

j
)
t

∣∣∣ 1B(h(t))

∣∣∣f̄ (t) = u
}
pt (u)∂x1 ∧ · · · ∧ ∂xN .

The next step involves moving from the natural basis on U to the basis given by
the orthonormal frame field E. Doing so generates two multiplicative factors, which
fortunately cancel. The first comes from the move from the form ∂x1 ∧ · · · ∧ ∂xN
to the volume form Volg , and generates a factor of (det(gij ))−1/2, where gij (t) =
gt (∂/∂xi, ∂/∂xj ) (cf. (7.4.9)).

The second factor comes from noting that

∂

∂xi
f j =

∑
k

g

(
∂

∂xi
, Ek

)
Ekf

j =
∑
k

g
1/2
ik Ekf

j ,

where g1/2 = (
g(Ei, ∂xj )

)
1≤i,j≤N

is a square root of the matrix g = (gij )1≤i,j≤N .
Consequently,

det
(
∂/∂xif

j
)
t
=
√

det(gij ) det (∇fE) .

Putting the pieces together gives us

3 The only condition that needs any checking is (11.2.2) on the moduli of continuity. It is
here that the requirement that g be C1 over M comes into play. The details are left to you.
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E{Nu(U)} =
∫
U

E

{
|det (∇fE)| 1B(h)

∣∣∣f = u
}
p(u)Volg, (12.1.5)

for each chart (U, ϕ).
To finish the proof, note that for each chart (U, ϕ) the conditions of the theorem

imply that there are only a finite number of points in ϕ(U) at which f̄ = u (cf. foot-
note 8 in Chapter 11) and that there are no points of this kind on ∂ϕ(U) (cf. Lem-
ma 11.2.12).

Consequently, the same is true of f over U . In particular, this means that we can
refine a given atlas so that each point for which f = u appears in only one chart and
no chart contains more than one point of this kind. If this is the case, the integrals in
(12.1.5) are either zero or one, and so it is trivial to combine them to obtain a single
integral over M and so the theorem. ��

As usual, we have the following corollary for the Gaussian case.

Corollary 12.1.2. Let (M, g) be a Riemannian manifold satisfying the conditions of
Theorem 12.1.1. Let f and h be centered Gaussian fields over M . Then if f , h, and
∇fE are a.s. continuous over M , and if for each t ∈ M , the joint distributions of
(f (t),∇fE(t), h(t)) are nondegenerate, then (12.1.4) holds.

Ultimately, we shall apply the above corollary to obtain, among other things,
an expression for the expected Euler characteristic of Gaussian excursion sets over
manifolds. Firstly, however, we need to set up some machinery.

12.2 Riemannian Structure Induced by Gaussian Fields

Up until now, all our work with Riemannian manifolds has involved a general
Riemannian metric g. Using this, back in Section 7.5 we developed a number of
concepts, starting with connections and leading up to curvature tensors and shape
operators, in corresponding generality.

For our purposes, however, it will turn out that for each random field f on a
piecewise C2 manifold M , there is only one Riemannian metric that we shall need.
It is induced by the random field f , which we shall assume has zero mean and, with
probability 1, is C2 over M . It is defined by

gt (Xt , Yt )
�= E{(Xtf ) · (Ytf )}, (12.2.1)

where Xt, Yt ∈ TtM , the tangent manifold to M at t .
Since the notation of (12.2.1) is rather heavy, we shall in what follows generally

drop the dependence on t . Thus (12.2.1) becomes

g(X, Y ) = E{XfYf }. (12.2.2)
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We shall call g the metric induced by the random field4f . The fact that this
definition actually gives a Riemannian metric follows immediately from the positive
semidefiniteness of covariance functions.

Note that at this stage, there is nothing in the definition of the induced metric
that relies on f being Gaussian.5 The definition holds for any C2 random field.
Furthermore, there are no demands related to stationarity, isotropy, etc.

One way to develop some intuition for this metric is via the geodesic metric τ

that it induces on M . Since τ is given by

τ(s, t) = inf
c∈D1([0,1];M)(s,t)

∫
[0,1]

√
gt (c′, c′)(t) dt (12.2.3)

(cf. (7.3.1)), it follows that the geodesic between two points on M is the curve along
which the expected variance of the derivative of f is minimized.

It is obvious that g is closely related to the covariance function C(s, t) = E(fsft )

of f . In particular, it follows from (12.2.1) that

gt (Xt , Yt ) = XsXtC(s, t)|s=t . (12.2.4)

Consequently, it is also obvious that the tools of Riemannian manifolds—
connections, curvatures, etc.—can be expressed in terms of covariances. In par-
ticular, in the Gaussian case, to which we shall soon restrict ourselves, all of these
tools also have interpretations in terms of conditional means and variances. Since
these interpretations will play a crucial role in the extension of the results of Sec-
tions 11.6 and 11.7 to Gaussian fields over manifolds, we shall now spend some time
developing them.

12.2.1 Connections and Curvatures

Our first step is to describe the Levi-Civitá connection ∇ determined by the induced
metric g. Recall from Chapter 6 that the connection is uniquely determined by
Koszul’s formula,

2g(∇XY,Z) = Xg(Y,Z)+ Yg(X,Z)− Zg(X, Y ) (12.2.5)

+ g(Z, [X, Y ])+ g(Y, [Z,X])+ g(X, [Z, Y ]),
4 A note for the theoretician: Recall that a Gaussian process has associated with it a natural
L2 space, which we denoted by H in Section 3.1. The inner product between two random
variables in H is given by their covariance. There is also a natural geometric structure on H,
perhaps seen most clearly through orthogonal expansions of the form (3.1.7). In our current
scenario, in which f is indexed by a manifold M , it is easy to see that the Riemannian
structure induced on M by f (i.e., via the associated metric (12.2.2)) is no more than the
pullback of the natural structure on H.

5 Or even on f being C2. The induced metric is well defined for f , which is merely C1.
However, it is not possible to go much further—e.g., to a treatment of curvature—without
more derivatives.
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where X, Y,Z are C1 vector fields (cf. (7.3.12)).
Since g(X, Y ) = E{Xf · Yf }, it follows that

Zg(X, Y ) = ZE{Xf · Yf } = E{ZXf · Yf +Xf · ZYf }
= g(ZX, Y )+ g(X,ZY).

Substituting this into (12.2.5) yields

g(∇XY,Z) = E {(∇XYf )(Zf )} = E {(XYf )(Zf )} , (12.2.6)

and so we have a characterization of the connection in terms of covariances. We shall
see how to exploit this important relationship to obtain more explicit representations
of ∇ when we turn to specific examples in a moment.

We now turn to the curvature tensor R of (7.5.2), given by

R(X, Y,Z,W) = g
(∇X∇YZ − ∇Y∇XZ − ∇[X,Y ]Z, W

)
.

In order also to write R in terms of covariances, we recall (cf. (7.3.22) the covariant
Hessian of a C2 function f :

∇2f (X, Y ) = XYf − ∇XYf. (12.2.7)

It follows from the fact that ∇ is torsion-free (cf. (7.3.10)) that ∇2f (X, Y ) =
∇2f (Y,X), and so ∇2 is a symmetric form.

With this definition, we now prove the following useful result, which relates the
curvature tensor R to covariances6 and is crucial for later computations.

Lemma 12.2.1. If f is a zero-mean, C2 random field on a C3 Riemannian manifold
equipped with the metric induced by f , then the curvature tensor R on M is given by

−2R = E

{(
∇2f

)2
}
, (12.2.8)

where the square of the Hessian is to be understood in terms of the dot product of
tensors developed at (7.2.4).

Proof. Note that for C1 vector fields it follows from the definition7 (12.2.7) that(
∇2f

)2
((X, Y ), (Z,W))

= 2
[
∇2f (X,Z)∇2f (Y,W)− ∇2f (X,W)∇2f (Y, Z)

]
= 2 [(XZf − ∇XZf )(YWf − ∇YWf )

− (XWf − ∇XWf )(YZf − ∇YZf )] .

6 Keep in mind, however, that while (12.2.8) looks as if it has only geometry on the left-hand
side and covariances on the right, the truth is a little more complicated, since ∇2 involves
the connection, which depends on the metric, which depends on covariances.

7 Alternatively, apply (7.2.5), treating ∇2 as a (1, 1) rather than (2, 0) tensor.
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Take expectations of this expression and exploit (12.2.6) to check (after a little alge-
bra) that

E

{(
∇2f

)2
((X, Y ), (Z,W))

}
= 2 (E[XZf · YWf ] − g(∇XZ,∇YW)

− E[XWf · YZf ] − g(∇XW,∇YZ)) .

Now apply (7.3.11) along with (12.2.6) to see that the last expression is equal to

2
(
XE[Zf · YWf ] − E[Zf ·XYWf ] − g(∇XZ,∇YW)

− YE
[
XWf · Zf ]+ E[Zf · YXWf ] + g(∇XW,∇YZ)

)
= 2

(
Xg(Z,∇YW)− g(∇XZ,∇YW)− g(Z,∇[X,Y ]W)

− Yg(∇XW,Z)− g(∇XW,∇YZ)
)

= 2
(
g(Z,∇X∇YW)− g(∇Y∇XW,Z)− g(Z,∇[X,Y ]W)

)
= 2R

(
(X, Y ), (W,Z)

)
= −2R

(
(X, Y ), (Z,W)

)
,

the first equality following from the definition of the Lie bracket, the second from
(7.3.11), the third from the definition of the curvature tensor R, and the last is trivial.

This establishes8 (12.2.8), which is what we were after. ��

12.2.2 Some Covariances

Many of the Euclidean computations of Section 11.7 were made possible as a result
of convenient independence relationships between f and its first- and second-order
derivatives. The independence of f and ∇f followed from the fact that f had
constant variance, while that of ∇f and the matrix ∇2f followed from stationarity.
Computations were further simplified by a global transformation (cf. (11.7.7)) that
transformed f to being isotropic.

While we shall continue to assume that f has constant variance, we no longer
can assume stationarity nor find easy transformations to isotropy. However, we have
invested considerable effort in setting up the geometry of our parameter space with
the metric induced by f , and now we are about to start profiting from this. We start
with some general computations, which require no specific assumptions.

We start with the variance function

σ 2
t = E

{
f 2
t

}
.

8 If you are a stickler for detail, you may have noticed that since our assumptions require
only that f be C2, it is not at all clear that the terms XYWf and YXWf appearing in the
derivation make sense. However, their difference, [X, Y ]Wf , is well defined, and that is
all we have really used.
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Assuming, as usual, that f ∈ C2(M), we also have that σ 2 ∈ C2(M), in which case
there are no problems in changing the order of differentiation and expectation to see
that, for C1 vector fields X and Y ,

Xσ 2 = XE

{
f 2
}
= 2E {f ·Xf } . (12.2.9)

Note that an important consequence of this is that if σ 2 is constant, so that Xσ 2 = 0
for all X, then f (t) and Xf (t) are independent for all t .

Continuing in this vein, but for general σ 2, we have

XYσ 2 = 2 (E {XYf · f } + E {Xf · Yf })
and

XYσ 2 − ∇XYσ
2 = 2 (E {XYf · f } + E {Xf · Yf } − E {∇XYf · f }) .

Rearranging the last line yields

E

{
∇2f (X, Y ) · f

}
= −E {Xf · Yf } + 1

2
∇2σ 2(X, Y ) (12.2.10)

= −g(X, Y )+ 1

2
∇2σ 2(X, Y ).

Now note that Xf and ∇2f (Y, Z) are uncorrelated (and so independent in our
Gaussian scenario), since

E

{
Xf · ∇2f (Y, Z)

}
= E {Xf · (YZf − ∇YZf )} = 0 (12.2.11)

by (12.2.6). You should note that this result requires no assumptions whatsoever. It is
an immediate consequence of the geometry thatf induces onM via the induced metric
and the fact that the covariant Hessian ∇2 incorporates this metric in its definition.

Putting all the above together gives that

E

{
∇2ft

∣∣∣ft = x,∇ft = v
}
= − x

σ 2
t

I + x

2σ 2
t

∇2σ 2
t ,

where I is the identity double form determined by g, defined in (7.2.10).
Assume now that f has constant variance, which we take to be 1. Then Xσ 2 ≡ 0,

and the last equality simplifies to give

E

{
∇2ft

∣∣∣∇ft = v, ft = x
}
= −xI. (12.2.12)

The conditional variance of∇2f is also easy to compute, since combining (12.2.8)
and (12.2.10) gives what is perhaps the most crucial equality for the detailed compu-
tations that we shall carry out in Section 12.4:

E

{(
∇2f − E

{(
∇2f

) ∣∣∇f = v, f = x
})2 ∣∣∣∇f = v, f = x

}
= −(2R + I 2).

(12.2.13)
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The above correlations change somewhat if instead of concentrating on the co-
variant Hessian ∇2f , we look at simple second derivatives. For example, it follows
from (12.2.11) that

E {XYf · Zf } = E {∇XYf · Zf } = g(∇XY,Z). (12.2.14)

Continuing to assume that f has unit variance, let E be an orthonormal frame
field for the induced metric g. It then immediately follows from the above and the
fact that g(Ei, Ej ) = δij that

E

{
XYft

∣∣∣Ekft = vk, k = 1, . . . , N, ft = x
}

(12.2.15)

= −xI +
N∑
k=1

vkg(∇XY,Ek)

= −xI + g(∇XY, v).

Now might be a good time to take some time off to look at a few examples.

12.2.3 Gaussian Fields on RN

An extremely important example, which can be treated in detail without too much
pain, is given by the differential structure induced on a compact domain M in RN

by a zero-mean, C2 Gaussian field. For the moment we shall assume that M has a
C2 boundary, although at the end of the discussion we shall also treat the piecewise
C2 case.

We shall show how to explicitly compute both the curvature tensor R and the
shape operator S in terms of the covariance function C, as well as traces of their
powers. We shall also discuss the volume form Volg .

We shall not, in general, assume that f is either stationary or isotropic. In fact,
one of the strengths of the manifold approach is that it handles the nonstationary case
almost as easily as the stationary one.

The basis for our computations is Section 7.7, where we saw how to compute
what we need after starting with a convenient basis. Not surprisingly, we start with
{Ei}1≤i≤N , the standard coordinate vector fields on RN . This also gives the natural
basis in the global chart (RN, i), where i is the inclusion map. We give RN the metric
g induced by f .

From Section 7.7 we know that, as far as the curvature operator is concerned,
everything depends on two sets of functions, the covariances

gij (t) = g(Eti, Etj ) = ∂2C(r, s)

∂ri∂rj

∣∣∣∣
(t,t)

(12.2.16)

and the Christoffel symbols of the first kind,

�ijk
�= g(∇Ei

Ej , Ek) = ∂3C(r, s)

∂ri∂rj ∂sk

∣∣∣∣
(t,t)

, (12.2.17)
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where the last equality is a trivial consequence of (12.2.6) and (5.5.5).
All other terms appearing in Section 7.7 are derivable from these two either via

simple algebraic operations or by taking inverses and square roots of matrices. In
other words, there is nothing that cannot be computed directly from the first three
derivatives of the covariance function. Of course, for each example, considerable
perseverence or, even better, computer algebra might come in handy to actually carry
out the computations.

Nevertheless, there is one rather important case in which the expressions sim-
plify considerably. If f is stationary, then the gij (t) are actually independent of t .
Consequently, it follows from (5.5.5) and the symmetry of the spectral measure that

�ijk ≡ 0 for all i, j, k, (12.2.18)

and so the curvature tensor, its powers, and their traces are identically zero. As a
consequence, most of the complicated formulas of Section 7.7 simply disappear. The
isotropic situation is, of course, simpler still, since then

gij (t) ≡ λ2δij , (12.2.19)

where λ2 is the variance of any first-order directional derivative of f (cf. (5.7.3)).
The computation of the shape operator S also follows from the considerations of

Section 7.7. For a specific example, assume that ∂M is a C2 manifold of codimension
1 in M . Thus the normal space to ∂M in M consists of a one-dimensional vector
field, which we take to be generated by an inward-pointing unit normal vector field
ν on ∂M .

As we saw in Section 7.7, the natural choice of basis in this setting is an orthonor-
mal frame field E∗ = {E∗

i }1≤i≤N chosen so that on ∂M , E∗
N = ν. In this case, we

only need to know how to compute the �∗
jiN of (7.7.13). While this is not always

easy, if f is stationary and isotropic, then as for the curvature tensor things do sim-
plify somewhat. In particular, if it is possible to explicitly determine functions aij
such that

E∗
it =

N∑
k=1

aik(t)Ekt ,

then, as in footnote 33 of Chapter 6, we have that

�∗
jiN (t) = λ2

N∑
k,l=1

ajk(t)
∂

∂tk

(
aNl(t)ail(t)

)
, (12.2.20)

so that the summation has dropped one dimension. Far more significant, however,
are the facts that the information about the Riemannian structure of (M, g) is now
summarized in the single parameter λ2 and that this information has been isolated
from the “physical’’ structure of ∂M inherent in the functions aik .

In fact, this can also be seen directly from the definition of the shape operator.
From (12.2.19) it is also easy to check that for any vectors X, Y ,
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g(X, Y ) = λ2〈X, Y 〉,
where the right-hand side denotes the Euclidean inner product of X and Y . Conse-
quently, writing Sg for the shape operator under the induced Gaussian metric and SE

for the standard Euclidean one, we have

Sg(X, Y ) = λ2S
E(X, Y ), (12.2.21)

a result that will be useful for us later.
There is another scenario in which significant simplification occurs. Suppose that

A ⊂ ∂M is locally flat, in the sense that A is a subset of an (N − 1)-dimensional
hyperplane. In that case the ajk(t) are constant over A, and so it follows from
(12.2.20) that �∗

jiN (t) = 0 for all t ∈ A.
The last issue that we need to look at for this class of examples is that of the form

of the volume element Volg corresponding to the metric induced by the Gaussian
field. Since our parameter space is a compact domain M ⊂ RN , we can take an atlas
consisting of the single chart (M, i), where i is the identity mapping on RN . This
being the case, it is immediate from (7.4.9) that for any A ⊂ RN ,∫

A

Volg =
∫
A

|det �t |1/2 dt, (12.2.22)

where �t is the matrix with entries

λt (i, j) = E

{
∂f

∂ti

∂f

∂tj

}
= ∂2C(r, s)

∂ri∂sj

∣∣∣∣
(r,s)=(t,t)

.

If f is stationary, then �t is independent of t and is simply the matrix of second-
order spectral moments that we met at (11.7.1) and (11.7.2).

If f is also isotropic, then �t = λ2I , where I is the identity matrix.

12.3 Another Gaussian Computation

At the core of the calculation of the expected Euler characteristic in the Euclidean
case were the results of Lemma 11.6.2 and Corollary 11.6.3 about mean values of
determinants of Gaussian matrices. In the manifold case we shall need a somewhat
more general result.

To start, recall the discussion following (7.2.6). If we view an N × N matrix �

as representing a linear mapping T� from RN to RN , with �ij = 〈ei, T�ej 〉, then �

can also be represented as a double form γ� ∈ �1,1(RN), and from the discussion in
Section 7.1,

det � = 1

N ! Tr
(
(γ�)

N
)
. (12.3.1)

Thus it should not be surprising that we now turn our attention to the expectations
of traces of random double forms, for which we need a little notation.
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Let V be a vector space and μ ∈ �1,1(V ) a double form on V . Let Cov :
(V ⊗V )× (V ⊗V ) → R be bilinear, symmetric, and nonnegative definite. We think
of μ as a mean function and Cov as a covariance function, and call W a random,
Gaussian 2-form on V ⊗V with mean function μ and covariance function Cov if for
all finite collections of pairs (vi1 , vi2) ∈ V ⊗V , the W(vi1 , vi2) have a joint Gaussian
distribution with means

E
{
W(vi1 , vi2)

} = μ(vi1 , vi2)

and covariances

E
{(
W(vi1 , vi2)− μ(vi1 , vi2)

) · (W(vj1 , vj2)− μ(vj1 , vj2)
)}

= Cov
(
(vi1 , vi2), (vj1 , vj2)

)
.

Lemma 12.3.1. With the notation and conditions described above, and understanding
all powers and products of double forms as being with respect to the double wedge
product of (7.2.4),

E

{
Wk
}
=

 k
2 !∑

j=0

k!
(k − 2j)!j !2j μ

k−2jCj , (12.3.2)

in the sense that for all v1, . . . , vk, v
′
1, . . . , v

′
k ∈ V ,

E

{
Wk
(
(v1, . . . , vk), (v

′
1, . . . , v

′
k)
)}

=
 k

2 !∑
j=0

k!
(k − 2j)!j !2j

(
μk−2jCj

) (
(v1, . . . , vk), (v

′
1, . . . , v

′
k)
)
,

where C ∈ �2,2(V ) is defined by

C
(
(v1, v2), (v

′
1, v

′
2)
)

= E

{(
W − E{W })2((v1, v2), (v

′
1, v

′
2)
)}

= 2
(
Cov

(
(v1, v

′
1), (v2, v

′
2)
)− Cov

(
(v1, v

′
2), (v2, v

′
1)
))
.

Proof. Since it is easy to check that the standard binomial expansion works also for
dot products, the general form of (12.3.2) will follow from the special case μ = 0,
once we show that for this case,

E

{
Wk
}
=
{

0, k odd,
(2j)!
j !2j C

j , k = 2j .
(12.3.3)

Thus, assume now that μ = 0. The case of odd k in (12.3.3) follows immediately
from (11.6.1), and so we have only the even case to consider.
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Recalling the definition (7.2.4) of the dot product of double forms, we have that

W 2j ((v1, . . . , v2j ), (v
′
1, . . . , v

′
2j )
) = ∑

π,σ∈S(2j)
επεσ

2j∏
k=1

W(vπ(k), v
′
σ(k)),

where, as usual, S(2j) is the symmetric group of permutations of 2j letters and εσ
is the sign of the permutation σ . It then follows immediately from (11.6.2) that the
expectation on the right-hand side is given by

(2j)!
j !

∑
π,σ∈S(2j)

επεσ

j∏
k=1

E

{
W(vπ(2k−1), v

′
σ(2k−1))W(vπ(2k), v

′
σ(2k))

}
,

where the combinatorial factor comes from the different ways of grouping the vectors
(vπ(k), v

′
σ(k)), 1 ≤ k ≤ 2j , into ordered pairs.9

The last expression can be rewritten as

(2j)!
j !2j

∑
π,σ∈S(2j)

επεσ

j∏
k=1

E

{
W(vπ(2k−1), v

′
σ(2k−1))W(vπ(2k), v

′
σ(2k))

−W(vπ(2k), v
′
σ(2k−1))W(vπ(2k−1), v

′
σ(2k))

}
= (2j)!

j !2j
∑

π,σ∈S(2j)
επεσ

j∏
k=1

C
(
(vπ(2k−1), vπ(2k)), (v

′
σ(2k−1), v

′
σ(2k))

)
= (2j)!

j !2j Cj
(
(v1, . . . , v2j ), (v

′
1, . . . , v

′
2j )
)
,

which completes the proof. ��

The following corollary is immediate from Lemma 12.3.1 and the definition
(7.2.6) of the trace operator.

Corollary 12.3.2. With the notation and conditions of Lemma 12.3.1,

E

{
Tr(Wk)

}
=

 k
2 !∑

j=0

k!
(k − 2j)!j !2j Tr

(
μk−2jCj

)
. (12.3.4)

9 In comparing this with (11.6.2), note that there we had an extra summation over the groupings
into unordered pairs rather than a simple multiplicative factor. We already have each possible
grouping due to the summation overπ andσ inS(2j), and since we are keeping pairs ordered
we also lose the factor of 2−j there.
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12.4 The Mean Euler Characteristic

We now have everything we need to undertake the task of developing an explicit
formula for E{ϕ(Au(f,M)) for a smooth, Gaussian random field f over a manifold
M . We shall treat the cases in which M does and does not have a boundary separately,
even though the first scenario is a special case of the second. Nevertheless, it is best
to see the calculations, for the first time, in the simpler scenario. When we get
around to adding in all the structure of piecewise smooth manifolds, the notation will
become somewhat heavier, although the main result, Theorem 12.4.2, will not look
very different from the nonboundary case of Theorem 12.4.1.

12.4.1 Manifolds without Boundary

Throughout this section, we shall assume thatM is aC2 submanifold of aC3 manifold.
Here is the main result:

Theorem 12.4.1. Let f be a centered, unit-variance Gaussian field on an N -
dimensional, C2 manifold M , and satisfying the conditions of Corollary 11.3.5. Then

E {ϕ (Au)} =
N∑
j=0

Lj (M)ρj (u), (12.4.1)

where the ρj are given by

ρj (u) = (2π)−(j+1)/2Hj−1(u)e
− u2

2 , j ≥ 0, (12.4.2)

Hj is the j th Hermite polynomial, given by (11.6.9) and (11.6.10), and the Lj (M) are
the Lipschitz–Killing curvatures (7.6.1) of M , calculated with respect to the metric
(12.2.2) induced by f , i.e.,

Lj (M,U) =
{

(−2π)−(N−j)/2

(N−j)!
∫
U

TrM
(
R(N−j)/2

)
Volg if N − j is even,

0 if N − j is odd.
(12.4.3)

Proof. The first consequence of the assumptions on f is that the sample functions of
f are almost surely Morse functions over M . Thus Corollary 9.3.5 gives us that

ϕ(Au) =
∑

{t∈M:∇ft=0}
(−1)ι−f,M(t)

=
N∑
k=0

(−1)k#{t ∈ M : ft ≥ u,∇ft = 0, index(−∇2ft ) = k}.

To compute the expectation here first choose an orthonormal frame field E =
(E1, . . . , EN) for M and apply Theorem 12.1.1 N + 1 times. If we write the f
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there as f ∗, then we set f ∗ = ∇fE and h to be (f,−(EiEj )f ), where, to save on
subscripts, we shall write (EiEjf ) to denote the matrix (EiEjf )i,j=1,...,N .

We read off the components of (EiEjf ) (and later of ∇2fE) in lexicographic
order to get a vector. To avoid confusion, we write everything out once more in full:

∇fE,k = Ekf, (EiEjf )kl = EkElf, ∇2fE,kl = ∇2f (Ek,El).

Finally, for the kth application of Theorem 12.1.1, we set

B = (u,∞)× Ak
�= (u,∞)× {H : index(−H) = k} ⊂ R × SymN×N,

where SymN×N is the space of symmetric N ×N matrices. Then the second conse-
quence of our assumptions on f is that Theorem 12.1.1 is applicable in this setting.
Applying it gives

E{ϕ(Au)} =
N∑
k=0

∫
M

(−1)kE
{| det(EiEjf )|

× 1Ak
(∇2fE)1(u,∞)(f )|∇f = 0

}
p∇f (0)Volg .

(12.4.4)

Recall now that ∇2f (Ei, Ej ) = EiEjf − ∇Ei
Ejf . However, conditioning on

∇fE = 0 gives ∇2f (Ei, Ej ) ≡ EiEjf , so that we can replace (EiEjf ) by ∇2fE
in the last equation above to obtain

N∑
k=0

∫
M

(−1)kE{| det ∇2fE |1Ak
(∇2fE)1(u,∞)(f )|∇f = 0}p∇f (0)Volg .

If we now interchange summation and integration and bracket the factor of (−1)k

together with | det ∇2fE |, then we can drop the absolute value sign on the latter, al-
though there is a remaining factor of −1. This allows us to exchange expectation with
summation, and the factor of 1Ak

(∇2fE) and the sum over k disappear completely.
Now recall that f has constant variance and note that since E is an orthonormal

frame field (with respect to the induced metricg), the components of∇fE at any t ∈ M

are all independent standard Gaussians. Furthermore, as we saw in Section 12.2.2, the
constant variance of f implies that they are also independent of f (t). Consequently,
the joint probability density of (f,∇fE) at the point (x, 0) is simply

e−x2/2

(2π)(N+1)/2
.

Thus not only is it known, but it is constant over M .
Noting all this, conditioning on f and integrating out the conditioning allows us

to rewrite the above in the much simpler format

E{ϕ(Au)} = (2π)−(N+1)/2
∫ ∞

u

e−x2/2 dx

×
∫
M

E{det(−∇2fE)|∇fE = 0, f = x}Volg .
(12.4.5)
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Recalling the definition of the trace (cf. (12.3.1)), the innermost integrand can be
written as

1

N !E{Tr((−∇2f )N)|∇fE = 0, f = x}.
Since ∇2f is a Gaussian double form, we can use Corollary 12.3.2 to compute the

above expectation, once we recall (12.2.12) and (12.2.13) to give us the conditional
mean and covariance of ∇2f . These give

(−1)N

N ! E{TrM(∇2f )N |∇fE = 0, f = x}

=
 N

2 !∑
j=0

(−1)j

(N − 2j)!j !2j TrM((xI)N−2j (I 2 + 2R)j )

=
 N

2 !∑
j=0

j∑
l=0

(−1)j

j !2j (N − 2j)!x
N−2j TrM

(
IN−2l

(
j

l

)
(2R)l

)

=
 N

2 !∑
l=0

(−1)l

l! TrM

⎛⎜⎝Rl

 N−2l
2 !∑

k=0

(−1)k

2k(N − 2k − 2l)!k!x
N−2k−2lIN−2l

⎞⎟⎠
=

 N
2 !∑

l=0

(−1)l

l! TrM(Rl)HN−2l (x),

where in the last line, we have used (7.2.11) and the definition (11.6.9) of the Hermite
polynomials.

Substituting back into (12.4.5) we conclude that E {ϕ (Au)} is given by

 N
2 !∑

l=0

[∫ ∞

u

(2π)−(N+1)/2HN−2l (x)e
−x2/2 dx

]
(−1)l

l!
∫
M

TrM(Rl)Volg

=
 N

2 !∑
l=0

(2π)−(N+1)/2HN−2l−1(x)e
−u2/2 (−1)l

l!
∫
M

TrM(Rl)Volg

=
N∑
j=0

Lj (M)ρj (u),

where the first equality follows from (11.6.12) and the second from the definitions
(12.4.2) of the ρj and (12.4.3) for the Lj , along with a little algebra.

That is, we have (12.4.1) and so the theorem. ��

12.4.2 Manifolds with Boundary

We now turn to the case of manifolds with boundaries and shall incorporate, in one
main result, both the results of the previous section in which the manifold had no
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boundary, and the results of Section 11.7. There, as you will recall, the parameter
space was an N -dimensional rectangle, and the Gaussian process was required to be
stationary.

Thus, we return to the setting of Sections 8.1 and 9.3, and take M to be an N -
dimensional regular stratified manifold.

Theorem 12.4.2. Let M be an N -dimensional regular stratified manifold, and f ,
as in Theorem 12.4.1, a centered, unit-variance Gaussian field on M satisfying the
conditions of Corollary 11.3.5.

Then E{ϕ(Au)} is again given by (12.4.1), so that

E {ϕ (Au)} =
N∑
i=0

Li (M)ρi(u), (12.4.6)

with the single change that the Lipschitz–Killing curvatures Lj are now defined by
(10.7.1), i.e.,

Lk(M) =
N∑
j=k

(2π)−(j−k)/2
 j−k

2 !∑
l=0

C(N − j, j − k − 2l)
(−1)l

l!(j − k − 2l)! (12.4.7)

×
∫
∂jM

∫
S(Tt ∂jM

⊥)
TrTt ∂jM

(
RlSj−k−2l

νN−j

)
× α(νN−j )HN−j−1(dνN−j )Hj (dt).

Remark 12.4.3. If we also require thatM be locally convex, then α(ν) ≡ 1NtM
(−ν),

and so α disappears from (12.4.7), although the integral over S(Tt∂jM⊥) then be-
comes an integral over S(NtM).

Before turning to the proof of Theorem 12.4.2, we need to establish a slightly
extended version of the metatheorem Theorem 12.1.1 and its Gaussian corollary,
Corollary 12.1.2. The extension is needed due to the fact that for general Whitney
stratified manifolds, Morse theory “counts’’ critical points with multiplicities, given
by their normal Morse index α. Since α ≡ 1 for locally convex spaces, this issue does
not arise for these spaces. Consequently, if these are the cases that you care about, you
can skip directly to the proof of Theorem 12.4.2 without worrying about the following
result. However, if you want to see a more complete proof of Theorem 12.4.2 in its
full generality, then you will have to bear with a little notation and some technicalities.

We start by adopting all the notation of Theorem 12.1.1 and adding to it a new
random fieldF : M → RL for some finiteL. Next, we take a (deterministic) function

α : M × RL → Z

and define, for u ∈ RN ,

Nα
u (f, h, F ;M,B) ≡ Nα

u (M) ≡ Nα
u
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by

Nα
u (f, h, F ;M,B)

�=
∑

t∈M:f (t)=u and h(t)∈B
α (F (t)) ,

assuming, of course, that the sum is over a countable number of points.
We can now state our next result.

Theorem 12.4.4. Retaining the notation and all conditions of Theorem 12.1.1 and
adopting the notation above, assume also the following:

(i) F is almost surely continuous over M .
(ii) For each t ∈ M , the marginal densities pt (x) of F(t) (implicitly assumed to

exist) are continuous in x.
(iii) The conditional densitiespt (x|∇fE(t), h(t), F (t))off (t)givenh(t), (∇fE)(t),

and F(t) (implicitly assumed to exist) are bounded above and continuous at
x = u, uniformly in t ∈ M .

(iv) The conditional densities pt (z|f (t) = x) of F(t) given f (t) = x are continuous
for all z and for x in a neighborhood of u, uniformly in t ∈ M .

(v) The modulus of continuity of F satisfies (12.1.3).
(vi) |α| is bounded and α is piecewise constant on M × RL. Furthermore, for each

t ∈ M , the set of discontinuities of α(t, ·) has dimension no greater than L− 1
in RL, while for each x ∈ RL the set of discontinuities of α(·, x) has dimension
no greater than N − 1 in RN.

Then

E{Nα
u } =

∫
M

E

{
|det (∇fE)| 1B(h)α(F )

∣∣∣f = u
}
p(u)Volg . (12.4.8)

Proof. The proof of the theorem is really no different from that of Theorem 12.1.1,
but we are missing an analogue of its Euclidean precursor, Theorem 11.2.1, with the
extra complication of the α term. However, if you had the patience to follow the
details of the proof of Theorem 11.2.1, you will agree that it really is easy to see that
under the conditions we have added, the proof that we had of that theorem requires
only minor changes to cover the current scenario.

Further (unnecessary) details are left to you. ��
The Gaussian corollary to Theorem 12.4.4 is the following.

Corollary 12.4.5. Let (M, g) be a Riemannian manifold satisfying the conditions of
Theorem 12.4.4. Let f , h, and F be centered Gaussian fields over M and α as in
the theorem. Then if f , h, ∇fE , and F are a.s. continuous over M , and if for each
t ∈ M , the joint distributions of (f (t),∇fE(t), h(t), F (t)) are nondegenerate, then
(12.4.8) holds.

Proof of Theorem 12.4.2. In essence, although Theorem 12.4.2 subsumes many
others that have gone before, it will not be hard to prove. We have already done
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most of the hard work in proving some of the earlier cases, and so we now face a
proof that is more concerned with keeping track of notation than needing any serious
new computations. Nevertheless, there is something new here, and that is the way
the Morse index and integration over normal cones are handled. These two points
actually take up most of the proof.

We start by recalling the setup, which implies thatM has the unique decomposition

M =
dim M⋃
j=0

∂jM,

as in (9.3.5). Morse’s theorem, as given in Corollary 9.3.5 and slightly rewritten,
states that

ϕ(Au) =
dim M∑
j=0

K∑
k=−K

j∑
n=0

(−1)nkμjkn, (12.4.9)

where

μjkn
�= #

{
t ∈ ∂jM : f (t) ≥ u, ∇f (t) ∈ NtM,

α(−P⊥
Tt ∂jM

∇f (t)) = k, ι−f,∂jM(t) = n
}
.

If t ∈ M◦ then the normal cone is {0}, and so the expectation of the j = N term
in (12.4.9) has already been computed, since this is the computation of the previous
proof. Nevertheless, we shall rederive it, en passant, in what follows. For this case,
however, it will be important that you recall the conventions set out in Remark 10.5.2,
which we shall use freely.

Fix a j , 0 ≤ j ≤ N , and choose an orthonormal frame field E such that
Ej+1, . . . , EN are normal to ∂jM , from which it follows that E1f (t), . . . , ENf (t)

are independent standard Gaussians for each t .
To compute the expectation of (12.4.9) we argue much as we did in the proof of

Theorem 12.4.1, applying Theorem 12.4.4 rather than Theorem 12.1.1 to allow for
the new factor of α (cf. the argument leading up to (12.4.5)).10

This gives us the following, in which ν is an (N − j)-dimensional vector, which,
for convenience, we write as (νj+1, . . . , νN):

E

⎧⎨⎩
dim M∑
j=0

K∑
k=−K

j∑
n=0

(−1)nkμjkn

⎫⎬⎭
= (2π)−(N+1)/2

∫ ∞

u

e−x2/2 dx

∫
∂jM

Hj (dt)

×
∫
Tt ∂jM

⊥
e−|ν|2/2θ

j
t (ν, x)α(−ν)HN−j (dν),

10 The fact that α is piecewise constant, as required by Theorem 12.4.4, is a consequence of
the fact that we are working with Whitney stratified manifolds. See [72] for details.
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where θ
j
t (ν, x) is given by

E

{
det

(
−
(
∇2f|∂jM(Em,En)

)
1≤n,m≤j

)
∣∣∣f = x, Emf = 0, 1 ≤ m ≤ j, Emf = νm, j + 1 ≤ m ≤ N

}
.

As usual, Hj denotes the volume (Hausdorff) measures that g induces on the ∂jM

and HN−j denotes the corresponding measure on Tt∂jM
⊥.

We need to compute a few basic expectations before we can continue. The con-
ditional covariances of the Hessian remain the same as in the previous section, since
we are still conditioning on the vector (f,∇fE). Specifically,

Var
(
∇2f|∂kM

∣∣∣f = x,∇fE = (0, ν)
)
= −(2R + I 2),

where the zero vector here is of length j .
Conditional means, however, do change, and from (12.2.15) we have, for X, Y ∈

C2(T (∂jM)),

E

{
XYf

∣∣∣f = x,∇fE = (0, ν)
}

= E

{
∇2f|∂jM(X, Y )

∣∣∣f = x,∇fE = (0, ν)
}

= −xg(X, Y )+ g (∇XY, (0, ν))

= −xg(X, Y )+ Sν(X, Y ),

where S is the scalar second fundamental form, given by (7.5.8) and (7.5.12). Equiv-
alently,

E

{
∇2f|∂jM

∣∣∣f = x,∇fE = (0, ν)
}
= −xI + Sν = − (xI + S−ν) .

We now have all we need to evaluate θ
j
t (ν, x), which, following the argument of

the preceding section and using the above conditional expectations and variance, is
equal to

(−1)j

j ! E

{
Tr∂jM

(
∇2f|∂jM

)j ∣∣∣f = x,∇fE = (0, ν)

}

=
 j

2 !∑
k=0

(−1)k

(j − 2k)!k!2k Tr∂jM
(
(xI + S−ν)

j−2k
(
I 2 + 2R

)k)

by Lemma 12.3.1. Rearranging somewhat, this is equal to



322 12 Random Fields on Manifolds

 j
2 !∑

k=0

k∑
l=0

(−1)k

(j − 2k)!
1

2k−l l!(k − l)! Tr∂jM
(
(xI + S−ν)

j−2kI 2k−2lRl
)

=
 j

2 !∑
k=0

j−2k∑
m=0

k∑
l=0

(−1)k(j − 2l −m)!
(j − 2k −m)!m!

1

2k−l l!(j − l)!
× xj−2k−m Tr∂jM

(
Sm−νR

l
)

by (7.2.11). Further rearrangement gives that this is the same as

j∑
m=0

 j−m
2 !∑

k=0

k∑
l=0

(−1)k(j − 2l −m)!
(j − 2k −m)!m!

1

2k−l l!(k − l)!
× xj−2k−m Tr∂jM

(
Sm−νR

l
)

=
j∑

m=0

 j−m
2 !∑

l=0

 j−m
2 !∑

k=l

(−1)k(j − 2l −m)!
(j − 2k −m)!m!

1

2k−l l!(k − l)!
× xj−2k−m Tr∂jM

(
Sm−νR

l
)

=
j∑

m=0

 j−m
2 !∑

l=0

(−1)l Tr∂jM
(
Sm−νR

l
)

m!l!

×
 j−2l−m

2 !∑
i=0

(−1)i(j − 2l −m)!
(j − 2l −m− 2i)!

1

2i i!x
j−2l−m−2i

=
j∑

m=0

 j−m
2 !∑

l=0

(−1)l

l!m! Tr∂jM(Sm−νR
l)Hj−2l−m(x)

=
j∑

m=0

 m
2 !∑

l=0

(−1)l

l!(m− 2l)! Tr∂jM(Sm−2l−ν Rl)Hj−m(x)

=
j∑

k=0

Hk(x)

 j−k
2 !∑

l=0

(−1)l

l!(j − k − 2l)! Tr∂jM(S
j−k−2l
−ν Rl).

We now fix a t ∈ ∂jM and concentrate on computing the expectation

(2π)−N/2
∫
Tt ∂jM

⊥
e−|ν|2/2 Tr∂jM(S

j−k−2l
−ν Rl)α(−ν)HN−j (dν)

= (2π)−N/2
∫
Tt ∂jM

⊥
e−|ν|2/2 Tr∂jM(Sj−k−2l

ν Rl)α(ν)HN−j (dν).
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We essentially computed this integral in proving Lemmas 10.5.1 and 10.5.3.
Specifically, by a simple generalization of Lemma 10.5.5, using the fact that α is
constant along rays, i.e., that for c > 0,

α(cν) = α(ν),

the above integral can be evaluated as

(2π)−N/2
∫
Tt ∂jM

⊥
e−|ν|2/2 Tr∂jM(Sj−k−2l

ν Rl)α(ν)HN−j (dν)

= C(N − j, j − k − 2l)
∫
S(Tt ∂jM

⊥)
Tr∂jM(Sj−k−2l

ν Rl)α(ν)HN−j−1(dν).

Collecting all the above, we finally have that

E{ϕ(Au)} =
dim M∑
j=0

(2π)−(N+1)/2
∫ ∞

u

e−x2/2
j∑

k=0

Hk(x)

×
 j−k

2 !∑
l=0

(−1)l

l!(j − k − 2l)!C(N − j, j − k − 2l)

×
∫
S(Tt ∂jM

⊥)
Tr∂jM(Sj−k−2l

ν Rl)α(ν)HN−j−1(dν)

=
dim M∑
k=0

ρk(u)×
( N∑
j=k

 j−k
2 !∑

l=0

(−1)l

l!(j − k − 2l)!C(N − j, j − k − 2l)

×
∫
S(Tt ∂jM

⊥)
Tr∂jM(Sj−k−2l

ν Rl)α(ν)HN−j−1(dν)

)
after integrating out x (via (11.6.12)) and changing the order of summation.

Comparing the last expression with the definitions (12.4.2) of the ρk and (12.4.7)
of the Lk , the proof is complete. ��

12.5 Examples

With the hard work behind us, we can now look at some applications of Theo-
rems 12.4.1, and 12.4.2. One of the most powerful implications of the formula

E {ϕ (Au)} =
dim M∑
j=0

Lj (M)ρj (u), (12.5.1)

is that for any example, all that needs to be computed are the Lipschitz–Killing
curvatures Lj (M), since the ρj are well defined by (12.4.2) and dependent neither
on the geometry of M nor the covariance structure of f .
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Nevertheless, this is not always easy, and there is no guarantee that explicit forms
for the Lj (M) exist. In fact, more often than not, this will unfortunately be the case,
and one needs to turn to a computer for assistance, performing either (or often both)
symbolic or numeric evaluations.

However, there are some cases that are not too hard, and so we shall look at these.

Stationary Fields over Rectangles
This is the example that we treated in Theorem 11.7.2 via the techniques of integral
rather than differential geometry.

Nevertheless, since N -dimensional rectangles are definitely piecewise C2 mani-
folds, we should be able to recover Theorem 11.7.2 from Theorem 12.4.2. Doing so
is in fact quite easy, so we set M =∏N

i=1[0, Ti] and, to make life even easier, assume
that f has unit variance and is isotropic with the variance of its derivatives given by
λ2. Thus, what we are trying to recover is (11.7.12) with �J = λ2I , where I is the
identity matrix.

The first point to note is that induced Riemannian g is given by

g(X, Y ) = E{XfYf } = λ2〈X, Y 〉,
where the last term is the simple Euclidean inner product. Thus g changes the usual
flat Euclidean geometry of RN only by scaling, and so the geometry remains flat.

This being the case, (6.3.6) gives us the necessary Lipschitz–Killing curvatures,
although each Lj of (6.3.6) needs to be multiplied by a factor of λj/2

2 . Substituting
this into (12.5.1) gives the required result, (11.7.12).

The few lines of algebra needed along the way are left to you.
Also left to you is the nonisotropic case, which is not much harder, although you

will need a slightly adapted version of (6.3.6) that allows for a metric that is a constant
times the Euclidean metric on hyperplanes in RN , but for which the constant depends
on the hyperplane. This will give Theorem 11.7.2 in its full generality.

Isotropic Fields over Smooth Domains
In the previous example, we assumed isotropy only for convenience, and leaving the
argument for the general stationary case to you was simply to save us having to do
more complicated algebra.

However, once one leaves the setting of rectangles it is almost impossible to obtain
simple closed-form expressions for the Lj if f is not isotropic. To see how isotropy
helps, we now take f isotropic over a compact, piecewise C2 domain in RN , and also
assume that E{f 2} = E{(∂f/∂tk)2} = 1, so as to save carrying through an awkward
constant.

What makes the Lipschitz–Killing curvatures simpler in this case is not that their
defining formula (12.4.7) changes in any appreciable way, but that the symbols ap-
pearing in it have much simpler meanings. In particular, Hk is no more than standard
Hausdorff measure over ∂kM , while HN−k−1 becomes surface measure on the unit
sphere SN−k−1. In other words, the Lk no longer carry any information related to f .

The Riemannian curvature R is now zero, and the second fundamental form S

simplifies considerably. To see how this works in an example, assume that M is a C2
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domain, so that there is only one C2 component to its boundary, of dimension N − 1.
Then LN(M) = HN(M), and from (10.7.6) we have that for 0 ≤ j ≤ N − 1,

Lj (M) = 1

sN−j

∫
∂M

detrN−1−j (Curv)HN−1, (12.5.2)

where detrj is given by (7.2.8) and the curvature matrix Curv is given by (10.7.7)
A simple example was given in Figure 6.2.3, for which we discussed finding,

via integral-geometric techniques, the Euler characteristic of Au(f,M), where M

was a C2 domain in R2. Although we found a point process representation for the
ϕ(Au), we never actually managed to use integral-geometric techniques to find its
expectation. The reason is that differential-geometric techniques work much better,
since applying (12.5.2) with N = 2 immediately gives us the very simple result that

L2(M) = Area(M), L1(M) = length(∂M)

2
, L0(M) = 1,

which, when substituted into (12.5.1), gives the required expectation.
A historical note is appropriate here: It was the example of isotropic fields on C2

domains that, in Keith Worsley’s paper [173], was really the genesis of the manifold
approach to Gaussian geometry that has been the central point of this chapter and the
reason for writing this book.

Under isotropy, you should now be able to handle other examples yourself. All
reduce to calculations of Lipschitz–Killing curvatures under a constant multiple of
the standard Euclidean metric, and for many simple cases, such as balls and spheres,
these have already been computed in Chapter 6. What is somewhat harder is the
nonisotropic case.

Stationary and Nonstationary Fields on RN

It would be nice to be able to find nice formulas for nonstationary Gaussian fields over
smooth domains, and even for stationary but nonisotropic fields, as we have just done
for isotropic fields over smooth domains and stationary processes over rectangles.
Unfortunately, although Theorems 12.4.1 and 12.4.2 allow us to do this in principle,
it is not so simple to do in practice.

The basic reason for this can already be seen in the stationary scenario of The-
orem 11.7.2, from which one can see that the Lipschitz–Killing curvatures for a
stationary process over a rectangle T = (

∏N
i=1[0, Ti]) are given by

Lj (T ) =
∑
J∈Oj

|J ||�J |1/2, (12.5.3)

the sum being over faces of dimension j in T containing the origin and the rest of
the notation as in Theorem 11.7.2. What (12.5.3) shows is that there is no simple
averaging over the boundary of T as there is in the isotropic case. Each piece of
the boundary has its own contribution to make, with its own curvature and second
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fundamental form. In the case of a rectangle this is not too difficult to work with. In
the case of a general domain it is not so simple.

In Section 7.7 we saw how to compute curvatures and second fundamental forms
on Euclidean surfaces in terms of Christoffel symbols. In Section 12.2.3 we saw how
to compute Christoffel symbols for the metric induced by f in terms of its covariance
function. For any given example, these two computations need to be coordinated and
then fed into definitions such as (12.4.3) and (12.4.7) of Lipschitz–Killing curvatures.
From here to a final answer is a long path, often leading through computer algebra
packages.

There is, however, one negative result that is worth mentioning here, since it is
sufficiently counterintuitive that it has led many to an incorrect conjecture. As we
mentioned following the proof of Lemma 11.7.1, a first guess at extending (12.5.3) to
the nonstationary case would be to replace the terms |J |||�J |1/2 there by integrals of
the form

∫
J
|�t |1/2 dt , where the elements of �t are the covariances E{fi(t)fj (t)}.

Without quoting references, it is a fact that this has been done more than once in
the past. However, it is clear from the computations of the Christoffel symbols in
Section 12.2.3 that this does not work, and additional terms involving third-order
derivatives of the covariance function enter into the computation. The fact that these
terms are all identically zero in the stationary case is probably what led to the errors.11

Stationary Fields over Lie Groups

Lie groups provide an example that, while perhaps a little abstract, still yields a simple
form for the expected Euler characteristic of excursion sets. We first met Lie groups
back in Section 5.3, where we discussed them in the framework of stationarity.

Recall that a Lie group G is a group that is also a C∞ manifold such that the map
taking g to g−1 isC∞ and the map taking (g1, g2) to g1g2 is alsoC∞. We need a little
more notation than we did in Section 5.3. We denote the identity element of G by e,
the left and right multiplication maps by Lg and Rg , and the inner automorphism of
G induced by g by Ig = Lg ◦ R−1

g .
Recall that a vector field X on G is said to be left invariant if for all g, g′ ∈ G,(

Lg

)
∗ Xg′ = Xgg′ . Similarly, a covariant tensor field ω is said to be left invariant

(right invariant) if for every g0, g in G, L∗
g0
ωg0g = ωg (R∗

g0
ωgg0 = �g). As usual,

ω is said to be bi-invariant if it is both left and right invariant. If h is a (left-,
right-, bi-)invariant Riemannian metric on G, then it is clear that for every g, the
map (Lg, Rg, Ig) is an isometry12 of (G, h). In particular, the curvature tensor R
of h, is (left, right, bi-)invariant. This means that for Gaussian random fields that

11 On the other hand, if one thinks of the expression for E{ϕ(Au)} as e−u2/2σ 2
multiplied by

a power series in the level u, then it is correct to say that this conjecture gives the correct
coefficient for the leading term of the power series. This, of course, follows from the fact that
the coefficient of the leading term is LN(T ), which is the “volume’’ of T measured under
the volume form derived from the induced metric. The corresponding integrals involve no
curvatures.

12 An isometry between two Ck Riemannian manifolds (M, g) and (M̂, ĝ) is a Ck+1 diffeo-
morphism F : M → M̂ for which F ∗ĝ = g.
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induce such Riemannian metrics, the integrals needed to evaluate E{ϕ(Au(f,M))}
are significantly easier to calculate.

Theorem 12.5.1. Let G be a compact N -dimensional Lie group and f a centered,
unit-variance Gaussian field on G satisfying the conditions of Corollary 11.3.5 for
G. Suppose that the Riemannian metric g induced by f is (left, right, bi-)invariant.
Then

E {ϕ(Au(f,M))} = Volg(G)

 N
2 !∑

k=0

(−1)kρN−2k(u)

(2π)kk! TrTeG(Rk
e ), (12.5.4)

where TeG is the tangent space to G at e.

Proof. This is really a corollary of Theorem 12.4.1, since G has no boundary. Ap-
plying that result, and comparing (12.5.4) with (12.4.1), it is clear that all we need to
show is that ∫

G

TrG
(
Rl
)
g′

Volg(dg
′) = TrTeG

(
Rl
e

)
Volg(G).

Suppose X, Y,Z,W are left-invariant vector fields. Since g′ �→ Lgg
′ is an

isometry for every g, we have

Rg

(
(Xg, Yg), (Zg,Wg)

)
= Re

(
(Lg−1∗Xg,Lg−1∗Yg), (Lg−1∗Zg,Lg−1∗Wg)

)
= Re

(
(Lg∗)−1Xg, (Lg∗)−1Yg, (Lg∗)−1Zg, (Lg∗)−1Wg

)
= Re (Xe, Ye, Ze,We) .

Therefore, if (Xi)1≤i≤n is an orthonormal set of left-invariant vector fields, then(
Rg

)l (
(Xi1g, . . . , Xilg), (Xj1g, . . . , Xjlg)

)
= (Re)

l
(
(Xi1e, . . . , Xile), (Xj1e, . . . , Xjle)

)
,

from which it follows that

TrTgG
(
(Rg)

l
)
= TrTeG

(
(Re)

l
)
,

which completes the proof. ��

12.6 Chern–Gauss–Bonnet Theorem

As promised at the beginning of the chapter, we now give a purely probabilistic proof
of the classical Chern–Gauss–Bonnet theorem. Of course, “purely’’ is somewhat of
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an overstatement, since the results on which our proof is based were themselves based
on Morse’s critical point theory.

The Chern–Gauss–Bonnet theorem is one of the most fundamental and important
results of differential geometry, and it gives a representation of the Euler character-
istic of a deterministic manifold in terms of curvature integrals. It has a long and
impressive history, starting in the early nineteenth century with simple Euclidean do-
mains. Names were added to the result as the setting became more and more general.
While it has nothing to do with probability, it can be obtained as a simple corollary to
Theorems 12.4.1 and 12.4.2. Here is a version very close to that originally proven in
1943 by Allendoerfer and Weil [11], for what they called “Riemannian polyhedra.’’

Theorem 12.6.1 (Chern–Gauss–Bonnet theorem). Let (M, g) be a C2 compact,
orientable, N -dimensional Riemannian manifold, or aC2 regular stratified manifold,
in either case isometrically embedded in some C3 Riemannian manifold (M̃, g̃) of
dimension N . Then, if M has no boundary,

ϕ(M) ≡ L0(M) = (−1)N/2

(2π)N/2N !
∫
M

TrM(RN/2)Volg (12.6.1)

if N is even, and 0 if N is odd. In the piecewise smooth case,

ϕ(M) =
dim M∑
j=0

(2π)−j/2
 j

2 !∑
m=0

C(N − j, j − 2m)
(−1)m

m!(j − 2m)!

×
∫
∂jM

∫
S(Tt ∂jM

⊥)
TrTt ∂jM(RmSj−2m

νN−j
)

× α(νN−j )HN−j−1(dνN−j )Hj (dt),

where we adopt the notation of (10.7.1) and the convention of Remark 10.5.2.

Proof. Supposef is a Gaussian random field onM such thatf induces13 the metricg.
Suppose, furthermore, that f satisfies all the side conditions of either Theorem 12.4.1
or Theorem 12.4.2, depending on whether M does, or does not have, a boundary.

To save on notation, assume now that M does not have a boundary. Recall that
in computing E{ϕ(Au(f,M))} we first wrote ϕ(Au(f,M))) as an alternating sum of
N different terms, each one of the form

μk(u)
�= #{t ∈ M : ft > u, ∇ft = 0, index(−∇2ft ) = k}.

13 Note that this is the opposite situation to that which we have faced until now. We have
always started with the field f and used it to define the metric g. Now, however, g is given
and we are assuming that we can find an appropriate f .
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Clearly, as u → −∞, these numbers increase to

μk
�= #{t ∈ M : ∇ft = 0, index(−∇2ft ) = k},

and ϕ(M) is given by an alternating sum of the μk . Since μk(u) is bounded by the
total number of critical points of f , which is an integrable random variable, dominated
convergence gives us that

ϕ(M) = lim
u→−∞ E{ϕ(Au(f,M))},

and the statement of the theorem then follows by first using Theorem 12.4.1 to evaluate
E{ϕ(Au(f,M))} and then checking that the right-hand side of (12.6.1) is, in fact, the
above limit.

If we do not know that g is induced by an appropriate Gaussian field, then we
need to adopt a nonintrinsic approach via Nash’s embedding theorem in order to
construct one.

Nash’s embedding theorem [118] states that for anyC3, N -dimensional Riemann-
ian manifold (M, g), there is an isometry ig : M → ig(M) ⊂ RN ′

for some finite N ′
depending only on N . More importantly, RN ′

is to be taken with the usual Euclidean
metric.

The importance of this embedding is that it is trivial to find an appropriate f when
the space is Euclidean with the standard metric. Any unit zero-mean unit-variance
isotropic Gaussian random field, f ′ say, on RN ′

whose first partial derivatives have
unit variance and that satisfies the nondegeneracy conditions of Theorem 12.4.1 will
do. If we now define

f = f ′
|ig(M) ◦ i−1

g

on M , then it is easy to see that f induces the metric g on M , and so our construction
is complete.

Finally, we note that the case of piecewise smooth M follows exactly the same
argument, simply appealing to Theorem 12.4.2 rather than Theorem 12.4.1 and to a
version of the embedding theorem for stratified spaces (cf. [71, 119, 120]). ��

Another way to prove the above Chern–Gauss–Bonnet theorem would be to repeat
the arguments of Theorem 12.4.2, simply removing the condition {ft ≥ u} when
applying Corollary 12.4.5. This leads to the following corollary, which can be thought
of as a random field version of the Chern–Gauss–Bonnet theorem. This corollary will
be useful for us in Chapters 13 and 15 as a computational trick to compute the Euler
characteristic.

Corollary 12.6.2. Let (M, g) be as in Theorem 12.6.1, and f a centered, unit-
variance Gaussian field on M satisfying the conditions of Corollary 11.3.5 and in-
ducing the metric g on M . Then
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ϕ(M) =
dim M∑
j=0

(2π)−j/2

j !

×
∫
∂jM

E

{
α(P⊥

Tt ∂jM
∇ỹ;M)× TrTt ∂jM

(
(−∇2ỹ|∂jM)j

)}
Hj (dt).

More generally,

L0(M,A) =
dim M∑
j=0

(2π)−j/2

j !

×
∫
∂jM∩A

E

{
α(P⊥

Tt ∂jM
∇ỹ;M)× TrTt ∂jM

(
(−∇2ỹ|∂jM)j

)}
Hj (dt).
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Mean Intrinsic Volumes

In the preceding two chapters we devoted a considerable amount of energy to com-
puting the mean Euler characteristics of the excursion sets of smooth Gaussian fields.
However, we know from both Chapters 6 and 7 that the Euler characteristic is but one
of the family of geometric quantifiers known as the Lipschitz–Killing curvatures.

Even when we were dealing with the Euler characteristic alone, the Lipschitz–
Killing curvatures of the parameter space arose in the expression for the mean Euler
characteristics of the excursion sets. In this chapter we want to compute the mean of
the Lipschitz–Killing curvatures of the excursion sets themselves. The main result
will be given in Theorem 13.4.1, which states that, under appropriate conditions,

E
{
Lj (Au(f,M))

} =
dim M−j∑

l=0

[
j + l

l

]
ρl(u)Lj+l (M), (13.0.1)

where the Lj on both sides of this equation are computed with respect to the metric
induced on the parameter space M by the zero-mean, unit-variance Gaussian field f

(cf. (12.2.1)) and the Au(f,M) are, as always, the excursion sets of f above the level
u. The functions ρl remain as in the preceding two chapters (cf. (12.4.2)).

In all, we shall give three proofs of (13.0.1). The first two, which make up the
content of the current chapter, exploit the results of Chapters 11 and 12 and use
some nonstochastic results of geometry to move from Euler characteristics to general
Lipschitz–Killing curvatures.

The first proof, in Section 13.2, will be for isotropic fields with unit variance
defined over subsets of RN . In this case the Lk on both sides of (13.0.1) are the
basic intrinsic volumes (volume, surface area, etc.) that we met first in Chapter 6 and
the proof is quite straightforward. Indeed, all we shall need for the proof are two
basic results of integral geometry—the formulas of Crofton and Hadwiger—which
we shall give in the following section.

The second proof of (13.0.1) will be for the case in which f is more general and
M a Whitney stratified space. For this we shall need a non-Euclidian analogue of
Crofton’s formula, which we give in Section 13.3. This is a new result and should be
of independent interest outside the particular application that we have for it.
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The third proof will come in Chapter 15 when, via a completely new approach,
we shall re-prove the main results of this and the preceding two chapters.

13.1 Crofton’s Formula

Before formulating Crofton’s formula we need to review the idea of the affine Grass-
mannian manifold Graff (N, k), the set of k-dimensional subspaces of RN . The affine
Grassmannian Graff (N, k) is the set of all k-dimensional flats in RN , i.e, all linear
spaces in RN that do not necessarily pass through the origin. The affine Grassmannian
is diffeomorphic to Gr(N, k) × RN . To see this, for V ∈ Graff (N, k) let p(V ) be
the unique point in V closest to the origin and take the mapping

Graff (N, k) 2 V ↔ (V − p(V ), p(V )) ∈ Gr(N, k)× RN.

The space Graff (N, k) is a homogeneous space, being a quotient space of GN ,
the set of rigid motions on RN . Hence it inherits a measure λNk invariant on GN .
Under the above diffeomorphism, this measure factors as the invariant measure, say
νNk , on Gr(N, k) and Lebesgue measure on RN .

There are of course many ways to normalize νNk , and hence λNk . One useful
normalization (useful because of Crofton’s formula below) is to require that

νNk (Gr(N, k)) =
[
N

k

]
,

the flag coefficients of (6.3.12).
With our constants set, we can now formulate Crofton’s formula. In its original

form, it was derived for M in the convex ring.1 We, however, need it in the setting
of Whitney stratified spaces, and in this setting it is due to Bröckner and Kuppe [33].

Theorem 13.1.1 (Crofton’s formula). Suppose M ⊂ RN is a compact, tame,
Whitney stratified space. Then∫

Graff (N,N−k)

Lj (M ∩ V ) dλNN−k(V ) =
[
k + j

j

]
Lk+j (M). (13.1.1)

The Lj in (13.1.1) are all computed with respect to the standard (Euclidean)
Riemannian metric on RN . This is important and somewhat limiting. To avoid this
limitation we shall develop a different, but analogous, result in Section 13.3 below,
after first seeing, in the following section, what we can do with results of this kind.

The special case k = 0 of Crofton’s formula is generally known as Hadwiger’s
formula,2 and is given by

1 See [92, 139] for a full treatment in the setting of the convex ring and also an extension to
basic complexes due originally to Hadwiger [75]. There is also a nice survey of the more
modern theory, which goes considerably beyond what we shall need, in [80].

2 Note that (13.1.2) differs a little from the version of Hadwiger’s formula that we met earlier
in (6.3.11). The difference, however, is superficial, and results only from where one places
the various normalizing constants.
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Lk(M) =
∫

Graff (N,N−k)

L0(M ∩ V ) dλNN−k(V ). (13.1.2)

13.2 Mean Intrinsic Volumes: The Isotropic Case

The existence of Hadwiger’s formula linking, as it does, Lipschitz–Killing curvatures
and Euler characteristics in Euclidean spaces, allows a very simple derivation of the
mean Lipschitz–Killing curvatures of excursion sets of isotropic processes from the
formula for their mean Euler characteristic.

The key point to the argument will rely on taking an isotropic f with unit second
spectral moment. In that case, as we have noted a number of times, the Riemannian
metric that f induces on the parameter space is the standard Euclidean one, and the
Lipschitz–Killing curvatures appearing in Theorems 12.4.1 and 12.4.2 are the simple
Euclidean ones of Section 13.1.

Theorem 13.2.1. Suppose that M ⊂ RN satisfies the conditions of Theorem 13.1.1
with the additional assumption that both M and its cross-sections M ∩ V are (λNK
almost surely) C2, tame, Whitney stratified manifolds. Suppose also that f is a cen-
tered, isotropic Gaussian process on M satisfying the conditions of Corollary 11.3.2
and that

E

{
f 2(t)

}
= 1 and E

{
f 2
i (t)

}
= λ,

for all 1 ≤ i ≤ N , where the fi are the usual partial derivatives of f . Then, for every
0 ≤ j ≤ N ,

E
{
Lj (Au(f,M))

} =
N−j∑
l=0

[
j + l

l

]
λj+lρl(u)Lj+l (M), (13.2.1)

where the Lj , on both sides of the equality, are computed with respect to the standard
Euclidean metric on RN .

Proof. We first note that it suffices to establish (13.2.1) for the case λ = 1. The
general case then follows from the scaling properties (6.3.1) of the Lj .

Thus, assuming that λ = 1, Hadwiger’s formula and Theorem 12.4.2 immediately
yield

E
{
Lj (Au(f,M))

} =
∫

Graff (N,N−j)

E {L0 (Au(f,M) ∩ V )} dλNN−j (V )

=
N−j∑
l=0

ρl(u)

∫
Graff (N,N−j)

Ll (M ∩ V ) dλNN−j (V )

=
N−j∑
l=0

[
j + l

l

]
ρl(u)Lj+l (M),

and we are done. ��
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For an alternative approach to computing the mean Lipschitz–Killing curvatures
in the setting of this section see [176].

13.3 A Gaussian Crofton Formula

Given the simplicity of the above approach for bootstrapping from the mean Eu-
ler characteristics of excursion sets to their mean Lipschitz–Killing curvatures, it is
tempting to try to adopt a similar approach in the general case. The problem in doing
so, however, lies in the fact that Crofton’s formulas are rather specific to manifolds in
RN with its standard Riemannian metric and there does not seem to be an analogous
result for more general manifolds. Thus, we shall now spend a little time developing
a tool that will work in the general setting.

The basic idea will be to replace the cross-sections M ∩ V by something more
appropriate for the manifold setting. In particular, we shall introduce an auxiliary set
of random manifolds D for which the union of the M ∩ D over all D again gives
M and, more importantly, for which Lj (M) can be computed by averaging the Euler
characteristics L0(M ∩D) over D.

The main result, which would seem to be of significant interest beyond the appli-
cation that we have in mind, is as follows.

Theorem 13.3.1. Let M̃ be aC2, n-dimensional manifold (without boundary) embed-
ded in a C3 manifold. Let y1, . . . , yk be centered, unit-variance, independent, iden-
tically distributed Gaussian fields on M̃ satisfying the conditions of Corollary 11.3.5.
For u ∈ Rk define the (random) submanifold

Du =
{
t ∈ M̃ : y1

t = u1, . . . , y
k
t = uk

}
of M̃ , and suppose Zk = (Z1

k , . . . , Z
k
k ) ∼ γRk independently of the field y =

(y1, . . . , yk). Then, for 0 ≤ j ≤ dim(M̃)− k,

E
{
Lj (M̃ ∩DZk

)
} = (2π)−k/2 [k + j ]!

[j ]! Lk+j (M̃), (13.3.1)

where the Lj on both sides of the equation are computed with respect to the Riemann-
ian metric induced on M̃ by the yi .

The reason we call this a “Gaussian Crofton formula’ should be clear by analogy
with the original, Euclidean, Crofton formula (13.1.1). The formulas are similar, but
we have replaced the kinematic averaging under the measure λNN−k with a Gaussian
average. Note, also, that the averaging in (13.3.1) is over both y and Zk .

Proof. We start by noting that it suffices to prove (13.3.1) for the Euler characteristic
ϕ = L0. That is, we need only prove that

E
{
ϕ(M̃ ∩DZk

)
} = (2π)−k/2[k]!Lk(M̃). (13.3.2)
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This follows from the following observation: For j > 0, take Zj ∼ γRj independent
of everything else, and write Zk+j for the concatenation of Zk and Zj . Note that, in
distribution,

M̃ ∩DZk+j
= (

M̃ ∩DZj

) ∩DZk
.

Conditioning first on Zk , apply (13.3.2) to the manifold M̃ ∩DZk
to see that

E
{
Lj

(
M̃ ∩DZk

)} = (2π)j/2

[j ]! E
{
ϕ
(
M̃ ∩DZk+j

)}
= (2π)−k/2 [k + j ]!

[j ]! Lk+j (M̃),

which establishes the general case.
We now turn to establishing (13.3.2). To this end, note that for fixed u ∈ Rk , and

for almost all realizations of y, it follows from the regularity properties of y that Du

is a regular stratified manifold, embedded in M̃ .
Consequently, an attractive route to try to take to prove the theorem would be

to apply our version of the Chern–Gauss–Bonnet theorem (Corollary 12.6.2) to the
(random) manifold M̃∩DZk

and so write the mean Euler characteristic of M̃∩DZk
as

(2π)−(dim(M̃)−k)/2

(dim(M̃)− k)!
∫
DZk

E

{
α(P⊥

TtDZk
∇ỹ; M̃)

× TrTtDZk

(
(−∇2ỹ|DZk

)(dim(M̃)−k)
)}

Hj (dt),

for some suitably regular random field ỹ, which we can take to be a copy of y1,
independent of y1, . . . , yk . All that would then remain would be to compute the
expectation here, over both ỹ and Zk .

Unfortunately, the technicalities involved in applying this appealingly simple
argument are not trivial, and so we shall take a more basic route, via Morse theory.

We shall break the proof into in two parts, firstly fixing Zk and applying Morse
theory, which will eventually involve an averaging over y and ỹ. At the second stage
we shall also average over Zk .

Thus, with Zk = u, we look for a way to express the Euler characteristic of
M̃ ∩ Du = Du in terms of points {t : yt = u} and ∇ỹt , which is in the span of
∇y1

t , . . . ,∇ykt . Denote the latter space by

Lt
�= span(∇yit , 1 ≤ i ≤ k).

With the manifold Du fixed, straightforward calculations show that the Hessian of ỹ
on Du can be written as
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∇2ỹ|D,t = ∇2ỹt −
k∑

i,j=1

〈∇ỹt ,∇yit 〉gijt ∇2y
j
t (13.3.3)

= ∇2ỹt −
k∑

i,j=1

〈PLt∇ỹt ,∇yit 〉gijt ∇2y
j
t ,

where Gt is the k × k matrix with elements

gij,t
�= 〈∇yit ,∇y

j
t 〉,

and g
ij
t are the elements of G−1

t . We note for later use that the matrices Gt have a
Wishart(n, Ik×k) distribution.3

We can now apply Morse’s theorem (Theorem 9.3.2) in an almost sure fashion,
for each realization of the pair y and ỹ, to characterize the Euler characteristic of
M̃ ∩ Du. This gives a point set characterization of ϕ(M̃ ∩ Du) in the usual way. A
representation such as (11.2.9) turns this into an integral over M̃ , and an argument such
as that used to prove Corollary 12.4.5 allows4 us to conclude, under the conditions
of the theorem, that

E
{
ϕ
(
M̃ ∩Du

)}
(13.3.4)

= 1

(n− k)!
∫
M̃

E

{
TrL

⊥
t

(
(−∇2ỹ|D)n−k

)
Jt

∣∣∣y = u, P⊥
Lt
∇ỹ = 0

}
× py,P⊥

Lt
∇ỹ (u, 0)Hn(dt),

where py,P⊥
Lt

∇ỹ is the joint density of y and P⊥
Lt
∇ỹ, and

Jt
�= √

det(Gt ). (13.3.5)

While this formula is similar to many that appear in Chapter 12, there is a new Jacobian
term, Jt , here that deserves a few words. It arises due the fact that whereas previously
we counted points that were critical with respect to the underlying manifold M̃ , we
are now counting points of the form{

t : yt = u, P⊥
Lt
∇ỹt = 0

}
=
{
t : y1

t = u1, . . . , y
k
t = uk, P

⊥
Lt
∇ỹt = 0

}
.

That is, we now have points critical with respect to a random submanifold. By
choosing a convenient basis of TtM̃ it is fairly straightforward to see that the Jacobian

3 Recall that the Wishart(n,#) distribution is defined as the distribution of a matrix W with
elements of the form Wij =∑n

m=1 XmiXmj , where the n vectors Xm = (Xm1, . . . , Xmk)

are independent, each distributed as N(0, #).
4 Obviously, we have allowed ourselves considerable latitude in this argument. Filling in all

the details would take a few pages, but would involve little more than taking the references
we have made and rewriting them in the notation of the present problem. We leave the
details to the masochists and/or pedants among you.
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(13.3.5) is precisely the one that arises in an application of Corollary 12.4.5 needed
to establish (13.3.4).

Furthermore, noting that since yt and ∇yt are independent the same is true of yt
and Lt , and yt and Jt , we can integrate out u in the above to obtain

E
{
ϕ
(
M̃ ∩DZk

)}
= 1

(n− k)!
∫
M̃

E

{
TrL

⊥
t

(
(−∇2ỹ|D)n−k

)
Jt

∣∣∣P⊥
Lt
∇ỹ = 0

}
× pP⊥

Lt
∇ỹ (0)Hn(dt).

Consider the integrand.

E

{
TrL

⊥
t

(
(−∇2ỹ|D)n−k

)
Jt

∣∣∣P⊥
Lt
∇ỹ = 0

}
pP⊥

Lt
∇ỹ (0)

= lim
ε→0

E

{
TrL

⊥
t

(
(−∇2ỹ|D)n−k

)
Jt1{P⊥

Lt
∇ỹt

(B(0, ε))
}

= (2π)−(n−k)/2E

{
TrL

⊥
t

(
(−∇2ỹ|D)n−k

)
Jt

}
,

where we have used the fact that, given the subspace Lt , the pair (∇2ỹ|D,t , Jt ) is
conditionally independent of P⊥

Lt
∇ỹ, which then has a standard Gaussian distribution

on L⊥
t .

We now condition on (∇2ỹ|D,t , Jt ), so that the next step is to compute the condi-
tional expectation

E

{
TrL

⊥
t

(
(−∇2ỹ|D)n−k

)
Jt

∣∣∣∇2ỹ|D,t , Jt

}
.

Because of the conditioning, this is just the expected value of the trace of a fixed form
α ∈ ∧n−k,n−k

(Tt M̃), restricted to a random subspace of dimension n − k of TtM̃ .
Lemma 13.5.1 below shows how to evaluate such expectations, and in our case it
follows from the lemma that

E

{
TrL

⊥
t

(
(−∇2ỹ|D)n−k

)
Jt

∣∣∣∇2ỹ|D,t , Jt

}
=
(
n

k

)−1

TrTt M̃
(
(−∇2ỹ|D)n−k

)
Jt .

(13.3.6)
To complete the computation, we now need to evaluate

E

{
TrTt M̃

(
(−∇2ỹ|D)n−k

)
Jt

}
.

Recall (13.3.3), which gives a different way of writing ∇2ỹ|D . In particular, consider
the second term in the last expression there, which involves the term

k∑
i,j=1

〈PLt∇ỹt ,∇yit 〉gijt ∇2y
j
t .
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We want a more user-friendly version of this. To obtain it, for the moment we drop
the dependence on t and define

Vi
�=

k∑
j=1

g
−1/2
ij 〈PL∇ỹ,∇yi〉,

where the g
−1/2
ij are the elements of the matrix G−1/2 (= G

−1/2
t ). Then, conditional

on ∇y1, . . . ,∇yk,∇2y1, . . . ,∇2yk , we have V ∼ N(0, Ik×k). Since the conditional
distribution does not depend on the conditioning variables, the Vi are actually inde-
pendent of them. Furthermore, since the ∇yi and ∇2yj are all independent of one
another, we have that for each t ,

k∑
i,j=1

〈PLt∇ỹt ,∇yit 〉gijt ∇2y
j
t

L=
k∑

i,j=1

ViW
−1/2
ij ∇2yj ,

where W ∼ Wishart(n, Ik×k), independently of everything else.
Consequently, by (13.3.3), we can write

TrTt M̃
(
(−∇2ỹ|D)n−k

)
Jt (13.3.7)

L= TrTt M̃

⎛⎜⎝
⎛⎝∇2ỹ −

k∑
i,j=1

ViW
−1/2
ij ∇2yi

⎞⎠n−k
⎞⎟⎠√det(W),

where, as above, W ∼ Wishart(n, Ik×k) and the random matrices ∇2ỹt , ∇2y1
t , . . . ,

∇2ykt are independent and identically distributed.
From Lemma 13.5.2 below it then follows that

E

{
TrTt M̃

(
(−∇2ỹ|D)n−k

)
Jt

}
= (2π)−k/2 n!

(n− k)!ωkE

{
TrTt M̃

(
(−∇2ỹ)n−k

)}
.

(13.3.8)
This last expectation, however, is not new, for we have already computed almost
identical terms in Chapter 12. In particular, it follows from Corollary 12.3.2 and the
computations at the end of the proof of Theorem 12.4.2 that∫

M̃

E

{
TrTt M̃ ((−∇2ỹt )

n−k)
}

Hn(dt) = (2π)(n−k)/2(n− k)!Lk(M̃).

Putting all the pieces together, we have enough to prove (13.3.1), and so we are done,
modulo proving Lemmas 13.5.1 and 13.5.2, which we defer to Section 13.5. ��

Our next step will be to extend Theorem 13.3.1 from manifolds to Whitney strat-
ified manifolds. In fact, one can go marginally further than this. Define a family of
additive functionals �j

k on C2 Whitney stratified submanifolds M of a manifold M̃

by setting, in the notation of Theorem 13.3.1,



13.3 A Gaussian Crofton Formula 339

�
j
k (M)

�= E
{
Lj (M ∩DZk

)
}
.

Then the following result shows that the �
j
k and the Ll are very closely related.

Theorem 13.3.2. Let M̃ , y1, . . . , yk , Zk and Du be as in Theorem 13.3.1, and let M
be a regular stratified submanifold of M̃ . Then, for all j ≤ dim(M)− k,

E
{
Lj (M ∩DZk

)
} = (2π)−k/2 [k + j ]!

[j ]! Lk+j (M).

In the notation of the linear functionals described above, this can be written as

�
j
k = (2π)−k/2 [k + j ]!

[j ]! Lk+j .

Proof. Most of the hard work has been done in the proof of Theorem 13.3.1, and what
remains is some bookkeeping. As was the case for the proof of Theorem 13.3.1, the
strategy of the proof is to derive an expression to which we can apply Lemma 13.5.2.
Similar arguments to those appearing in the proof of Theorem 13.3.1, but taking into
account that we now have boundary terms to deal with, show that

E
{
ϕ
(
M ∩DZk

)}
(13.3.9)

=
n∑

l=k

1

(l − k)!
∫
∂lM

E

{
α
(
ηt ;M ∩DZk

)
TrL

⊥
t ((−∇2ỹ|D)l−k)Jt

∣∣∣
PLt∇ỹ = 0

}
pPLt∇ỹ (0)Hl (dt),

where ỹ is again an independent copy of the yj being used as a Morse function and
α is the normal Morse index of Section 9.2. As for the other terms,

Jt =
√

det(Gt ),

where Gt is the k × k matrix with elements

gij,t
�= 〈PTt ∂lM∇yit , PTt ∂lM∇y

j
t 〉,

while

Lt = span
{
PTt ∂lM∇yit , 1 ≤ i ≤ k

}
(13.3.10)

and we write L⊥
t to denote the normal space to Lt in Tt∂lM . Finally, we have

ηt = ∇ỹt − PLt∇ỹt (13.3.11)

= P⊥
Tt ∂lM

∇ỹt +
l∑

i,j=1

〈∇ỹt , PTt ∂lM∇yit 〉gijt PTt ∂lM∇y
j
t ,



340 13 Mean Intrinsic Volumes

and

∇2ỹ|D,t = ∇2ỹt −
l∑

i,j=1

〈∇ỹt , PTt ∂lM∇yit 〉gijt ∇2y
j
t + Sνt . (13.3.12)

Here the g
ij
t are the elements of G−1

t , S is the second fundamental form of ∂lM as it
sits in M̃ , and

νt = P⊥
Tt ∂lM

∇ỹt −
l∑

i,j=1

〈∇ỹt , PTt ∂lM∇yit 〉gijt P⊥
Tt ∂lM

∇y
j
t . (13.3.13)

The term ∇2ỹ|D,t in (13.3.12) deserves some explanation. It is the Hessian of the
restriction of ỹ to ∂lM ∩DZk

, and seeing that it has the above form takes some work.
Consider two vector fields X,W on ∂lM ∩ DZk

and let ∇̂ denote the Levi-Civitá
connection of ∂lM ∩DZk

. Then, from the definition (7.3.22) of the Hessian and the
compatability property (7.3.11) of ∇̂, we have

∇2ỹ|D(W,X) = W 〈∇ỹ, X〉 − 〈∇ỹ, ∇̂WX〉
= W 〈∇ỹ, X〉 − 〈∇ỹ,∇WX〉 + 〈P⊥

Tt ∂lM
∇WX,∇ỹ〉

+
l∑

r,s=1

〈∇WX,PTt ∂lM∇yr 〉grst 〈PTt ∂lM∇ys,∇ỹ〉,

with the second line coming from the form of the projection of vectors in TtM̃ to
Tt (∂lM ∩DZk

).
Now note that

〈X,PTt ∂lM∇yr 〉 = 〈W,PTt ∂lM∇yr 〉 = 0,

for all 1 ≤ r ≤ k, which implies, again by (7.3.11) and (7.3.22), that

〈∇WX,PTt ∂lM∇yr 〉 = −∇2yr|∂lM(W,X).

Substituting this in the above gives

∇2ỹ|D(W,X) = ∇2ỹ(W,X)+ 〈∇WX,P⊥
Tt ∂lM

∇ỹ〉

−
l∑

r,s=1

〈∇ỹ, PTt ∂lM∇ys〉grst ∇2yr|∂lM(W,X)

= ∇2ỹ(W,X)+ SP⊥
Tt ∂lM

∇ỹ (W,X)

−
l∑

r,s=1

〈∇ỹ, PTt ∂lM∇ys〉grst ∇2yr|∂lM(W,X),
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on applying the Weingarten equation (7.5.12). Furthermore, by the definition (7.5.8)
of the second fundamental form and the Weingarten equation, the rightmost term in
the last summand can be rewritten as

∇2yr|∂lM(W,X) = ∇2yr(W,X)+ 〈∇WX,P⊥
Tt ∂lM

∇yr 〉.

Substituting this into the previous equation gives

∇2ỹ|D(W,X)

= ∇2ỹ(W,X)−
l∑

r,s=1

〈∇ỹ, PTt ∂lM∇ys〉grst ∇2yr(W,X)+ Sνt (W,X),

which is (13.3.12). Thus, all the terms in (13.3.9) are well defined and we can turn
to evaluating the right-hand side there.

As in the proof of Theorem 13.3.1, this evaluation relies on getting everything
into just the right form for applying Lemmas 13.5.1 and 13.5.2.

Applying Lemma 13.5.1 to (13.3.9) and using the independence of ∇ỹ and ∇2ỹ,
we immediately find that

E
{
ϕ
(
M ∩DZk

)}
=

n∑
l=k

1

(l − k)!

×
∫
∂lM

E{α(ηt ;M ∩DZk
)TrL

⊥
t ((−∇2ỹ|D)l−k)Jt |PLt∇ỹ = 0}pPLt∇ỹ (0)Hl (dt)

=
n∑

l=k

(2π)−(l−k)/2 k!
l!

×
∫
∂lM

E{α(ηt ;M ∩DZk
)TrTt ∂lM((−∇2ỹ|D)l−k)Jt }Hl (dt).

We now want to apply Lemma 13.5.2 to the expectation here. The expression
above for ∇2ỹ|D is of the right form, but this is not so for the term involving the
normal Morse index. However, an application of Theorem 9.2.6 shows that in fact,

α(ηt ;M ∩DZk
) = α(νt ;M),

which is of the right form. (Recall that ηt and νt are defined, respectively, by (13.3.11)
and (13.3.13).)

Consequently, using this equivalence and Lemma 13.5.2, we find that
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E
{
ϕ
(
M ∩DZk

)}
=

n∑
l=k

(2π)−(l−k)/2 k!
l!
∫
∂lM

E

{
α (νt ;M)TrTt ∂lM((−∇2ỹ|D)l−k)Jt

}
Hl (dt)

=
n∑

l=k

(2π)−l/2 [k]!
(l − k)!

×
∫
∂lM

E

{
α
(
PTt ∂lM∇ỹt ;M

)
TrTt ∂lM((−∇2ỹ)l−k)

}
Hl (dt).

Once again, similar computations to those appearing at the end of the proof of Theo-
rem 12.4.2 show that the final expression above is equal to

(2π)−k/2[k]!Lk(M),

and so we are done. ��

13.4 Mean Intrinsic Volumes: The General Case

We can now formulate and prove the main theorem of this chapter, which generalizes
to general Whitney stratified manifolds and to nonisotropic processes the Euclidean
result of Theorem 13.2.1.

Theorem 13.4.1. Suppose that M is a regular stratified manifold and that f is a
centered, unit-variance, Gaussian process on M satisfying the conditions of Corol-
lary 11.3.2.

Then, for every 0 ≤ j ≤ dim(M),

E
{
Lj (Au(f,M))

} =
dim M−j∑

l=0

[
j + l

l

]
ρl(u)Lj+l (M), (13.4.1)

where the Lk on both sides of this equation are computed with respect to the metric
induced by f as at (12.2.1), the combinatorial coefficients are defined in (6.3.12),
and the ρl remain as in (12.4.2).

Proof. The proof mimics that of the Euclidean, isotropic version of the result in
Theorem 13.2.1, using the Gaussian Crofton formula of Theorem 13.3.2 rather than
the standard Crofton formula.

We start by fixing 0 ≤ j ≤ dim(M) and again introducing an auxiliary set
of Gaussian processes y1, . . . , yj and a Gaussian random variable Zj as in Theo-
rem 13.3.1, satisfying the conditions required there. As before, write

Du =
{
t ∈ M : y1

t = u1, . . . , y
j
t = uj

}
.

Then, by Theorem 13.3.2,
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E
{
Lj (Au(f,M))

} = (2π)j/2

[j ]! E
{
L0(Au(f,M) ∩DZj

)
}

= (2π)j/2

[j ]! E
{
E
{
L0(Au(f,M) ∩DZj

)
∣∣DZj

}}
.

We now note that with probability one, the sets M ∩ DZj
are Whitney stratified

manifolds,5 and so we can apply Theorem 12.4.2 to compute the inner expectation
above, giving

E
{
Lj (Au(f,M))

} = (2π)j/2

[j ]!
dim M−j∑

l=0

ρl(u)E
{
Ll (M ∩DZk

)
}

= (2π)j/2

[j ]!
dim M−j∑

l=0

ρl(u)(2π)
−j/2 [l + j ]!

[l]! Lj+l (M),

again by Theorem 13.3.2. However, this is (13.4.1) and so we are done. ��

13.5 Two Gaussian Lemmas

We conclude this chapter with the two lemmas we promised during the proof of
Theorem 13.3.1. They are stated in somewhat more generality than what is needed
there. It turns out to be not much harder to prove the more general results, and as
currently formulated they may also turn out to have broader application.

Both lemmas turn out to be exercises in (statistical) multivariate analysis, for
which the standard reference is Anderson [12]. In particular, both proofs exploit
some basic facts of Wishart distributions, which we now summarize and proofs of
which can be found in [12, Section 13.3].

As noted earlier, the Wishart (n,#) distribution is the distribution of a matrix W

with elements of the form

Wij =
n∑

m=1

XmiXmj ,

where the k n-dimensional vectors Xm = (Xm1, . . . , Xmk) are independent, each
distributed as N(0, #). Alternatively, writing X for the n× k matrix with Xm being

the mth row, we have W
L= X′X.

5 This follows from arguments similar to those used in Chapter 12 to establish the fact that
Au(f,M) is a Whitney stratified manifold. Specifically, note first that

M ∩DZj
=
{
t ∈ M : yit − Zj = 0, 1 ≤ i ≤ k

}
.

Since the components yit are assumed suitably regular and Zi is just a random shift of
each component, the regularity of M ∩ DZi

is essentially the same as the zero sets of the
vector-valued field y.
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The probability density of (the elements of) W is of the form

|W |(n−k−1)/2e−(Tr W)/2

2nk/2�k(
n
2 )

, (13.5.1)

where

�k(n)
�= πk(k−1)/4

k∏
j=1

�

(
n− 1

2
(j − 1)

)
.

We shall need two properties of the Wishart(n, Ik×k) distribution. The first is
the rather immediate fact that for any W ∼ Wishart(n, Ik×k) and any orthogonal
matrix A,

AWA′ L= W. (13.5.2)

The second follows immediately from the fact that the density (13.5.1) can be rewrit-
ten as ∏p

j=1 λ
(n−k−1)/2
j e

−∑k
j=1 λj /2

2nk/2�k(
n
2 )

,

where λ1 ≤ · · · ≤ λk are the (real) eigenvalues of W . It states that for W ∼
Wishart(n, Ik×k),

det(W)
L=

k∏
j=1

χ2
n+1−j , (13.5.3)

where we read the right-hand side as “the product of k independent χ2 variables, with
degrees of freedom running from n+ 1− k to n.’’ An immediate consequence of this
is that

E {det(W)} =
k∏

j=1

(n+ 1 − j) = n!
(n− k)! . (13.5.4)

Here is the first of our two lemmas.

Lemma 13.5.1. Let (V , 〈, 〉) be an inner product space with dim(V ) = n. Suppose
that Lk ⊂ V is a uniformly distributed random subspace of V of dimension k, in

the sense that gLk
L= Lk for all orthonormal transformations g of V . Then, for all

double forms α ∈∧j,j
(V ),

E

{
TrLk (α)

}
=
⎧⎨⎩
(kj)

(nj)
TrV (α), j ≤ k,

0 otherwise.
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Proof. Firstly, we note that the case j > k is trivial, since then α ≡ 0 by definition.
Secondly, by the linearity of double forms we note that it suffices to consider the case

α = (
ω1 ∧ · · · ∧ ωj

) · (ω1 ∧ · · · ∧ ωj

)
(13.5.5)

for some orthonormal set {ω1, . . . , ωj }. Note that from the definition (7.2.6) of the
trace operator,

TrV (α) = TrV
((
ω1 ∧ · · · ∧ ωj

) · (ω1 ∧ · · · ∧ ωj

)) = 1. (13.5.6)

Finally, we claim that it also suffices to consider only the case j = k. To see this,
note that for an α of the above type,

TrLk (α) =
∑

{i1,...,ij }⊂{1,...,k}
α
((
θi1 , . . . , θij

)
,
(
θi1 , . . . , θij

))
,

where {θ1, . . . , θk} is a (random) orthonormal basis for Lk . Note that the individual
terms in the sum all have an identical expectation, due to the assumed distributional
invariance of Lk (and its subspaces) under orthonormal transformation. Hence

E

{
TrLk (α)

}
=
(
k

j

)
E
{
α
((
θ1, . . . , θj

)
,
(
θ1, . . . , θj

))}
(13.5.7)

=
(
k

j

)
E

{
TrLj (α)

}
.

Thus, to compute the expected value of the trace of an α ∈ ∧j,j
(V ) on a uniform

subspace of dimension k, it suffices to compute it on a uniform subspace of dimension
j . Consequently, we shall now concentrate on the form (13.5.5) for the case j = k.

To this end we introduce an auxiliary set of random vectors, X1, . . . , Xk , taken
to be independent, identicially distributed with distribution γV .6 Then, for α of the
form (13.5.5), it follows from the definition of the trace operator that

α ((X1, . . . , Xk), (X1, . . . , Xk)) = det(g)TrLk (α),

where
gij = 〈Xi,Xj 〉 ∼ Wishart(n, Ik×k)

is independent of Lk .
Let Ṽ ∗ = span{ω1, . . . , ωk} and, using the usual identification of V and its dual

V ∗, let Ṽ be the corresponding subspace of V . Define

Yi = PṼ Xi ∼ γṼ .

Note that

6 Recall that this means that for any x ∈ V ∗, the dual of V , the real-valued random variable
x(X) is distributed as N(0, ‖x‖).
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α ((X1, . . . , Xk), (X1, . . . , Xk)) = α ((Y1, . . . , Yk), (Y1, . . . , Yk)) .

However, the right-hand side here has a particularly simple distribution, since

α ((Y1, . . . , Yk), (Y1, . . . , Yk)) = det (g̃) ,

where

g̃ij = 〈Yi, Yj 〉 ∼ Wishart(k, Ik×k).

Collecting equivalences, we now find that

det(g)TrLk (α) = det(g̃).

Taking expectations over Lk , g, and g̃, recalling the independence of Lk and g, and
applying (13.5.4), we find that

E

{
TrLk (α)

}
=
(
n

k

)−1

=
(
n

k

)−1

TrV (α),

the last equality following from (13.5.6). Combining this with (13.5.7) completes
the proof. ��

The second, unrelated, lemma is the following.

Lemma 13.5.2. We consider three sets of random variables: a vector Z, a matrix W ,
and a sequence U1, . . . , Uk+1 of vectors. All are independent, with distributions

Z ∼ N(0, Ik×k), W ∼ Wishart(n, Ik×k), Uj ∼ N(0, #),

where # is an arbitrary covariance matrix.
Then, for any homogeneous functions Gl of degree l and G̃r of degree r ,

E

⎧⎨⎩Gl

⎛⎝Uk+1 +
k∑

i,j=1

ZiW
−1/2
ij Uj

⎞⎠ G̃r

⎛⎝ k∑
i,j=1

ZiW
−1/2
ij

⎞⎠√det(W)

⎫⎬⎭
= (2π)−(k+r)/2 n!

(n− k)!
ωn−l

ωn−l−k−r

E {Gl(U1)}E{G̃r (Z)}.

In particular,

E

⎧⎪⎨⎪⎩
⎛⎝Uk+1 +

k∑
i,j=1

ZiW
−1/2
ij Uj

⎞⎠2l √
det(W)

⎫⎪⎬⎪⎭
= (2l)!

l!2l (2π)
−k/2 n!

(n− k)!
ωn−2l

ωn−2l−k

E

{
U2l

1

}
.
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Proof. For ease of notation, we first consider the case G̃r ≡ 1, since there is really
little change until the final step.

Let PW denote the distribution of W on Symk×k , the space of k × k symmetric
matrices. Then

E

⎧⎨⎩Gl

⎛⎝Uk+1 +
k∑

i,j=1

ZiW
−1/2
ij Uj

⎞⎠√det(W)

⎫⎬⎭ (13.5.8)

=
∫

Symk×k

∫
Rk

√
det(w)

× E

⎧⎨⎩Gl

⎛⎝Uk+1 +
k∑

i,j=1

ziw
−1/2
ij Uj

⎞⎠⎫⎬⎭ e−|z|2/2

(2π)k/2
dzPW(dw)

=
∫

Symk×k

∫
Rk

det(w)

× E

⎧⎨⎩Gl

⎛⎝Uk+1 +
k∑

j=1

zjUj

⎞⎠⎫⎬⎭ e−zwz′/2

(2π)k/2
dzPW(dw).

In order to simplify this expression, fix Z and consider the expectation over W .
Take an orthornormal matrix, say OZ , with first row equal to Z/|Z| and the re-
maining rows chosen arbitrarily (but consistently with the first). Then, as we noted

at (13.5.2), OZWO ′
Z

L= W , and we can write det(OZWO ′
Z) as the product of χ2

random variables (cf. (13.5.3)) the first of which is actually ZWZ′/|Z|2.
Taking the expectation over these terms, we have k − 1 expectations of χ2 vari-

ables, along with

E

{
ZWZt

|Z|2 e−ZWZt/2
∣∣∣∣Z} = E

{
Xne

−|Z|2Xn/2
∣∣∣∣Z} = d

dλ
MXn(λ)

∣∣∣∣
λ=−|Z|2/2

,

whereXn ∼ χ2
n andMXn is its moment-generating function. However, this is equal to

d

dλ

(
1

1 − 2λ

)n/2 ∣∣∣∣
λ=−|Z|2/2

= n

(
1

1 + |Z|2
)n/2−1

.

Substituting this into the last line of (13.5.8) gives that the expectation there is equiv-
alent to

(2π)−k/2
k−1∏
j=1

E

{
χ2
n−j

} ∫
Rk

n(1 + |z|2)l/2−n/2−1 (13.5.9)

× E

{
Gl

(
Uk+1 +∑k

i=1 ziUi√
1 + |z|2

)}
dz

= (2π)−k/2 n!
(n− k)!E {Gl (U1)}

∫
Rk

(1 + |z|2)l/2−n/2−1 dz.
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Finally, since the integral here is, effectively, that of a multivariate t density with
n− l − k + 2 degrees of freedom and covariance parameter (n− l − k + 2)−1Ik×k

(cf. [12]), we have∫
Rk

(1 + |z|2)l/2−n/2−1 dz = πk/2�
(
n−l−k

2 + 1
)

�
(
n−l

2 + 1
) = ωn−l

ωn−l−k

,

and after putting all the pieces together, the proof is done.
Now suppose that G̃r is not identically 1. Then, the proof proceeds exactly as

above up to the point (13.5.9), keeping in mind that we had made the substitution

zi �→ z̃i =
k∑

i,j=1

W
−1/2
ij zj ,

and the integral ∫
Rk

(1 + |z|2)l/2−n/2−1 dz

is replaced with ∫
Rk

G̃r (z)(1 + |z|2)l/2−n/2−1 dz.

Finally, exploit the homogeneity of G̃r to see that

E
{
G̃r (Tn−l−k+2)

}
= E

{(
χ2
n−l−k+2

)−r/2
}

E
{
G̃r (Z)

}
= 2−r/2 · π−(n−l−k)/2ωn−l−k

�
(
n−l−k+2−r

2

)
�
(
n−l−k+2

2

) E
{
G̃r (Z)

}
. ��
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Excursion Probabilities for Smooth Fields

As we have mentioned more than once before, one of the oldest and most important
problems in the study of stochastic processes of any kind is to evaluate the excursion
probabilities

P

{
sup
t∈T

f (t) ≥ u

}
, (14.0.1)

where f is a random process over some parameter set T . As usual, we shall restrict
ourselves to the case in which f is centered and Gaussian and T is compact for the
canonical metric of (1.3.1).

In this chapter we shall restrict ourselves to the case of parameter sets that are
locally convex manifolds, and so shall write M rather than T for the parameter space.
The reason why we require local convexity will become clear from a counterexample
in Section 14.4.4.

In particular, we shall show that for such M and for smooth Gaussian random
fields f ,∣∣∣∣P{sup

t∈M
f (t) ≥ u

}
− E {ϕ (Au(f,M))}

∣∣∣∣ < O
(
e−αu2/(2σ 2)

)
, (14.0.2)

where ϕ is the Euler characteristic, Au(f,M) is the excursion set of f over M , σ 2

is the variance of f (assumed constant), and α > 1 is a constant that we shall be
able to identify. Since we already have explicit expressions for E{ϕ(Au(f,M))} in
Chapters 11 and 12, we can rewrite (14.0.2) as

P

{
sup
t∈M

f (t) ≥ u
}
= C0�

( u
σ

)
+ uNe−u2/2σ 2

N∑
j=1

Cju
−j (14.0.3)

+ o
(
e−αu2/2σ 2)

,

where the Cj are constants depending on σ 2 and the Lipschitz–Killing curvatures of
M with the Riemannian structure induced by f , and N = dim(M).
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A little thought shows that (14.0.3) is really a remarkable result. If we think of
the right-hand side as an expansion of the form

C0�
( u
σ

)
+ e−u2/2σ 2

N∑
j=1

Cju
N−j + error,

it would be natural to expect that the error term here would be the “next’’ term of
what seems like the beginning of an infinite expansion for the excursion probability,
and so of order u−1e−u2/2σ 2

. However, (14.0.3) indicates that this is not the case.
Since α > 1, the error is actually exponentially smaller than this.

Our main result, which formalizes the above, will be given in Theorem 14.3.3.
It has a number of precursors, the closest being a recent paper [159] with Akimichi
Takemura, from which most of this chapter is taken.1 Takemura and Kuriki [148]
had a version of Theorem 14.3.3 for Gaussian fields with finite Karhunen–Loève
expansions. Their approach was somewhat different from the one that is adopted here,
in that they used the tube formulas of Chapter 10 to compute the excursion probability,
and showed, via a kinematic formula on the sphere, that this is equivalent (up to a
superexponentially small error) to computing the expected Euler characteristic. In
both [148] and [159] it was recognized that the expansion in (14.0.3) is actually the
expected Euler characteristic of an excursion set.

An important precursor to all of these results was an approximation of Piterbarg
[126, 127], who obtained a result like (14.0.3), over a class of subsets RN , although
without realizing that the expected Euler characteristic of an excursion set was in-
volved. We shall return to Piterbarg’s seminal results at the end of the chapter, when
we can appreciate them fully with the benefits of hindsight.

There is also a rich literature of results, dating back over half a century to Rice’s
formula (11.1.4) on R1 and thirty years to [2] for the first calculation of an expected
Euler characteristic, which uses these formulas to approximate excursion probabil-
ities. Beyond the theory, these are approximations that have been heavily used by
practicioners in a wide variety of areas (cf. [8], our planned next volume). The liter-
ature of applications, naturally enough, had little, if anything, to say about either the
validity or the accuracy of the approximation. The theoretical papers (which gener-
ally treated only stationary processes over smooth Euclidean domains) were able to
give various justifications for the validity of the approximation, but were never able
to identify its precise level of accuracy. Doing so, particularly for the wide class of
parameter spaces with which we are working, is the central aim of this chapter.

The main result of this chapter is contained in Theorem 14.3.3, which gives a
precise bound on the difference between excursion probabilities and expected Euler
characteristics of excursion sets for Gaussian fields.

The path toward proving Theorem 14.3.3 is surprisingly technical, although the
idea behind it is actually quite simple. In principle, since we do not know much

1 In [159], piecewise smooth manifolds were defined in a somewhat different fashion, but
this leads to no significant differences in either the results or their proofs.
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about how to compute excursion probabilities, but we do know a lot about comput-
ing expectations, we turn the probability problem into an expectation problem by
introducing the random variable

Mu
�= the number of global suprema above the level u.

Suppose that f has, almost surely, a unique global supremum, a situation that will
generally hold (as we shall show) for smooth random fields. Then

Mu =
{

1, supM f (t) ≥ u,

0 otherwise.

It is therefore immediate that

P
{

sup
t∈M

f (t) ≥ u
} = E {Mu} .

In order to compute E{Mu}we need to find a point process representation forMu itself,
much as we did for the Euler characteristic, in which case the representation came
ready made from Morse theory. We can then use the theory of Chapter 12 to develop
an integral expression for E{Mu}, analogous to those we developed for computing
E{ϕ(Au)}. Although we were actually able to evaluate the integral expression for
E{ϕ(Au)}, it turns out to be impossible to evaluate it for E{Mu}. Consequently, we
shall take the difference between the two expressions, and work on this in order to
bound |E{Mu} − E{ϕ(Au)}| or equivalently, |P{supt∈M f (t) ≥ u} − E{ϕ(Au)}|. All
of this is done in Sections 14.1 and 14.2 for quite general smooth random fields.
In other words, Gaussianity is not assumed, and so these arguments lay the basis
for quite a general theory. In Section 14.3 we specialize to the Gaussian case and
derive bounds that begin to look computable. This is the central Theorem 14.3.3 we
mentioned above. Finally, in Section 14.4, we shall see how to apply Theorem 14.3.3
in specific Gaussian scenarios, for which, after some work, the bounds become simple
and explicit.

The first step of this procedure, that of finding a useful point process representation
for Mu, turns out to be surprisingly difficult and extremely technical. We therefore
start with it.

14.1 On Global Suprema

Our setting will be that of Chapter 12, so that (M, g)will be anN -dimensional, locally
convex, regular stratified manifold (M = ⋃N

j=0 ∂jM) embedded in a C3 manifold

(M̃, g̃).
Furthermore, we take a random process f̃ ∈ C2(M̃), write f for the restriction

of f̃ to M , and assume that f is a Morse function on M .
Of course, since f is random, each of the above requirements on f̃ and f is

assumed to hold with probability one.
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However, our argument starts in a purely deterministic setting, searching for a
way to characterize global suprema of smooth functions. Thus, so as to make it clear
which parts of the argument are deterministic and which stochastic, we start with (a
realization of f̃ , denoted by) h̃, which satisfies

h̃ ∈ C2(M̃), h
�= h̃|M is a Morse function on M.

14.1.1 A First Representation

Our first representation of global suprema lies in the following lemma, whose main
contribution lies in its third set of conditions.

Lemma 14.1.1. With M , h̃, and h as above, fix t ∈ ∂jM , for some 0 ≤ j ≤ N .
Choose αt ∈ C2(M, (−∞, 1]) such that

αt (s) = 1 ⇒ h(t) = h(s), αt (t) = 1.

Then t is a maximizer ofh above the level u if and only if the following three conditions
hold:

(i) h(t) ≥ u.
(ii) ∇h̃(t) ∈ NtM , where NtM is the normal cone to M at t . Thus t is an extended

outward critical point of h (cf. Definition 9.3.4).
(iii) For all t ∈ M ,

h(t) ≥ sup
s∈M\{t}

ht (s),

where for all s ∈ M ,

ht (s)
�=
{

h(s)−αt (s)h(t)
1−αt (s)

, αt (s) �= 1,

h(s), αt (s) = 1.

Furthermore, if ∇2αt (t) is nondegenerate, and t is a critical point of h|∂jM , then
for any C2 curve c : (−δ, δ) → ∂jM with c(0) = t, ċ(0) = Xt ∈ Tt∂jM ,

lim
u→0

ht (c(u)) =
∇2h|∂jM(t)(Xt ,Xt )− ∇2αt|∂jM(t)(Xt ,Xt )h(t)

−∇2αt
|∂jM(t)(Xt ,Xt )

. (14.1.1)

Note that the condition that αt (t) = 1 ensures that for each t ∈ M , t is a critical
point of αt .

Proof. The condition h(t) ≥ u is self-evident. Suppose, then, that t ∈ ∂iM , 0 ≤
i ≤ k, is a maximizer of h. Then, ∇h̃(t) ∈ NtM . Otherwise, there exists a direction
Xt ∈ StM such that g̃t (Xt ,∇h̃(t)) > 0 and t cannot be a maximizer.

Because t is a maximizer, for all s such that αt (s) < 1 it follows that
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h(s)− αt (s)h(t)

1 − αt (s)
< h(t).

On the other hand, if αt (s) = 1, then, by choice of αt , h(s) = h(t), which proves that

h(t) ≥ sup
s∈M\{t}

ht (s).

To prove the reverse implication, assume that t is an extended outward critical
point of h|∂iM and

h(t) ≥ sup
s∈M\{t}

ht (s).

Now suppose that t is not a maximizer of h. Then there exists s ∈ M \ {t} such that

h(t) < h(s).

In particular, for such an s, our choice of αt implies that αt (s) < 1. It follows that

h(t) <
h(s)− αt (s)h(t)

1 − αt (s)
,

which yields a contradiction.
The limit (14.1.1) follows from two applications of l’Hôpital’s rule. Specifically,

we note that t is a critical point of h|∂iM by assumption and the properties of αt imply
that t must also be a nondegenerate critical point of αt . Therefore,

lim
u→0

h(c(u))− αt (c(u))h(t)

1 − αt (c(u))
= lim

u→0

d
du

(
h(c(u))− αt (c(u))h(t)

)
d
du

(1 − αt (c(u)))

= lim
u→0

d2

du2

(
h(c(u))− αt (c(u))h(t)

)
d2

du2 (1 − αt (c(u)))
.

To compute the numerator and denominator here note the following: Fix a t ∈ ∂iM

and take β ∈ C2(∂iM) for which t is a critical point of β. Let c : (−δ, δ) → ∂iM be
a C2 curve with c(0) = t and ċ(0) = Xt . Then

lim
u→0

d2

du2
β(c(u)) = ∇2β(t)(Xt ,Xt ).

Apply this fact to each term in the last ratio above and use the assumed properties
of αt to complete the proof. ��

Although we are currently in a deterministic setting, it is nevertheless worthwhile
to “think stochastically’’ for a moment, to see what Lemma 14.1.1 has gained us. A
much simpler and, indeed, trivial result would be to say that t is a maximizer of h if
and only if conditions (i) and and (ii) of the lemma hold, and if (iii) is replaced by
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h(t) ≥ sup
s∈M\{t}

h(s).

(Of course, this replacement for (iii) means that (i) and (ii) must automatically hold.)
This seems far simpler than the original (iii) and does not require the introduction of
the seemingly unnecessary function αt .

However, now think of h ≡ f as a mean zero, unit-variance Gaussian field, and
let αt (s) = ρ(t, s), where ρ is the correlation function of f . It is trivial to check that
for each t �= s in M ,

E
{
f (t)f t (s)

} ≡ 0,

so that f (t) and sups∈M\{t} f t (s) are independent, something that is not true of f (t)
and sups∈M\{t} f (s). It is to gain this independence that we have introduced αt and
ht . In fact, if life were good, we would stop here and count ourselves lucky at having
already found a useful point process representation for global suprema, as required
in the outline of our plan of attack. However, life is not always good, and indeed, we
shall soon see that the function (s, t) �→ ht (s) can have some unpleasant properties.

14.1.2 The Problem with the First Representation

Despite all that we have said so far about the functions ht , we have not looked too
closely at their properties. From (14.1.1) we know that ht (s) is continuous as s → t

in ∂jM , but we have not looked at other directions. In fact, in other directions ht is
badly behaved. It is straightforward to check, again by two applications of l’Hôpital’s
rule, that

∇h̃(t) ∈ NtM ⇐⇒ sup
s∈M\{t}

ht (s) < ∞, (14.1.2)

∇h̃(t) ∈ NtM ⇒ inf
s∈M\{t}h

t (s) = −∞.

In other words, there are paths of approach to t , in M but not in ∂jM , along which the
behavior of ht is highly singular. We now begin attempting to resolve this singularity,
with the solution finally appearing in Corollary 14.1.5, which gives a useable point
process representation for global maximizers. The stochastic version of the solution
appears in Corollary 14.1.6.

14.1.3 A Second Representation

Our aim in this section is to replace the function ht we studied above by something
smoother, although, unfortunately, it will be somewhat more involved. In order to
profit from the characterization of global maxima as certain types of extended outward
critical points (cf. Lemma 14.1.1), we shall ensure that the replacement function will
be identical to our original ht at critical points. Furthermore, we shall show that for
this new function, which we shall continue to denote by ht , the function



14.1 On Global Suprema 355

W(t)
�= sup

s∈M\{t}
ht (s) (14.1.3)

is continuous at critical points of h if additional smoothness conditions are placed on
the functions αt . This will be the main result of this section.

Our strategy will be to augment M around a neighborhood of t ∈ ∂iM with
additional information that allows us to examine functions on M in finer scales. This
will lead to a “correction term’’ to ht that will compensate for the singular behavior
inherent in (14.1.2).

To start, we build the augmented space. Recall that we have assumed that M is
a piecewise smooth space, and so at any t ∈ M it is locally homeomorphic to the
support cone StM . Furthermore, from Section 8.2, we have that if t ∈ ∂iM then we
can decompose the support cone by writing

StM = Tt∂iM ×Kt,

where Kt is a convex cone that contains no subspace.
For ease of exposition, for the moment we move to a simple Euclidean setting

and replace StM by

K̂ = L×K ⊂ Rq = M̃,

with L a subspace and K a convex cone containing no subspaces. We describe the
construction in this scenario now and return to piecewise smooth spaces later.

In this scenario, the augmented spaceB(K̂) of K̂ alongL is taken to be the disjoint
union of the spaces

X = L× (K̂ \ {0}),
∂X = L× (K̂ ∩ S(Rq)).

You should think of X as the image of

(L× K̂) \ {(t, s) ∈ L× K̂ : t = s}
under the map � given by

�(t, s) = (t, s − t), (14.1.4)

and the second space, ∂X , as the “boundary’’ of X . The boundary is attached as
follows: A sequence of points (tn, sn) ∈ X converges to (t0, s0) ∈ ∂X if and only if

tn → t0, |sn| → 0,
sn

|sn| → s0. (14.1.5)

This notion of convergence corresponds to a sequence �−1(tn, sn) = (tn, tn + sn)

converging to the diagonal {
(t, s) ∈ L× K̂ : s = t

}
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along a well-defined direction.
Note that by identifying the tangent bundle T (Rq) with Rq × Rq we can think

of B(K̂) as a subset of T (Rq) in which the t’s above are replaced with Xt ∈ StM ⊂
TtR

q . When it is convenient, we will consider B(K̂) as either a subset of R2q or a
subset of T (Rq).

With an augmented space at hand, we now take our first steps toward a new
definition of ht . Note firstly, however, that the {αt }t∈M of Lemma 14.1.1 were a
family of functions that did not necessarily arise as the partial map of a function
α : M̃ × M̃ → (−∞, 1]. In some cases, particularly in the stochastic setting below,
this is a natural assumption to make. Doing so allows us to prove the following.

Lemma 14.1.2. Suppose α ∈ C2(Rq × Rq) is such that the partial map

αt (s) = α(t, s)

satisfies the conditions of Lemma 14.1.1 at every t ∈ L and such that the Hessian of
the partial map αt is nondegenerate at every t ∈ L. Then, any h̃ ∈ C2(Rq) maps to
a continuous function h̃α,K̂ on B(K̂) as follows:

h̃α,K̂ (t, s)
�= h̃(t + s)− α(t, t + s)̃h(t)− 〈∇h̃t , s〉Rq

1 − α(t, t + s)

if either t or s is not in ∂X , and

lim
(u,v)→(t,s)

h̃α,K̂ (u, v)
�= h̃(t)− ∇2h̃(t)(s, s)

∇2α(t)(s, s)

for (t, s) ∈ ∂X .

Proof. All we need to prove is the continuity of h̃α,K̂ . This, however, follows from
two applications of l’Hôpital’s rule. ��

The term

〈∇h̃t , s〉Rq

1 − α(t, t + s)

above “resolves’’ the singularity along the diagonal in some sense. In effect, it forces
every t ∈ L to be a critical point of the map

s �→ h̃(t + s)− α(t, t + s)̃h(t)− 〈∇h̃(t), s〉Rq

1 − α(t, t + s)
.

To see how to exploit this fact, recall that our motivation for introducing h̃α,K̂ was
to describe the singularities in the function ht (s) at critical points t of h|L. (Recall also
that L takes the place of Tt∂iM in our general cone K̂). We are therefore interested
in critical points t of h|L = h̃|L. Note that if t is a critical point of h|L, then, for all
s ∈ Rq ,
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ht (s) = h(s)− α(t, s)h(t)− 〈∇h(t), s − t〉Rq

1 − α(t, s)
+ 〈P⊥

L ∇h(t), s − t〉Rq

1 − α(t, s)
(14.1.6)

= h̃α,K̂ (t, s − t)+ 〈P⊥
L ∇h(t), s − t〉Rq

1 − α(t, s)
,

where P⊥
L represents orthogonal projection onto L⊥, the orthogonal complement of

L in Rq . The expression (14.1.6) indicates that at critical points t of h|L, ht (s) is the

sum of a well-behaved term, h̃α,K̂ , and a singular term.
This representation holds for all critical points of h|L. However, for later argu-

ments we would like to have something of this form for all t ∈ L and therefore
redefine ht by setting

ht (s)
�=
{

h(s)−αt (s)h(t)−〈PL∇h(t),s〉Rq

1−αt (s)
, αt (s) �= 1,

h(s), αt (s) = 1.
(14.1.7)

With this final (re)definition of h, (14.1.6) holds for all t ∈ L, and furthermore, for
each critical point t of h|L the two definitions of ht coincide. For the remainder of this
section, as long as we remain in the Euclidean settting, we use the definition (14.1.7).
We shall, however, need to adjust it somewhat when we return to the piecewise smooth
scenario.

We now derive some properties of our new ht .

Lemma 14.1.3. P⊥
L ∇h(t) ∈ K∗, the dual of K ⊂ L⊥, if and only if for any bounded

neighborhood Ot of t ,

sup
s∈Ot\{t}

ht (s) < +∞.

Proof. If P⊥
L ∇h(t) ∈ K∗, then (14.1.6) implies that for all s,

ht (s) ≤ h̃α,K̂ (t, s − t).

However, by Lemma 14.1.2, h̃α,K̂ is continuous in s, and therefore bounded on
bounded sets. This proves one direction of the lemma.

For the other, if P⊥
L ∇h(t) /∈ K∗, then there exists a unit vector v ∈ K̂ such that

〈P⊥
L ∇h(t), v〉Rq > 0 and t + δv ∈ Ot for sufficiently small δ. Equation (14.1.6)

then implies that

lim
δ↓0

ht (t + δv) = +∞,

since the numerator on the right of (14.1.6) is strictly positive of order O(δ) for δ
small, while the denominator is of order O(δ2). ��
Lemma 14.1.4. If P⊥

L ∇h(t) ∈ (K∗)◦, then, for any bounded neighborhood O of the
origin in Rq ,
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WO(t)
�= sup

s∈K̂∩({t}⊕O)\{t}
ht (s)

= sup
v∈K̂∩(O\{0})

(
h̃α,K̂ (x, v)+ 〈P⊥

L ∇h(t), v〉Rq

1 − α(t, t + v)

)

is continuous in t .

Proof. We first note that by (14.1.6) the two suprema above are equal, and so it
suffices to consider the second one.

Consider a convergent sequence

{(t, vn(t)}n≥0 → (x, v∗(t))

inB(K̂) along which the supremumWO(t) is approached. Then either ‖vn(t)‖Rq > 0
for all n sufficiently large or ‖vn(t)‖Rq → 0. In the first case it is immediate that
(t, v∗(t)) is in X , and as we will show in a moment, in the second case (t, v∗(t)) ∈
∂X ∩ L × S(L), where S(L) is the unit sphere in L. In other words, the limiting
direction v∗(t) is in S(L). Furthermore, if ‖vn(t)‖Rq → 0 then it is easy to see that
the sequence (t, PLvn(t)) also achieves the supremum WO(t).

To see why v∗(t) must be in S(L) in the second case, suppose that (t, vn(t))
converges to (x, v∗(t)) with v∗(t) ∈ K̂ \ L. Since P⊥

L ∇h(t) ∈ (K∗)◦ it follows that

〈P⊥
L ∇h(t), v∗(t)〉Rq < 0.

Therefore, applying the same argument as in (14.1.6),

lim
n→∞

〈P⊥
L ∇h(t), vn(t)〉Rq

1 − α(t, t + vn(t))
= −∞,

which contradicts the assumption that

lim
n→∞ht (t + vn(t)) = WO(t).

The above implies that for any t ∈ L and any convergent sequence (x, vn(t))

achievingWO(t)we can either assume that |vn(t)| is bounded uniformly below, or that
vn(t) ∈ L for all n. Continuity of WO(t) now follows, since for such sequences both

sup
s∈B(t,δ(ε))

∣∣∣̃hα,K̂ (t, vn(t))− h̃α,K̂ (s, vn(t))

∣∣∣
and

sup
s∈B(t,δ(ε))

∣∣∣∣∣ 〈P⊥
L ∇h(t), vn(t)〉Rq

1 − α(t, t + vn(t))
− 〈P⊥

L ∇h(s), vn(t)〉Rq

1 − α(s, s + vn(t))

∣∣∣∣∣
go to 0 as n → ∞. This completes the proof. ��



14.1 On Global Suprema 359

Lemmas 14.1.3 and 14.1.4 give us what we need for the Euclidean scenario, that is,
a candidate for ht that is well behaved and that we can plug into our characterization
for global suprema. The same arguments also work for piecewise smooth spaces,
after some slight modifications.

Specifically, the map �, defined in (14.1.4), has no natural replacement for a
piecewise smooth space. However, we can think of B(K̂) as a subset of the tangent
bundle T (Rq), so that we can think of� as a map from Rq×Rq to T (Rq). Translating
this to the piecewise smooth setting, we should therefore look for a replacement map,
say H , from M̃ × M̃ to T (M̃) such that for each t ∈ M̃ ,

H
({t} × M̃

) ⊂ TtM̃. (14.1.8)

One of the key properties of � was that for sequences (tn, sn) ∈ X converging to
(t, 0) ∈ ∂X for which the unit vector

tn − sn

‖tn − sn‖Rq

converged in S(Rq) (cf. (14.1.5)),�(tn, sn) converged to a point in X . We can replace
this property of � by asking the following of H . For any C1 curve c : (−δ, δ) →
M̃ × M̃ with c(0) = (c1(0), c2(0)) = (t, t) and ċ2(0) = Xt we require that

lim
u→0

H(t, c2(u))−H(t, t)

u
= Xt . (14.1.9)

Given such anH , we can, once again, redefine ht for aC2 function on a piecewise
smooth space M . For t ∈ ∂iM , we redefine ht to be

ht (s)
�=
{

h(s)−αt (s)h(t)−g̃(∇h|∂iM(t),H(t,s)−αt (s)H(t,t))

1−αt (s)
, αt (s) �= 1,

h(s), αt (s) = 1.
(14.1.10)

Note that at critical points of h|∂iM(t)we always have that ∇h|∂iM = 0, so that the
term in g̃ in (14.1.10) disappears, as it does for (i) in Lemma 14.1.5 below. Having
made this observation, by working in suitably chosen charts, it is not difficult to prove
the following lemma.

Lemma 14.1.5. With M , h̃, and h as above, suppose that α ∈ C2(M̃ × M̃, (−∞, 1])
is such that the partial maps αt (s) = α(t, s) satisfy

αt (s) = 1 ⇒ h(t) = h(s), αt (t) = 1,

for every t ∈ M and such that the Hessian of the partial map αt is nondegenerate
at every t ∈ M . Furthermore, suppose H : M̃ × M̃ → T (M) satisfies (14.1.8) and
(14.1.9), and let ht be defined as in (14.1.10).

Then t is a maximizer of h above the level u if and only if the following three
conditions hold:
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(i) h(t)− g̃(H(t, t),∇h|∂iM(t)) ≥ u.
(ii) ∇h̃(t) ∈ NtM .

(iii) For all t ∈ M ,

h(t) ≥ W(t)
�= sup

s∈M\{t}
ht (s).

Furthermore, for every t ∈ ∂iM and any C2 curve c : (−δ, δ) → ∂iM with c(0) = t

and ċ(0) = Xt ,

lim
t→0

ht (c(t)) = ∇2
(
h(·)− g̃

(
Ht(·),∇h|∂iM(t)

))
(Xt ,Xt )

−∇2αt|∂iM(t)(Xt ,Xt )
(14.1.11)

− (h(t)− g̃(H t (t),∇h|∂iM(t))
)
,

where Ht is the partial map Ht(s) = H(t, s).
In addition, the function

W(t)
�= sup

s∈M\{t}
ht (s)

is, for each 0 ≤ i ≤ k, continuous on the set{
t ∈ ∂iM : P⊥

Tt ∂iM
∇h(t) ∈ (P⊥

Tt ∂iM
NtM)◦

}
,

whereP⊥
Tt ∂iM

represents projection onto the orthogonal complement ofTt∂iM inTtM̃ .

To appreciate why all of this hard work has been necessary to characterize some-
thing as simple as a supremum, we need first to translate it all to a stochastic setting.

14.1.4 Random Fields

We now turn to a stochastic version of the previous section, with M a C2, locally
convex, regular, stratified manifold embedded in aC3 manifold M̃ and f̃ aC2 process
on M̃ such that f = f̃|M is a Morse function on M .

We assume that f is L2, with correlation function

ρ(s, t) = E {f (s)f (t)}
σ(t)σ (s)

,

where σ 2(t) = E{f 2(t)}.
Although we are not, at this stage, assuming that f̃ is Gaussian, we nevertheless

endow M̃ with the usual Riemannian metric induced by f̃ , so that for Xt, Yt ∈ TtM̃ ,

g̃(Xt , Yt )
�= E

{
Xt f̃ · Yt f̃

}
.

As usual, M is given the metric induced by g̃, and we also assume that both metrics
are C2.
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We also place a new condition on ρ that we have not met before. It ensures that
the map t �→ f̃ (t) is an embedding of M̃ into L2(�,F,P) and rules out “global’’
singularities in the process, a term whose meaning will become clearer later. The
condition is

ρ(t, s) = 1 ⇐⇒ t = s. (14.1.12)

This condition rules out, for example, periodic processes on R. However, as we shall
see in Section 14.4.4, there is a good reason why this should be the case.

With the above definitions, we can now choose candidates for our functions α and
H of the previous subsection. Specifically, we take an orthonormal (with respect to
g̃) frame field (X1,t , . . . , Xdim M̃,t ) on TtM̃ and set

α(t, s)
�= ρ(t, s), (14.1.13)

H(t, s) = F(t, s)
�=

dim M̃∑
j=1

Cov(f̃ (s), Xj f̃ (t))Xj,t . (14.1.14)

It is easy to check that the definition of F is independent of the choice of frame
field.

We can then state the stochastic analogy of Lemma 14.1.5, i.e., a point process
representation for the maximizers of the random field f .

Corollary 14.1.6. In addition to the above assumptions, assume that the maximizers
of f̃ are almost surely isolated and that there are no critical points of f|∂iM such that
P⊥
Tt ∂iM

∇f̂ (t) ∈ ∂NtM ⊂ Tt∂iM
⊥. Then the maximizers of f are the points t ∈ ∂iM ,

0 ≤ i ≤ N , satisfying the following four conditions:

(i) f (t)− g̃(F (t, t),∇f|∂iM(t)) ≥ u.
(ii) ∇f|∂iM(t) = 0.

(iii) P⊥
Tt ∂iM

∇f̃ (t) ∈ (P⊥
Tt ∂iM

NtM)◦.
(iv) f (t) ≥ sups∈M\{t} f t (s),

where

f t (s)
�=
{

f (s)−ρ(t,s)f (t)−g̃(F (t,s)−ρ(t,s)F (t,t),∇f|∂iM(t))

1−ρ(t,s)
, ρ(t, s) �= 1,

f (s), ρ(t, s) = 1.
(14.1.15)

Note that for later convenience, we have split the condition that t be an extended
outward critical point into two parts—(ii) and (iii).

Proof. Note firstly that since there are no critical points of f|∂iM such that
P⊥
Tt ∂iM

∇f̂ (t) ∈ ∂NtM ⊂ Tt∂iM
⊥, all global maximizers will be such that

P⊥
Tt ∂iM

∇f̂ (t) is in the relative interior of NtM in Tt∂iM
⊥. Thus (ii) and (iii) are

equivalent to the requirement that t be an extended outward critical point.
Next, note that while α and ρ have been assumed to have almost identical prop-

erties, they differ in one important aspect: While we assumed that αt (s) = 1 implied
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h(t) = h(s), the same cannot be said to hold when ρ(t, s) = 1 unless we also assume
that E{f (t)} is constant and E{f 2(t)} = 1 for all t . Nevertheless, a quick check
through the previous proofs will confirm the fact that given the definition of f t , this
difference affects none of the arguments.

Having noted these two facts, we can apply Lemma 14.1.5 on an almost sure
basis, with ht replaced by f t , α by ρ, and H by F . ��

14.1.5 Suprema and Euler Characteristics

We now have enough to finally see what the link is between ϕ(Au), the Euler char-
acteristic of the excursion set {t ∈ M : f (t) ≥ u}, and the global supremum of f .

To do this, we need one more assumption, that the global maximizer of the process
f is almost surely unique. In this case, it follows from Corollary 14.1.6, under the
assumptions made there along with uniqueness of the global supremum, that2

1{supt∈M f (t)≥u} = #
{

extended outward critical points t of f for which

f (t) ≥ u, sup
s∈M\{t}

f t (s) ≤ f (t)
}
. (14.1.16)

On the other hand, if we return to Corollary 9.3.4, which gives a point set character-
ization for the Euler characteristic for excursion sets over piecewise smooth spaces,
and compare this to the above, we immediately obtain that∣∣∣∣1{ supt∈M f (t)≥u

} − ϕ(Au(f,M))

∣∣∣∣
≤ #

{
extended outward critical points t of f for which

f (t) ≥ u, sup
s∈M\{t}

f t (s) > f (t)
}
.

While correct, this relationship is not terribly useful, since we have no way of
computing the right-hand side of the inequality. What turns out to be a lot more
accessible is to begin evaluating the expectations of each term on the left, and then
compute with the difference. To do this, we need additional regularity conditions on
f , and adopt those of Theorem 11.3.4 along with the assumption3 that for all t ∈ M ,

P {W(t) = f (t)} = P {W(t) = u} = 0, (14.1.17)

2 Recall, once again, that at extended outward critical points ∇f|∂iM = 0, so that all the
expressions in Corollary 14.1.6 involving ∇f|∂iM disappear.

3 Sufficient conditions to guarantee that (14.1.17) holds are that for all pairs 1 ≤ i, j ≤ N

and all pairs {(t, s) : t ∈ ∂iM, s ∈ ∂jM}, the random vector

V (t, s)
�= (f (t)− f (s),∇f|∂iM,Ei

(t),∇f|∂jM,Ej
(s))

have a density, bounded by some constant K(t, s). Then it is an easy consequence of
Lemma 11.2.10 that
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where

W(t)
�= sup

s∈M\{t}
f t (s),

and f t is as defined in (14.1.15). Note that none of these additional assumptions
require that f be Gaussian.

Noting (14.1.16), it is then a straightforward4 application of Theorem 12.1.1, to
see, in the notation of Chapter 12, that

P

{
sup
t∈M

f (t) ≥ u
}

= E {Mu}

=
N∑
i=0

∫
∂iM

E{det(−∇2f|∂iM,Ei
(t))1ASUP

t
|∇f|∂iM,Ei

(t) = 0}

× p∇f|∂iM,Ei
(t)(0) dHi (t),

where

ASUP
t

�= {f (t) ≥ u ∧W(t), ∇f̃ (t) ∈ NtM},
and where p∇f|∂iM,Ei

(t) is the density of ∇f|∂iM,Ei
(t) and Hi is the volume measure

induced by the Riemannian metric g.
Arguing as in the proof of Theorem 12.4.2 (cf. also (12.4.4)) it is not hard to

see that

E{ϕ(Au(f,M))}

=
N∑
i=0

∫
∂iM

E{det(−∇2f|∂iM,Ei
(t))1AEC

t
|∇f|∂iM,Ei

(t) = 0}

× p∇f|∂iM,Ei
(t)(0) dHi (t),

where

AEC
t

�= {f (t) ≥ u, ∇f̃ (t) ∈ NtM}.
P

{
∃(t, s) : t ∈ ∂iM, y ∈ ∂jM, V (t, s) = 0 ∈ R

i+j+1
}
= 0,

which implies (14.1.17).
4 Well. . . almost straightforward. A trivial application of Theorem 12.1.1 would require

that W be continuous, which is not the case. However, (an almost sure version of) Corol-
lary 14.1.5 does give us that W is continuous on the open set{

t ∈ ∂iM : P⊥
Tt ∂iM

∇f̂ (t) ∈ (NtM)◦
}
,

and, if you check through the proofs leading to Theorem 12.1.1—which is still “straight-
forward’’ but which would take some time—you will see that this is all we actually need.
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The discrepancy between the mean Euler characteristic of an excursion set and
the supremum distribution is therefore

Diff f,M(u) (14.1.18)
�= E{ϕ(Au(f,M))} − P

{
sup
t∈M

f (t) ≥ u
}

=
N∑
i=0

∫
∂iM

E{det(−∇2f|∂iM,Ei
(t))1AERR

t
|∇f|∂iM,Ei

(t) = 0}

× p∇f|∂iM,Ei
(t)(0) dHi (t),

where

AERR
t

�= {u ≤ f (t) ≤ W(t), ∇f̃ (t) ∈ NtM}.
There are three remarkable facts to note about (14.1.18). The first is that it is an

identity, and not an approximation or a bound. The second is that it holds for a wide
class of smooth random fields over a large class of piecewise smooth parameter spaces.
The last is that these smooth random fields were never assumed to be Gaussian.

Given (14.1.18), it is not difficult to guess how the rest of the proof should proceed.
The key point is that the expectation is taken only over the event AERR

t , which is
included in the event {u ≤ f (t) ≤ W(t)}. Now, if you remember our brief stochastic
diversion at the end of Section 14.1.1, you will remember that if f is Gaussian with
constant mean and unit variance, f (t) and W(t) are independent. Thus

P

{
AERR
t

}
≤ P {u ≤ f (t) ≤ W(t)} (14.1.19)

≤ P {u ≤ f (t)} × P {u ≤ W(t)} .
We know from the very general theory of Chapter 4 that for the smooth random fields
that we are considering it is likely that

P

{
sup
t∈M

f (t) ≥ u
}
≈ uα sup

t∈M
P{u ≤ f (t)},

for some α, and where, since the current argument is heuristic, we make no attempt
to give a precise mathematical meaning to the ≈ here. Furthermore, we should
also be able to bound the rightmost probability in (14.1.19) by the general theory
of Chapter 4, since it is just a Gaussian excursion probability. If so, it too is going
to be exponentially small. Putting these two facts into (14.1.19) makes P

{
AERR
t

}
superexponentially small (when compared to P

{
supt∈M f (t) ≥ u

}
) and, modulo

technicalities, we basically have the result promised at the beginning of the chap-
ter. However, since that result also promised explicit bounds on the rate at which
Diff f,M(u) → 0 as u → ∞, we are also going to have to do some more detailed
computation.

Of course, what is clear from the above description is that to truly exploit (14.1.18)
we are going to have to make distributional assumptions. Above, we have assumed
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Gaussianity. Perhaps not surprisingly, despite the universality of (14.1.18), we do
not know how to handle non-Gaussian processes.

This is a shame, since in Chapter 15 we shall obtain explicit formulas for
E {ϕ (Au(f,M))} for a wide class of non-Gaussian random fields f , and it would
be nice to be able to exploit (14.1.18) to also approximate their excursion probabili-
ties. We do hope/believe that results akin to those that we are about to encounter for
Gaussian processes will also one day be proven in non-Gaussian scenarios, but for
the moment, we are stumped by the details.

14.2 Some Fine Tuning

While (14.1.18) is an explicit formula for the error in the expected Euler characteristic
approximation, it is still a little hard to compute with. The problem lies in the fact
that while we finally managed to find a version of W(t) = sups∈M\{t} f t (s) that is
continuous in t (at least where it counts), f t itself is still rather badly behaved. In
particular, it is generally singular near t , with infinite variance.5 This, of course,
means that the approach outlined at the end of the last subsection for the Gaussian
case—of using the general theory of Chapter 4 to handle the distribution of W—is
doomed to failure, unless something is done.

5 To see why this should be so, it suffices to look at one example. Take f to be the restriction
of an isotropic field to [0, 1]2. Fix a point t = (x, 0). We compute the variance of f t along
the curve

c(u) = (x, 0)− u(1, 0).

Straightforward calculations show that

F(t, c(u)) = 0, F (t, t) = 0,

so that

f̃ t (c(u)) = f (c(u))− ρ(t, (c(u))f (t)

1 − ρ(t, c(u))
.

The variance of f t (c(u)) is

Var
(
f t (c(u))

) = 1 + ρ(t, c(u))

1 − ρ(t, c(u))
,

and

lim
u→0

Var
(
f t (c(u))

) = lim
u→0

1 + ρ(t, c(u))

1 − ρ(t, c(u))
= +∞.

In general, if t ∈ ∂iM , then along a curve c : (−δ, 0] → M with ċ(0) = −Xt ∈ StM \
Tt ∂iM , we have

lim
u↑0

Var
(
f t (c(u))

) = +∞.
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The key to circumventing this problem relies on two facts. Firstly, we are really
concerned only with large positive values of f t , and, secondly, we care about the
behavior of f t only on the set{

(t, ω) : P⊥
Tt ∂iM

∇f̃ (t)(ω) ∈ (P⊥
Tt ∂iM

NtM)◦
}
. (14.2.1)

We exploit these facts and introduce a process f̂ t in this section that has, under
appropriate conditions, finite variance while dominating6 f t on the set (14.2.1). The
good news is that this is the last time we shall have to “adjust’’f t . The final adjustment
is important, for not only does it make the proofs work, but the variance of f̂ t will
appear as an important parameter in our final result, related to the α in (14.0.3).

The process f̂ t is defined by

f̂ t (s)
�=
{

f (s)−ρ(t,s)f (t)−g̃(F̂ t (s)−PNtMF̂ t (s),∇f̃ (t))
1−ρ(t,s)

, ρ(t, s) �= 1,

f (s)− g̃
(
F̂ t (s)− PNtMF̂ t (s),∇f̃ (t)

)
, ρ(t, s) = 1,

(14.2.2)

where PNtM : TtM̃ → NtM represents orthogonal projection onto NtM and F̂ :
M̃ × M̃ → T (M̃) is given by

F̂ t (s) =
{
F(t, s)− ρ(t, s)F (t, t), ρ(t, s) �= 1,

F (t, s), ρ(t, s) = 1,
(14.2.3)

where F is defined in (14.1.14).

Lemma 14.2.1. We adopt the setting of Section 14.1.4 and the assumptions of Corol-
lary 14.1.6. Then, for every t in the set (14.2.1) of extended outward critical points
and for every s ∈ M ,

f̂ t (s) ≥ f t (s).

If t ∈ ∂NM = M◦, then equality holds above.

Proof. First, we note that

(1 − ρ(t, s)) · (f t (s)− f̂ t (s)) = g̃
(
F̂ t (s)− PNtMF̂ t (s), P⊥

Tt ∂iM
∇f̃ (t)

)
.

Since NtM is a convex cone, it follows that for any Yt ∈ TtM̃ ,

Yt − PNtMYt ∈ NtM
∗,

where NtM
∗ is the dual cone of NtM , which is just the convex hull of StM . By

duality,

g̃
(
Yt − PNtMYt , Vt

) ≤ 0

6 Obviously, f̂ t does not dominate the absolute value of f t . Were this true, f̂ t would also
have infinite variance and we would have gained nothing.
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for every Vt ∈ NtM . Consequently, on the set (14.2.1),

g̃
(
Yt − PNtMYt , P

⊥
Tt ∂iM

∇f̃ (t)
)
≤ 0

for every Yt ∈ TtM̃ . Since F̂ t (s) ∈ TtM̃ for each s, the first claim holds.
As for the second, if t ∈ ∂NM , then NtM = Tt∂NM

⊥ and PNtMVt = 0 for all
Vt ∈ Tt∂NM . Similarly,

g̃
(
Vt , P

⊥
Tt ∂iM

∇f̃ (t)
)
= 0.

Therefore, on this set

g̃
(
F̂ t (s)− PNtMF̂ t (s),∇f̃ (t)

) = 0. ��
As far as the continuity (in t) of

Ŵ (t)
�= sup

s∈M\{t}
f̂ t (s) (14.2.4)

is concerned, it is not difficult to show that, almost surely, Lemma 14.1.5 holds with
f t replaced by f̂ t , i.e., that Ŵ (t) is continuous on the set

{t ∈ ∂iM : P⊥
Tt ∂iM

∇f̃ (t) ∈ (P⊥
Tt ∂iM

NtM)◦}.
As we will see in a moment in the proof of Theorem 14.2.2, Lemma 14.2.1

provides the basic bounds for Diff f,M(u).
Lemma 14.2.1 now easily implies the following theorem, for which, since it is

the main result of this section, we collect all the conditions and notation.

Theorem 14.2.2. Suppose M is a C2 compact, orientable, piecewise smooth mani-
fold, embedded in a C3 manifold M̃ . Let f̃ be a C2 random field on M̃ , and f its
restriction to M . Let ρ be the correlation function of f , and assume that the induced
metric is C2 and that (14.1.12) holds. Furthermore, assume that for each t ∈ M̃ the
partial map ρ(t, ·) has a nondegenerate Hessian.

Assume that the maximizer of f̃ is unique and that there are no critical points of
f|∂iM such that P⊥

Tt ∂iM
∇f̂ (t) ∈ ∂NtM ⊂ Tt∂iM

⊥.
Finally, assume that all the conditions of Theorem 11.3.4 are in force and that for

every t ∈ M ,
P{Ŵ (t) = f (t)} = P{Ŵ (t) = u} = 0,

where Ŵ is defined by (14.2.4), where f̂ t there is defined by (14.2.2).
Then, with Diff f,M(u) denoting the difference (14.1.18),

|Diff f,M(u)|

≤
N∑
i=0

∫
∂iM

E{| det(−∇2f|∂iM,Ei
(t))|1BERR

t
|∇f|∂iM,Ei

(t) = 0}

× p∇f|∂iM,Ei
(t)(0) dHi (t),

(14.2.5)
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where
BERR
t = {u ≤ f (t) ≤ Ŵ (t)}.

Of course, there is the usual simple Gaussian corollary to the theorem.

Corollary 14.2.3. WithM as in Theorem 14.2.2, assume that f̃ is a zero-mean Gauss-
ian field satisfying the conditions of Corollary 11.3.5 and that (14.1.12) holds. Then
(14.2.5) holds.

14.3 Gaussian Fields with Constant Variance

We now come to what is the main section of this chapter, and the last part of the
program we described at its beginning. That is, we shall now actually obtain an
explicit bound for the difference between excursion probabilities and E{ϕ(Au)}.

Our first step will be to show that for each t ∈ M , the process f̂ t of (14.2.2) is
uncorrelated with the random vector ∇f|∂iM(t). Hence, in the Gaussian case, f̂ t (s) is
independent of ∇f|∂iM(t). The following lemma requires no side conditions beyond
the basic ones on M and the requirement that f and ρ be smooth enough for all terms
to be well defined. Since this is much weaker than the conditions of Theorem 14.2.2,
we will leave more details for later. It also does not require that f be Gaussian, nor
that it have constant variance.

Lemma 14.3.1. For every t ∈ ∂iM, 0 ≤ i ≤ k, and every s ∈ M \ {t},
Cov

(
f̂ t (s), Xtf

) = 0

for every Xt ∈ Tt∂iM .

Proof. Noting the definition (14.2.2) of f̂ t , if ρ(t, s) �= 1, then

(1 − ρ(t, s))Cov
(
f̂ t (s), Xtf

)
= Cov (f (s)− ρ(t, s)f (t), Xtf )

− Cov
(
g̃
(
F̂ t (s)− PNtMF̂ t (s),∇f̃ (t)

)
, Xtf

)
= Cov (f (s)− ρ(t, s)f (t), Xtf )− g̃

(
F̂ t (s)− PNtMF̂ t (s), Xt

)
,

where probably the best way to check the last line is to expand all the vectors in the
middle expression and then compute.

If, on the other hand, ρ(t, s) = 1, then a similar computation shows that

Cov
(
f̂ t (s), Xtf

) = Cov (f (s), Xtf )

− Cov
(
g̃
(
F̂ t (s)− PNtMF̂ t (s),∇f̃ (t)

)
, Xtf

)
= Cov (f (s), Xtf )− g̃

(
F̂ t (s)− PNtMF̂ t (s), Xt

)
.

The conclusion will therefore follow once we prove that for every t ∈ M ,
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Cov (f (s), Xtf ) = g̃
(
F̂ t (s)− PNtMF̂ t (s), Xt

)
,

Cov (f (s)− ρ(t, s)f (t), Xtf ) = g̃
(
F̂ t (s)− PNtMF̂ t (s), Xt

)
.

Since the two arguments are similar, we prove only the first equality. The map
F̂ t can be decomposed as

F̂ t (s) = PTt ∂iMF̂ t (s)+ P⊥
Tt ∂iM

F̂ t (s),

where

PTt ∂iMF̂ t (s) =
i∑

j=1

Cov
(
f (s),Xjf (t)

)
Xj,t ,

P⊥
Tt ∂iM

F̂ t (s) =
q∑

j=i+1

Cov
(
f (s),Xjf (t)

)
Xj,t ,

and (X1,t , . . . , Xq,t ) is chosen such that (X1,t , . . . , Xi,t ) forms an orthonormal basis
for Tt∂iM , while (Xi+1,t , . . . , Xq,t ) forms an orthonormal basis for Tt∂iM

⊥, the
orthogonal complement of Tt∂iM in TtM̃ .

Furthermore, since g̃(Xt , Vt ) = 0 for every Xt ∈ Tt∂iM and Vt ∈ NtM , it
follows that

PNtMF̂ t (s) = PNtMP⊥
Tt ∂iM

F̂ t (s),

and, for every Xt ∈ Tt∂iM ,

g̃(F̂ t (s)− PNtMF̂ t (s), Xt ) = g̃(PTt ∂iMF̂ t (s), Xt )

+ g̃(P⊥
Tt ∂iM

F̂ t (s)− PNtMP⊥
Tt ∂iM

F̂ t (s), Xt )

= g̃(PTt ∂iMF̂ t (s), Xt )

=
i∑

j=1

Cov(f (s),Xjf (t))g̃(Xj,t , Xt )

= Cov(f (s),Xtf ),

and we are done. ��
If we now assume that f is Gaussian, then the lack of correlation of Lemma 14.3.1

becomes independence, and the independence between the process f t and ∇f|∂iM(t)

allows us to remove the conditioning on ∇f|∂iM(t) in the expression for Diff f,M(u),
regardless of whether f has constant variance.

Corollary 14.3.2. Suppose f is a Gaussian process satisfying the conditions Corol-
lary 14.2.3. Then, with the notation of Theorem 14.2.2,

|Diff f,M(u)| ≤
N∑
i=0

∫
∂iM

E{| det(−∇2f|∂iM,Ei
(t))|1CERR

t
} (14.3.1)

× p∇f|∂iM,Ei
(t)(0) dHi (t),
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where

CERR
t = {u ≤ f (t)− g̃(PTt ∂iMF̂ t (t),∇f̃ (t)) ≤ Ŵ (t)}.

If f has constant variance, then F̂ t (t) = 0 ∈ TtM and

CERR
t = {u ≤ f (t) ≤ Ŵ (t)}.

Proof. Comparing this result with Theorem 14.2.2, it is clear that the only thing we
need to prove is that if the event CERR

t occurs, then the condition {u ≤ f (t) ≤ W(t)}
can be replaced with

{u ≤ f (t)− g̃(PTt ∂iMF̂ t (t),∇f̃ (t)) ≤ Ŵ (t)}
and the conditioning can be removed.

The replacement is justified by the fact that on the event {∇f|∂iM(t) = 0}, we
trivially have

f (t) = f (t)− g̃(PTt ∂iMF̂ t (t),∇f̃ (t)).

Furthermore, f (t) − g̃
(
PTt ∂iMF̂ t (t),∇f̃ (t)

)
is independent of ∇f|∂iM(t), and

Lemma 14.3.1 implies that Ŵ (t) is also independent of ∇f|∂iM(t). Therefore, the
conditioning on ∇f∂iM(t) can be removed. ��

We are now ready to prove the main result of this chapter, and one of the main
ones of the book. The remainder of the chapter is about special cases, examples, and
counterexamples.

Theorem 14.3.3. Let f̃ be a Gaussian process on a locally convex, regular, stratified
manifold M , with the assumptions of Corollary 14.2.3 in force. Assume, furthermore,
that f̃ has constant variance 1. Then,

lim inf
u→∞ −u−2 log |Diff f,M(u)| ≥ 1

2

(
1 + 1

σ 2
c (f )

)
, (14.3.2)

where

σ 2
c (f, t)

�= sup
s∈M\{t}

Var
(
f̂ t (s)

)
(14.3.3)

and

σ 2
c (f )

�= sup
t∈M

σ 2
c (f, t). (14.3.4)

Proof. We must find an upper bound for (14.3.1). Write

∇2f|∂iM,Ei
(t) = ∇2f|∂iM,Ei

(t)− E{∇2f|∂iM,Ei
(t)|f (t)}

+ E{∇2f|∂iM,Ei
(t)|f (t)}

= ∇2f|∂iM,Ei
(t)+ f (t)I − f (t)I
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(cf. (12.2.12)). Now expand the determinant in (14.3.1) via a standard Laplace ex-
pansion as we did in (11.6.13) and apply Hölder’s inequality for conjugate exponents
p and q to see that

|Diff f,M(u)| ≤
N∑
i=0

∫
∂iM

i∑
j=0

E{f (t)j1{f (t)≥u}}

× (E{| detri−j (−∇2f|∂iM,Ei
(t)− f (t)I )|p})1/p

× (P{Ŵ (t) ≥ u})1/q dHi (t),

where detrk is the “det-trace’’ defined in (7.2.8). Define

μ(t)
�= E

{
sup

s∈M\t
f̂ t (s)

}
, μ+ �= sup

t∈M
μ(t)1{μ(t)≥0}.

For

u ≥ sup
t∈M

E

{
sup

s∈M\{t}
(f̂ t (s)− E(f̂ t (s)))

}
+ μ+

the Borell–TIS inequality (Theorem 2.1.1) then implies that

P{Ŵ (t) ≥ u} ≤ 2e−(u−μ+)2/2σ 2
c (f,x).

Recalling that f̂ t (t) = f (t), for such u it also follows that

E

{
f (t)j1{f (t)≥u}

}
≤ Cju

j−1e−(u−μ+)2/2.

Putting these facts together, for any conjugate exponents p, q,

|Diff f,M(u)|

≤ CuN−1e
− (u−μ+)2

2

(
1+ 1

qσ2
c (f )

)

×
N∑
i=0

∫
∂iM

i∑
j=0

(E{| detri−j (−∇2f|∂iM,Ei
(t)− f (t)I )|p})1/p dHi (t).

The result now follows after noting that we can choose q arbitrarily close to 1, and
u(q) such that for u ≥ u(q), the remaining terms are arbitrarily small logarithmically
when compared to u2. ��

There is, of course, a glaring weakness in Theorem 14.3.3, in that (14.3.2) contains
a liminf rather a lim, and it contains an inequality rather than an equality.

Fortunately, the theorem provides a lower bound on the exponential decay of
Diff f,M(u), and this is almost always the important one in any practical situation.
We believe that this lower bound is generally tight when a maximizer of σ 2

c (f ) occurs
in the interior of M , in the sense that then the term corresponding to ∂NM in the sum
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defining Diff f,M(u) in (14.1.18) is exponentially of the same order as the upper
bound. However, we have not been able to round off the desired proof, since it seems
difficult to determine the sign of the lower-order terms in the error. This opens the
(unlikely) possibility that some terms in the sum (14.1.18) cancel each other out,
leading to a faster rate of exponential decay.

Thus, in the piecewise smooth setting, it is therefore still open as to whether
(14.3.2) can be improved, and if so, under what conditions.

14.4 Examples

We now look at a number of applications of Theorem 14.3.3. The theorem contains
two “unknowns.’’ One is the expected Euler characteristic and the other is the param-
eter σ 2

c (f ). The expected Euler characteristic is the material of Chapters 11 and 12,
so we have no need to treat it again here. Consequently, looking at examples means
computing, or trying to understand, σ 2

c (f ), which, for reasons that will become clear
below, we now refer to as the critical variance. We shall start with the simplest possi-
ble example—stationary processes on R—and then jump to a rather general scenario.
We shall then close the chapter with a number of rather instructive special cases.

It is the general scenario that is actually the most instructive, for the simpler ones
are so special that they give little or no insight into what is really going on. Hopefully,
after reading the general case, with its elegant geometric interpretation of σ 2

c (f ), it
will be clearer to you from where the constructions of the previous sections of this
chapter, particularly f̂ t , came.

The general case also allows us to investigate some very special cases in which
the approximation of Theorem 14.3.3 is either perfect (σ 2

c (f ) = 0) or meaningless
(σ 2

c (f ) = ∞). Along the way, we shall also spend a little time with the “cosine
random field’’(which actually provides the only example for which the approximation
is perfect) and see how it provides both examples and counterexamples for various
approximation techniques.

14.4.1 Stationary Processes on [0, T ]
A simple but illustrative example is given by a stationary Gaussian f (t), t ∈ [0, T ]
satisfying the conditions of Theorem 14.3.3. The ambient manifold will be R. Thus
f has variance 1, and we write ρ for its correlation (and covariance) function. To
save on notation, we shall also assume that the time scale has been chosen such that
Var(ḟ (t)) = −ρ̈(0) = 1. Under these assumptions the Riemannian metric g̃ reduces
to the usual Euclidean metric on R.

We now need to find the supremum of σ 2
c (f, t), which we shall do by dividing

the argument into two cases, t in the open set (0, T ) and t one of the boundary points
{0, T }. This division into separate cases will be a theme in virtually all of the (more
complicated) examples to come. For this we introduce the notation

σ 2
c (f,A)

�= sup
t∈A

σ 2
c (f, t). (14.4.1)
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For t ∈ (0, T ) the process f̂ t is given by

f̂ t (s) = f (s)− ρ(t − s)f (t)− ρ̇(t − s)ḟ (t)

1 − ρ(t − s)
,

where we apply (5.5.5) and the fact that the normal cone at interior points is empty,
so that the projection PNtM in the definition (14.2.2) disappears.

To compute the critical variance at such t we use the relationships (5.5.5)–(5.5.7).
These easily give

σ 2
c (f, t) = sup

−t≤s≤T−t
s �=0

1 − ρ(s)2 − ρ̇(s)2

(1 − ρ(s))2
(14.4.2)

= sup
s∈[0,T ]\{t}

Var(f (s) | f (t), ḟ (t))
(1 − ρ(t − s))2

,

where the second line also uses (1.2.8).
By (14.4.2) the critical variance in the interior of [0, T ] is

σ 2
c (f, (0, T )) = sup

0<t<T

1 − ρ(t)2 − ρ̇(t)2

(1 − ρ(t))2
. (14.4.3)

The critical variance at the endpoints {0, T } needs a little more care. We consider
only the point t = 0, since by stationarity the critical variance at T is the same. In
the notation of Section 7.1, the normal cone at t = 0 is

N0[0, T ] =
⋃
c≤0

c
∂

∂t
⊂ T0R.

For ease of notation, we write N0 for N0[0, T ]. The projection onto N0 is

PN0

(
a
∂

∂t

)
= 1{a≤0}

(
a
∂

∂t

)
,

and so the process f̂ 0(s) is given by

f̂ 0(s) = f (s)− ρ(s)f (0)− 1{ρ̇(s)≤0}ρ̇(s)ḟ (0)
(1 − ρ(s))2

.

The critical variance at t = 0 is therefore given by

σ 2
c (f, 0) = sup

0≤t≤T

1 − ρ(t)2 − ρ̇(t)2 + max(ρ̇(t), 0)2

(1 − ρ(t))2
(14.4.4)

≥ sup
0≤t≤T

1 − ρ(t)2 − ρ̇(t)2

(1 − ρ(t))2
.

This implies that σ 2
c (f, 0) ≥ σ 2

c (f, t), 0 ≤ t ≤ T . Therefore the critical variance
σ 2
c (f ) is attained at the endpoints t = 0, T .

We can summarize the above discussion as follows.
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Example 14.4.1. Suppose f is a centered, unit-variance C2 stationary Gaussian
process on R satisfying the conditions of Theorem 14.3.3 and such that Var(ḟ (t)) =
−ρ̈(0) = 1. Then, for all T > 0,

σ 2
c (f, [0, T ]) = sup

0≤t≤T

1 − ρ(t)2 − ρ̇(t)2 + max(ρ̇(t), 0)2

(1 − ρ(t))2
.

While this is a reasonably simple expression to compute, it is actually quite trivial
if ρ is monotone over [0, T ], since then ρ̇(t) ≤ 0 for all t > 0 and the max term
disappears. The remaining supremum then turns out to be easy to compute, as we
shall see in the next section.

There are a number of results akin to Example 14.4.1 to be found in the literature,
some even slightly more general (cf. [14, 95, 126] and the references therein). All,
however, have proofs that rely on the fact that the random process under consideration
is defined over R, proofs that do not generalize to more general scenarios. As we are
about to see, the approach we take generalizes easily.

14.4.2 Isotropic Fields with Monotone Covariance

Carrying on in the spirit of the previous example, we now consider isotropic fields
over convex sets M in RN . We add a new condition related to a monotonicity
property for the covariance function. Thus, while this example is more general than
Example 14.4.1 in that it treats more general parameter spaces, it is more specific in
that it requires more of the covariance function. Nevertheless, it is quite general, and
gives a very simple and computable formula for the critical variance σ 2

c .

Example 14.4.2. Suppose f is a centered, unit-variance, C2 isotropic Gaussian pro-
cess on RN satisfying the conditions of Theorem 14.3.3 and such that

Var

(
∂f (t)

∂tj

)
= −∂2ρ(t)

∂t2
j

∣∣∣
t=0

= 1,

for all j . Suppose that M is compact, piecewise smooth, and convex, and set T =
diam(M), where the diameter is computed in the standard Euclidean sense.

Suppose also that

∂ρ(t)

∂tj
≤ 0, (14.4.5)

for all t ∈ [0, T ]N . Then,

σ 2
c (f,M) = Var

(
∂2f (t)

∂t2
1

∣∣∣f (t)) = ∂4ρ(t)

∂t4
1

∣∣∣
t=0

− 1. (14.4.6)
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Proof. We start by noting that since f is isotropic with unit second spectral moment,
the metric induced by f is the standard Euclidean one. Furthermore, we can take
M̃ = RN .

We need to compute the maximal variance of the random field f̂ t (s) given by
(14.2.2). Consider the term PNtMF̂ t (s) that appears there, where

F̂ t (s) =
N∑
i=1

Cov(f (s),Xif (t))Xi (14.4.7)

and the Xi are the usual orthonormal basis elements of RN .
We claim that under the above assumptions PNtMF̂ t (s) is identically zero, in

which case f̂ t (s) trivially simplifies to

f̂ t (s) = f (s)− ρ(t, s)f (t)− g̃(F̂ t (s),∇f̃ (t))

1 − ρ(t, s)
(14.4.8)

= f (s)− ρ(t, s)f (t)−∑N
i=1 Cov(f (s),Xif (t))Xif (t)

1 − ρ(t, s)
.

To prove this claim, we start with t ∈ ∂NM , the highest-order stratum of M . In
this case NtM = {0}, so that the projection PNtM is trivially zero and there is nothing
to prove.

Thus, take t ∈ ∂kM with k < N and s ∈ M , s �= t . Let Xs
t be the unit vector

in TtR
N in the direction s − t . Since M is convex, Xs

t ∈ StM , and, as we shall
see in a moment, Xs

t is parallel to F̂ t (s). Consequently, Xs
t ∈ StM implies that

PNtMF̂ t (s) = 0, as required
To see that Xs

t is parallel to F̂ t (s) we use isotropy twice. To make the calculations
easier, we use it first to note that isotropy implies that there is no loss of generality
involved by taking t = 0 and s = (τ, 0, . . . , 0), where τ = |s − t |. In this case Xs

t

is simply X1.
Secondly, it is easy to check from (5.5.5) that, again because of isotropy,

Cov(f (τ, 0, . . . , 0), Xif (0)) =
{
−ρ̇(t)

�= − ∂ρ(t)
∂t1

|(τ,0,...,0), i = 1,

0, i �= 1.
(14.4.9)

Substituting into (14.4.7) and using the fact that ρ̇(s) ≤ 0 gives us that F̂ t (s) is
proportional to X1, so that Xs

t is parallel to F̂ t (s).
We turn now to computing the variance of (14.4.8) for given s, t . Once again,

we can choose t = 0 and s = (τ, 0, . . . , 0), for τ = |s − t |. If we then substitute
(14.4.9) into (14.4.8), a little algebra easily leads to the fact that

Var(f̂ t (s)) = 1 − ρ2(|s − t |)− ρ̇2(|s − t |)
(1 − ρ(|s − t |))2

,

and so
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σ 2
c (f,M) = sup

s �=t∈M
1 − ρ2(|s − t |)− ρ̇2(|s − t |)

(1 − ρ(|s − t |))2
. (14.4.10)

By isotropy, we need not take the supremum over t here, and so fix t , taking t = 0.
We now claim is that the supremum over s is achieved as s → 0. If this is true, then
isotropy implies that we can take s → 0 along any Euclidean axis. This being the
case, two applications of l’Hôpital’s rule show that

σ 2
c (f,M) = ∂4ρ(t)

∂t4
1

∣∣∣
t=0

− 1,

while (5.5.5) and the basic properties of Gaussian distributions give that this, in turn,

is the same as Var( ∂
2f (t)

∂t21
|f (t)).

Consequently, modulo the issue of where the supremum in (14.4.10) is achieved,
we have completed the proof. We shall return to this issue at the end of the next
section. ��

14.4.3 A Geometric Approach

In this section we want to look a little more carefully at the critical variance

σ 2
c (f ) = sup

t∈M
σ 2
c (f, t), (14.4.11)

where

σ 2
c (f, t)

�= sup
s∈M\{t}

Var
(
f̂ t (s)

)
(14.4.12)

and f̂ t is given by (14.2.2) (cf. (14.3.3) and (14.3.4)). Our aim is to give a geometrical
interpretation ofσ 2

c (f ) in a quite general setting. With this, we shall return to complete
the proof of Example 14.4.2.

We shall start by looking closely at (14.4.12), for points7 t ∈ ∂NM = M◦. In
later examples we shall see that these are often the most important points to consider.
They are also the points for which a geometric intepretation of (14.4.12) is most
accessible.

The geometry that comes into play here is that ofH , the reproducing kernel Hilbert
space (RKHS) of Section 3.1. In particular, since we shall retain the assumption that
f has constant unit variance, we shall be concerned with the spherical geometry of
the unit sphere S(H) in H .

Recall, however, that there is a canonical isometry between H and H, the span of
ft , t ∈ M . Consequently, we can, and shall, work in H rather than H . Recall also

7 Actually, the arguments will work in slightly greater generality. For example, if M is
composed of a number of disjoint piecewise smooth manifolds, then they will also hold
for all t in the top-dimensional stratum of the separate piecewise smooth manifolds. For
example, if M = [0, 1]2 ∪ ({3}× [0, 1]) then it will hold for all t ∈ (0, 1)2 ∪ ({3}× (0, 1)).
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that the unit-variance assumption also implies that the H inner product between f (t)

and f (s) in S(H) is given by

〈f (t), f (s)〉H = ρ(s, t),

where ρ is the correlation function of f .
As a first step, we define a map � : M → S(H) by

�(t) = f (t).

Under the assumptions of Theorem 14.3.3 it is immediate that � is a piecewise
C2 embedding of M in S(H). Furthermore, it is not hard to see that

�∗(Xt ) = Xtf,

so that the tangent space Tf (t)�(M) is spanned by (X1,t f, . . . , XN,tf ) for any basis
{X1,t , . . . , XN,t } of TtM . We denote the orthogonal complement of Tf (t)�(M) in
Tf (t)H by T ⊥

f (t)�(M), and the orthogonal complement of Tf (t)�(M) in Tf (t)S(H)

by Nf(t)�(M).
Given a point f (t) and a unit normal vector vf (t) ∈ Nf(t)�(M) we denote the

geodesic, in S(H), originating at f (t) in the direction vf (t) by cf (t),vf (t) . It is easy to
check that this is given by

cf (t),vf (t) (r) = cos r · f (t)+ sin r · vf (t), 0 ≤ r < π. (14.4.13)

As discussed in Section 10.3.1, when we looked at tube formulas, up to a certain
point along cf (t),vf (t) the points on this geodesic project uniquely to t . The largest r
for which this is true is the local critical radius at f (t) in the direction vf (t), and we
denote it by θ(f (t), vf (t))).8 The local critical radius at f (t) is then

θc(f (t)) = inf
vf (t)∈S(Nf (t)�(M))

θ(f (t), vf (t)), (14.4.14)

and the global critical radius is

θc = θc(�(M)) = inf
t∈M θc(f (t)). (14.4.15)

The following lemma links these critical radii of �(M) to the critical variances
(14.4.11) and (14.4.12).

Lemma 14.4.3. Under the setup and assumptions of Theorem 14.3.3,

σ 2
c (f, t) =

{
cot2(θc(f (t))), 0 ≤ θc <

π
2 ,

0, π
2 ≤ θc < π,

(14.4.16)

for all t ∈ ∂NM .
8 It is important to note at this point that although H is made up of random variables, the

quantity θ(f (t), vf (t) is deterministic. Furthermore, by the isometry between the RKHS
and H it has essentially the same definition in the RKHS that it has in H.
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Proof. Much as in the proof of Lemma 14.2.1 and Example 14.4.2, we start by noting
that if t ∈ ∂NM , then NtM = Tt∂NM

⊥ and PNtMVt = 0 for all Vt ∈ Tt∂NM . Now
choose an orthonormal frame field for T (M̃) such that at every t ∈ ∂NM , the first N
vectors in the frame field generate TtM , while the remaining vectors generate NtM

(as a subspace of TtM̃). Then f̂ t simplifies somewhat, and for s �= t , t ∈ ∂NM , it is
easy to check that

f̂ t (s) = f (s)− ρ(t, s)f (t)− g̃(F̂ t (s),∇f̃ (t))

1 − ρ(t, s)

= f (s)− ρ(t, s)f (t)−∑N
i=1 Cov(f (s),Xif (t))Xif (t)

1 − ρ(t, s)
.

We now compute the variance of f̂ t (s). Note that

ρ(t, s)f (t)+
N∑
i=1

Cov(f (s),Xif (t))Xif (t)

= 〈f (t), f (s)〉Hf (t)+
N∑
i=1

〈f (s),Xif (t)〉HXif (t)

= PLt f (s),

where Lt = span{f (t), X1f (t), . . . , XNf (t)}.
However, Nf(t)�(M) is the orthogonal complement (in Tf (t)H ) of the subspace

Lt . Consequently,

Var
(
f̂ t (s)

) = Var

(
f (s)− ρ(t, s)f (t)−

N∑
i=1

Cov(f (s),Xif (t))Xif (t)

)
= ‖PNf(t)�(M)f (s)‖2

H,

where PNf(t)�(M) represents orthogonal projection onto Nf(t)�(M).
Finally, we have that

σ 2
c (f, t) = sup

s∈M\{t}
‖PNf(t)�(M)f (s)‖2

H
(1 − ρ(t, s))2

. (14.4.17)

We now need to show that the same expression holds for cot2(θc(f (t))). Turning
to the picture in terms of geodesics, fix f (t) and vf (t). Suppose that for a certain
r , the point cf (t),vf (t) (r) does not metrically project to f (t). This and a little basic
Hilbert sphere geometry implies there is a point f (s) ∈ �(M) such that

cos−1
(〈
cf (t),vf (t) (r), f (s)

〉
H

)
= τ

(
cf (t),vf (t) (r), f (s)

)
(14.4.18)

< τ
(
cf (t),vf (t) (r), f (t)

)
= cos−1

〈(
cf (t),vf (t) (r), f (t)

〉
H

)
,
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where τ is geodesic distance on S(H).
Alternatively, applying (14.4.13),〈

cf (t),vf (t) (r), f (s)
〉
H = cos r · 〈f (t), f (s)〉H + sin r · 〈vf (t), f (s)〉H

= cos r · ρ(t, s)+ sin r · 〈vf (t), f (s)〉H
>
〈
cf (t),vf (t) (r), f (t)

〉
H

= cos r.

A little rearranging shows that this is true if and only if

cot t <

〈
vf (t), f (s)

〉
H

1 − ρ(t, s)
.

Therefore,

cot
(
θ(f (t), vf (t))

) = sup
s∈M\{t}

〈
vf (t), f (s)

〉
H

1 − ρ(t, s)
.

Taking the supremum over all vf (t) ∈ S(Nf (t)�(M)) we obtain

cot (θc(f (t))) = sup
vf (t)∈S(Nf (t)�(M))

sup
s∈M\{t}

〈
vf (t), f (s)

〉
H

1 − ρ(t, s)

= sup
s∈M\{t}

‖PNf(t)�(M)f (s)‖H
1 − ρ(t, s)

.

Comparing this to (14.4.17) completes the proof. ��
Lemma 14.4.3 gives a very succinct representation for the critical variance σ 2

c (f )

that requires nothing about the rather complicated process f̂ t that led to its original
definition. Here is another result, part of which relates to the geometric structure
of H and part of which has a rather down-to-earth implication for the correlation
function ρ.

Lemma 14.4.4. Retain the assumptions of Lemma 14.4.3, and suppose that the pair
(t∗, s∗) ∈ ∂NM × ∂NM achieves the supremum in

sup
t∈M

sup
s∈M\{t}

‖PNf(t)�(M)f (s)‖2
H

(1 − ρ(t, s))2
. (14.4.19)

Then,

f (s∗) = cos(2θc) · f (t∗)+ sin(2θc) · v∗f (t∗), (14.4.20)

where
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v∗f (t∗) =
PNf(t)�(M)f (s

∗)
‖PNf(t)�(M)f (s∗)‖H

is the direction of the geodesic between f (t∗) and f (s∗). For any Xt∗ ∈ Tt∗M and
any Xs∗ ∈ Ts∗M ,

Cov(Xt∗f, f (s
∗)) = 〈

�∗(Xt∗), f (s
∗)
〉
H = 0, (14.4.21)

Cov(Xs∗f, f (t
∗)) = 〈

�∗(Xs∗), f (t
∗)
〉
H = 0. (14.4.22)

Furthermore, the partial map

ρt∗(s)
�= ρ(t∗, s)

has a local maximum at s∗, and the partial map

ρs∗(t)
�= ρ(t, s∗)

has a local maximum at t∗.

In order to appreciate the geometry behind (14.4.20) you might think as follows:
Given a pair of points in ∂NM that maximize (14.4.19), the three equations (14.4.20),
(14.4.21), and (14.4.22) imply that the tube of radius θc around �(M) should self-
intersect along a geodesic from t∗ to s∗ in such a way that the tube, viewed locally
from the point t∗, shares a hyperplane with the tube viewed locally from the point
s∗. Alternatively, at the point of self-intersection the outward-pointing unit normal
vectors should be pointing in opposite directions.

Proof. Our first requirement is to establish (14.4.20). Looking back through the
proof of Lemma 14.4.3 (cf. (14.4.18)), it is immediate that if a pair (t∗, s∗) achieves
the supremum in (14.4.19) then there exists a point z ∈ H equidistant from f (t∗) and
f (s∗) and unit vectors vf (t∗) ∈ Nf(t∗)�(M) and wf (s∗) ∈ Nf(s∗)�(M) such that

z = cos θc · f (t∗)+ sin θc · vf (t∗) = cos θc · f (s∗)+ sin θc · wf (s∗).

It is not a priori obvious that wf (s∗) ∈ Nf(s∗)�(M). However, if this were not
the case, then there would exist t ∈ M , t �= s, such that d(t, z) < θc. This would
contradict the assumption that (t∗, s∗) achieve the supremum in (14.4.19) and the
critical radius is θc. This proves (14.4.20).

To prove (14.4.21) and (14.4.22) it is enough to show that the unit tangent vectors
ċf (t∗),vf (t∗) (θc) and ċf (s∗),wf (s∗) (θc) at z satisfy

u = ċf (t∗),wf (t∗) (θc)+ ċf (s∗),wf (s∗) (θc) = 0 ∈ TzH. (14.4.23)

Suppose that u �= 0. A simple calculation shows that

〈
u, f (t∗)

〉
H = 〈

u, f (s∗)
〉
H = cos(2θc)− 〈f (t∗), f (s∗)〉H

sin θc
.
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If u �= 0, then f (t∗), f (s∗), and z are not on the same geodesic, and the triangle
inequality implies that

cos(2θc) <
〈
f (t∗), f (s∗)

〉
H ,

which implies that 〈
u, f (t∗)

〉
H = 〈

u, f (s∗)
〉
H < 0.

Consider the geodesic originating at z in the direction u∗ = u/‖u‖H and given by

cz,u∗(t) = cos t · z+ sin t · u∗.

Assuming that u∗ �= 0, we have〈
ċz,u∗(0), f (s

∗)
〉
H = 〈

ċz,u∗(0), f (t
∗)
〉
H = 〈

u∗, f (t∗)
〉
H < 0.

This implies that for r < 0 and sufficiently small |r|,
〈f (t∗), cz,u∗(r)〉H = 〈f (s∗), cz,u∗(r)〉H > cos θc.

For such an r , there exist distinct points t̂ (r) and ŝ(r) such that

d(cz,u∗(r), t̂(r)) < θc, d(cz,u∗(r), ŝ(r)) < θc,

such that the geodesic connecting t̂ (r) and cz,u∗(r) is normal to M at t̂ (r), and the
geodesic connecting ŝ(r) and cz,u∗(r) is normal to M at ŝ(r).

Without loss of generality we assume that

d(cz,u∗(r), t̂(r)) ≤ d(cz,u∗(r), ŝ(r)).

In this case, the geodesic connecting ŝ to cz,u∗(r) is no longer a minimizer of distance
once it passes the point cz,u∗(r), which is of distance strictly less than θc from ŝ(r).
That is, for some point ẑ(r) along the geodesic connecting ŝ(r) and cz,u∗(r), beyond
cz,u∗(r) but of distance strictly less than θc from ŝ(r), there exist points in M strictly
closer to ẑ(r) than ŝ(r). We therefore have a contradiction, since the critical radius
of �(M) is θc.

Consequently, we have that the u of (14.4.23) is indeed zero, and so (14.4.21)
and (14.4.22) are proven.

To prove claims about the partial maps ρt∗(s) and ρs∗(t) note first that f (s∗) is
a linear combination of f (t∗) and vf (t∗), which are perpendicular to every vector in
Tf (t∗)�(M). Similarly, f (t∗) is a linear combination of f (s∗) and wf (s∗), which are
perpendicular to every vector in Tf (t∗)�(M). The fact that the partial maps ρt∗(s)
and ρs∗(t) have local maxima then follows from the same contradiction argument
used above. ��
Conclusion of the proof of Example 14.4.2. Recall that what remained was to show
the equivalence of the two suprema in
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sup
s �=t∈M

1 − ρ2(|s − t |)− ρ̇2(|s − t |)
(1 − ρ(|s − t |))2

= sup
t→0

1 − ρ2(t)− ρ̇2(t)

(1 − ρ2(t))
(14.4.24)

(cf. (14.4.10)).
It is trivial that the right-hand side of (14.4.24) is no larger than the left-hand side.

It is also trivial that left-hand side is less than

sup
t∈[0,diam(M)]N

1 − ρ2(t)− ρ̇2(t)

(1 − ρ(t))2
. (14.4.25)

Thus if we can show that this is equal to the right-hand side of (14.4.24) we shall
be done.

Let t∗ be one of the points achieving the supremum in (14.4.25) with N = 1.
Then Lemma 14.4.4 implies that ρ̇(t∗) = 0, and that t∗ is a local maximum of ρ(t).
But under the monotonicity assumption of the example, there is only one such point,
given by t∗ = 0. ��

14.4.4 The Cosine Field

We now turn to what is perhaps the grandfather of all Gaussian random fields, the
so-called cosine random field on RN . It is defined as

f (t)
�= N−1/2

N∑
k=1

fk(ωktk), (14.4.26)

where each fk is the process on R given by

fk(t)
�= ξk cos t + ξ ′k sin t.

The ξk and ξ ′k are independent, standard Gaussians and the ωk are positive constants.
It is a trivial computation that f is a stationary, centered Gaussian process on RN

with covariance and correlation functions

C(t) = ρ(t) = N−1
N∑
k=1

cos(ωktk).

We shall concentrate on the case in which ωk = 1 for all k, in which case it is easy to
check that

E{f 2(t)} = E{(Xjf (t))
2} = E{(XjXjf (t))

2} = 1,

for all j , where X1, . . . , Xj is the usual orthonormal basis of RN . Similarly,

E{Xif (t)Xjf (t)} = 0

if i �= j .
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The cosine field is important for a number of reasons, perhaps the most significant
of which is the fact that it is simple enough to enable explicit computations. For
example, set N = 1 and consider the excursion probability

P

{
sup

0≤t≤T

f (t) ≥ u

}
(14.4.27)

for u > 0. Note that

ξ cos t + ξ ′ sin t = R cos(t − θ), (14.4.28)

whereR2 = ξ2+(ξ ′)2 has an exponential distribution with mean 1
2 , θ = arctan(ξ/ξ ′)

has a uniform distribution on [0, 2π ], and R and θ are independent. You can use this
information to compute the excursion probability (14.4.27) directly, but here is an
easier way:

Assume that T < π and write Nu for the number of upcrossings of u in (0, T ].
Then

P

{
sup

0≤t≤T

f (t) ≥ u

}
= P {f (0) ≥ u} + P {f (0) < u,Nu ≥ 1} .

But since T < π , the event {f (0) ≥ u,Nu ≥ 1} is empty, implying that

P {f (0) < u,Nu ≥ 1} = P {Nu ≥ 1} .
Again using the fact that T < π , we note that Nu is either 0 or 1, so that

P

{
sup

0≤t≤T

f (t) ≥ u
}
= �(u)+ E{Nu}.

Looking back at Chapter 11, in particular (11.7.13), what we have just proven is that

P

{
sup

0≤t≤T

f (t) ≥ u
}
≡ E{ϕ(Au(f, [0, T ])}. (14.4.29)

In other words, the approximation that has been at the center of this chapter is
exact for the one-dimensional cosine process on an interval of length less than π .

On the other hand, if ϕ < T ≤ 2π , then much of the above argument breaks
down and (14.4.29) no longer holds. If T > 2π , then, since the cosine process is
periodic, increasing T has no effect whatsoever on sup[0,T ] f (t), and the left-hand
side of (14.4.29) is independent of T . The right-hand side, however, contains the
term E{Nu}, which grows linearly with T . Hence we see that the assumption in
the central Theorem 14.3.3 that ρ(t, s) = 1 ⇐⇒ t = s, which does not hold for
periodic processes, was necessary.

But more than this can be seen from this very simple example. For example, if
we take an interval of length greater than 2π , so that we get at least a full cycle of the
process, the excursion probability is simply
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P{R ≥ u} = e−u2/2,

where R is defined in (14.4.28). Note that this does not depend on T . On the other
hand, E {ϕ (Au(f, [0, T ])} contains a term growing linearly in T , and so here the
approximation breaks down. To relate these phenomena to the rest of this chapter,
we need to look at the critical variance σ 2

c for this example.
Unfortunately, we do not have among the results we have already proven one that

immediately yields σ 2
c . However, we do have a technique. The technique is that of

the proof of Example 14.4.2. Although the cosine process over RN is not isotropic,
as that example requires, if we restrict f to a unit cube of the form [0, T ]N with
T ≤ π/2 then the same argument as given there also works now. The conclusion is
again that

σ 2
c (f, [0, T ]N) = Var

(
∂2f (t)

∂t2
1

∣∣∣f (t)) = N − 1, (14.4.30)

the rightmost expression resulting from a straightforward computation.
Taking N = 1 in (14.4.30) we immediately see why (14.4.29) is true. In this

case the critical variance is zero, and so Theorem 14.3.3 tells us that the mean Euler
characteristic approximation to the excursion probability is, in fact, exact. In higher
dimensions, however, this is no longer the case.

The cosine process can also be exploited to show why the basic approximation
of Theorem 14.3.3 works only for piecewise smooth manifolds, and not for Whitney
stratified manifolds.9 Consider a two-dimensional cosine process restricted to the set
Lα depicted in Figure 14.4.1. We take the angle α (measured from the horizontal
line) in [0, π ] and we take each edge to be of length T < π/4. (Our convention is
that if α = π/2 then the resulting vertical edge is above the horizontal one.)

α

Fig. 14.4.1. The stratified manifold Lα .

It is easy to check that regardless of the value of α, when restricted to an edge,
the cosine field is stationary with variance one and second spectral moment λ2 = 1

2 .
Furthermore, the expected Euler characteristic of the excursion set Au(f, Lα) is, with
one exception, independent of α and is given by

9 Recall that the main difference between these two classes of objects is that piecewise smooth
manifolds have convex support cones. Back in Chapter 12 we were able to obtain expected
Euler characteristics of excursion sets in both settings. In the current chapter, however, we
have been restricted to the locally convex scenario.
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E{ϕ(Au(f, Lα)} =
{
�(u)+ T√

2π
e−u2/2, α > 0,

�(u)+ T

2
√

2π
e−u2/2, α = 0.

When α = π or α = 0, so that Lα is simply a straight line of length 2T or
T , then the argument above for the one-dimensional cosine process gives that the
excursion probability is identical to E {ϕ (Au(f, Lα)}. On the other other hand, while
E {ϕ (Au(f, Lα)} is constant on (0, π ] and discontinuous atα = 0, it seems reasonable
to claim that the excursion probability must be continuous in α. Consequently, it is
unreasonable to expect that it is exponentially accurate over all α ∈ [0, π ], as we
might have hoped for from Theorem 14.3.3. In fact, in the notation of that theorem
we have, for α /∈ {0, π}, that the critical variance σc is infinite, or, in the notation of
Lemma 14.4.3, that the critical radius θc is zero.10

All this comes from the non(local) convexity of Lα .
Before leaving the cosine field, we note that it actually deserves far more credit

than we have given it so far. To this point, it has been a curiosity useful for providing
examples and counterexamples. In truth, however, it was the cosine process that
gave birth to this entire chapter and also had much to do with the Lipschitz–Killing
curvatures that appeared in Chapter 12. The history, which we describe only briefly,
is as follows.

Firstly, we restrict our attention to the cosine process on a rectangle of the form
T = ∏N

k=1[0, Tk], where Tk ∈ (0, π/2]. Then, given the explicit form of the cosine
process (we are assuming still that ωk = 1 for all k), note that

MN = sup
t∈T

N∑
k=1

1√
N

sup
0≤tk≤Tk

{ξk cos tk + ξ ′k sin tk} �= 1√
N

N∑
k=1

mk,

where the random variables mk are independent.
However, we know the precise distribution of each of the mk by (14.4.29), so that

in principle at least, we should now be able to find the distribution of MN .
It turns out that this computation is a little too involved to be done exactly, and

some approximations need to be made along the way. This is what Piterbarg did in
[126], and what he derived was basically Theorem 14.3.3 for this case. You can find
all the details of the calculations in [126].

Theorem 14.3.3 is much richer, however, since it treats quite general processes
over piecewise smooth spaces. To go from the cosine process to a wider class of
processes, Piterbarg used Slepian’s inequality (Theorem 2.2.1). While Slepian’s
inequality allowed an extension beyond the cosine process, it did restrict the result
to random fields for which the matrix of second-order spectral moments is diagonal.
After all we have seen, we now know this to be a form of local isotropy and that the
way to remove this assumption is via the Riemannian metric induced by the field.

To go from rectangles to a wider class of parameter sets made up of locally convex
cells, not unlike the way we built up the basic complexes of Chapter 6, Piterbarg used

10 For more sophisticated examples of what can, and usually does, go wrong when the critical
radius is zero, see [149].



386 14 Excursion Probabilities for Smooth Fields

a result not unlike our Theorem 6.3.1. As a consequence, he obtained an expression
for the excursion probability involving Minkowski functionals, which we now know
to be a Euclidean version of Lipschitz–Killing curvatures.

What Piterbarg did not realize was that the approximation that he obtained for
the excursion probability, involving second-order spectral moments and Minkowski
functionals, was in fact the expected Euler characteristic of excursion sets. This
was realized by one of us in [4]. In the meantime, Keith Worsley had worked out
some expected Euler characteristics for isotropic random fields on two-dimensional
surfaces (e.g., [173]), and Lipschitz–Killing curvatures (although not yet recognized
as such) began to appear.

All this came together in the thesis [157], where the induced Riemannian metric
appeared for the first time. As we have seen, this allowed the development of a theory
that was no longer restricted to stationary (and often also isotropic) random fields.

The rest is history, and the (currently) final result is what you have been reading.



15

Non-Gaussian Geometry

This final chapter is, for two reasons, somewhat of an outlier as far as this book is
concerned.

The first reason is that it was initially primarily motivated by applications that re-
quired a non-Gaussian theory, while most of the book has been about purely Gaussian
random fields.

The second reason is that in large part, it stands independent of the preceding
four chapters of Part III of the book and is able to recoup, with completely different
proofs, the main results of Chapters 11–13, although not those of Chapter 14.

Consider the first issue first. If you, like us, have applications in mind, it will take
no effort whatsoever to convince you that not all random fields occurring in the “real
world’’ are Gaussian.1 The term “non-Gaussian’’ is, however, not well defined and
covers too wide a class of generalizations. Consequently, throughout this chapter we
shall limit ourselves to random fields of the form

f (t) = F(y(t)) = F(y1(t), . . . , yk(t)), (15.0.1)

where the yj (t) are a collection of independent, identically distributed Gaussian
random fields of the kind considered in the previous four chapters, all defined over a
nice parameter space M , and F : Rk → R is a smooth function.2 Such non-Gaussian
random fields appear naturally in many statistical applications of smooth random
fields (e.g., [172] or wait for [8]).

Choosing k = 1 and F(x) = x takes us back to the Gaussian case, but other
simple choices take us to a wide range of interesting random fields. For example,

1 If you are a theoretician who has been reading this material for pure intellectual enjoyment,
then you will just have to take our word for the fact that such is the case. In any case, you
will be rewarded by some elegant theory in the coming pages, so you need concern yourself
no further with the “real world.’’

2 In the previous chapters we assumed that the Gaussian fields f = f̃|M were the restriction
of processes defined on some larger ambient space M̃ , itself necessary to describe M . The
random fields yj in (15.0.1) should therefore be thought of as restrictions of such fields and
so the left-hand side of (15.0.1) should actually read f = (F ◦ y)|M .
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suppose that the yj are centered and of unit variance and consider the following three
choices for F , where in the third we set k = n+m:

k∑
i=1

x2
i ,

x1
√
k − 1

(
∑k

i=2 x
2
i )

1/2
,

m
∑n

i=1 x
2
i

n
∑n+m

i=n+1 x
2
i

. (15.0.2)

The corresponding random fields are known as χ2 fields with k degrees of freedom,
Student’s t field with k− 1 degrees of freedom, and the F field with n and m degrees
of freedom. If you have any familiarity with basic statistics you will know that
the corresponding distributions are almost as fundamental to statistical theory as
is the Gaussian distribution. If you are not statistically literate you can consider
these merely as specific examples of general non-Gaussian random fields of the form
(15.0.1). Although we shall return to two of these examples in Section 15.10, the rest
of this chapter will treat the general case.

As usual, we shall concentrate on the excursion sets of these random fields, a
problem that can be tackled in at least two quite distinct ways. The standard ap-
proach, which held sway until JET’s thesis [157] appeared in 2001 (cf. also [158]),
was to treat each particular F as a special case and to handle it accordingly. This
invariably involved detailed computations of the kind we met first in Chapter 11 and
that were always related to the underlying Gaussian structure of y and to the specific
transformation F . This approach led to a large number of papers, which provided
not only a nice theory but also a goodly number of doctoral theses, promotions, and
tenure successes.

A more unified and far more efficient approach is based, in essence, on the obser-
vation that

Au(f,M) = Au(F (y),M) = {t ∈ M : (F ◦ y)(t) ≥ u} (15.0.3)

= {t ∈ M : y(t) ∈ F−1[u,∞)} = M ∩ y−1(F−1[u,+∞)).

Thus, the excursion set of a real-valued non-Gaussian f = F ◦ y above a level u is
equivalent to the excursion set for a vector-valued Gaussian y in F−1[u,∞), which,
under appropriate assumptions on F , is a manifold with piecewise smooth boundary.

This chapter is all about exploiting this observation in order to compute explicit
expressions for all the mean Lipschitz–Killing curvatures

E {Li (Au(f,M))} = E

{
Li (M ∩ y−1

(
F−1([u,+∞))

)}
. (15.0.4)

In fact, since the functionF in (15.0.4) is quite general, so is the setF−1([u,+∞)),
which will generally be a stratified manifold in Rk . Consequently, rather than con-
centrating on the usual excursion sets, there is no reason not to take a general subset
D of Rk and study the Lipschitz–Killing curvatures of y−1(D). Indeed, this is the
path that we shall take, and we shall show that for suitable stratified manifolds M and
suitable D ⊂ Rk , we have

E

{
Li (M ∩ y−1(D)

}
=

dim M−i∑
j=0

[
i + j

j

]
(2π)−j/2Li+j (M)Mγ

j (D), (15.0.5)
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where the combinatorial flag coefficients
[
n

m

]
are those we met at (6.3.12) and the

Mγ

j = Mγ
Rk

j are the generalized (Gaussian) Minkowski functionals that we met in
the Gaussian tube formula of Corollary 10.9.6.

The Lipschitz–Killing curvatures in both (15.0.4) and (15.0.5) are computed with
respect to the Riemannian metric3 induced on M by the individual Gaussian fields
yj . This is good news in the latter case, since the fact that they are therefore identical
to those appearing in the purely Gaussian results of Chapters 11 and 12 means that
they do not need to be recomputed for the non-Gaussian scenario. Consequently,
obtaining a useful final formula for a specific case—such as those of (15.0.2)—
involves only knowing how to compute the Mγ

j (F
−1[u,+∞)). This usually turns

out to be an exercise in multivariate calculus, and in Section 15.10 we shall look at
some examples.

Before describing how we plan to do all the above, we note two important points.
The first you might have already noticed yourself: The parameter spaces for the
random fields of this chapter are denoted by M and not T . Thus we are in the
manifold setting of Chapter 12 rather than the Euclidean setting of Chapter 11. There
is no way around this. Even if we wanted to treat only simple Euclidean parameter
spaces, the structure of F−1([u,∞)) is that of a manifold, and it is the structure of
this set that is crucial to the central computations of the chapter. There is no way that
we know to write this chapter for the differential-geometrically challenged.

The other point is that we shall not be able to develop a geometric theory of
random excursion sets when dealing with fields that do not have the underlying
Gaussian structure of (15.0.1). We have nothing satisfactory to say here. Indeed,
we know of no “purely’’ non-Gaussian random field for which excursion sets have
been successfully studied.4 While this is undesirable, it is probably to be expected,
since the sad fact is that even in the case of processes on R very little is known in
this generality. We therefore leave it as a (probably very hard) challenge for future
generations.

15.1 A Plan of Action

The derivation that we shall give of (15.0.5) will be somewhat different from what we
developed earlier in treating its Gaussian analogue. In particular, the Morse theory and
the point process characterization of the Euler characteristic that were so important
then will now play only a subsidiary role.5 Nor, in the main parts of the argument,

3 Recall that as far as L0 is concerned, the Riemannian metric used to compute it is irrelevant,
since L0 always gives the Euler characteristic. By the Chern–Gauss–Bonnet theorem (cf.
Section 12.6) this is independent of the metric.

4 There is a partial exception to this statement, in that smoothed Poisson fields have been
studied in [130]. The theory there, however, is not as rich as in the Gaussian case.

5 One negative aspect of this approach is that we have not been able to develop an analogue of
the results of Chapter 14 for the non-Gaussian case; i.e., we are unable to show that the mean
Euler characteristic provides a good asymptotic approximation to excursion probabilities.
Whether this is true, and under what conditions, is still an open question.
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will the Euler characteristic be singled out as a special Lipschitz–Killing curvature
from which the others may be derived, as was the case in Chapter 13.

Our first step, in Section 15.2, will be to compute a general form for expectation
in (15.0.5), showing that it must be of the form

E

{
Li (M ∩ y−1(D)

} dim M−i∑
j=0

Li+j (M)ρ̃ (i, j,D) , (15.1.1)

where ρ̃ depends on all the parameters given, but not on the distribution of the
underlying Gaussian fields yj .

With (15.1.1) established it is clear that we need only find the form of the function
ρ̃. Moreover, we are free to choose simple examples of the manifold M and the
Gaussian fields yj in order to do this, since the result cannot depend on these choices.
The choice we make is that of a specific rotationally invariant field restricted to subsets
of a sphere.

However, even with this choice the computations are nontrivial, and so we ap-
proach them in an indirect fashion. In particular, we shall start by looking at non-
Gaussian fields with finite orthogonal expansions and with coefficients coming from
random variables distributed uniformly over high-dimensional spheres. This will en-
able us to take expectations using an appropriate version of the kinematic fundamental
formula on spheres, Euclidean (flat) relatives of which we already met in Chapter 13
under the titles of Hadwiger’s formula (13.1.2) and Crofton’s formula (13.1.1). These
preliminary expectations are computed in Section 15.6, after we establish the requisite
kinematic fundamental formulas in Section 15.5.

The passage from this scenario to the Gaussian one will be via a limit theorem for
projections of uniform random variables onSn asn → ∞, historically associated with
the name of Poincaré, although we shall need a slight extension of some more recent
versions due to Diaconis and Freedman [46] and their generalizations to matrices
in [47]. Poincaré’s result is given in Section 15.4 and applied to our setting in
Section 15.9, after we first see how it works in the case of the Euler characteristic,
L0, in Section 15.7. This section effectively rederives the main results of Chapters 11
and 12.

It is in Section 15.9 that we shall finally exploit the non-Lebesgue tube-volume
results of Section 10.9 to see how the Mγ

j arise in (15.0.5).
The argument throughout will involve a continual and delicate intertwining of

probability and geometry to obtain a result that, since it involves both expectations
and Lipschitz–Killing curvatures, lies in both areas. As such, we see it as being at
the core of what this book was supposed to be about, and we hope that you will enjoy
reading it as much as we did finding it.6

6 Actually, finding the proofs for this chapter was not always enjoyable. As you will soon see,
the basic idea behind everything is not too difficult, although it is often well camouflaged by
heavy notation and subject to heavy combinatorial manipulation. If you find following the
details occasionally oppressive you can imagine what it was like going through it all for the
first time. However, the final result, Theorem 15.9.5 (i.e., the formal version of (15.0.5))
came out to be so simple and elegant that “enjoy’’ is still the most appropriate verb.
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15.2 A Representation for Mean Intrinsic Volumes

In this section, we give a formal statement of (15.1.1). The proof appears only in
the following section, so as to encourage you not to read it immediately and so spoil
what we feel is otherwise a rather elegant flow of ideas.

Theorem 15.2.1. Let M be an N -dimensional, regular stratified manifold embedded
in M̃ , also of dimension N , and let D be a regular, stratified manifold in Rk , k ≥ 1.

Let y = (y1, . . . , yk) : M → Rk be a vector-valued Gaussian field, the compo-
nents yi of which are independent, identically distributed, zero-mean, unit-variance
Gaussian fields satisfying the conditions of Corollary 11.3.5.

Let Lj , j = 0, . . . , N , be the Lipschitz–Killing measures on M with respect
to the metric induced by the yi , as defined in (10.7.1). Then there exist functions
ρ̃(i, j,D) dependent on all the parameters displayed, but not on the distribution of
the underlying Gaussian fields yi , such that

E

{
Li (M ∩ y−1(D)

}
=

N−i∑
j=0

Li+j (M)ρ̃(i, j,D). (15.2.1)

The proof is not short, and it proceeds via a series of smaller calculations. The
basic idea is to write M ∩ y−1(D) as

M ∩ y−1(D) =
N⋃
j=0

j⋃
l=0

∂jM ∩ y−1 (∂k−lD) . (15.2.2)

Since both M and D are regular stratified manifolds and y is, with probability one,
C2, it follows from the basic properties of these manifolds (cf. Section 8.1) that such a
partition exists. If we also assume, without loss of generality,7 that k ≥ dim(M̃), then
it follows from the properties of y that, with probability one, each ∂jM∩y−1(∂k−lD)

will be a (random) manifold of dimension j − l in M̃ .
To simplify notation below, we write the strata of M ∩ y−1D as

Mjl
�= ∂jM ∩ y−1(∂k−lD). (15.2.3)

Using the alternative definition (10.7.10) of the Lipschitz–Killing curvatures and
applying additivity, it follows that the Lipschitz–Killing curvatures of M ∩y−1D can
be expressed as

Li (M ∩ y−1D) =
N∑
j=i

j−i∑
l=0

Li

(
M,Mjl

)
. (15.2.4)

What we shall prove in the following section is that for i ≤ j ,
7 If k < N , then simply add N − k superfluous copies of the coordinate processes to yj ,

yielding a new vector-valued process ỹ. Now set D̃ = π−1
k

D, where πk : R
N → R

k is

projection onto the first k coordinates of R
N , and work with ỹ and D̃ rather than y and D.
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E
{
Li

(
M,Mjl

)} =
j−i∑
m=0

Li+m(M, ∂jM) · ρ̂(i, m, ∂lD). (15.2.5)

By summing the above over strata ∂jM of M , we reach the desired conclusion, in
which case the functionals ρ̃ will eventually be expressed as some linear combination
of the ρ̂, summed over strata ∂lD of D. To actually identify the precise form of ρ̃
will take quite some time and effort, and it will not be until Section 15.9 that we shall
see how the Mγ

j enter the picture.
Nevertheless, if this is your first reading, we recommend you start on this path

now, turning to Poincaré’s limit (Section 15.4) and the kinematic fundamental formula
on the sphere (Section 15.5), and continuing on from there, returning only later to the
following section for a proof of Theorem 15.2.1.

15.3 Proof of the Representation

In this section we prove Theorem 15.2.1, noting, however, that you will not need the
techniques of the proof for anything else in this chapter, and that on first reading it
should probably be skipped.

In the notation of the previous section, we shall prove that under the conditions
of Theorem 15.2.1,

E
{
L0
(
M,Mjl

)} =
j∑

i=0

L1
i (M, ∂jM) · ρ̂(i, ∂k−lD), (15.3.1)

for some functions ρ̂ depending only on the parameters displayed.
Once (15.3.1) is established, we can apply the linear relationships between the

L1
i and the Li (cf. Lemma 10.5.8) to move from a representation involving the Li to

one based on the L1
i . While the functionals ρ̂ will then change,8 this is not important

for us. The proof of Theorem 15.2.1 is then completed using the addivity of the
curvature measures L1

i (M, ·) and the Crofton formula of Theorem 13.3.2 as in the
proof of Theorem 13.4.1.

The calculations that follow are not particularly enlightening. However, if the
difficulties in this section do have one saving grace, it is to demonstrate the power of
the approach that we shall soon adopt via Poincaré’s limit. If we did not adopt that
approach, then we would need to compute an explicit formula for the functionals ρ̂
above and relate these to the Gaussian Minkowski functionals appearing in (10.9.12).
This was the approach taken in [158] when M and D were C2 manifolds with smooth
boundary. It was difficult then, and would be even more so in the current scenario of
stratified spaces.

8 To see how they might change, look at the combinatorial manipulations in Section 15.6.2,
where a similar exchange occurs. As you will then see, we are indeed fortunate that we do
not need to repeat these manipulations here.
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Nevertheless, despite the technical nature of what follows, it is not completely
foreign, for the arguments have a lot in common with those in Chapters 12 and 13.
In particular, in the proof of Theorem 13.3.2 we defined an independent field ỹ with
the same distribution as each of the components of y to act as a (random) Morse
function for computing the Euler characteristic of M ∩ DZk

. We shall do the same
again, although now we need to compute only L0(M;Mjl), and not the full Euler
characteristic L0(M, y−1D).

As in Chapter 13 we shall compute E{L0(M;Mjl)} by appealing to an expectation
metatheorem, in this case Corollary 12.4.5. However, in order to use this line of
argument, we shall require a little notation and shall need to write the strata of D in a
form that will simplify computations. In particular, we shall assume that each ∂k−lD

is a relatively open subset of the zero set of a nice function.
More formally, suppose that Fl : Rk → Rl is a C2 function with F−1

l (0) a
(k − l)-dimensional C2 submanifold containing ∂k−lD. The stratum ∂k−lD will
generally have to be broken up into smaller pieces to achieve this, in which case we
can think of ∂k−lD as a generic stratum of dimension k − l rather than the union of
all (k − l)-dimensional strata.9 With this in mind, for the remainder of the proof we
shall assume that

∂k−lD ⊂ {x ∈ Rk : Fl,r (x) = 0, 1 ≤ r ≤ l}.
We now define ft = Fl(yt ), an Rl-valued random field on M with components

fr(t) = Fl,r (yt ), r = 1, . . . , l, dropping the unnecessary dependence on l, which
will be fixed for the remainder of the proof. Given f , we introduce the Jacobians10

J̃ f (t) with entries

J̃ f (t)rs = 〈PTt ∂jM∇fr(t), PTt ∂jM∇fs(t)〉.
Note, for later use, that given yt the Jacobians have conditional distributions (cf.
footnote 3 of Chapter 13)

J̃ f (t)|yt ∼ Wishart(j, 〈∇Fr(yt ),∇Fs(yt )〉) �= Wishart(j, J̃F (yt )). (15.3.2)

9 It is not difficult to find functions Fl satisfying the conditions we require. For a concrete
example, we argue as follows: Extend ∂k−lD geodesic distance δ along unit speed geodesics
emanating from it. Denoting the extension by ∂δ

k−l
D, note that since we are prepared to

work locally, we can assume that ∂k−lD has positive critical radius, so that we can choose
δ sufficiently small for the projection map P

∂δk−lD
to be well defined on Tube(∂k−lD, 2δ).

Choosing the standard orthonormal basis for R
k , we can now defineFl(t) coordinatewise by

(Fl(t))j = ((t − P
∂δk−lD

(t))j )
2, 1 ≤ j ≤ l.

It is then easy to check that this Fl satisfies all the required conditions.
10 While J̃ f (t) is not strictly the Jacobian Jf (t) : Tt ∂jM → Tft R

l , we call it the Jacobian

because (det(J̃ f (t)))1/2 = |Jf (t)|, where the norm |Jf (t)| is the square root of the sum
of all l × l principal minors of the matrix of the linear transformation Jf (t) in terms of
orthonormal bases of Tt ∂jM and Tft R

l .
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With notation now set, we can start our computation. As a first step, choosing ỹ

as a Morse function, note that L0(M;Mjl) is determined by the points11{
t ∈ ∂jM : f (t) = 0, yt ∈ ∂k−lD, PTtMjl

∇ỹ = 0
}
, (15.3.3)

along with the indices of ∇2ỹt and the normal Morse indices of Mjl in M .
Applying an appropriately reworked version12 of Corollary 12.4.5, an argument

essentially identical to those appearing in the proofs of Theorems 13.3.1 and 13.3.2
shows that the expected value of L0

(
M ∩ y−1D,Mjl

)
is given by

1

(j − l)!
∫
∂jM

E

{
α(ηt ;M ∩ y−1D)TrTtMjl

(
(−∇2ỹ|Mjl

)j−l
)
|J̃ f (t)|1t (15.3.4)∣∣∣f (t) = 0, PTtMjl

∇ỹ = 0
}
pf,Pjl

(0, 0)Hj (dt),

where in order to make the formulas a little more manageable, we write 1t for
1∂k−lD

(y(t)), |J̃ f (t)| for (det(J̃ f (t)))1/2,

ηt
�= P⊥

TtMjl
∇ỹt , (15.3.5)

and pf,Pjl
for the joint density13 of f (t) and PTtMjl

∇ỹ, which, it is easy to see, can
be written as

(2π)−(j−l)/2pf (0), (15.3.6)

where pf is the density of f (yt ).
Our goal is to show that the expectation in (15.3.4) factors, in an appropriate

fashion, into one factor related only to the Lipschitz–Killing curvature measures of
M and another that is related only to ∂k−lD. (Since the density term pf,Pjl

(0, 0)
is actually independent of t , we can ignore it.) Thus, we focus on evaluating the
conditional expectation in the integrand of (15.3.4).

To be more specific, we shall consider a finer conditional expectation, looking at

E

{
α(ηt ;M ∩ y−1D)TrTtMjl (−∇2ỹ|Mjl

)j−l |J̃ f (t)|1t

∣∣∣ yt , y∗,t , ỹt , ỹ∗,t}, (15.3.7)

11 Note that there is some redundancy in (15.3.3), since any t ∈ ∂k−lD also satisfies f (t) = 0.
Nevertheless, it will be convenient for us to state things as we have done.

12 As in the proof of Theorems 13.3.1 and 13.3.2, where we also allowed ourselves the latitude
of quoting an unproven result, we again claim what while filling in all the details might take
a few pages, it would involve nothing conceptually new and so is left to you.

13 Actually, it is somewhat inappropriate to call pf,Pjl
a joint “density’’ without being a little

more careful. Clearly, PTtMjl
∇ỹt lives in Tt ∂jM , a j -dimensional space, and f (yt ) lives in

an l-dimensional space. However, conditional on yt , y∗,t , we can find a subspace of Tt ∂jM

that is perpendicular to y∗t (Tyt ∂k−lD)⊥, the pullback of the orthogonal complement of
Tyt ∂k−lD in Tyt R

k , as well as an orthonormal basis for this subspace X1,t , . . . , Xj−l,t .
The vector PTtMjl

∇ỹt can thus be written as a linear combination of the Xi,t ’s and you
should think of the density pf,Pjl

as the joint density of f and the coefficients of PTtMjl
∇ỹt

in this basis. Working this way you can derive (15.3.6), which is well defined.
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where y∗,t and ỹ∗,t are the push-forwards of y and ỹ. We shall see that this factors
as required, which, after a little further manipulation of expectations, will achieve
our goal.

This expectation is virtually identical to the one we evaluated in Theorem 13.3.2,
except for two significant differences:

• The set F−1
l (0) may not be flat as in Theorem 13.3.2, where it was a subspace

of Rk .
• The normal Morse index α is not as simple as it was there, since now it can also

depend on other strata of D.

We deal with the normal Morse index first. Theorem 9.2.6 implies that this Morse
index factors into a product of two modified Morse indices, one for M and one for
y−1D. To set this up properly for the current scenario, note first that the support cone
of M ∩ y−1D at t ∈ Mjl is the intersection of two support cones, that is,

StMjl = StM ∩ St y
−1D ⊂ TtM̃.

Let

Vt
�= span {∇fi(t), 1 ≤ i ≤ l}

be the normal to Tty
−1(∂k−lD) in all of TtM̃ . By Theorem 9.2.6, for almost every

νt ∈ TtM
⊥
j l ,

α(νt ;M ∩ y−1D) = α(νt ;St (M ∩ y−1D)) (15.3.8)

= α
(
TVt νt ;StM

) · α (νt ;PTt ∂jM

(
St

(
y−1D

)))
�= α1(νt ) · α2(νt ),

where TVt is as defined in Theorem 9.2.6. Specifically,

TVt νt = P⊥
Tt ∂jM

νt −
l∑

r,s=0

〈νt , PTt ∂jM∇fr(t)〉J̃ f (t)rsP⊥
Tt ∂jM

∇fs(t).

In particular, we have

α(ηt ;M ∩ y−1D) = α1(ηt ) · α2(ηt )

for the ηt of (15.3.5).
With regard to the second of these indices, note that the vectors in the cone

St

(
y−1D

)
are push-forwards under y−1

t of vectors in a cone in Tyt R
k . Consequently,

α2 (ηt ) = α
(
ηt ;PTt ∂jM

(
St

(
y−1D

)))
= α

(
y∗(ηt );Syt (D) ∩ y∗(Tt∂jM)

)
,
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where, with some abuse of notation, we have written y∗(Tt∂jM) to denote the col-
lection of push-forwards, by y, of vectors in Tt∂jM . It is clear that, as a random
variable, α2 (ηt ) is dependent only on the collection

Ft
�= {

yt , y∗,t , ỹt , ỹ∗,t
}

of four random variables. Hence, the conditional expectation in (15.3.7) does not
depend on t .

In view of the above observations, and appealing to Lemma 13.5.1, we have that
the conditional expectation (15.3.7) can be written as

E

{
α(ηt ;M ∩ y−1D)TrTtMjl (−∇2ỹ|Mjl

)j−l |J̃ f (t)|1t

∣∣∣Ft

}
= l!(j − l)!

j ! E

{
α(ηt ;M ∩ y−1D)TrTt ∂jM

(
(−∇2ỹ|Mjl

)
)j−l |J̃ f (t)|1t

∣∣∣Ft

}
= l!(j − l)!

j ! α2(ηt )|J̃ f (t)|1tE

{
α1(ηt )TrTt ∂jM

(
(−∇2ỹ|Mjl

)
)j−l ∣∣∣ Ft

}
.

To evaluate the expectation here, we need to look a little more closely at the
structure of the Hessian ∇2ỹ|Mjl

. As in the proof of Theorem 13.3.2, applying the
Weingarten equation (7.5.12) gives us that

∇2ỹ|Mjl,t = ∇2ỹt −
l∑

r,s=1

〈∇ỹt ,∇fr|∂jM(t)〉(J̃ f (t))rs∇2fs|∂jM(t).

This depends on the curvature of F−1
l (0). With some perversity (note how terms

cancel) but with the future in mind, we acknowledge this dependence by writing

∇2ỹ|Mjl,t = $t +�t,

where

$t
�=
(
∇2ỹt + ỹt · I

)
− Sηt

−
l∑

r,s=1

k∑
u=1

〈∇ỹt , PTt ∂jM∇fr(t)〉J̃ f (t)rs ∂Fs

∂yu
·
(
∇2yu(t)+ yu,t · I

)
,

�t
�= �1

t +�2
t ,

�1
t

�=
l∑

r,s=1

k∑
u,v=1

〈∇ỹt , PTt ∂jM∇fr(t)〉J̃ f (t)rs ∂2Fs

∂yu∂yv

∣∣∣∣
yt

× 〈Xt,∇yu(t)〉 · 〈Yt ,∇yv(t)〉,

�2
t

�= −ỹt · I +
k−l∑
r,s=1

k∑
u=1

〈∇ỹt , PTt ∂jM∇fr(t)〉J̃ f (t)rs ∂Fs

∂yu
yu, t · I.
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Written as above, the curvature of F−1
l (0) is contained in the double form �1

t .
Continuing, we thus have that (15.3.7) is given by

E

{
l!
j !α1(ηt )α2(ηt )TrTt ∂jM

(
(−∇2ỹ|Mjl

)
)j−l |J̃ f (t)|1t

∣∣∣Ft

}

=
j−l∑
m=0

l!(j − l)!
(j − l −m)!m!j !

× TrTt ∂jM
(
E

{
α1(ηt )α2(ηt ) ·$m

t �
j−l−m
t |J̃ f (t)|1t

∣∣∣Ft

})
=

j∑
m=l

l!(j − l)!
(m− l)!(j −m)!j !

× TrTt ∂jM
(
E

{
α1(ηt )α2(ηt ) ·$j−m

t �m−l
t |J̃ f (t)|1t

∣∣∣Ft

})
,

where the first equality follows from Corollary 12.3.2 and the second is no more than
a change of variables.

We shall apply Lemma 13.5.2, conditional on yt , to each term in the sum above. To
do so, we first identify variables and functions above with the variables and functions
in Lemma 13.5.2. With this in mind, set

Zi =
l∑

r=0

〈∇ỹt , PTt ∂jM∇fr(t)〉J̃ f (t)−1/2
ri ,

W = (
J̃ F (yt )

)−1/2
J̃ f (t)

(
J̃ F (yt )

t
)−1/2

,

Uj =
(
∇2yj + yj · I, SP⊥

Tt ∂jM
∇yj

)
, 1 ≤ j ≤ l,

Ul+1 =
(
∇2ỹ, SP⊥

Tt ∂jM
∇ỹ

)
,

Gj−m = α1 ·$j−m
t ,

G̃m−l = α2 ·�m−l
t .

It is straightforward to verify that, conditional on yt , the above random variables have
the required conditional distributions. The result after application of the lemma with
l̃ = j −m, r̃ = m− l, ñ = j , k̃ = l is

(2π)−m/2 j !
(j − l)!

ωm

ω0
E{Gm−l}E{G̃j−m|yt }. (15.3.9)

There is only one conditional expectation above because the Uj ’s are, in fact, inde-
pendent of yt .

Applying Lemma 13.5.2 again, along with the fairly obvious fact that E
{
�m

t

} =
CmI

m for any m, we find constants, ρ̂(m, ∂k−lD), which may change from line to
line, such that the expected value of the above (after multiplication by the factor of
2π in (15.3.6)) is equivalent to
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j∑
m=l

l!
(m− l)!(j −m)! (2π)

−(j−m)/2ρ̂(m, ∂k−lD)

× TrTt ∂jM
(
E

{
α(P⊥

Tt ∂jM
∇ỹt ;M) · (∇2ỹt + ỹt · I )j−m

}
Im−l

)
=

j∑
m=l

l!
(m− l)!(j −m)! (2π)

−(j−m)/2ρ̂(m, ∂k−lD)

× TrTt ∂jM
(
E

{
α(P⊥

Tt ∂jM
∇ỹt ;M) · (∇2ỹt + ỹt )

j−m
})

,

the last equality following from (7.2.11).
Above, ρ̂(m, ∂k−lD) is a complicated expression involving the expected value of

products of the α2 of (15.3.8), powers of �1
t and �2

t , and factors of 2π and ωm’s.
Finally, we see that as in Theorem 13.3.2, the term∫

∂jM

TrTt ∂jM
(
E

{
α(P⊥

Tt ∂jM
∇ỹt ;M) · (∇2ỹt + ỹt · I )j−m

})
is proportional to L1

m(M; ∂jM), with a proportionality constant independent of ∂lD.
The reason that L1 appears instead of L = L0 is because of the appearance of ỹt · I
above. This completes the proof, since all that remains under the expectation are
quantities whose distribution does not depend on t . ��

15.4 Poincaré’s Limit

There are two simple and well-known connections between independent standard
Gaussian variables and the uniform distribution on spheres. The first we met already
in Section 10.2 in discussing the relationship between tube formulas and excursion
probabilities. Slightly rewriting what we had there gives the observation that if X is
an n-vector the components of which are independent standard Gaussians, then the
distribution of X given that |X| = λ is uniform on Sλ(R

n), the sphere of radius λ

in Rn.
The second result is generally referred to as Poincaré’s limit, although whether it

really is Poincaré’s limit is another question [46]. Its simplest version can be stated
as follows:

If ηn = (ηn1, . . . , ηnn) is uniformly distributed on S√n(R
n) and k ≥ 1 is fixed,

then the joint distribution of (ηn1, . . . , ηnk) converges weakly to that of k independent
standard Gaussians asn → ∞. One can prove this either by realizing η as conditioned
normals as described above, or via the following elementary argument.

Set k = 1 and fix n. Choose −√
n ≤ a < b ≤ √

n and note that P{a ≤ ηn1 ≤ b}
is given by the uniform measure of the spherical zone a ≤ ηn1 ≤ b, which is∫ b

a
(n− u2)n/2−1 du∫ √
n

−√
n
(n− u2)n/2−1 du

=
∫ b
a
(1 − u2/n)n/2−1 du∫ √
n

−√
n
(1 − u2/n)n/2−1 du

, (15.4.1)
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as is easily seen from Figure 15.4.1. As n → ∞, the right-hand ratio converges to∫ b
a
e−u2/2 du√

2π

by elementary estimates, and so the one-dimensional case is done. The generalization
to k > 1 is straightforward.

n1/2

Fig. 15.4.1. The “laddered’’ region, the left and right edges of which project down to a and b

on the right-pointing axis, is the spherical zone of (15.4.1) for n = 3.

This is the basic “Poincaré limit theorem,’’ but we shall need more. For a start,
we shall need to move from vectors to matrices, but this is really no more than a
change of notation, which we shall handle in a moment. Furthermore, rather than
talk about uniform random variables on spheres, it will be more convenient for us
to choose Haar distributed random orthonormal matrices and use these to transform
fixed points that will then have a spherically uniform distribution. This is also little
more than a notational issue.

More importantly, however, we shall need to know about the convergence of
expectations of functionals, and for this the proof itself becomes considerably more
involved. Consequently, we present Theorem 15.4.1 below without a proof, referring
you to [46, 47] for details.

Now for the notation. With ηn still uniformly distributed on S√n(R
n), consider

the random vector

Xk,n
�= π√

n,n,k(ηn),

where πλ,n,k : Sλ(Rn) → BRk (0, λ), defined by

πλ,n,k(x1, . . . , xn) = (x1, . . . , xk), (15.4.2)

is projection from Sλ(R
n) onto the first k ≤ n coordinates. Then the result we

described above can be rephrased by writing that as n → ∞, and for k fixed,

Xk,n
L→ N(0, Ik×k), (15.4.3)

where
L→ denotes convergence in distribution (law).

Here is the generalization of Poincaré convergence that we shall need.
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Theorem 15.4.1 (Poincaré’s limit [47]). Fix l, k ≥ 1 and suppose that gn ∈ O(n) is
a Haar distributed random orthonormal matrix. Consider the random l × k matrix
Xl,k,n with (i, j)th entry given by(

π√
n,n,k(

√
ngnei)

)
j
,

where {e1, . . . , en} is the usual orthonormal basis of Rn. Then the matrix Xl,k,n

converges in total variation toXl,k , an l×k matrix of i.i.d.N(0, 1) random variables.
Furthermore, if F is a real-valued function of matrices for which

E {|F(Xlk)|} < ∞,

then
lim
n→∞ E

{
F(Xl,k,n)

} = E
{
F(Xl,k)

}
. (15.4.4)

In fact, the conclusion (15.4.4) is not what is usually referred to as “Poincaré’s
limit,’’ but rather follows simply from the method of proof of a similar result in [47].
There it was shown that if Pl,k and Pl,k,n denote the distributions of Xl,k and Xl,k,n,
then the Radon–Nikodym derivative

dPl,k,n

dPl,k

is bounded and converges uniformly to 1 as n → ∞. This is essentially all that is
needed to lift the convergence in law of (15.4.3) to convergence in total variation,
from which the convergence of the expectations in (15.4.4) follows.

15.5 Kinematic Fundamental Formulas

The kinematic fundamental formula (KFF) is undoubtedly one of the most general and
fundamental results in integral geometry, of which many other well-known formulas
are special cases or corollaries. For a full treatment of this result in a variety of
scenarios you should turn to any of the classic references, including [24, 40, 65, 92,
139, 141].

We have already met a related result in the form of Crofton’s formulas of Sec-
tion 13.1. Crofton’s formulas gave expressions for the Lipschitz–Killing curvatures
of “typical’’ cross-sections of subsets M of Rn, that is, of intersections M ∩V where
the V were subspaces of Rn. The KFF, however, is essentially a formula giving
the “average’’ Lipschitz–Killing curvatures of M1 ∩ gnM2, where gn is a “typical’’
isometry (i.e., rigid motion) of Rn and M1 and M2 are both subsets of Rn.

For us the KFF will be the key to identifying the functions ρ̃ in results such as
(15.1.1), which are themselves key to developing the final expression for the mean
Lipschitz–Killing curvatures of excursion sets in Theorems 15.9.4 and 15.9.5 below.
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15.5.1 The KFF on Rn

For the first KFF we take two tame stratified subsets M1 and M2 of Rn with finite
Lipschitz–Killing curvatures.14 Although this is not actually the case we shall need, it
is the simplest and most common version of the KFF and so a good place to start. We
also take Gn, the isometry group of Rn with a Haar measure. Since Gn is isomorphic
to Rn × O(n), its Haar measures are not finite, making it somewhat misleading to
talk of the “average’’Lipschitz–Killing curvatures we described above or of “typical’’
isometries. Nevertheless, it is possible to normalize Haar measure on Gn in such a
way as to obtain a measure νn for which, for any x ∈ Rn and any Borel set A ⊂ Rn,

νn ({gn ∈ Gn : gnx ∈ A}) = Hn(A), (15.5.1)

where Hn is the usual Lebesgue measure on Rn.
With this normalization, the KFF reads15

∫
Gn

Li (M1 ∩ gnM2) dνn(gn) =
n−i∑
j=0

[
i + j

i

] [
n

j

]−1

Li+j (M1)Ln−j (M2)

(15.5.2)

=
n−i∑
j=0

si+1sn+1

si+j+1sn−j+1
Li+j (M1)Ln−j (M2),

where, since we shall need them again soon, we recall that[
n

k

]
= [n]!

[k]![n− k]! , [n]! = n!ωn, ωn = πn/2

�(n2 + 1)
, sn = 2πn/2

�(n2 )
.

14 There is a fine point here about whether we should require thatM1 andM2 also be piecewise
C2. Since our definition of the Lipschitz–Killing curvatures involves curvature, the KFFs
that follow are poorly defined otherwise. On the other hand, there are alternative definitions
of the Lipschitz–Killing curvatures (better called intrinsic volumes than curvatures in this
case) without such strong smoothness assumptions along with corresponding KFFs. Thus,
we shall leave out the reference to smoothness when it is not required, despite the fact that
you will then have to look in the references given above to see what the KFF really means
in these scenarios.

15 In (15.5.2) the Lk are always total curvature measures, or intrinsic volumes. However,
there are generalizations of (15.5.2) with curvature measures replacing intrinsic volumes.
For further details, which we shall not require, see [80, 141].

Further to the previous footnote, note that there are also versions of (15.5.2) over more
general classes of sets than tame stratified sets. Indeed, much of the recent work around the
KFF has been devoted to seeing just how general the sets may be taken.

A proof of (15.5.2) at (and beyond) the level of generality that we have stated the KFF
can be found, for example, in [33].
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15.5.2 The KFF on Sλ(R
n)

What will be far more important for us than the KFF on Euclidean space, for reasons
that will soon become clear, is a version of the KFF for subsets of S√n(R

n) in which
Gn is replaced by Gn,λ, the group of isometries (i.e., rotations) on Sλ(R

n). Perhaps
not surprisingly, with an appropriate definition of curvature measures, the KFF on
the sphere ends up almost identical to the Euclidean version.

Noting that Gn,λ / O(n), we normalize Haar measure νn,λ on Gn,λ much as
we did for Gn in the Euclidean case. That is, for any x ∈ Sλ(R

n) and every Borel
A ⊂ Sλ(R

n), we require that

νn,λ
({
gn ∈ Gn,λ : gnx ∈ A

}) = Hn−1(A). (15.5.3)

The KFF on Sλ(R
n) then reads as follows, where M1 and M2 are tame stratified

spaces in Sλ(R
n):∫
Gn,λ

Lλ−2

i (M1 ∩ gnM2) dνn,λ(gn) (15.5.4)

=
n−1−i∑
j=0

[
i + j

i

] [
n− 1
j

]−1

Lλ−2

i+j (M1)Lλ−2

n−1−j (M2)

=
n−1−i∑
j=0

si+1sn

si+j+1sn−j

Lλ−2

i+j (M1)Lλ−2

n−1−j (M2),

where the functionals Lκ
i (·) are from the one-parameter family defined in (10.5.8).

15.6 A Model Process on the l-Sphere

We now introduce a particularly simple process on the l-sphere S(Rl ), for which
we shall be able to compute all excursion set (and more) mean Lipschitz–Killing
curvatures with calculations using no more than the KFF on the sphere. Ultimately,
in Section 15.9, we shall use the results of this section to prove the main non-Gaussian
results of the chapter. This will be preceded, in Section 15.7, by a development of the
corresponding results for a special Gaussian process, the canonical isotropic Gaussian
process on S(Rl ). Although we do not really need it until then, we shall remind you
of what it is and tell you what we need it for, so that the computations of the current
section will be better motivated.

As we saw in Section 10.2, the canonical isotropic Gaussian process on the l-
sphere S(Rl ) is defined as the centered Gaussian process on S(Rl ) with covariance
function

E {f (s)f (t)} = 〈s, t〉, (15.6.1)

where 〈 , 〉 is the usual Euclidean inner product.



15.6 A Model Process on the l-Sphere 403

We first met this process in Section 10.2, when we looked at the volume-of-
tubes approach to computing Gaussian excursion probabilities. In particular, we saw
there that any Gaussian field with a Karhunen–Loève expansion of order l < ∞ and
constant unit variance can be mapped to a process on a subset of S(Rl ), and that the
suprema for the two processes are identical.

In this chapter, however, we have a different task for the isotropic process, for
it will be the test process to which we referred earlier for computing the unknown
functionals ρ̃ in (15.1.1) and Theorem 15.2.1.

However, rather than dealing directly with the isotropic Gaussian process, we
shall start with a series of approximations to it that are easier to handle and for which,
as noted above, we can compute mean Lipschitz–Killing curvatures via the KFF.

15.6.1 The Process

We shall need a family, {y(n))}n≥l , of smooth Rk-valued processes on stratified subsets
M of S(Rl ). To define it, for each n ≥ l we first embed S(Rl ) in S(Rn) in the natural
way, by setting

S(Rl ) = {
t = (t1, . . . , tn) ∈ S(Rn) : tl+1 = · · · = tn = 0

}
.

We next take O(n), now thinking of it as the group of orthonormal n × n matrices,
equipped with its normalized Haar measure μn, as our underlying probability space.
Then the nth process y(n) is defined by

y(n)(t, gn)
�= π√

n,n,k

(√
ngnt

)
, (15.6.2)

where t ∈ S(Rl ), gn ∈ O(n), and π√
n,n,k is the projection from S√n(R

n) to Rk given
by (15.4.2).

From Theorem 15.4.1 above, it is clear that the processes y(n) converge in total
variation norm16 to an Rk-valued Gaussian process

y(t)
�= (y1(t), . . . , yk(t)), (15.6.3)

where the components have covariance

Cov
(
yi(t), yj (s)

) = δij · 〈t, s〉Rl .

That is, each component of the limit is a version of the canonical isotropic Gaussian
field on Rl , and they are independent of one another.

As we are about to see, it is remarkably straightforward to compute the mean
Lipschitz–Killing curvatures of many sets generated by the y(n), using only the KFF
on S√n(R

n). This is the content of the following subsection. Later, in Sections 15.7
and 15.9, we shall send n → ∞ to see what happens for the Gaussian limit.
16 Note that in Theorem 15.4.1 the convergence relates to a finite collection of random vari-

ables, whereas here we are talking about processes y(n) and y defined over an uncountable
parameter space. However, since each of these processes depends on only a finite number
of random variables (via its expansion), there is no real problem talking about “convergence
in variation’’ of either the processes or, what is actually more important to us, of real-valued
functionals defined on them.
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15.6.2 Mean Curvatures for the Model Process

The following result is the key to all that follows in this section. Although it is based
on the one-parameter family Lλ

i of Lipschitz–Killing curvatures rather than the ones
we are more used to using, we have already seen in Section 15.5.2 that they are better
suited to computations on spheres than are the usual ones. We shall make the change
back to the usual curvatures before we leave this section.

Lemma 15.6.1. Let y(n) be the model process (15.6.2) on a tame stratified space
M ⊂ S(Rl ), with n ≥ l. Then, for any tame stratified space D ⊂ Rk ,

E

{
L1
i (M ∩ (y(n))−1D)

}
(15.6.4)

=
dim M−i∑

j=0

nj/2
[
i + j

j

] [
n− 1
j

]−1

L1
j+i (M)

Ln−1

n−1−j

(
π−1√

n,n,k
D
)

snn(n−1)/2

=
dim M−i∑

j=0

si+1

si+j+1
L1
j+i (M)

Ln−1

n−1−j

(
π−1√

n,n,k
D
)

sn−j n(n−1−j)/2
.

Remark 15.6.2. It is important to understand what the meaning of π−1√
n,n,k

D is in

the above lemma, and in all that follows. The problem is that for all t ∈ S√n(R
n),

π√
n,n,k(t) ∈ B√

n(R
k), which may, or may not, cover D. Thus, with the usual

definition

π−1√
n,n,k

D =
{
t ∈ S√n(R

n) : π√
n,n,k(t) ∈ D

}
,

it follows that π−1√
n,n,k

D may be only the inverse image of a subset of D.

Proof. The first thing that we need to note is that π−1√
n,n,k

D is a tame stratified space

in S(Rn), and so from the construction of y(n) we have

E{L1
i (M ∩ (y(n))−1D)}
=
∫
O(n)

L1
i (M ∩ (y(n))−1D)(gn) dμn(gn)

=
∫
O(n)

L1
i

(
M ∩ n−1/2g−1

n

(
π−1√

n,n,k
D
))

dμn(gn)

= n−i/2
∫
O(n)

Ln−1

i

(√
nM ∩ g−1

n

(
π−1√

n,n,k
D
))

dμn(gn)

= 1

snn(n−1+i)/2

∫
G

n,n−1

Ln−1

i

(√
nM ∩ gn

(
π−1√

n,n,k
D
))

dνn,n−1(gn),

where the second-to-last line follows from the scaling properties of Lipschitz–Killing
curvatures and the last is really no more than a notational change, using (15.5.3).
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However, applying the KFF (15.5.4) to the last line above, we immediately have
that it is equal to

dim M−i∑
j=0

nj/2
[
i + j

i

] [
n− 1
j

]−1 Ln−1

j+i

(√
nM

)
n(i+j)/2

Ln−1

n−1−j

(
π−1√

n,n,k
D
)

snn(n−1)/2

=
dim M−i∑

j=0

nj/2
[
i + j

j

] [
n− 1
j

]−1

L1
j+i (M)

Ln−1

n−1−j

(
π−1√

n,n,k
D
)

snn(n−1)/2
,

which proves the lemma. ��
We cannot overemphasize how important and yet how simple is Lemma 15.6.1.

The simplicity lies in the fact that despite the preponderance of subscripts and super-
scripts, the proof uses no more than the KFF and a few algebraic manipulations. If
you compare this to the effort required to compute the mean Euler characteristic of
excursion sets of univariate Gaussian processes in Chapters 11 and 12, not to mention
the effort required in Chapter 13 to lift this to mean Lipschitz–Killing curvatures, you
will have to agree that the above proof is indeed simple.

Of course, the price that we have paid for this simplicity is that we have a result only
for a very special process, and not for the Gaussian and Gaussian-related processes
of central interest to us. However, these are obtainable as appropriate limits of the
y(n), as we shall now see.

Suppose we send n → ∞ in (15.6.4), which by Poincaré’s limit is effectively
equivalent to replacing the model process y(n) with the Gaussian y of (15.6.3). Then,
in order for the limiting process y to have finite expected values for the Lipschitz–
Killing curvatures Lj (M ∩ (y(n))−1D), we would like to have the following limits
existing for each finite j :

lim
n→∞ nj/2

[
n− 1
j

]−1 Ln−1

n−1−j

(
π−1√

n,n,k
D
)

snn(n−1)/2
. (15.6.5)

Assuming that these limits are indeed well defined and finite, we define

ρ̃j (D)
�= lim

n→∞

(
nj/2

[
n− 1
j

]−1
) Ln−1

n−1−j

(
π−1√

n,n,k
D
)

snn(n−1)/2
(15.6.6)

= (2π)−j/2[j ]! lim
n→∞

Ln−1

n−1−j

(
π−1√

n,n,k
D
)

snn(n−1)/2
,

where the second line comes from a Stirling’s formula computation.
Sending n → ∞ in Lemma 15.6.1 and applying Poincaré’s limit of Theo-

rem 15.4.1 (cf. footnote 16), we see that if

E

{
|L1

i (M ∩ y−1D)|
}
< ∞,
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then

E

{
L1
i (M ∩ y−1D)

}
= lim

n→∞ E

{
L1
i (M ∩ (y(n))−1D)

}
(15.6.7)

=
dim M−i∑

j=0

[
i + j

i

]
L1
j+i (M)ρ̃j (D).

This is starting to take the form of (15.0.5), the result that we are trying to prove.
The combinatorial flag coefficients are in place, but both sides of the equation are
based on the L1

j+i curvatures rather than the Lj+i , and we have yet to explicitly
identify the functions ρ̃j . Note the important fact, however, that on the right-hand
side of the equation we have already managed to split into product form factors that
depend on the underlying manifold M and the set D.

As far as the fact that we are using the “wrong’’ Lipschitz–Killing curvatures
is concerned, recall that we have already seen in Lemma 10.5.8 that the L1

j can be
expressed as linear combinations of the Lj , and vice versa. Thus, in principle, it
should not be hard to derive a version of (15.6.7) with the usual curvatures. In
practice, the computation is not simple, but we shall carry it out in a moment. Once
done, it will show that

E

{
Li (M ∩ y−1D)

}
=

∞∑
j=i

∞∑
l=0

[
i + j

j

]
Lj (M)ci,j,l ρ̃l(D), (15.6.8)

for some universal constants ci,j,l .
Understanding the geometric significance of the linear combinations

∞∑
l=0

ci,j,l ρ̃l(·) (15.6.9)

is probably the most important part of this chapter, and is the closing step in proving
the main result, Theorem 15.9.5. In particular, we shall see that the above sum depends
only on i + j and is intimately related to the volume-of-tubes results of Chapter 10.

Before doing this, however, we tackle the easier part of the problem, that of finding
a version of (15.6.7) with the usual Lipschitz–Killing curvatures. Since the ρ̃j of
(15.6.7), assuming that they exist, are functionals of D and independent of M , we
prove the following general result under the assumption that the limits (15.6.5) are
indeed well defined.

Theorem 15.6.3. Let M ⊂ S(Rl ) be a tame stratified space, and assume that for
0 ≤ j ≤ dim(M), the limits

ρ̃j (D) = lim
n→∞

(
nj/2

[
n− 1
j

]−1
) Ln−1

n−1−j

(
π−1√

n,n,k
D
)

snn(n−1)/2
(15.6.10)

are finite and
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E

{
|Li (M ∩ y−1D)|

}
< ∞, (15.6.11)

where y is the Gaussian process on S(Rl ) defined by (15.6.3). Then

E

{
Li (M ∩ y−1D)

}
=

dim M−i∑
l=0

[
i + l

l

]
Li+l (M)ρl(D), (15.6.12)

where for j ≥ 1,

ρj (D) = (j − 1)!
 j−1

2 !∑
l=0

(−1)l

(4π)ll!(j − 1 − 2l)! ρ̃j−2l (D) (15.6.13)

and

ρ0(D) = γRk (D).

Proof. As usual, setN = dim(M), and recall the two basic formulas of Lemma 10.5.8
relating the {Lj }j≥0 and the {L1

j }j≥0:

L1
i (·) =

∞∑
n=0

(−1)n

(4π)nn!
(i + 2n)!

i! Li+2n(·) (15.6.14)

and

Li (·) =
∞∑
n=0

1

(4π)nn!
(i + 2n)!

i! L1
i+2n(·). (15.6.15)

Combining (15.6.14) with (15.6.7), we obtain

E

{
Li (M ∩ y−1D)

}
= E

⎧⎪⎨⎪⎩
 N−i

2 !∑
n=0

1

(4π)nn!
(i + 2n)!

i! L1
i+2n(M ∩ y−1D)

⎫⎪⎬⎪⎭
=

 N−i
2 !∑

n=0

1

(4π)nn!
(i + 2n)!

i!
N−i−2n∑

j=0

[
i + 2n+ j

j

]
L1
i+2n+j (M)ρ̃j (D)

=
 N−i

2 !∑
n=0

1

(4π)nn!
(i + 2n)!

i!
N−i−2n∑

j=0

[
i + 2n+ j

j

]
ρ̃j (D)

×
 N−i−2n−j

2 !∑
l=0

(−1)l

(4π)ll!
(i + 2n+ j + 2l)!

(i + 2n+ j)! Li+2n+j+2l (M).
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Saving space, we suppress the dependence of ρ̃ and L on D and M , respectively.
Proceeding, E{Li (M ∩ y−1D)} can be written as

 N−i
2 !∑

n=0

1

(4π)nn!
(i + 2n)!

i!
N−i−2n∑

j=0

[
i + 2n+ j

j

]
ρ̃j

×
 N−i−2n−j

2 !∑
l=0

(−1)l

(4π)ll!
(i + 2n+ j + 2l)!

(i + 2n+ j)! Li+2n+j+2l

=
N−i∑
j=0

ρ̃j

 N−i−j
2 !∑

n=0

1

(4π)nn!
(i + 2n)!

i!
[
i + 2n+ j

j

]

×
 N−i−2n−j

2 !∑
l=0

(−1)l

(4π)ll!
(i + 2n+ j + 2l)!

(i + 2n+ j)! Li+2n+j+2l

=
N−i∑
j=0

ρ̃j

 N−i−j
2 !∑

α=0

α∑
β=0

1

(4π)α−β(α − β)!
(i + 2(α − β))!

i!

×
[
i + 2(α − β)+ j

j

]
(−1)β

(4π)ββ!
(i + j + 2α)!

(i + 2(α − β)+ j)!Li+j+2α,

where the first and third equalities come from a change of order of summation and
the second from the transformation (α, β) = (n+ l, l). Again changing the order of
summation we find that this is the same a

 N−i
2 !∑

α=0

N−i−2α∑
j=0

α∑
β=0

ρ̃j
1

(4π)α(α − β)!
(i + 2(α − β))!

i!

×
[
i + 2(α − β)+ j

j

]
(−1)β

β!
(i + j + 2α)!

(i + 2(α − β)+ j)!Li+j+2α.

Making now the further change of variables (m, k) = (α, j + 2α), the above is
equivalent to

N−i∑
k=0

 k−1
2 !∑

m=0

m∑
β=0

ρ̃k−2m
1

(4π)m(m− β)!
(i + 2(m− β))!

i!

×
[
i + k − 2β
k − 2m

]
(−1)β

β!
(i + k)!

(i + k − 2β)!Li+k

=
N−i∑
k=0

Li+k

(i + k)!
i!

 k−1
2 !∑

m=0

ρ̃k−2m

m∑
β=0

1

(4π)m(m− β)! (i + 2(m− β))!
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×
[
i + k − 2β
k − 2m

]
(−1)β

β!
1

(i + k − 2β)! ,

the last line being just a minor reorganization of the preceding one.
We must therefore show that

N−i∑
k=0

Li+k

(i + k)!
i!

 k−1
2 !∑

m=0

ρ̃k−2m

m∑
β=0

1

(4π)m(m− β)! (i + 2(m− β))!

×
[
i + k − 2β
k − 2m

]
(−1)β

β!
1

(i + k − 2β)!

=
N−i∑
k=0

Li+k(M)

[
i + k

k

]
ρk,

where the functionals ρk are those of (15.6.13). Equivalently, we must show that

ρk =
[
i + k

k

]−1
(i + k)!

i!
 k−1

2 !∑
m=0

ρ̃k−2m

m∑
β=0

1

(4π)m(m− β)! (i + 2(m− β))!

×
[
i + k − 2β
k − 2m

]
(−1)β

β!
1

(i + k − 2β)!

= k!ωkωi

ωi+k

 k−1
2 !∑

m=0

ρ̃k−2m

m∑
β=0

(−1)β

(4π)m(m− β)!β!(k − 2m)!
ωi+k−2β

ωk−2mωi+2m−2β
.

This is equivalent, by (15.6.13), to proving that the following identity holds for all
nonnegative integers k ≥ 1, i ≥ 0:

(−1)m

m!
ωi+k

kωiωk/2
=

m∑
β=0

(−1)β

(m− β)!β!
ωi+k−2β

ωi+2m−2β · (k − 2m)ωk−2m/2
.

Finally, after some further simple manipulations, this is equivalent to the identity

B

(
i

2
+ 1,

k

2

)
=

m∑
β=0

(−1)m−β

(
m

β

)
B

(
i + 2m− 2β

2
+ 1,

k − 2m

2

)
,

where B is the beta function

B(γ, δ) = �(γ )�(δ)

�(γ + δ)
=
∫ 1

0
pγ−1(1 − p)δ−1 dp.

That this identity holds is verified in the following lemma, and so the proof is com-
plete. ��
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Lemma 15.6.4. For every γ, δ > 0 and every integer 0 ≤ m ≤ γ,

B(γ, δ) =
m∑

β=0

(−1)m−β

(
m

β

)
B (γ −m, δ +m− β) .

Proof. The identity is clearly equivalent to

1 = 1

B(γ, δ)

m∑
β=0

(−1)m−β

(
m

β

)∫ 1

0
pγ−m−1(1 − p)δ+m−β−1 dp.

Suppose, then, that P is a random variable with distribution Beta(γ, δ), so that it
has density

fP (p) = 1

B(γ, δ)
pγ−1(1 − p)δ−1, 0 ≤ p ≤ 1.

Then,

1 = P−m(1 − (1 − P))m =
m∑

β=0

(
m

β

)
(−1)m−β(1 − P)m−βP−m.

Since m < γ , we can take expectations of both sides above to obtain

1 = E{P−m(1 − (1 − P))m}

= 1

B(γ, δ)

m∑
β=0

(
m

β

)
(−1)m−β

∫ 1

0
pγ−1−m(1 − p)δ+m−β−1 dp,

and we are done. ��
What remains now is to check that the limits (15.6.6) are indeed well defined, and

to evaluate them. Before treating the general case, however, we shall work out one
special one, for which the computations will be simpler and the result familiar.

15.7 The Canonical Gaussian Field on the l-Sphere

Our aim in this section is to carry out all the remaining computations needed to
compute mean Lipschitz–Killing curvatures for the isotropic Gaussian process on the
sphere when the set D ⊂ Rk is a half-space.

While this is merely a special case of what will follow in Section 15.9, the calcu-
lations in this case are considerably simpler and aid in understanding what is actually
going on. Furthermore, as we shall see in a moment, the result that we shall obtain is
also a special case of the main result of Chapter 12. Thus it can be thought of as an
independent verification of earlier results, or as a corollary of them. We shall return
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to this point in more detail in Section 15.7.2 below. Either way, the current section
should help in understanding the general case.

In terms of the notation of the previous section, we are dealing with the zero-mean
Gaussian process from S(Rl ) to Rk defined by (15.6.3), and the hitting set D taken
to be the half-space

D =
{
y ∈ Rk : 〈y, η〉 ≥ u

}
, (15.7.1)

for some unique unit vector η ∈ S(Rk) and u ∈ R+. The case k = 1 obviously yields
precisely the excursion sets treated in Chapter 12. However, even for general k, the
process f defined by

f (t) = 〈y(t), η〉
is a zero-mean, unit-variance Gaussian process, and so, writing

M ∩ y−1D = M ∩ f−1[u,+∞),

we are still in the scenario of Chapter 12. Consequently, under appropriate regularity
conditions on M , the results of Chapter 12 (especially Theorem 12.4.2) give us the
mean Euler characteristic of M∩f−1[u,+∞). If we compare this with (15.6.8) with
i = 0 (so as to obtain the Euler characteristic L0) we find that we must have

∞∑
l=0

c0,j,l ρ̃l(D) = ρj (u) =
{
(2π)−(j+1)/2Hj(u)e

−u2/2, j > 0,

1 −�(u), j = 0,

where the Hj are, as usual, the Hermite polynomials (11.6.9), and so we have found
our elusive constants for this case.

Nevertheless, our aim is not to use the results of Chapter 12 to help out in the
current calculation, but rather to calculate everything afresh. However, at least now
we know what kind of result we are looking for.

15.7.1 Mean Curvatures for Excursion Sets

Here is the theorem that we want to prove.

Theorem 15.7.1. LetM ⊂ S(Rl )be a tame stratified space, y the canonical Gaussian
process on S(Rl ) defined by (15.6.3), and D the half-space in Rk defined by (15.7.1)
for some unit vector η ∈ Rk and u > 0. Then

E

{
Li (M ∩ y−1D)

}
=

dim M−i∑
l=0

[
i + l

l

]
Li+l (M)ρl(D), (15.7.2)

where for j ≥ 1,

ρj (D) = (2π)−(j+1)/2Hj−1(u)e
−u2/2

and
ρ0(D) = γRk (D).
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The proof is based on the following lemma, which we state and prove first.

Lemma 15.7.2. Under the assumptions of Theorem 15.7.1, the ρ̃l(D) defined by
(15.6.6) satisfy

ρ̃j (D) = (2π)−(j+1)/2uj−1e−u2/2

for j ≥ 1, and
ρ̃0(D) = 1 −�(u).

Proof. We begin with the observation that as long as n > u, and adopting the notation
of the preceding section, we have

π−1√
n,n,k

D = BS√n(R
n)

(√
nη, cos−1(u/

√
n)
)
, (15.7.3)

a geodesic ball, or spherical cap, in S√n(R
n) of radius cos−1(u/

√
n) centered at the

point
√
nη ∈ S√n(R

n). An example is given in the shaded region of Figure 15.7.1.

n1/2u

Fig. 15.7.1. The spherical cap (15.7.3) with k = 1, n = 3, and η taken along the right-
pointing axis.

Consequently, it follows from the definition (15.6.6) of the ρ̃l(D) that they are
given by

ρ̃l(D) = (2π)−j/2[j ]! lim
n→∞

Ln−1

n−1−j

(√
nBS(Rn)(η, cos−1(u/

√
n))
)

snn(n−1)/2
,

for all j > 0 and all u > 0.
In order to compute this limit, we move from spherical Lipschitz–Killing curva-

tures to Euclidean ones, with the claim that

Ln−1

n−1−j

(√
nBS(Rn)(η, cos−1(u/

√
n))
)

(15.7.4)

=
(

u√
n

)j−1

Ln−1−j

(
BRn−1(0,

√
n− u2)

)
.

To see this, first write
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H
�= √

nBS(Rn)

(
η, cos−1(u/

√
n)
)
,

and compute Ln−1

n−1−j using the extrinsic formula (10.5.10). Note that for j > 0,

the only contributions to Ln−1

n−1−j (H) come from ∂H ,17 which is a sphere of radius√
n− u2. (See Figure 15.7.1 again.)

Consequently, up to a constant, Ln−1

n−1−j (H) is the integral of

Tr(Sj−1
η )

over ∂H , where S is the second fundamental form of ∂H in S√n(R
n).

However, although up to this point we have been considering ∂H as it sits in
S√n(R

n), it can also be treated as a subset of the hyperplane

L
�= {

y ∈ Rn : 〈y, η〉 = u
}
.

Consequently, we can also compute the Euclidean Lipschitz–Killing curvatures
Ln−i−j (H), this time using the extrinsic representation (10.5.5). While these will

not be the same as the Ln−1

n−1−j (H), they too will be given, up to constants, by the
integral of the trace of a scalar second fundamental form over ∂H .

In this case, however, the scalar form comes from considering ∂H as a subset of
L, and we write it as S̃. The two fundamental forms are related by

S = u√
n
S̃,

in the sense that if η is the unit outward-pointing normal of ∂H in S√n(R
n) at t ∈ ∂H ,

and η̃ is the unit outward-pointing normal of ∂H in L at x ∈ ∂H , then for any
Xt, Yt ∈ Tt∂H ,

Sη(Xt , Yt ) = u√
n
S̃η̃(Xt , Yt ).

Using this equivalence and substituting into (10.5.10) and (10.5.5) to get the constants
right, (15.7.4) now follows on noting that

Ln−1−j (BL(uη,
√
n− u2)) = Ln−1−j (BRn−1(0,

√
n− u2)).

Since we long ago computed the Lipschitz–Killing curvatures for S(Rn) (cf. (6.3.8))
and we know how they scale (cf. (6.3.1)), the right-hand side of (15.7.4) is now trivial
to compute, and so for j > 0 and n > u, we now have

17 There are only two terms that could possibly contribute to Ln−1

n−1−j
(H), since H has only

two strata, its interior and its boundary. The interior term makes no contribution, since in
(10.5.10) the scalar second fundamental form for the interior term is identically zero. See
the discussion following Lemma 10.5.8.
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Ln−1

n−1−j

(√
nBS(Rn)(η, cos−1(u/

√
n))
)

(15.7.5)

=
(

u√
n

)j−1 [
n− 1

n− 1 − j

]
ωn−1−j (n− u2)(n−1−j)/2.

The rest of the proof for j > 0 is a straightforward application of Stirling’s
formula, specifically the fact that for any fixed α,

lim
n→∞

�
(
n
2

)
�
(
n−α

2

) ∼
(n

2

)α/2
,

where by an ∼ bn we mean that an/bn converges to a finite constant as n → ∞.
Applying this asymptotic equivalence, we easily check that[

n− 1
n− 1 − j

]
∼ (2π)j/2nj/2

[j ]!

and

ωn−1−j n
(n−1−j)/2

snn(n−1)/2
∼ (2π)−(j+1)/2n−1/2,

so that

[j ]!uj−1n−(j−1)/2

(2π)j/2

[
n− 1

n− 1 − j

]
ωn−1−j n

(n−1−j)/2

snn(n−1)/2

(
1 − u2

n

)(n−1−j)/2

∼ (2π)−(j+1)/2uj−1e−u2/2.

Substituting this into (15.7.5) gives that for j > 0 and u > 0,

ρ̃l(D) = (2π)−(j+1)/2uj−1e−u2/2,

as required.
It remains only to treat the case j = 0. But since it is an immediate implication

of Poincaré’s limit that for all u > 0,

lim
n→∞

Ln−1

n−1

(√
nBS(Rn)(η, cos−1(u/

√
n))
)

snn(n−1)/2
= 1 −�(u),

this case is simple, and we are done. ��

Proof of Theorem 15.7.1. The case j = 0 is an immediate consequence of Theo-
rem 15.6.3 and Lemma 15.7.2. Relying on the same results, but now taking j ≥ 1,
we have
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ρj (D) = (j − 1)!
 j−1

2 !∑
k=0

(−1)k

(4π)kk!(j − 1 − 2k)! ρ̃j−2k(D)

= (j − 1)!
 j−1

2 !∑
k=0

(−1)k(2π)−(j−1−2k)/2

(4π)kk!(j − 1 − 2k)! u
j−1−2ke−u2/2

= (2π)−(j+1)/2(j − 1)!
 j−1

2 !∑
k=0

(−1)k

2kk!(j − 1 − 2k)!u
j−1−2ke−u2/2

= (2π)−(j+1)/2Hj−1(u)e
−u2/2,

on noting the definition (11.6.9) of the Hermite polynomials. ��

15.7.2 Implications for More General Fields

The previous subsection contains a new method for deriving the mean values of the
Lipschitz–Killing curvatures of the excursion sets of the canonical isotropic process
on S(RN). Recall that our initial motivation for restricting attention to this one
very special process over this rather special parameter space was a consequence of
Theorem 15.2.1, which stated that we had only to identify the ρ̃j in order to obtain
a far more general result. The other terms, those involving the Lj (M), had already
been identified by Theorem 15.2.1.

However, a quick revision of the proof will show that nowhere did we actually
use Theorem 15.2.1 to prove Theorem 15.7.1. Rather, the proof of this theorem relied
on no more than the KFF and some, essentially algebraic, manipulations.

A natural question, therefore, is to ask how far this approach can be extended.
That is, can we actually manage without Theorem 15.2.1 at all, which was not an easy
result to prove, and still handle more general scenarios?

In fact, we can manage with only the current techniques if we are prepared to limit
ourselves to processes with finite orthogonal expansions. We describe the approach,
without going into technical details.

Recall firstly the discussion of Section 10.2, where we saw that any unit-variance
Gaussian process f̃ with an orthonormal expansion of order l < ∞ can be realized as
the canonical isotropic process f on an appropriately chosen subset of S(Rl ). In fact,
if f̃ is defined over a tame stratified manifold M , then the corresponding subset of
S(Rl ), which we denote by ψ(M) for consistency with the notation of Section 10.2,
is also a tame stratified manifold.

Now suppose that on S(Rl ) we take the usual Riemannian metric, which is also
the metric induced on S(Rl ) by f , and on M we take the metric induced by f̃ (cf.
Section 12.2). It then follows from the invariant nature of the Lipschitz–Killing
curvatures that if A ⊂ M , then

Lf̃
j (A) ≡ Lf

j (ψ(A)),
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where superscripts have been added to emphasize that the Lipschitz–Killing curva-
tures on the left are computed with respect to the metric induced by f̃ on M , while on
the right they are computed with respect to the metric corresponding to f on S(Rl ).

Putting all this together, we have that Theorem 15.7.2 holds not just for the
isotropic process onS(Rl ), but actually on all reasonable manifolds and for all smooth,
unit-variance, Gaussian processes with a finite expansion. That is, we have reestab-
lished all the main results of Chapters 12 and 13 for these processes.

The natural question to ask now is therefore whether we can extend this approach
to processes without a finite expansion, thereby avoiding all the Morse-theoretic
computations of the earlier chapters and of the crucial Theorem 15.2.1 in the current
chapter.

Our answer is twofold: Firstly, we have not been able to do so, and it is not clear
that the argument can be extended to processes without a finite expansion. Secondly,
and, we think, more important, is the fact that the Morse-theoretic approach was cru-
cial for establishing the accuracy of the expected Euler characteristic approximation
to the excursion probability

P

{
sup
t∈M

f (t) ≥ u

}
in Chapter 14. We see no way of adopting an approach based purely on geometric and
tube-theoretic tools that will give the level of accuracy given by the Morse-theoretic
approach.

Thus, despite the fact that in this chapter we are rederiving many of our earlier
results, it seems that we did not waste our time previously. Apparently, there are some
results that are still beyond the reach of the KFF.

15.8 Warped Products of Riemannian Manifolds

In view of the previous section, the light at the end of the tunnel, or chapter, should
now be becoming clearer. In order to evaluate the mean Lipschitz–Killing curvatures
that we are after, and in view of (15.6.6), what remains is to compute the limits

lim
n→∞

Ln−1

n−1−j

(
π−1√

n,n,k
D
)

snn(n−1)/2

for suitable sets D, a computation that is in part geometry and in part asymptotics. In
this section we shall concentrate on the geometry.

As a first step we shall need to investigate the structure of the set π−1√
n,n,k

D ∈
S√n(R

n) a little more deeply than we have so far. In doing so, we shall also need
to introduce the notion of the warped product of Riemannian manifolds, the last
technical tool that we shall require from differential geometry in this book.

It is clear that the set π−1√
n,n,k

D is, topologically, a disjoint union
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π−1√
n,n,k

D /
(
D ∩ S√n(R

k)
)
�
(
D ∩ (BRk (0,

√
n)
)◦ × S(Rn−k)

)
. (15.8.1)

For example, in Figure 15.7.1, the first part of this union is merely the point at the
extreme right of the spherical cap, while the second part is the cap with this point
removed.

Since we are assuming that D itself is a tame stratified space, the same is true of
π−1√

n,n,k
D and of each of the two components above. Consequently, their intrinsic

volumes are well defined. One is easy to compute. Since D ∩ S√n(R
k) is a tame

stratified subset of S√n(R
k), its intrinsic volumes can be computed using (10.5.8).

The second set in the union is, however, somewhat more complex, since we have
written it as a product set and we have not yet developed tools for handling the
Riemannian structure of products. Furthermore, what we have written in (15.8.1) is a
topological equivalence, and ultimately, we shall need precise intrinsic volumes that
are not topological invariants.

The way to handle these problems is twofold. First of all, we need to break the
Riemannian structure of products into a product of structures, at least along each
stratum of a stratified space. Secondly, we need to keep track of the fact that while
(15.8.1) is topologically precise, at each point inD∩(BRk (0,

√
n)
)◦ the corresponding

S(Rn−k) is likely to have a different radius.
In fact, the rightmost part of (15.8.1) is a subset of a warped (Riemannian) product,

and each stratum of D ∩ (BRk (0,
√
n))◦ × S(Rn−k) inherits this warped product

structure. Once we choose the appropriate warp we can, and shall, relate to (15.8.1)
no longer as a topologically correct relationship, but as if it were correct without
qualifiers.

To understand what this means, we take a moment to investigate warped products
and develop a general expression for the intrinsic volumes of their subsets. Once we
have that, we shall be able to develop a concrete expression for the intrinsic volumes
of π−1√

n,n,k
D, which we do in Section 15.9.

15.8.1 Warped Products

We now develop some basic calculations needed to compute the intrinsic volumes of
warped products. We were unable to find many of these calculations in the literature
and so cannot adopt our usual policy of simply referring you to a good reference.
Bear with us—they will not be too long.

A (Riemannian) warped product consists of two Riemannian manifolds (M1, g1)

and (M2, g2) and a smooth function σ 2 : M1 → [0,+∞), known as the warp. The
warped product is then defined to be the Riemannian manifold

(M1,M2, σ )
�= (M1 ×M2, g1 + σ 2g2). (15.8.2)

That is, the warped product of (M1, g1) and (M2, g2) with warp σ 2 is a Riemannian
manifold M1 ×M2 such that for each (t1, t2) ∈ M1 ×M2 the Riemannian metric on
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M1 ×M2 is given by18

g
(
Xt1 + Yt2 , Zt1 +Wt2

) = g1
(
Xt1 , Zt1

)+ σ 2
t1
g2
(
Yt2 ,Wt2

)
.

Usually, as in our case, M2 is a sphere.
As an example of a warped product consider

M̃σ = (
BRk (0,

√
n)
)◦ × S(Rn−k),

where the Riemannian metric on the open ball is given by

gσ = gRk + ∇σ ⊗ ∇σ (15.8.3)

for

σ 2(t) = n− ‖t‖2
Rk , (15.8.4)

and the Riemannian metric gRk on S(Rn−k) is the canonical one inherited from Rn−k .
The reason we are interested in this example of a warped product is that each

(n− k − 1 + j)-dimensional stratum D̃n−k−1+j of(
D ∩

(
S(Rk)

)c )× S(Rn−k)

is isometrically embedded in this warped product and has the form

Dj × S(Rn−k) (15.8.5)

for some j -dimensional submanifold Dj of the open ball BRk (0,
√
n)◦. Using this

embedding we can compute

L1/n
n−1−i

(
π−1√

n,n,k
D, D̃n−k−1+j

)
,

the contribution of these strata to the intrinsic volumes of π−1√
n,n,k

D.

The first step to computing these contributions is to compute the Levi-Civitá
connection ∇̃σ of M̃σ , since this is needed in order to compute the second fundamental
form of Dj × S(Rn−k) in M̃σ .

Consider, therefore, a general warped product (M1,M2, σ ) and denote the Levi-
Civitá connection on each Mj by ∇j . Use E, or Ej , to denote vector fields on M1,
identified with their natural extensions on M1 × M2. Similarly, F , or Fj , denotes
fields on M2 extended to M1 ×M2. Then the following relationships hold:

∇̃σ
E1
E2 = ∇1

E1
E2, ∇̃σ

F1
F2 = ∇2

F1
F2, (15.8.6)

and

18 Since the tangent space T(t1,t2)(M1 ×M2) is equal to Tt1M1 ⊕ Tt2M2, any vector X̃(t1,t2)

in it can be written as Xt1 +Xt2 for unique Xtj ∈ TtjMj .
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∇̃σ
EF = ∇̃σ

FE = E(log σ)F. (15.8.7)

The two relationships in (15.8.6) follow directly from the definition of the Levi-Civitá
connection and the product structure of M . To prove (15.8.7) we apply Koszul’s
formula (7.3.12). If F1, . . . , Fk is an orthonormal frame on (M2, g2), then it is
immediate that

F̂i = 1

σ
Fi, 1 ≤ i ≤ k,

are orthonormal vector fields on (M, g).
Koszul’s formula then gives us that for any vector field E on (M1, g1),

g(∇σ
EFi, Fj ) = 1

2
E(g(Fi, Fj )),

since all the other terms in the formula are zero either by orthogonality or the product
structure of (M, g). However,

E(g(Fi, Fj )) = E(σ 2g2(Fi, Fj )) = 2σE(σ)g2(Fi, Fj ) = 2σE(σ)δij .

Furthermore,

g(∇σ
EFi, E) = 0

for any other vector field E on (M1, g1). Therefore, for any 1 ≤ i ≤ k,

∇σ
EFi =

k∑
j=1

g(∇σ
EFi, F̂j ), F̂j =

k∑
j=1

1

σ
g(∇σ

EFi, Fj )F̂j

=
k∑

j=1

E(σ)δij F̂j = E(σ)

σ
Fi = E(log σ)Fi,

from which (15.8.7) now follows.

15.8.2 A Second Fundamental Form

With the Levi-Civitá connection ∇̃σ determined, the next step toward computing
intrinsic volumes lies in understanding the second fundamental forms over the sets
Dj ×S(Rk) as they sit in M̃σ , as well as their powers. For this we need to describe the
normal spaces T(t,η)M̃⊥

σ for t ∈ BRk (0,
√
n) and η ∈ S(Rn−k). A simple argument

shows that at a point (t, η) ∈ Dj × S(Rn−k),

(T(t,η)M̃σ )
⊥ =

(
TtDj ⊕ TηS(R

n−k)
)⊥ / TtD

⊥
j , (15.8.8)

where TtD
⊥
j is the orthogonal (with respect to gσ ) complement of TtDj in TtBRk (0,√

n). From this, it is now not hard to see that the normal Morse index Dj ×S(Rk) as
it sits in M̃σ is actually the same as the Morse index of Dj as it sits in BRk (0,

√
n).
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With the various tangent and normal spaces determined, we now let S denote the
scalar second fundamental form of Dj × S(Rn−k) in M̃σ , and Sσ the scalar second
fundamental form of Dj in (BRk (0,

√
n), gσ ). Then we have the following lemma.

Lemma 15.8.1. Retaining the above notation, for 0 ≤ l ≤ n− 1, take

(t, η) ∈ Dj × S(Rn−k), νk−j ∈ (T(t,η)Dj × S(Rn−k))⊥.

Then

1

l! Tr(Sl
νk−j

) =
l∑

r=0

(
n− k − 1

l − r

)
(−1)l−r (νk−j (log σt ))

l−r Tr(Sr
σ,νk−j

).

Proof. Fix an orthonormal (under gσ ) basis (E1, . . . , Ek, F1, . . . , Fn−k−1) of
T(t,η)M̃σ such that (E1, . . . , Ej ) forms an orthonormal basis of TtDj . Equation
(15.8.8) implies that any νk−j satisfying the conditions of the theorem can be ex-
pressed as

νk−j =
j∑

r=1

arEr

for some constants ar . Applying (15.8.6) and (15.8.7) along with the Weingarten
equation (7.5.12), we obtain

Sνk−j
(Er , Es) = −g(∇σ

Er
νk−j , Es) = −gσ (∇σ

Er
νk−j , Es) = Sσ,νk−j

(Er , Es),

Sνk−j
(Fr , Fs) = −g(∇σ

Fr
νk−j , Fs) = −νk−j (log σt )g(Fr, Fs)

= −νk−j (log σt )δrs,

Sνk−j
(Er , Fs) = 0.

Therefore, for each νk−j , the matrix of the shape operator Sνk−j
in our chosen

orthonormal basis is block diagonal with one block, of size j , being{
Sσ,νk−j

(Er , Es)
}

1≤r,s≤j
.

The other block, of size n− k − 1, is

−νk−j (log σt )I(n−k−1)×(n−k−1).

Therefore, applying (7.2.7), we have that for l ≤ n− k − 1,

1

l! Tr(Sl
νk−j

) =
l∑

r=0

(
n− k − 1

l − r

)
(−1)l−r

(
νk−j (log σt )

)l−r 1

r! Tr(Sr
σ,νk−j

),

which completes the proof. ��
Since Lipschitz–Killing curvatures are no more than integrals of powers of traces

of second fundamental forms, we now have all we need to begin the final computation.
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15.9 Non-Gaussian Mean Intrinsic Volumes

Our aim now is to compute the limits (15.6.6), that is,

lim
n→∞

Ln−1

n−1−j

(
π−1√

n,n,k
D
)

snn(n−1)/2
, (15.9.1)

for which the following lemma is the most crucial step. It is in this step that the
generalized Lipschitz–Killing curvature measures L̃j and integrals against them as
in Definition 10.9.1 appear for the first time. The transition from this lemma to the
final result in Theorem 15.9.5, in which the Gaussian Minkowski functionals appear,
will then involve no more than some careful asymptotics.

Lemma 15.9.1. As usual,D is a tame stratified subset of Rk with j -dimensional strata
Dj . Suppose that D̃n−k−1+j = Dj × S(Rn−k) is an (n − k − 1 + j)-dimensional
stratum of π−1√

n,n,k
D such that

D̃n−k−1+j ∩ S(Rk) = ∅.
Then, for all i ≥ k − j ≥ 0,

L1/n
n−1−i

(
π−1√

n,n,k
D, D̃n−k−1+j

)
(15.9.2)

= sn−k

i+j−k∑
l=0

sk+l−j

si

(
n− k − 1

i + j − k − l

)
× L̃j−l

(
Dσ , σn+k−2i−2j+2l−1(2π)−k/2hi+j−k−l1Dj

)
,

where Dσ = D ∩ BRk (0,
√
n) is the tame stratified space obtained from the inter-

section of the embedding of D in Rk and the open ball of radius
√
n, endowed with

the metric gσ given by (15.8.3) and

hl(t, ν)
�= 〈ν, t〉l

Rk .

(Note also that the final term in (15.9.2) is an integral against the generalized cur-
vature measure L̃j−l .)

Furthermore, suppose that for all 0 ≤ r, s ≤ i + k − j ,

L̃r

(
D, |hs |ϕk1Dj

)
< ∞, (15.9.3)

writing ϕk for the k-dimensional Gaussian density (2π)−k/2e−|t |2/2. Then

lim
n→∞

1

snn(n−1)/2
L1/n
n−1−i

(
π−1√

n,n,k
D, D̃n−k−1+j

)
(15.9.4)

=
i+j−k∑
l=0

[k + l − j ]!
[i]!

(
i − 1

k + l − j − 1

)
L̃j−l

(
D,ϕkhi+j−k−l1Dj

)
.
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Proof. From (10.5.10),

L1/n
n−1−i

(
π−1√

n,n,k
D, D̃n−k−1+j

)
= C(k − j, i + j − k)

(2π)(i+j−k)/2(i + j − k)!
∫
Dj×S(Rn−k)

∫
S(T(t,η)Dj×S(Rn−k)⊥)

× Tr(Si+j−k
νk−j

)α(νk−j )Hk−j (dνk−j )Hn−1−j+k(dt, dη),

where

Hn−1−j+k(dt, dη) = σn−1−k
t Hn−1−k(dη)Hj (dt)

is the Hausdorff measure that Dj × S(Rn−k) inherits from D̃σ , the warped product
of (Dσ , gσ ) and S(Rk) with its usual metric and warp function σ 2 given by (15.8.4).

By Lemma 15.8.1, observation (15.8.8), and the subsequent remarks about the
normal Morse index α,

L1/n
n−1−i

(
π−1√

n,n,k
D, D̃n−k−1+j

)
= C(k − j, i + j − k)(2π)−(i+j−k)/2

∫
Dj

∫
S(Rn−k)

∫
S(TtD

⊥
j )

×
i+j−k∑
l=0

(
n− 1 − k

i + j − k − l

)
σn−1−k
t (−1)i+j−k−l

(
νk−j (log σt )

)i+j−k−l

× 1

l! Tr(Sl
σ,νk−j

)α(νk−j )Hk−j (dνk−j )Hn−1−k(dη)Hj (dt).

Equation (15.9.2) now follows from the fact that

C(k − j, i + j − k)(2π)−(i+j−k)/2

C(k − j, l)(2π)−l/2
= sk+l−j

si
,

followed by integrating over S(Rn−k) and noting that

νk−j (log σt ) = −〈νk−j , t〉Rk

σ 2
t

.

As for the second conclusion of the lemma, (15.9.4), note that

lim
n→∞

sn−k

snn(n−1)/2

(
n− k − 1

i + j − k − l

)
σ
n+k−2i−2j+2l−1
t

= lim
n→∞

sn−k

snn(n−1)/2

(
n− k − 1

i + j − k − l

)
n(n+k−2i−2j−2l−1)/2

×
(

1 − ‖t‖2

n

)(n+k−2i−2j−2l−1)/2

= (2π)−k/2

(i + j − k − l)!e
−‖t2‖/2.
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Also,

sk+l−j

si(i + j − k − l)! = sk+l−j (k + l − j − 1)!
si(i − 1)!

(
i − 1

k + l − j

)
= [k + l − j ]!

[i]!
(

i − 1

k + l − j

)
.

Finally, since it is not hard to see that there exists a finite K such that for all n large
enough, (

1 − |t |2
n

)n/2

≤ Ke−|t |2/2

for all t ∈ BRk (0,
√
n)◦, dominated convergence yields (15.9.4) and we are done. ��

In Lemma 15.9.1 we computed the contribution of the sets D̃n−k−1+j = Dj ×
S(Rn−k) to the curvatures Ln−1

n−1−i (π
−1√
n,n,k

D) under the assumption that D̃n−k−1+j ∩
S(Rk) = ∅.

Our task now is to show that if in fact, D̃n−k−1+j ∩ S(Rk) �= ∅, then there is

actually no contribution to Ln−1

n−1−i (π
−1√
n,n,k

D) for n large enough. We write this as

shown in the following lemma.

Lemma 15.9.2. Suppose that D satisfies the conditions of Lemma 15.9.1 and that
Dj ⊂ S√n(R

k) is a stratum of D ∩ BRk (0,
√
n) for some n > 0. Then, for n >

j + i + 1,

Ln−1

n−1−i (π
−1√
n,n,k

D, π−1√
n,n,k

Dj ) = 0,

and so for all sufficiently large n,

Ln−1

n−1−i (π
−1√
n,n,k

D, h1
π−1√

n,n,k
Dj

) ≡ 0

for all h.

Proof. Since Dj ⊂ S√n(R
k),

π−1√
n,n,k

Dj = Dj,

and so π−1√
n,n,k

Dj is a j -dimensional stratum of π−1√
n,n,k

D. From Definition 10.9.1,

we see that such strata contribute only to the intrinsic volumes of order 0 to j , as
required. ��

We now have all that we need to evaluate the illusive limits (15.6.6), namely,

ρ̃j (D)
�= (2π)−j/2[j ]! lim

n→∞
Ln−1

n−1−j

(
π−1√

n,n,k
D
)

snn(n−1)/2
,

and via them the all-important functions ρj (D) of (15.6.13).
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Theorem 15.9.3. Suppose D satisfies the conditions of Lemma 15.9.1. Then

ρi(D) = (2π)−i/2Mγ

i (D), (15.9.5)

where the functionals Mγ

i (D) are the coefficients in the standard Gaussian tube
formula derived in Section 10.9.3.

Proof. We start by computing the ρ̃i . By Lemmas 15.9.1 and 15.9.2,

ρ̃i (D) = (2π)−i/2[i]!
k−1∑

j=k−i

i+j−k∑
l=0

[k + l − j ]!
[i]!

(
i − 1

k + l − j − 1

)
× L̃j−l

(
D,ϕkhi+j−k−l1Dj

)
= (2π)−i/2

k−1∑
j=k−i

i+j−k∑
l=0

(
i − 1

k + l − j − 1

)
× M̃k+l−j

(
D,ϕkhi+j−k−l1Dj

)
= (2π)−i/2

i−1∑
m=0

(
i − 1

m

)
M̃m+1 (D, ϕkhi−1−m) ,

where the M̃ are the generalized Minkowski curvature measures defined in (10.9.5).
With the ρ̃i determined, we can now turn to the ρj . By (15.6.13) these are given by

ρi(D) = (i − 1)!
 i−1

2 !∑
l=0

(−1)l

(4π)ll!(i − 1 − 2l)! ρ̃i−2l (D)

= (i − 1)!
 i−1

2 !∑
l=0

i−2l−1∑
m=0

(−1)l

(4π)ll!(i − 1 − 2l)! (2π)
−(i−2l)/2

×
(
i − 2l − 1

m

)
M̃m+1 (D, ϕkhi−2l−1−m)

= (2π)−(i+k)/2
i−1∑
m=0

(
i − 1

m

)
M̃m+1

(
D,Hi−m−1(〈η, t〉)e−|t |2/2

)
= (2π)−iÂ½Mγ

i (D),

the second-to-last line coming from the definition (11.6.9) of the Hermite polynomials,
and the last from the definition (10.9.12) of the Mγ

i (D). ��
The main results of this chapter, and indeed of the book, are now simple corollaries.

Theorem 15.9.4. Let M be an N -dimensional, regular stratified space, D a regular
stratified subset of Rk . Let y = (y1, . . . , yk) : M → Rk be a vector-valued Gaussian
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field, with independent, identically distributed components satisfying the conditions
of Corollary 11.3.5. Then

E

{
Li

(
M ∩ y−1(D)

)}
=

N−i∑
j=0

[
i + j

j

]
(2π)−j/2Li+j (M)Mγ

j (D), (15.9.6)

where the Lj , j = 0, . . . , N , are the Lipschitz–Killing measures on M with respect to
the metric induced by the yi , and the Mγ

j are the generalized (Gaussian) Minkowski

functionals on Rk .

Proof. Theorems 15.6.3 and 15.9.3, which actually require fewer conditions than
we have assumed, immediately yield that (15.9.6) holds for the canonical isotropic
process y of (15.6.3).

On the other hand, Theorem 15.2.1, which does require all the conditions of the
theorem being proven, implies that in general, the mean Lipschitz–Killing curvatures
E
{
Li (M ∩ y−1(D)

}
break up into a sum of Lipschitz–Killing curvatures of M and

coefficients that are dependent only on D and some other constants. In particular,
they are independent of the covariance structure of the underlying process and its
parameter space. Consequently, these coefficients are the same as we computed for
the canonical isotropic process on the sphere. That is, (15.9.6) holds in general. ��

Finally, we have the main theorem of the book, which is a trivial consequence of
the previous one. Indeed, we would have called it a corollary rather than a theorem,
were it not for the fact that it is such an important result.

Theorem 15.9.5. With the same notation and conditions as in Theorem 15.9.4, let
F ∈ C2(Rk,R) and define the non-Gaussian random field f = F(y(t)). Then

E {Li (Au(f,M))} =
N−i∑
j=0

[
i + j

j

]
(2π)−j/2Li+j (M)Mγ

j

(
F−1[u,+∞)

)
.

Proof. This is a trivial consequence of Theorem 15.9.4, taking D = F−1([u,∞)).

15.10 Examples

To round off, we now want to look at three examples of Theorem 15.9.5, one familiar
and two new. By “examples,’’ what we mean are explicit computations of the coeffi-
cients Mγ

j

(
F−1[u,+∞)

)
for particular choices of the function F . There is no need

to recompute the coefficents Li+j since these are the same as in the Gaussian case
and independent of the choice of F .

The familiar example will be the case of Gaussian f , in which case, in the notation
of Theorem 15.9.5, k = 1 and F(x) ≡ x. Here we have seen the result many times,
including Chapters 11 and 12 for the Euler characteristic and Chapter 13 for the
remaining Lipschitz–Killing curvatures, not to mention in Section 15.7 of the present
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chapter. Thus our aim is simply to check that everything works as it should and to
see how to derive the specific from the general.

For the remaining two examples, we take two of the examples of (15.0.2), specif-
ically the so-called χ2 and F random fields. In all three examples, we shall look for
functions ρj,f such that

E {L0 (Au(f,M))} =
N∑
j=0

ρj,f (u)Lj (M). (15.10.1)

The ρj,f are generally known as the Euler characteristic (EC) densities for f , and
by Theorem 15.9.5 they are given by

ρj,f (u) = (2π)−j/2Mγ

j

(
F−1[u,+∞)

)
. (15.10.2)

Although they are defined via the mean Euler characteristic calculation, it follows from
Theorem 15.9.5 that they determine all the other mean Lipschitz–Killing curvatures
as well, since

E {Li (Au(f,M))} =
N−i∑
j=0

[
i + j

j

]
ρj,f (u)Li+j (M). (15.10.3)

Throughout, we shall assume, as we have done so far and without further comment,
that the assumptions of Theorem 15.9.5 hold regarding both the manifold M and the
process y.

15.10.1 The Gaussian Case

The simplest of all examples is given by y being a real-valued, centered, unit-variance
Gaussian random field and F the identity function, so that f ≡ y. In this case we
already know by (10.9.13) that

Mγ

j

(
F−1[u,∞)

)
= Mγ

j ([u,∞)) = 1√
2π

Hj−1(u)e
−u2/2, (15.10.4)

and so

ρj,f (u) = (2π)−(j+1)/2Hj−1(u)e
−u2/2. (15.10.5)

Despite this easy path, we shall rederive the result via the Taylor series mentioned in
Chapter 10, as a preliminary to the more complicated χ2 and F cases.

Recall that the Mγ arise as coefficents in the formal tube expansion (10.9.11).
That is,

γRl (Tube(D, ρ)) = γRl (D)+
∞∑
j=1

ρj

j ! M
γ

Rl

j (D). (15.10.6)
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Taking Du = [u,∞) here, and recalling the fact that

dj

dxj
e−x2/2 = (−1)jHj (x)e

−x2/2

(cf. (11.6.11)), we have, via a standard Taylor series expansion of the exponential
function, that

γRk

(
T (Du, ρ)

) = 1 −�(u− ρ)

= 1 −
(
�(u)+

∞∑
j=1

(−ρ)j

j !
(−1)j−1

√
2π

Hj−1(u)e
−u2/2

)

= 1 −�(u)+
∞∑
j=1

ρj

j !
1√
2π

Hj−1(u)e
−u2/2,

so that on comparison with (15.10.6), we find that

Mγ
Rk

j (Du) = 1√
2π

Hj−1(u)e
−u2/2,

which is, of course, the same as (15.10.4) and so also implies (15.10.5).
Substituting (15.10.5) into (15.10.1) gives the mean Euler characteristic results of

Chapters 11 and 12 (cf. (11.7.15) and Theorems 12.4.1 and 12.4.2), while substituting
into (15.10.3) recaptures the main results of Chapter 13 for the remaining Lipschitz–
Killing curvatures (cf. Theorems 13.2.1 and 13.4.1).

15.10.2 The χ2 Case

The χ2 random fields arise in a number of applications (cf. [172]) and are easily
defined by taking F , in our standard notation, to be

G(y) = |y|2.
(The desire for a change of notation will become clear soon.) We shall write the
corresponding random processes as

g(t) = G(y(t)).

The EC densities for these processes19 were originally derived in [2] forN = 2 and in
[172] in general, in both cases from a first-principles approach and with considerable
and complicated computation. We shall work via Theorem 15.9.5, an approach first
adopted in [157, 158]. As you will see in a moment, the general approach is basically
the same as in the simple Gaussian case, although the details of the computation are
a little more complicated.
19 The EC densities for noncentral χ2 processes are also known, and available in [172] and

[157, 158].
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We start the actual computation by noting that if we take F(x) = |x|, then
f = F ◦ y is the square root of the χ2

k random field g on M . Since the EC densities
of f are related to those of the χ2

k field g by

ρj,g(u) = ρj,f (
√
u),

it suffices to calculate the EC densities of f , which turns out to lead to slightly tidier
computations.20

Following the same path we took for the Gaussian example, we note that for this
f we have

Du = F−1 ([u,+∞)) = Rk\BRk (0, u),

and T (Du, ρ) = Du−ρ , so that

γRk (T (Du, ρ)) = γRk (Du−ρ).

It remains to express the right-hand side here as a Taylor series in ρ. Elementary
computations give the probability density pk of f as

pk(x) = 1

�(k/2)2(k−2)/2
xk−1e−x2/2,

and so

γRk

(
Du−ρ

) = γRk (Du)−
∞∑
j=1

(−ρ)j

j !
dj−1pk

dxj−1

∣∣∣∣
x=u

.

Direct calculations, again exploiting (11.6.11) as in the Gaussian case, show that

dj−1pk

dxj−1
= 1

�(k/2)2(k−2)/2

j−1∑
i=0

(
j − 1

i

)
(−1)i

dj−1−ixk−1

dxj−1−i
Hi(x)e

−x2/2

= e−x2/2

�(k/2)2(k−2)/2

j−1∑
i=0

(
j − 1

i

)
(−1)i

dj−1−ixk−1

dxj−1−i
Hi(x).

The summation can be rewritten as

20 Of course, we have introduced a small problem here, sinceF(x) = |x| is notC2, as required
by Theorem 15.9.5. Nevertheless, we shall ignore the problem on the basis that a quick
check of the proof of Theorem 15.9.5 should convince you that for each u, F need be C2

only in a neighborhood of u. Thus, if we restrict ourselves to u > 0, all is fine. In any case,
the problem is an artifact of choosing to work with |x| instead of the more natural |x|2,
which should also help convince you that it is not too serious.
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j−1∑
i=0

1{k≥j−i}
(
j − 1

i

)
(−1)i

(k − 1)!
(k + i − j)!x

k+i−jHi(x)

= xk−j

j−1∑
i=0

 i/2!∑
l=0

1{k≥j−i}
(
j − 1

i

)
(−1)i+l (k − 1)!

(k + i − j)!
i!

(i − 2l)!l!2l x
2i−2l

= xk−j

 j−1
2 !∑

l=0

j−1∑
i=2l

1{k≥j−i}
(
j − 1

i

)
(−1)i+l (k − 1)!

(k + i − j)!
i!

(i − 2l)!l!2l x
2i−2l

= xk−j

 j−1
2 !∑

l=0

j−1−2l∑
m=0

1{k≥j−m−2l}
(

k − 1

j − 1 −m− 2l

)
(−1)m+l (j − 1)!

m!l!2l x2m+2l .

Combining the last three displays gives

γRk

(
Du−ρ

)
= γRk (Du)+

∞∑
j=1

ρj

j !
uk−j e−u2/2

�(k/2)2(k−2)/2

 j−1
2 !∑

l=0

j−1−2l∑
m=0

× 1{k≥j−m−2l}
(

k − 1

j − 1 −m− 2l

)
(−1)j−1+m+l (j − 1)!

m!l!2l u2m+2l .

It now follows from the definition (15.10.2) of the EC densities that for j ≥ 1,

ρj,f (u) = uk−j e−x2/2

(2π)j/2�(k/2)2(k−2)/2

 j−1
2 !∑

l=0

j−1−2l∑
m=0

× 1{k≥j−m−2l}
(

k − 1

j − 1 −m− 2l

)
(−1)j−1+m+l (j − 1)!

m!l!2l u2m+2l ,

and so we have the following result.

Theorem 15.10.1. The EC densities of the χ2
k random field g are given, for j ≥ 1

and u > 0, by

ρj,g(u) = u(k−j)/2e−u/2

(2π)j/2�(k/2)2(k−2)/2

 j−1
2 !∑

l=0

j−1−2l∑
m=0

× 1{k≥j−m−2l}
(

k − 1

j − 1 −m− 2l

)
(−1)j−1+m+l (j − 1)!

m!l!2l um+l .

When j = 0,

ρ0,g(u) = P

{
χ2
k ≥ u

}
.
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Perhaps the most important thing to note from this example is that although many
of the formulas above may be long, there is nothing at all difficult in them. All that
was required, once the structure of the sets Du was understood, was basic calculus.

Indeed, this is often the case. However, there are cases, as we shall see from
the following example, for which, as the function F becomes more complex, it
becomes more efficient to backtrack a little and to compute the Minkowski curvature
functionals from first principles.

15.10.3 The F Case

To define the Fm,n random field, we take y = (y1, . . . , ym+n) as in Theorem 15.9.5,
and set f = F ◦ y, where

F(y) = n

m

∑m
i=1(y

i)2∑n
i=1(y

m+i )2
.

There is problem with the Fm,n field, however, that does not arise with the Fm,n

random variable (i.e., the field at a specific point). This is that for the field it may well
happen that there are t for which y(t) = 0, in which case f (t) is undefined. To avoid
this, we shall assume that n + m > N , so that by Theorem 11.2.10 we are assured
that, with probability one, there are no such points. Then, restricting to u > 0 and
using the same logic as in footnote 20, we have no problem.

In computing the EC densities of an Fm,n field we return to first principles, and
the definition (10.9.10) of Mγ

Rk as

Mγ
Rm+n

j (M)
�=

j−1∑
k=0

(
j − 1

k

)
(−1)j−1−kM̃k+1

(
M,

dj−1−k

dηj−1−k
ϕm+n

)
.

To differentiate ϕm+n we again apply (11.6.11). With Du = F−1[u,+∞) and
∂Du = F−1({u}), noting the facts that 〈∇F,∇‖y‖2/2〉 = 0 and

Hn(0) =
{

0, n odd,

(−1)l (2l)!
l!2l , n = 2l,

it is now not hard (although it involves some patience playing with constants) to see
from (10.9.2) and (10.9.5) that for j ≥ 1,

Mγ
Rm+n

j (Du) (15.10.7)

= (j − 1)!
 (j−1)

2 !∑
l=0

(−1)l

l!2l
1

(2π)(m+n)/2

∫
∂Du

e−|x|2/2Mj−2l (Du, dx)

= (j − 1)!
 (j−1)

2 !∑
l=0

(−1)l

l!2l
1

(2π)(m+n)/2

×
∫
∂Du

e−|x|2/2 1

(j − 2l − 1)! Tr∂Du

(
S
j−2l−1
∂Du

)
dHm+n−1(x).
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The computation of this last integral is not simple, so we separate it out as a lemma.

Lemma 15.10.2. In the notation above,

1

(2π)(m+n)/2

∫
∂Du

1

k! Tr∂Du

(
Sk
∂Du

)
e−|x|2 dHm+n−1(x)

=
�
(
m+n−k−1

2

)
2(k−1)/2�

(
m
2

)
�
(
n
2

) (mu

n

)(m−1−k)/2 (
1 + mu

n

)−(m+n−2)/2

×
k∑

i=0

(−1)k−i
(mu

n

)i (m− 1

k − i

)(
n− 1

i

)
.

Proof. We start by writing

Tr∂DF

(
Sk
∂DF

)
(y) = Tr∂DF(y)

((
−|∇F(y)|−1∇2F(y)|∂DF(y)

)k)
.

Then it is not hard to see that

1

k! Tr∂DF

(
Sk
∂DF

)
= 1

k! Tr∂DF

((
−|∇F |−1∇2F|∂DF

)k)
. (15.10.8)

In order to compute this trace, define

U(y) =
m∑

j=1

(
yj
)2

, V (y) =
n∑

j=1

(
yj+m

)2
, G(y) = U(y)

V (y)
.

Since F = nU/mV , straightforward calculations show that

|∇F | = 2n

m

√
G(1 +G) · 1√

V
,

|∇F |−1∇F =
√

1

1 +G

1

2
√
U

∇U −
√

G

1 +G

1

2
√
V

∇V,

|∇F |−1∇2F = 1

2
√
G(1 +G)

(
1√
V

∇2U − 1

V 3/2 (dV ⊗ dU + dU ⊗ dV )

+ 2G

V 3/2
dV ⊗ dV − G√

V
∇2V

)
.

We now evaluate the matrix of |∇F |−1∇2F in a specific set of orthonormal frames
of ∇F⊥. Specifically, viewing Rm+n as the product Rm×Rn with the product metric,
we fix subspaces L1, the kernel of ∇U in Rm, and similarly L2, the kernel of ∇V in
Rn, for which we choose orthonormal frames B1, B2. The desired set of frames for
the kernel of ∇F is then B = {B1, B2, X}, where

X =
√

G

1 +G

1

2
√
U

∇U −
√

1

1 +G

1

2
√
V

∇V.
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The matrix of −|∇F |−1∇2F in this set of frames is diagonal, with entries

1√
VG(1 +G)

⎛⎝ m− 1 times︷ ︸︸ ︷
−1, . . . ,−1,

n− 1 times︷ ︸︸ ︷
G, . . . ,G, 0

⎞⎠ .

By expanding the trace of the kth power of such a diagonal matrix we now obtain,
from (15.10.8), that

1

k! Tr∂DF

(
Sk
∂DF

)
=
(

1√
VG(1 +G)

)k k∑
i=0

(−1)k−iGi

(
m− 1

k − i

)(
n− 1

i

)
.

Federer’s coarea formula (7.4.13) now implies that

1

(2π)(m+n)/2

∫
∂Du

e−|x|2/2 1

k! Tr∂Du

(
Sk
∂Du

)
dHm+n−1(x)

= lim
ε→0

1

2ε

∫
Rm+n

|∇F |1{|F−u|<ε}
1

k! Tr∂DF

(
Sk
∂DF

)
dγRm+n(x)

= E

{
|∇F | 1

k! Tr∂DF

(
Sk
∂DF

) ∣∣F = u

}
dF∗(γRm+n)

dλR

(u).

The lemma now follows after substituting for the density dF∗(γRm+n)/dλR and noting
that V (1 +G) = U + V ∼ χ2

m+n is independent of G and

E
{
(U + V )p

} = 2p
�
(
m+n

2 + p
)

�
(
m+n

2

) . ��

Combining (15.10.7) and Lemma 15.10.2, we have proven the following.

Theorem 15.10.3. For m+ n ≥ N and u > 0 the EC densities for the Fm,n random
field are given by

(2π)j/2ρj,f (u)

=
�
(
m+n−j

2

)
2(j−2)/2�

(
m
2

)
�
(
n
2

) (mu

n

)(m−j)/2 (
1 + mu

n

)−(m+n−2)/2

× (−1)j−1(j − 1)!
 (j−1)

2 !∑
l=0

�
(
m+n−j

2 + l
)

�
(
m+n−j

2

)
l!

×
j−2l−1∑
i=0

(−1)i+l
(mu

n

)i+l
(

m− 1

j − 1 − 2l − i

)(
n− 1

i

)
,

for j ≥ 1, and for j = 0 by

ρj,f (u) = P{Fm,n ≥ u}.
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There are many more formulas like these, for a wide variety of non-Gaussian
processes, some simpler, many even more complex.

Complexity, however, is a relative concept. The underlying formula behind all of
the special cases of this last section was the simple result of Theorem 15.9.5, namely,

E {Li (Au(f,M))} =
N−i∑
j=0

[
i + j

j

]
(2π)−j/2Li+j (M)Mγ

j

(
F−1[u,+∞)

)
.

To a geometer, this is simple. To a statistician or probabilist, this last formula
is complex, since it involves unfamilar geometric quantities. Our hope is that after
reading this book, the statistician and the probabilist will now feel more comfortable
with the geometry underlying applications of random fields. Perhaps we have even
motivated the geometers and others among you to take a look at [8], which will show
what can be done with these results on a practical level. Now that this book is finally
done, together with Keith Worsley we can finally begin work on [8], as we promised
back in the preface. Look for it in your favorite bookstore, but be prepared to wait a
little. In the meantime, look for a work in progress on our websites, where we shall
also keep updates on this book.
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