
1

ECF-IDS: An Enhanced Cuckoo Filter-based
Intrusion Detection System for In-vehicle Network
Sifan Li, Yue Cao, Senior Member, IEEE, Hassan Jalil Hadi, Feng Hao, Senior Member, IEEE, Faisal Bashir

Hussain, and Luan Chen

Abstract—With the rapid advancement of vehicle connectivity
and intelligent technologies, an increasing number of vehicles are
now connected to the Internet. However, these connected vehicles
are vulnerable to malicious attacks, posing serious security
events. In particular, the in-vehicle controller area network
(CAN) bus has witnessed a rise in incidents involving various
network attacks, such as denial of service (DoS), fuzzy attacks,
and gear attacks. In response, this paper proposes an enhanced
cuckoo filter-based intrusion detection system (ECF-IDS) for in-
vehicle network. The ECF-IDS builds on an enhanced version of
the cuckoo filter. It first utilizes the cuckoo filter to establish
two lists (a normal list and an intrusion list) based on the
labeled dataset using Car Hacking Dataset (CHD) and can-train-
and-test dataset. Then, the input CAN traffic is sequentially
compared with these two lists, where the conflicting traffic is
further identified using a BERT-based model. The ECF-IDS is
experimentally validated using the CHD and can-train-and-test
dataset, demonstrating higher detection efficiency, lower resource
consumption, and detection success exceeding 99% compared to
other algorithms presented in previous studies. Furthermore, we
conducted real in-vehicle environment testing on the ECF-IDS
model, and its detection performance proved to be excellent.

Index Terms—CAN, IDS, BERT, Cuckoo Filter

I. INTRODUCTION

NOWADAYS, the progression of vehicle intelligence and
connectivity is also gaining attention [1]. Integral to this

progression is in-vehicle communication, a crucial component
within vehicles. The most widely used in-vehicle communi-
cation is controller area network (CAN) [2]. The traditional
communication technologies, which are based on CAN, enable
efficient data transmission, processing, and decision-making
[3]. They facilitate communication among in-vehicle sensors,
controllers, and electronic control units (ECUs) [4].

The CAN bus plays a crucial role in controlling communi-
cation between ECUs in vehicles. As a result, the security
of the CAN bus directly influences the overall security of
vehicles. However, the CAN bus itself possesses inherent
vulnerabilities. First, the absence of encryption technology in
CAN communication results in unencrypted data broadcasting
[5]. This exposes two major risks: 1) Attackers can effortlessly

S. Li, Y. Cao (corresponding author), and Hassan Jalil Hadi are with
the School of Cyber Science and Engineering, Wuhan University, Wuhan
430000, China. (e-mail: sifan.li@whu.edu.cn, yue.cao@whu.edu.cn, hjh-
whu@whu.edu.cn).

F. Hao is with the Department of Computer Science, University of Warwick,
CV4 7AL, UK. (e-mail: feng.hao@warwick.ac.uk).

Faisal Bashir Hussain is with the Department of Computer Science at Bahria
University, Islamabad, Pakistan. (e-mail: fbashir.buic@bahria.edu.pk).

L. Chen is with ETIS UMR8051, ENSEA, CY Cergy Paris University,
CNRS, F-95000, Cergy, France

capture necessary data, facilitating subsequent attacks such
as fuzzing and spoofing [6]. 2) The unauthorized access
gained by attackers to the owner’s private data and associated
permissions represents a grave threat. Such access has the
potential to compromise the privacy and security of not only
the individuals but also their vehicles [7]. Second, the lack
of authentication in the CAN bus allows unauthorized devices
to join the CAN and broadcast messages to other listening
controllers. This inherent vulnerability provides attackers with
an exploitable path. By gaining access to the CAN bus,
attackers can send deceptive messages through the CAN bus.

Vulnerabilities of the CAN bus have led to a rise in vehicle
attacks [8]. In 2016, Savage and his team successfully manipu-
lated the braking system and windshield wipers of a Chevrolet
Corvette through a commercial remote message processing
control device [9]. This attack demonstrated the potential
for aftermarket devices to exploit vulnerabilities in the CAN
bus, beyond the control of vehicle manufacturers. Nie et
al. achieved remote attacks on a Tesla Model S using wireless
and cellular interfaces in the same year. Keen Security Lab of
Tencent discovered multiple attack surfaces in BMW vehicles,
highlighting that even high-end commercial vehicles cannot
completely evade network attacks [10]. In 2012, Palanca et
al. targeted an Alfa Romeo Giulietta by applying a distributed
denial-of-service (DoS) attack through the onboard diagnostics
(OBD) port [11].

IDS

Detection

Monitoring

CAN Bus

Alert

DoSRPM

FuzzyGear
--Attacker

Fig. 1. The Application of In-vehicle IDS

To protect the CAN bus, several mitigation measures have
been proposed in past research, such as physically isolating
critical ECUs [12], implementing access control strategies

2

[13], and employing data encryption [14]. However, these
measures primarily aim to minimize the attack surface before
an attack occurs, and become ineffective once an attack takes
place. To address this issue, deploying an intrusion detection
system (IDS) can enable real-time monitoring of in-vehicle
traffic and issuing warnings when necessary (see Fig. 1).

In-vehicle IDSs can be classified into the following cate-
gories based on detection techniques. 1) Entropy-based de-
tection – This approach identifies attack traffic by comparing
the current information entropy with the threshold range of
normal states. It offers high detection efficiency and min-
imal utilization of in-vehicle computational resources [15].
However, it suffers from a tendency of high false-positive
rates due to its heavy reliance on threshold calculation and
selection. 2) Feature-based detection – This method determines
anomalies by comparing already running traffic information in
vehicles with existing feature sets [16]. It is simple, practical,
provides fast detection, and delivers high accuracy. However, it
cannot detect unknown attacks and may exhibit temporal lag.
3) Deep learning-based detection – This approach leverages
effective algorithms to automatically extract data features,
compare them with the desired traffic for detection, and
provide conclusive judgments [17]. It can achieve excellent
detection results for both known and unknown attacks, en-
suring high accuracy. However, its complexity often demands
higher device resources (computational performance).

Considering the above issues, the proposed enhanced
cuckoo filter-based intrusion detection system (ECF-IDS) is
based on deep learning technology combined with the ECF
technology. The main innovations are as follows:

• Based on the cuckoo filter, this paper proposes an en-
hanced cuckoo filter (ECF). It firstly establishes two
storage spaces (a normal list and an intrusion list) based
on two public datasets (CHD, can-train-and-test dataset).
Then, the CAN traffic is checked against the two lists to
determine if the traffic exists. If the results are contra-
dictory (the input traffic exists in two lists) or unknown
(the input traffic does not exist in two lists), subsequent
judgment is performed using the Bidirectional Encoder
Representation from Transformers (BERT) model with
generated results also fed back to the two filters.

• This study adopts the BERT model for binary and multi-
classification of CAN bus traffic. Considering the envi-
ronment of in-vehicle IDS, it is important not to consume
excessive in-vehicle computing resources. The ECF-IDS
not only achieves efficient detection of unknown and
known traffic, but also achieves lightweight implemen-
tation, so as to save in-vehicle computing resources and
reduce detection time.

• Additionally, the testing of the ECF-IDS model is divided
into two parts: offline training and online testing. Offline
training involves using traditional CHD and the latest can-
train-and-test datasets for model training. Subsequently,
online testing is performed using the real in-vehicle
environment to conduct real-time evaluations of the ECF-
IDS model.

The rest of this paper is organized as follows. Section II

lists related works about in-vehicle IDSs with comparative
summarization. Section III introduces the background of CAN,
dataset and in-vehicle attacks. The framework of ECF-IDS is
presented in section IV. Section V presents the experiment
setup, datasets, evaluation metrics and performance evaluation.
Section VI finally concludes this paper.

II. RELATED WORK

The CAN bus protocol has been in existence for over forty
years. With the accelerated development of connected and
intelligent vehicles, the in-vehicle network has become a prime
target for attacks, leading to an increasingly severe security
problem [27]. However, the development of in-vehicle IDS is
still in its infancy, and there is a lack of related literature and
research in this field. In Table I, we summarize the relevant
works in the literature on in-vehicle IDS.

An efficient IDS based on the bloom filter was proposed
for CAN [18]. Leveraging the effective time-memory tradeoff
of the bloom filter, it is capable of testing the periodicity,
identifiers, and data fields of message frames in the CAN bus.
Furthermore, it has been implemented and tested in a real
in-vehicle environment, demonstrating its suitability for in-
vehicle bus systems. In another study, Song et al. introduced a
Reduced Inception-ResNet model-based IDS [19] for protect-
ing the CAN bus. This model effectively learns the patterns of
CAN traffic, resulting in high detection performance, and is
particularly notable for its ability to handle large datasets. The
CAN-ADF [20] is an ensemble framework that combines rule-
based and recurrent neural network (RNN) based models to
detect common intrusions on the CAN bus, e.g., DoS, fuzzing,
and replay attacks. This framework emphasizes the employ-
ment of RNN structures and multi-classification models.

Several studies have focused on utilizing time series predic-
tion (TSP) and spatial-temporal features to detect anomalous
traffic in the context of IDS. For example, a hybrid deep
learning-based IDS (HyDL-IDS) [21] was introduced. This
model integrates convolutional neural network (CNN) and long
short-term memory (LSTM) structures to leverage both spatial
and temporal representations of traffic in an in-vehicle network
(IVN). The CANnolo [2] was proposed to identify anomalies
in CAN. It employs LSTM-autoencoders to analyze the time
and data sequences of CAN. In addition, Qin [22] proposed
an intrusion detection method that utilizes anomaly analysis
based on TSP, using an LSTM structure to analyze each data
field of CAN messages. This approach achieved outstanding
detection performance by effectively capturing the temporal
patterns of IVN traffic.

The BERT model, known for its excellent performance in
natural language processing (NLP), can be applied to intrusion
detection on the CAN bus. The CAN-BERT [23] is a model
that leverages learning arbitration ID sequences for intrusion
detection on the CAN bus. It was evaluated using the “Car
Hacking: Attack & Defense Challenge 2020” dataset, achiev-
ing F1-Scores ranging from 0.81 to 0.99. Another BERT-based
IDS model is CANBERT [24], which was tested using the
OTIDS dataset and achieved an accuracy rate of over 0.99.

Utilizing a CNN as the base model in combination with
other methods or models is also a promising choice for intru-

3

TABLE I
COMPARISON OF RELATED WORK

Related Work Type of IDS Datasets Method Real In-vehicle
Environment Test

[18] Bloom filter-based IDS Private Dataset Bloom Filter Yes

[19] Inception-ResNet-based IDS CHD DCNN,Inception-ResNet Yes

[20] RNN-based IDS Private Dataset RNN, LSTM Yes

[21] Hybrid Deep Learning-IDS CHD CNN, LSTM No

[2] LSTM-based IDS ReCAN LSTM (autoencoders) No

[22] Anomaly-based IDS Private Dataset LSTM Yes

[23] BERT-based IDS Car Hacking: Attack & Defense Challenge 2020 BERT No

[24] BERT-based IDS OTIDS BERT No

[25] Deep Learning IDS OTIDS CNN, GRU No

[26] Recurrence Plots IDS CHD,Private Dataset Recurrence Plots, CNN Yes

IDSOF RTR IDE r0 DLC Data CRC
CRC

DEL

ACK

Slot

ACK

Deli-

miter
EOF

111 1 1 1 4 0-64 15 1 1 1 7

Fig. 2. The Structure of CAN Frame

sion detection. The CANintelligentIDS model [25] integrated
CNN and attention-based Gate Recurrent Unit (GRU) to detect
attacks. It consists of two types of detection: analyzing data
sequences to detect individual attacks and considering real-
world scenarios to detect blended attacks in the form of
custom vectors. The fusion of recurrence plots with CNN for
in-vehicle intrusion detection represents a favorable choice.
A Rec-CNN model [26] employed CNN to train images
generated by the recurrence plots algorithm using CAN traf-
fic. The recurrence plots algorithm facilitates the Rec-CNN
model in capturing the dependencies and correlations between
arbitration IDs.

III. BACKGROUND

A. CAN Bus
The main objective of ECF-IDS is to effectively protect the

CAN bus from external attacks. Therefore, it is essential to
have a prior understanding of CAN bus and its components
before establishing the ECF-IDS model. This section will
primarily focus on introducing the CAN bus protocol.

The vehicle industry has been flourishing, resulting in an
increasing number of ECUs in vehicles. The exchange of
signals between these ECUs leads to an expansion in the
number of wiring harnesses in vehicles [28]. This poses a
growing contradiction between the complex wiring harnesses
and the limited wiring space in vehicles. The abundance of
wiring harnesses not only reduces the reliability of electrical
system, but also increases the overall weight of vehicle.

To address these challenges, the CAN bus is employed
to interconnect various ECUs within a vehicle, forming a

local area network [29]. This enables information sharing and
substantially reduces the complexity of wiring harnesses. In
order to mitigate data collision on the bus, the CAN utilizes the
concept of priority filtering by assigning higher priority to spe-
cific IDs for message transmission. This ensures reliable data
transmission even when multiple nodes are simultaneously
sending data. Along with the ID, a CAN frame is composed
of segments such as start of frame (SOF), data length code
(DLC), data, cyclic redundancy check (CRC), acknowledge-
ment (ACK), and end of frame (EOF). The specific structure
of a CAN frame is illustrated in Fig. 2.

A CAN data frame consists of seven segments, each with
its specific meaning. These segments are defined as follows:

• SOF: This segment signals the beginning of a CAN frame
and serves as a synchronization marker for all nodes on
the bus.

• ID: The ID segment carries information about the source
and priority of a message. It distinguishes different types
of messages and facilitates message filtering.

• DLC: The DLC segment indicates the length of data
payload in the frame. It specifies the number of bytes
included in the CAN message.

• Data: The Data segment contains the actual payload or
information that is being transmitted. This segment can
vary in size, depending on the DLC value specified in the
previous segment.

• CRC: The CRC segment is used for error detection and
ensures the integrity of transmitted data. It enables the
receiving ECU nodes to identify and correct potential
errors in the received message.

4

• ACK: The ACK segment is sent by the receiving ECU
node to acknowledge the successful reception of a valid
CAN frame. It confirms the error-free transmission of a
message.

• EOF: This segment marks the end of a CAN frame and
allows the bus to revert to an idle state, ready for the
transmission of the next frame.

B. Car Hacking Dataset
The Car Hacking Dataset (CHD) [30] is a comprehensive

collection of real-world in-vehicle network data specifically
curated for research and development purposes within the
domain of in-vehicle IDSs. This dataset encompasses diverse
attack scenarios that pertain to the vehicle environment. It
includes a range of network traffic data, sensor readings, and
control messages, reflecting the interactions within a vehicle’s
ECUs and various onboard systems.

The dataset provides a valuable resource for studying the se-
curity vulnerabilities of modern vehicles and developing robust
intrusion detection algorithms. Researchers and practitioners
can utilize this dataset to analyze different attack patterns, test
intrusion detection approaches, and assess the effectiveness of
various defensive mechanisms in mitigating potential threats.
The CHD contributes to advancing the field’s understanding of
car hacking and enhancing the security of in-vehicle networks.

C. Can-train-and-test Dataset
The can-train-and-test dataset [31] contains CAN data from

four different vehicles produced by two different manufac-
turers. It includes equivalent attack captures for each vehicle
model, allowing researchers to test the generalization ability
of IDS across various vehicle models and manufacturers. The
dataset includes replayable .log files, labeled and unlabeled
.csv files, and offers nine different types of attacks, ranging
from DoS to gear spoofing. Some attacks were conducted
during live on-the-road experiments with real vehicles and
have known physical impacts. Researchers can use this dataset
to benchmark machine learning IDSs and contribute to open-
access datasets to address gaps in existing resources.

D. In-Vehicle Attacks
As depicted in Fig. 1, there are four primary attacks posing

threats to the in-vehicle network. DoS attacks primarily target
the heating ventilation and air conditioning (HVAC) and ECU
systems, while fuzzy attacks are primarily directed towards the
anti-lock brake system (ABS) and airbag systems. Gear attacks
predominantly aim at the ABS and body control module
(BCM) systems, while revolutions per minute (RPM) attacks
mainly focus on the ECU and instrument cluster.

1) DoS Attack: In this attack, malicious attackers aim to
disrupt the normal operation of a vehicle’s interior electronic
systems. This attack typically entails sending messages with-
out specifying valid CAN IDs or frequently changing the CAN
ID, which can severely compromise the integrity of the in-
vehicle network. Such actions may result in overloading the
internal communication buses or systems, leading to malfunc-
tions or unresponsiveness in critical vehicle components, such
as infotainment systems and climate control.

2) Fuzzy Attack: A fuzzy attack involves exploiting un-
certainties in the data received by the in-vehicle sensors
or control systems. Attackers manipulate sensor inputs to
introduce ambiguity and confusion into the vehicle’s decision-
making processes. Fuzzy attacks can manifest in various ways,
one of which is injecting random or ambiguous data, such as
random IDs with unpredictable payloads. The idea behind a
Fuzzy attack is to take advantage of the lack of precise and
unambiguous information in the data flow, which can lead to
erratic behavior in the vehicle’s control systems. These attacks
can potentially compromise the safety and security of the
vehicle by creating confusion or misinterpretation of sensor
data.

3) Gear Attack: A gear attack targets the vehicle’s trans-
mission system. Malicious manipulation of the transmission
controls could result in sudden and unexpected gear changes,
leading to loss of vehicle control, reduced acceleration, or even
mechanical damage.

4) RPM Attack: The RPM attack involves tampering with
the engine’s RPM data reported by sensors. By providing
inaccurate RPM readings, attackers can mislead the vehicle’s
ECUs, leading to improper fuel injection or timing. This can
cause engine performance issues, reduced fuel efficiency, and
potentially lead to mechanical damage.

IV. PROPOSED ECF-IDS FRAMEWORK

The ECF-IDS combines an ECF algorithm with the BERT
model. The main process is illustrated in Fig. 3, where
the CAN traffic of target classification is initially inputted.
Subsequently, it undergoes a comparison with both a normal
list and an intrusion list. The CAN traffic that results in
consistent “Yes” or “No” comparisons is then passed into the
IDS based on BERT for subsequent detection. The normal
traffic identified by the IDS is stored in the normal list, while
the intrusion traffic is stored in the intrusion list and subjected
to attack classification.

A. Enhanced Cuckoo Filter

In the domain of ECF-IDS, the ECF can be considered as
an upgraded version of cuckoo filters [32]. It not only provides
the ability to delete elements, but also achieves higher query
efficiency and space utilization. Here, the ECF consists of two
hash functions to store the labeled traffic. For a given input of
labeled CAN traffic t, the fingerprint information ft and hash
values h1 and h2 are computed as follows:

ft = fingerprint(t) (1)

h1 = Hash(t) (2)

h2 = h1⊕Hash(ft) (3)

Where fingerprint() is the fingerprint function, Hash()
is the hash function, and ⊕ represents exclusive or (XOR)
operation.

As depicted in Algorithm 1 and Algorithm 2, the ECF has
two lists: a normal list (TN) and an intrusion list (TI). It first
computes the fingerprint information for each element (ci is
the i− th element in TN , and dj is the j− th element in TI)

5

Algorithm 1 Establish Normal List
Input: CAN normal traffic set (TN)
Output: normal list

1: for ci in TN do
2: fci = fingerprint(ci)
3: if fci in normal list then
4: Continue
5: else
6: hci1 = Hash(ci)
7: if hci1 has available slots then
8: add fci in normal list
9: n filtersize+1

10: else
11: hci2 = hci1⊕Hash(fci)
12: if hci2 has available slots then
13: add fci in normal list
14: n filtersize+1
15: else
16: while n filtersize < σ1 do
17: remove one element fcs of hci1’s slots from

normal list
18: hcs2 = hcs1⊕Hash(fcs)
19: if hcs2 has available slots then
20: add fcs in normal list
21: n filtersize+1
22: break
23: else
24: return 0
25: end if
26: end while
27: if n filtersize ≥ σ1 then
28: expand σ1
29: end if
30: end if
31: end if
32: end if
33: end for
34: return normal list

(line 2). It then searches for the presence of this fingerprint
information within the normal list or intrusion list (line 3). If
it exists, the next traffic is processed (line 3-4). If it does not
exist, the element undergoes a hashing operation to calculate
the first storage position hci1 (or hdj1) (line 6). This position
contains four vacant slots, and if any of these slots is available,
the fingerprint information of that element is stored (line 7-8).
The filter size of the normal or intrusion list (n filtersize or
i filtersize) is increased by 1 (line 9). However, if all four
slots are occupied, an XOR operation is performed between
the fingerprint and the first hash coordinate to calculate the
second coordinate hci2 (or hdj2) (line 11).

1) Case 1: If there is an available slot at the second
coordinate, the fingerprint information of the element is stored
(line 12-13). The filter size of the normal list or intrusion list
(n filtersize or i filtersize) is increased by 1(line 14).

2) Case 2: If there is still no available slot, one of the
fingerprints in a randomly chosen occupied slot (fcs or fds)

Algorithm 2 Establish Intrusion List
Input: CAN intrusion traffic set (TI)
Output: intrusion list

1: for dj in TI do
2: fdj = fingerprint(dj)
3: if fdj in intrusion list then
4: Continue
5: else
6: hdj1 = Hash(dj)
7: if hdj1 has available slots then
8: add fdj in intrusion list
9: i filtersize+1

10: else
11: hdj2 = hdj1⊕Hash(fdj)
12: if hdj2 has available slots then
13: add fdj in intrusion list
14: i filtersize+1
15: else
16: while i filtersize < σ2 do
17: remove one element fds of hdj1’s slots from

intrusion list
18: hds2 = hds1⊕Hash(fds)
19: if hds2 has available slots then
20: add fds in intrusion list
21: i filtersize+1
22: break
23: else
24: return 0
25: end if
26: end while
27: if i filtersize ≥ σ2 then
28: expand σ2
29: end if
30: end if
31: end if
32: end if
33: end for
34: return intrusion list

is evicted to make room for the new element (line 17). The
evicted fingerprint then calculates its second coordinate hcs2
(or hds2), and the process is repeated to check for available
slots (line 18-24). This continues until a threshold σ1 (or σ2) is
reached, at which point the cuckoo filter undergoes expansion
(line 27-28). The construction of the intrusion list (Algorithm
2) follows a similar process, but the aforementioned algorithm
is applied to the intrusion list instead of the normal list. Finally,
both the normal list and intrusion list are obtained.

After obtaining the two lists, the ECF subsequently pro-
cesses the set of CAN traffic to be detected, denoted as T ,
as described in Algorithm 3. The input traffic ti (the i − th
element in T) is initially processed to compute its fingerprint
information (line 2). Subsequently, it undergoes matching with
the normal list, and regardless of the outcome, a matching
process with the intrusion list follows (line 3-4). The traffic
that does not match with both the normal list and the intrusion
list (line 13), as well as traffic that matches with both lists (line

6

Input

Normal

List

Intrusion

List

Intrusion

List

Normal

IDS

(BERT)

Intrusion

Normal Intrusion

Normal

List+1

Intrusion

List+1

A
tta

ck
 1

...

A
tta

ck
 n

Yes No

YesNoNo Yes

Enhanced

Cuckoo Filter

BERT-based

IDS

Fig. 3. The Process of ECF-IDS

5), is sent to the subsequent IDS based on BERT. The traffic
that matches with either one of the lists is allocated with the
corresponding label of “normal” or “intrusion” (line 7, 11).

Compared to the traditional cuckoo filter, the ECF offers
several advantages. Firstly, it prohibits the existence of dupli-
cate traffic data within the filter, thereby saving storage space.
Secondly, it employs a dual-filter combination approach to
establish both a normal list and an intrusion list, enhancing the
accuracy of query results. Additionally, based on the judgment
results provided by the subsequent IDS using BERT, the filter
is updated and data is inserted accordingly.

B. BERT-based IDS

BERT, as one of the commonly used models in NLP, has
the ability to capture contextual relationships and perform
subsequent tasks [33], [34]. It can learn the potential asso-
ciations between adjacent CAN traffic to aid in the judgment
and classification of traffic. To capture these contextual rela-
tionships, the BERT is a pre-trained language representation
model that employs the MLM to generate deep bidirectional
language representations. As illustrated in Fig. 4, for the
CAN traffic set t, where t(i) represents the ith specific
CAN traffic within the set, the traffic t(i) is prefixed with
[CLS], while [SEP] is inserted as a delimiter between each

Algorithm 3 Double Lists Filtering
Input: CAN traffic set T (to be detected)
Output: output “normal”/“intrusion”

1: for ti in T do
2: fi = fingerprint(ti)
3: if fi in normal list then
4: if fi in intrusion list then
5: feed ti into BERT-IDS
6: else
7: output “normal”
8: end if
9: else

10: if fi in intrusion list then
11: output “intrusion”
12: else
13: feed ti into BERT-IDS
14: end if
15: end if
16: end for

subsequent traffic. The remaining traffic is transformed into
corresponding token representations. Subsequently, a learnable
segment embedding is added for each token representation to
indicate whether it belongs to CAN traffic t(i) or t(i + 1).
Finally, the corresponding position embedding is appended,
completing the input pre-processing for BERT.

1) Pre-training: As shown in Fig. 5, the BERT model
consists of two main steps: pre-training and fine-tuning. Dur-
ing the pre-training phase, the MLM model is employed
to randomly replace 15% of the pre-processed tokens with
a masked token ([MASK]). These tokens are then used as
input into the encoder layer to predict the original tokens.
As illustrated in Fig. 6, the encoder layer consists of two
components: multi-head attention mechanism [35] and feed-
forward neural network [36]. The pre-processed token Y (i) is
fed into the encoder layer. Since BERT-base contains L layers
of encoders, Y(i,l) represents the i−th token input to the l−th
layer of encoder. After each sub-layer, layer normalization
is applied with a residual connection incorporated. Thus, a
residual connection is utilized around each sub-layer followed
by layer normalization as follows:

H(i,l) = h(Y(i,l)) + nor
(
Y(i,l) + h(Y(i,l))

)
(4)

F(i,l) = f(H(i,l)) + nor
(
H(i,l) + f(H(i,l))

)
(5)

Y(i,l+1) = F(i,l),∀l < L (6)

where H(i,l) represents the output of the first sub-layer for
the l − th encoder layer, while F(i,l) represents the output
of the second sub-layer for the l − th encoder layer. The
function h refers to the multi-head attention function, while the
function of f corresponds to the position-wise feed-forward
function. Additionally, the function of nor denotes the layer
normalization function.

For the multi-head attention function h, the query Q, key
K, and value V are computed based on the input Y(i,l) of the

7

[CLS] ID DLC DATA[0] ... DATA[7] [SEP] ID DLC DATA[0] ... DATA[7] [SEP]

E[CLS] EID EDLC EDATA[0] E... EDATA[7] E[SEP] EID EDLC EDATA[0] E... EDATA[7] E[SEP]

EA EA EA EA EA EA EB EB EB EB EBEA EB

E0 E1 E2 E3 E5 E6 E7 E8 E9 E11 E12E4 E10

Input

Token

Embeddings

Segment

Embeddings

Position

Embeddings

Fig. 4. The Embedding of CAN

ENCODER

...

ENCODER

ENCODER

ENCODER

[C] ... TN T SEP T´1 T´ T´ M

Prediction

MASK

Prediction

MASK

[CLS] ... [TokA N] [SEP] [TokB1] [TokB.] [TokBM]

CAN Traffic A CAN Traffic B

ENCODER

...

ENCODER

ENCODER

ENCODER

[C] T1 ... TN SEP

Class Label

[CLS] [TokA 1] ... [TokA N] [SEP] Label

CAN Traffic A

Pre-Training Fine-Tuning

Fig. 5. The Main Process of BERT

i− th CAN traffic sequence in the l− th layer of the encoder.
The equations are as follows:

Q(i,l) = Y(i,l)W(Q) (7)

K(i,l) = Y(i,l)W(K) (8)

V(i,l) = Y(i,l)W(V) (9)

where W corresponds to the respective trainable weight ma-
trices. The attention function is then computed based on Q,
K, and V as follows:

Attn
(
Q(i,l),K(i,l),V(i,l)

)
= σ

(
Q(i,l)K(i,l)T

√
d

)
V(i,l)

(10)
where σ refers to the softmax function, T denotes the
transposed matrix, and d represents the dimension of
Q(i,l),K(i,l),V(i,l) vectors. Finally, the attention results from

multiple heads are transformed through a linear transformation
to obtain the final output h

(
Y(i,l)

)
:

head(i,l) = Attn
(
Q(i,l),K(i,l),V(i,l)

)
(11)

h(Y(i,l)) = linear(head(i,l)) (12)

where linear refers to the linear transformation function.
The inspiration for the design of a feed-forward network

comes from the fully connected layers in CNN. However,
in contrast to fully connected layers, positional feed-forward
networks adopt a special structure. In pre-training, a positional
feed-forward network consists of two fully connected layers,
which are connected through a non-linear activation function
(specifically the ReLU activation function), capturing local
features in the sequence. Specifically, for an input element

8

 (!,")

#(!,")($(!,")(%(!,")

&(!,")

'(!,")
 (!*+,")

Fig. 6. The Structure of Encoder Layer

h(i,l), the positional feed-forward network can be represented
by the following formula:

FFN(X) = max(0,h(i,l) ·W1 + b1) ·W2 + b2 (13)

where W1 and b1 are the weight matrix and bias vector of the
first fully connected layer, while W2 and b2 are the weight
matrix and bias vector of the second fully connected layer.
The “·” symbol denotes matrix multiplication, and max (0, ·)
represents the element-wise ReLU activation function. After
these steps, F(i,L) is passed through a linear layer followed
by the softmax function to activate, and the optimal result is
selected as the prediction (PredictionMask) for the given
[MASK]:

PredictionMask = σ[linear(F(i,L))] (14)

2) Fine-tuning: Fine-tuning involves using the pre-trained
BERT model as initial parameters. Then, in order to adapt
the ECF-IDS model, additional training is performed on the
labeled classification task. As the CAN traffic in pre-training
does not contain labels, this process falls under unsupervised
training. However, during fine-tuning, the input CAN traffic
is labeled, making it a supervised training process. The main
steps of fine-tuning are outlined as follows:

• Adding Task-Specific Layers: In order to adapt the
BERT model for specific tasks, it is necessary to add
a layer that is specific to the prediction classification task

on top of the pre-trained BERT model. This classification
task can be binary (normal, intrusion) or multi-class
(normal, attack 1, attack 2, ...). Therefore, this layer is a
fully connected layer used to extract task-related features
from the output of BERT.

• Parameter Initialization: After adding the task-specific
layers, the parameters of these layers need to be initial-
ized using the pre-trained BERT model from earlier.

• Fine-Tuning Training: The entire model is trained using
the task dataset. In each training step, the task data is fed
into the model, and the loss between the model’s output
and true labels is calculated. The model parameters are
then updated using back-propagation and an optimization
algorithm to minimize the loss.

• Model Evaluation: After the completion of Fine-Tuning
training, the tuned model is evaluated using a test set.
Task-specific evaluation metrics such as accuracy, F1-
Score, etc., are used to measure the performance of the
model.

Regarding binary and multi-class tasks, the key difference
lies in the final output layer. Binary tasks utilize a sigmoid
layer, while multi-class tasks utilize a linear layer followed
by the softmax function. The sigmoid function used in binary
classification is shown below:

s(x) =
1

1 + e−x
(15)

where e represents the base of natural logarithm, and x denotes
the input value. s(x) has the following characteristics: when
x approaches negative infinity, s(x) approaches 0; When
x approaches positive infinity, s(x) approaches 1; When
x = 0, s(x) = 1/2. The representation for the linear layer
+ softmax in multi-class tasks is similar to the mentioned
Eq. (14) earlier, with the only difference being the output.

V. PERFORMANCE EVALUATION

In order to evaluate the performance of ECF-IDS, the
hardware and software environment is described in Table
II. The choice of the AMD Threadripper and RTX 4090
in the experimental setup is primarily driven by practical
considerations during the offline model training phase. Our
ECF-IDS model is indeed initially trained offline on a high-
performance server infrastructure due to its computational
intensity and resource requirements. However, it is essential
to emphasize that the deployment of the ECF-IDS within
the vehicle does not involve the same hardware configuration
used during training. Once the ECF-IDS model is trained and
optimized, it is intended for deployment on hardware and
systems that are more appropriate and representative of in-
vehicle network controllers.

TABLE II
EXPERIMENT SETUP

Hardware Software

AMD Ryzen Threadripper PRO 5995WX Jupyterlab 3.4.4
Nvidia RTX4090(24GB) Python 3.10.6

64GB(RAM)

9

A. Datasets

The ECF-IDS utilizes the widely-used dataset CHD [30]
and can-train-and-test. The CHD was constructed by logging
CAN traffic through the OBD-II port of a real vehicle. The
logging was done during the execution of message injection
attacks. The dataset consists of normal traffic and four types
of attack traffic (DoS attack, Fuzzy attack, RPM gauze attack,
and Drive Gear attack). 12 attributes of CHD are presented in
Table III.

TABLE III
THE ATTRIBUTES OF CHD

Attribute Explaination

Timestamp recorded time (s)
CAN ID identifier of CAN message in HEX (ex. 043f)
DLC number of data bytes, from 0 to 8
DATA[0-7] data value (byte)
Flag T or R, T represents injected message while R

represents normal message

The can-train-and-test [31] was collected from on-road data
vary four different vehicles and six different drivers to create
a diverse CAN dataset for machine learning. This dataset
accessed CAN traffic data through the OBD-II port of each
vehicle. It utilized a Korlan USB2CAN cable to connect to
the OBD-II port, which converted raw OBD-II data into USB
data, enabling communication with the OBD-II port through
Linux’s SocketCAN subsystem and can-utils utilities. In Table
IV, 4 attributes of can-train-and-test are presented.

TABLE IV
THE ATTRIBUTES OF CAN-TRAIN-AND-TEST

Attribute Explaination

timestamp recorded time (s)
arbitration id identifier of CAN message in HEX (ex. 043f)
data field data value (byte)
attack 1 or 0, 1 represents injected message while 0

represents normal message

The normal list used in the ECF-IDS is constructed based on
the normal traffic file (normal run data.txt) from the CHD and
can-train-and-test datasets. After removing duplicate samples,
a total of 306,767 CAN traffic samples are added to the normal
list. The intrusion list is constructed based on the attack traffic
(Flag=T or attack=1) from the remaining attack files. After
removing duplicate samples, a total of 491,850 CAN traffic
samples are added to the intrusion list. Subsequently, the ECF-
IDS processes the CHD and can-train-and-test datasets, with
the training set and test set accounting for 70% and 30%,
respectively. The 70% training data helps the model become
proficient, and the 30% testing data evaluates its adaptability
to real in-vehicle conditions.

B. Evaluation Metrics

To facilitate the comparison of performance between ECF-
IDS and other algorithms, this paper primarily employs the
following performance metrics: accuracy, precision, recall,

F1-Score, loss, and detection time. These metrics effectively
measure the prediction accuracy of IDS. Their calculation
formulas are as follows:

Accuracy =
TRP + TRN

TRP + TRN + FAP + FAN
(16)

Precision =
TRP

TRP + FAP
(17)

Recall =
TRP

TRP + FAN
(18)

F1− Score =
2 · Precision ·Recall

Precision+Recall
(19)

where TRP indicates the number of normal traffic samples
that are correctly classified as normal traffic. FAN indicates
the number of normal traffic samples that are misclassified
as intrusion traffic. FAP indicates the number of intrusion
traffic samples that are misclassified as normal traffic. TRN
indicates the number of intrusion traffic samples that are
correctly classified as intrusion traffic. The loss is a metric
used to measure the discrepancy between predicted values and
true values. The loss calculation formulas of binary and multi-
class tasks are different, and the calculation formula for binary
classification using cross entropy is as follows:

BL =
1

nb

nb∑
i

BLi (20)

BLi = − [yi log (pi) + (1− yi) log (1− pi)] (21)

where BL is the loss of binary classification, BLi is the
loss of the i− th binary classification sample. nb is the total
number of binary classification samples. yi represents the label
of the i − th binary classification sample, where the positive
class is denoted as 1 and the negative class is denoted as 0.
pi represents the probability of the ith binary classification
sample being predicted as the positive class.

The calculation formula for the loss in multi-class classifi-
cation is as follows:

ML =
1

nm

nm∑
i

MLi (22)

MLi = −
M∑
c

yic log pic (23)

where ML is the loss of multi-classification, MLi is the loss
of the ith multi-classification sample. nm is the total number
of multi-classification samples. M represents the number of
classes. pic represents the predicted probability of the observed
sample belonging to class c. For multi-class samples, if the true
class of the sample is equal to c, yic is set to 1. Otherwise,
it is set to 0. The detection time is an important metric for
evaluating the efficiency of an IDS, and its calculation formula
is as follows:

DetectionT ime =
AllT ime

len(data)
(24)

where AllT ime represents the total time taken by the IDS to
detect all samples, and len(data) represents the total number
of all samples.

10

8
1

.5
1

% 1
0

0
.0

0
%

9
7

.9
8

%

1
0

0
.0

0
%

1
0

0
.0

0
%

7
3

.0
1

%

1
0

0
.0

0
%

9
6

.1
3

%

1
0

0
.0

0
%

1
0

0
.0

0
%

1
0

0
.0

0
%

1
0

0
.0

0
%

1
0

0
.0

0
%

1
0

0
.0

0
%

1
0

0
.0

0
%

8
4

.4
0

% 1
0

0
.0

0
%

9
8

.0
2

%

1
0

0
.0

0
%

1
0

0
.0

0
%

K-MEANS LR SVM DT ECF-

IDS(B INARY)

DOS ATTACK

Accuracy Precision Recall F1 score

3
5

.6
8

%

9
6

.6
4

%

9
8

.0
1

%

9
9

.9
3

%

9
9

.9
8

%

3
8

.1
6

%

9
8

.4
3

%

9
9

.9
7

%

9
9

.9
5

%

1
0

0
.0

0
%

4
5

.8
4

%

9
4

.8
1

%

9
6

.0
6

%

9
9

.9
0

%

9
9

.9
6

%

4
1

.6
5

%

9
6

.5
8

%

9
7

.9
8

%

9
9

.9
3

%

9
9

.9
8

%

K-MEANS LR SVM DT ECF-

IDS(BINARY)

Fuzzy Attack

Accuracy Precision Recall F1 score
7

6
.5

9
%

1
0

0
.0

0
%

1
0

0
.0

0
%

1
0

0
.0

0
%

1
0

0
.0

0
%

6
8

.1
0

%

1
0

0
.0

0
%

1
0

0
.0

0
%

1
0

0
.0

0
%

1
0

0
.0

0
%

1
0

0
.0

0
%

1
0

0
.0

0
%

1
0

0
.0

0
%

1
0

0
.0

0
%

1
0

0
.0

0
%

8
1

.0
2

%

1
0

0
.0

0
%

1
0

0
.0

0
%

1
0

0
.0

0
%

1
0

0
.0

0
%

K-MEANS LR SVM DT ECF-

IDS(B INARY)

GEAR ATTACK

Accuracy Precision Recall F1 score

7
0

.9
3

%

1
0

0
.0

0
%

1
0

0
.0

0
%

1
0

0
.0

0
%

1
0

0
.0

0
%

6
3

.2
2

%

1
0

0
.0

0
%

1
0

0
.0

0
%

1
0

0
.0

0
%

1
0

0
.0

0
%

1
0

0
.0

0
%

1
0

0
.0

0
%

1
0

0
.0

0
%

1
0

0
.0

0
%

1
0

0
.0

0
%

7
7

.4
6

%

1
0

0
.0

0
%

1
0

0
.0

0
%

1
0

0
.0

0
%

1
0

0
.0

0
%

K-MEANS LR SVM DT ECF-

IDS(B INARY)

RPM Attack
Accuracy Precision Recall F1 score

Fig. 7. Comparisons of Traditional Algorithms on Four Attacks Binary Classification (CHD)

C. ECF-IDS Experimental Result

The k-means, logistic regression (LR), support vector ma-
chine (SVM), and decision tree (DT) algorithms are compared
with ECF-IDS. They utilize the same training and testing
datasets, and their binary classification results for the four
types of attacks are shown in Fig. 7. When faced with the
four attacks, k-means performs the worst, primarily due to its
tendency to converge to local optima instead of global optima,
and its poor performance in clustering high-dimensional data.
LR and DT demonstrate excellent performance against DoS,
gear, and RPM attacks, comparable to ECF-IDS. However, un-
der fuzzy attacks, the ECF-IDS exhibits the best performance,
achieving accuracy, precision, recall, and F1-Score all above
99.96%.

The four attack datasets are merged with the normal dataset
for binary classification experiments. As shown in Fig. 8, the
performance of four traditional algorithms decreases compared
to the previous individual attack scenarios, while only ECF-
IDS maintains its performance at a high level. The correspond-
ing ROC comparison graph (Fig. 9) confirms that ECF-IDS
achieves the highest area under curve (AUC). Fig. 10 illustrates
the variation of loss during the training process as a function

of iteration (with each iteration processing 32 data instances),
revealing a convergence to stability near iteration 500, starting
from an initial value of 0.7. The final testing loss for binary
classification on ECF-IDS is 0.0027.

4
3

.2
5

%

8
4

.8
6

%

9
0

.0
4

%

9
9

.8
4

%

9
9

.9
9

%

5
8

.4
5

%

8
4

.4
9

%

8
7

.1
4

%

9
9

.9
8

%

1
0

0
.0

0
%

3
0

.9
4

%

9
2

.7
2

%

9
8

.5
5

%

9
9

.7
7

%

9
9

.9
8

%

4
0

.4
6

%

8
8

.4
2

%

9
2

.5
0

%

9
9

.8
7

%

9
9

.9
9

%

K - M E A N S L R S V M D T E C F - I D S (B I N A R Y)

Overall

Accuracy Precision Recall F1 score

Fig. 8. Comparisons of Traditional Algorithms on Overall Attacks Binary
Classification (CHD)

Multi-classification involves merging the four attack
datasets with the normal dataset, requiring not only binary

11

Fig. 9. ROC Curve on Overall Attacks (CHD)

Fig. 10. The Binary Loss of Training on Overall Attacks (CHD)

3
2

.7
7

%

9
4

.5
2

%

9
7

.4
2

%

9
9

.9
5

%

9
9

.9
9

%

3
0

.2
4

%

9
4

.4
2

%

9
7

.6
7

%

9
9

.9
5

%

9
9

.9
9

%

3
2

.7
7

%

9
4

.5
2

%

9
7

.4
2

%

9
9

.9
5

%

9
9

.9
8

%

3
1

.1
4

%

9
4

.4
4

%

9
7

.4
6

%

9
9

.9
5

%

9
9

.9
8

%

K-Means LR SVM DT ECF- IDS(mul t i)

Muti-Class

Accuracy Precision Recall F1 score

Fig. 11. Comparisons of Traditional Algorithms on Overall Attacks Multi-
Classification Classification (CHD)

detection of normal and intrusion instances, but also precise
classification of attacks within intrusions. As depicted in
Fig. 11, the ECF-IDS outperforms the other four traditional
algorithms by a wide margin. This superior performance can
be attributed to the unsupervised training during the pre-

training phase of the BERT model, which involves masking
15% of the data. This process provides essential parameter
initialization for subsequent fine-tuning, enabling effective
detection and classification of CAN traffic. As shown in
Fig. 12, the training loss decreases with iterations, gradually
reaching stability at around 50 iterations (with each iteration
processing 32 instances). For the multi-classification task, the
ECF-IDS achieves a final testing loss of 0.00035.

Fig. 12. The Multi-Classification Loss of Training on Overall Attacks (CHD)

Fig. 13. The Comparison of CPU Occupancy Between ECF-IDS(with ECF)
and ECF-IDS (without ECF)

For the ECF-IDS, the inclusion of ECF not only has no
negative impact on the performance of the original BERT
model, but also significantly reduces both the CPU consump-
tion and detection time in vehicle applications. As illustrated
in Fig. 13, the ECF-IDS (with ECF) consumes CPU resources
until approximately 12 sec, while the ECF-IDS (without ECF)
continues until 21 sec. Furthermore, the ECF-IDS (with ECF)
achieves a detection time of 0.9 ms per traffic instance,
compared to 2 ms without ECF. The addition of ECF results
in an approximate 50% improvement in IDS performance.

12

TABLE V
COMPARISONS OF OTHER ALGORITHMS ON THE CHD DATASET (THE DATA OF HYDL, RESNET, CANBERT AND GIDS IS OBTAINED FROM THE

CORRESPONDING ARTICLE UNDER THE CHD)

DoS Accuracy Precision Recall F1-Score

HyDL [21] 100% 100% 100% 100%
ResNet [19] 99.97% 100% 99.89% 99.95%
CANBERT [24] 100% 100% 100% 100%
GIDS [30] 97.9% 96.8% 99.6% 97.9%
ECF-IDS 100% 100% 100% 100%

Gear Accuracy Precision Recall F1-Score

HyDL [21] 100% 100% 100% 100%
ResNet [19] 99.95% 99.99% 99.89% 99.94%
CANBERT [24] 100% 100% 100% 100%
GIDS [30] 96.2% 98.1% 96.5% 97.3%
ECF-IDS 100% 100% 100% 100%

Fuzzy Accuracy Precision Recall F1-Score

HyDL [21] 99.98% 99.98% 99.88% 99.93%
ResNet [19] 99.82% 99.95% 99.65% 99.80%
CANBERT [24] 100% 100% 100% 100%
GIDS [30] 98% 97.3% 99.5% 98.3%
ECF-IDS 99.98% 100% 99.96% 99.98%

RPM Accuracy Precision Recall F1-Score

HyDL [21] 100% 100% 100% 100%
ResNet [19] 99.97% 99.99% 99.94% 99.96%
CANBERT [24] 100% 100% 100% 100%
GIDS [30] 98% 98.3% 99% 98.6%
ECF-IDS 100% 100% 100% 100%

TABLE VI
COMPARISONS OF DETECTION TIME (THE DETECTION TIME IN THIS

TABLE IS SIMULATED AT THE SAME PLATFORM.)

Method Detection Time(ms/traffic)

HyDL [21] 1.03
ResNet [19] 1.56

CANBERT [24] 2
GIDS [30] 3
ECF-IDS 0.9

TABLE VII
STORAGE SPACE FOR TWO FILTERS

Normal Malicious

Storage Space (bytes/1000000 traffic) 80 80

Compared to other algorithms proposed in previous lit-
erature, this paper also provides a comparison. However,
the literature on the CHD dataset is currently limited. To
control variables and ensure the use of the same dataset for
comparison, we compare ECF-IDS with ResNet [19], GIDS
[30], HyDL-IDS [21], and CANBERT [24], as presented in
Table V. These five methods, tested on the CHD dataset,
exhibit satisfactory performance. However, in the face of DoS,
gear, fuzzy, and RPM attacks, the GIDS exhibits comparatively
lower performance among the five models, with its F1-score
dropping below 98% when dealing with DoS and gear attacks.
In contrast, the CANBERT and ECF-IDS demonstrate superior

TABLE VIII
COMPARISONS OF OTHER ALGORITHMS ON THE CAN-TRAIN-AND-TEST

DATASET (THE FOLLOWING DATA IS OBTAINED FROM THE
CORRESPONDING ARTICLE UNDER THE SUB-DATASET 3 OF

CAN-TRAIN-AND-TEST)

All data Accuracy Precision Recall F1-Score

Gaussian Naive
Bayes [31]

98.05% 96.32% 98.05% 97.18%

K-Nearest
Neighbor [31]

99.12% 99.83% 52.74% 69.02%

LR [31] 98.60% 98.51% 98.60% 98.23%
SVM [31] 98.96% 99.94% 44.29% 61.38%
DT [31] 99.63% 97.79% 82.13% 89.28%

Extra Tree [31] 99.52% 99.86% 74.32% 85.22%
Random Forest

[31]
99.63% 99.98% 80.20% 89.00%

Multi-Layer
Perceptron [31]

99.30% 99.30% 99.30% 99.22%

ECF-IDS 99.96% 99.91% 99.84% 99.86%

performance. The CANBERT achieves a perfect score of
100% across all four metrics when confronted with the four
attack types (note that results are rounded to the nearest
integer). Meanwhile, the ECF-IDS falls just short of achieving
100% accuracy, recall, and F1-score when dealing with fuzzy
attacks, but performs flawlessly in correctly identifying all
other attack types.

To compare the efficiency of these approaches, we refer
to the performance summary and comparison of current in-
vehicle IDSs conducted by Wang et al. [37]. As depicted

13

Fig. 14. The Binary Loss of Training on Overall Attacks (can-train-and-test)

Fig. 15. The Multi-Classification Loss of Training on Overall Attacks (can-
train-and-test)

in Table VI, it can be observed that the ECF-IDS performs
well in detecting intrusions, and it also exhibits the highest
efficiency among the five methods. Besides, Table VII displays
the storage space occupied by the normal and malicious filters
established by the ECF-IDS. The storage space occupied by
the corresponding filters for normal and malicious filters (both
configured with a maximum capacity of 1,000,000) is 80 bytes,
which is highly suitable for the limited in-vehicle environment.

The can-train-and-test dataset was only made publicly avail-
able in 2023, and as of now, literature utilizing this dataset is
limited to its own reference, denoted as [31]. Consequently,
no other publicly available literature or works have employed
this dataset. In light of this, this paper leverages the can-
train-and-test dataset as a substitute for real-world scenarios to
enhance the practical applicability of ECF-IDS. To facilitate
meaningful comparisons with models that also utilize the can-
train-and-test dataset, we have selected the Gaussian Naive
Bayes [31], K-Nearest Neighbor (KNN) [31], LR [31], SVM
[31], DT [31], Extra Tree [31], Random Forest [31], and
Multi-Layer Perceptron (MLP) [31] models cited in the dataset
literature [31] for benchmarking against the ECF-IDS. The

specific sub-dataset chosen for comparison in this paper is
sub-dataset 3, and the comparative results are presented in
Table VIII.

From the results, it is evident that all models achieve
reasonably high accuracy and precision levels. However, there
is significant disparity in recall and F1-Score outcomes. On
the one hand, SVM and KNN exhibit the worst performance,
primarily due to their limited capability in handling imbal-
anced and non-linear data, resulting in substantial classification
bias. On the other hand, LR and MLP demonstrate superior
performance, achieving F1-Scores of 98.23% and 99.22%,
respectively. Nevertheless, they still fall short in comparison to
the ECF-IDS, which outperforms other models across all four
metrics. This indicates that ECF-IDS not only exhibits strong
capabilities in handling imbalanced data but also displays re-
markable stability in both multi-class and binary classification
tasks. This assertion is further substantiated by Fig. 14 and
Fig. 15, which depict the gradual and stable reduction of
training loss with iterations.

D. ECF-IDS Real Vehicle Test

Fig. 16. Real Vehicle Test of ECF-IDS Model

To validate the real in-vehicle environment detection capa-
bilities of the ECF-IDS model, we conducted practical testing
by connecting it to a test vehicle. The actual testing environ-
ment, as depicted in Fig. 16, involved using a laptop equipped
with the ECF-IDS model connected to the OBD-II port inside
the vehicle via the CANalyst-II interface. Additionally, we
injected DoS, fuzzy, and replay attack data into the CAN bus
through the CANalyst-II interface. The specific descriptions
of the attacks are as follows:

• DoS attack: 100,000 blank messages with both CAN ID
and DATA set to 0 were injected every 0.1 milliseconds.

• Fuzzy attack: Messages of totally random CAN ID and
DATA values were injected every 0.1 milliseconds.

• Replay attack: Replay the data packets captured in the
previous 10 seconds were injected every 20 seconds.

Subsequently, we employed the ECF-IDS model to perform
real-time detection of the CAN message data from the test
vehicle (as detailed in Table IX, representing the composition
of the real test dataset). As shown in Table X, regarding DoS

14

TABLE IX
THE COMPOSITION OF THE REAL TEST DATASET

Dataset Amount

Normal 431495
DoS Attack 99952

Fuzzy Attack 30000

TABLE X
THE PERFORMANCE OF REAL VEHICLE TEST

Attack Type Accuracy Precision Recall F1-Score

DoS attack 100% 100% 100% 100%
Fuzzy attack 99.99% 100% 99.99% 99.99%
Replay attack 100% 100% 99.99% 99.99%

Normal 100% 100% 100% 100%

attacks and normal traffic detection in real vehicle testing,
the ECF-IDS achieved a detection accuracy of 100%. It also
demonstrated a performance of 99.99% against fuzzy and
replay attacks. On average, throughout the entire process
of real vehicle testing, the accuracy of ECF-IDS reached
99.999%, with an F1-Score of 99.997%.

VI. CONCLUSION

Improvements and adaptations were made to the existing
cuckoo filter, resulting in an enhanced version called ECF. The
ECF offers three main advantages over the original cuckoo
filter: 1) The ECF avoids inserting duplicate elements, so
as to save storage space and eliminate the limitation on the
maximum number of times a single element can be inserted.
2) The ECF combines two filters to address the disadvantage
of low detection accuracy in a single filter. 3) The ECF fine-
tunes the dual filters based on the subsequent judgments made
by the BERT model.

Upon the integration of the BERT model, we proposed
the ECF-IDS for the in-vehicle network. The ECF-IDS was
trained and tested on the CHD and can-train-and-test datasets,
with strong performance demonstrated in both binary and
multi-classification tasks, over four traditional algorithms (k-
means, LR, SVM and DT). Furthermore, when compared
with other in-vehicle IDSs in the literature, the ECF-IDS
not only exhibited superior effectiveness but also showcased
its advantages in terms of efficiency and lightweight design.
During the real in-vehicle testing process, the ECF-IDS model
also demonstrated excellent detection performance. Given the
limited computational resources in vehicles, a lightweight IDS
is essential, and the ECF-IDS is precisely tailored to meet
this demand. However, due to the limited resources of GPUs
in a vehicle’s environment, the training process of the ECF-
IDS model can only be completed offline, necessitating regular
updates of the detection models to address emerging attacks.
In future work, we aim to create a distributed in-vehicle IDS
that can perform model training in the cloud and deliver model
updates in real-time.

ACKNOWLEDGEMENT

This work is partially supported by ECARX (Hubei) Tech-
nology Co., Ltd. for providing the real vehicle testing envi-
ronment and assistance.

The research is supported in part by EU HORIZON-TMA-
MSCA-SE project TRACE-V2X under grant (101131204)
and Wuhan Industrial base Innovation Pro-
gram (2023010402010783).

REFERENCES

[1] M. Elhattab, M. Khabbaz, N. Al-Dahabreh, R. Atallah, and C. Assi,
“Leveraging real-world data sets for qoe enhancement in public electric
vehicles charging networks,” IEEE Transactions on Network and Service
Management, pp. 1–1, 2023.

[2] S. Longari, D. H. N. Valcarcel, M. Zago, M. Carminati, and S. Zanero,
“Cannolo: An anomaly detection system based on lstm autoencoders for
controller area network,” IEEE Transactions on Network and Service
Management, vol. 18, no. 2, pp. 1913–1924, 2020.

[3] H. Zhou, B. Liu, T. H. Luan, F. Hou, L. Gui, Y. Li, Q. Yu, and
X. Shen, “Chaincluster: Engineering a cooperative content distribution
framework for highway vehicular communications,” IEEE Transactions
on Intelligent Transportation Systems, vol. 15, no. 6, pp. 2644–2657,
2014.

[4] K. Sharma, B. Butler, and B. Jennings, “Graph-based heuristic solution
for placing distributed video processing applications on moving vehicle
clusters,” IEEE Transactions on Network and Service Management,
vol. 19, no. 3, pp. 3076–3089, 2022.

[5] Y. Cao, S. Li, C. Lv, D. Wang, H. Sun, J. Jiang, F. Meng, L. Xu,
and X. Cheng, “Towards cyber security for low-carbon transportation:
Overview, challenges and future directions,” Renewable and Sustainable
Energy Reviews, vol. 183, p. 113401, 2023.

[6] S. Li, Y. Cao, S. Liu, Y. Lai, Y. Zhu, and N. Ahmad, “Hda-ids: A hybrid
dos attacks intrusion detection system for iot by using semi-supervised
cl-gan,” Expert Systems with Applications, p. 122198, 2023.

[7] M. A. El-Zawawy, A. Brighente, and M. Conti, “Authenticating drone-
assisted internet of vehicles using elliptic curve cryptography and
blockchain,” IEEE Transactions on Network and Service Management,
vol. 20, no. 2, pp. 1775–1789, 2023.

[8] L. Zhao, Z. Yin, K. Yu, X. Tang, L. Xu, Z. Guo, and P. Nehra, “A fuzzy
logic-based intelligent multiattribute routing scheme for two-layered sd-
vns,” IEEE Transactions on Network and Service Management, vol. 19,
no. 4, pp. 4189–4200, 2022.

[9] A. Greenberg, “Hackers cut a corvette’s brakes via
a common car gadget,” https://www.wired.com/2015/08/
hackers-cut-corvettes-brakes-via-common-car-gadget/, 2015.

[10] K. S. Lab, “Experimental security assessment of bmw cars: A summary
report.”

[11] A. Palanca, E. Evenchick, F. Maggi, and S. Zanero, “A stealth, selective,
link-layer denial-of-service attack against automotive networks,” in
Detection of Intrusions and Malware, and Vulnerability Assessment:
14th International Conference, DIMVA 2017, Bonn, Germany, July 6-7,
2017, Proceedings 14. Springer, 2017, pp. 185–206.

[12] S. Sinha and R. West, “Towards an integrated vehicle management
system in driveos,” ACM Transactions on Embedded Computing Systems
(TECS), vol. 20, no. 5s, pp. 1–24, 2021.

[13] M. Gupta, F. M. Awaysheh, J. Benson, M. Alazab, F. Patwa, and
R. Sandhu, “An attribute-based access control for cloud enabled in-
dustrial smart vehicles,” IEEE Transactions on Industrial Informatics,
vol. 17, no. 6, pp. 4288–4297, 2020.

[14] M. S. Rathore, M. Poongodi, P. Saurabh, U. K. Lilhore, S. Bourouis,
W. Alhakami, J. Osamor, and M. Hamdi, “A novel trust-based secu-
rity and privacy model for internet of vehicles using encryption and
steganography,” Computers and Electrical Engineering, vol. 102, p.
108205, 2022.

[15] M. Müter and N. Asaj, “Entropy-based anomaly detection for in-vehicle
networks,” in 2011 IEEE Intelligent Vehicles Symposium (IV). IEEE,
2011, pp. 1110–1115.

[16] G. Qin, Y. Zhou, J. Yan, J. Chen, B. Rao, and P. Li, “Intrusion
detection framework for in-vehicle network combining time features
and data features,” in 2022 IEEE/CIC International Conference on
Communications in China (ICCC). IEEE, 2022, pp. 985–990.

15

[17] A. Miglani and N. Kumar, “Deep learning models for traffic flow
prediction in autonomous vehicles: A review, solutions, and challenges,”
Vehicular Communications, vol. 20, p. 100184, 2019.

[18] B. Groza and P.-S. Murvay, “Efficient intrusion detection with bloom
filtering in controller area networks,” IEEE Transactions on Information
Forensics and Security, vol. 14, no. 4, pp. 1037–1051, 2018.

[19] H. M. Song, J. Woo, and H. K. Kim, “In-vehicle network intrusion
detection using deep convolutional neural network,” Vehicular Commu-
nications, vol. 21, p. 100198, 2020.

[20] S. Tariq, S. Lee, H. K. Kim, and S. S. Woo, “Can-adf: The controller area
network attack detection framework,” Computers & Security, vol. 94, p.
101857, 2020.

[21] W. Lo, H. Alqahtani, K. Thakur, A. Almadhor, S. Chander, and G. Ku-
mar, “A hybrid deep learning based intrusion detection system using
spatial-temporal representation of in-vehicle network traffic,” Vehicular
Communications, vol. 35, p. 100471, 2022.

[22] H. Qin, M. Yan, and H. Ji, “Application of controller area network
(can) bus anomaly detection based on time series prediction,” Vehicular
Communications, vol. 27, p. 100291, 2021.

[23] N. Alkhatib, M. Mushtaq, H. Ghauch, and J.-L. Danger, “Can-bert do
it? controller area network intrusion detection system based on bert
language model,” in 2022 IEEE/ACS 19th International Conference on
Computer Systems and Applications (AICCSA). IEEE, 2022, pp. 1–8.

[24] E. Nwafor and H. Olufowobi, “Canbert: A language-based intrusion de-
tection model for in-vehicle networks,” in 2022 21st IEEE International
Conference on Machine Learning and Applications (ICMLA). IEEE,
2022, pp. 294–299.

[25] A. R. Javed, S. Ur Rehman, M. U. Khan, M. Alazab, and T. Reddy,
“Canintelliids: Detecting in-vehicle intrusion attacks on a controller
area network using cnn and attention-based gru,” IEEE transactions on
network science and engineering, vol. 8, no. 2, pp. 1456–1466, 2021.

[26] A. K. Desta, S. Ohira, I. Arai, and K. Fujikawa, “Rec-cnn: In-vehicle
networks intrusion detection using convolutional neural networks trained
on recurrence plots,” Vehicular Communications, vol. 35, p. 100470,
2022.

[27] J. Liu, S. Zhang, W. Sun, and Y. Shi, “In-vehicle network attacks
and countermeasures: Challenges and future directions,” IEEE Network,
vol. 31, no. 5, pp. 50–58, 2017.

[28] D. Zhang, Z. Chen, J. Ren, N. Zhang, M. K. Awad, H. Zhou, and X. S.
Shen, “Energy-harvesting-aided spectrum sensing and data transmission
in heterogeneous cognitive radio sensor network,” IEEE Transactions
on Vehicular Technology, vol. 66, no. 1, pp. 831–843, 2017.

[29] S. Boumiza and R. Braham, “An anomaly detector for can bus networks
in autonomous cars based on neural networks,” in 2019 international
conference on wireless and mobile computing, networking and commu-
nications (WiMob). IEEE, 2019, pp. 1–6.

[30] E. Seo, H. M. Song, and H. K. Kim, “Gids: Gan based intrusion detec-
tion system for in-vehicle network,” in 2018 16th Annual Conference
on Privacy, Security and Trust (PST). IEEE, 2018, pp. 1–6.

[31] B. Lampe and W. Meng, “can-train-and-test: A curated can dataset for
automotive intrusion detection,” arXiv preprint arXiv:2308.04972, 2023.

[32] B. Fan, D. G. Andersen, and M. Kaminsky, “Cuckoo filter: Better than
bloom,” USENIX Programming, vol. 38, no. 4, pp. 36–40, 2013.

[33] J. D. M.-W. C. Kenton and L. K. Toutanova, “Bert: Pre-training of deep
bidirectional transformers for language understanding,” in Proceedings
of naacL-HLT, vol. 1, 2019, p. 2.

[34] Z. Zhang, Y. Wu, H. Zhao, Z. Li, S. Zhang, X. Zhou, and X. Zhou,
“Semantics-aware bert for language understanding,” in Proceedings of
the AAAI Conference on Artificial Intelligence, vol. 34, no. 05, 2020,
pp. 9628–9635.

[35] J. Li, X. Wang, Z. Tu, and M. R. Lyu, “On the diversity of multi-head
attention,” Neurocomputing, vol. 454, pp. 14–24, 2021.

[36] G. Bebis and M. Georgiopoulos, “Feed-forward neural networks,” Ieee
Potentials, vol. 13, no. 4, pp. 27–31, 1994.

[37] K. Wang, A. Zhang, H. Sun, and B. Wang, “Analysis of recent deep-
learning-based intrusion detection methods for in-vehicle network,”
IEEE Transactions on Intelligent Transportation Systems, vol. 24, no. 2,
pp. 1843–1854, 2022.

