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Abstract

There are two common methodologies to verify signatures: the functional approach and the parametric approach. In

this paper, we propose a new warping technique for the functional approach in signature verification. The commonly

used warping technique is dynamic time warping (DTW). It was originally used in speech recognition and has been

applied in the field of signature verification with some success since two decades ago. The new warping technique we

propose is named as extreme points warping (EPW). It proves to be more adaptive in the field of signature verification

than DTW, given the presence of the forgeries. Instead of warping the whole signal as DTW does, EPW warps a set of

selected important points. With the use of EPW, the equal error rate is improved by a factor of 1.3 and the computation

time is reduced by a factor of 11.

� 2003 Published by Elsevier B.V.
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1. Introduction

Plamondon and Lorette (1989) categorized the

various signature verification methodologies into

two types: functional approach and parametric

approach. In the functional approach, complete
signals (xðtÞ, yðtÞ, vðtÞ, etc.) directly or indirectly

constitute the feature set. The two signals, one

from a genuine signature and the other from a

forgery, are then compared point-to-point. How-
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ever in the parametric approach, only the para-

meters abstracted from the complete signals are

compared. Though the parametric approach en-

joys the advantages of algorithmic simplicity and

computation speed, the task of selecting the right

set of parameters is not trivial. The comparison
based on the complete signals generally yields

better results (Plamondon and Lorette, 1989). The

two approaches may be applied in different appli-

cations, where there are distinct requirements in

error rate performance, speed etc. In this paper,

our research is focused on the functional ap-

proach.

In the functional approach, a straightforward
way to compare two signal functions is to use a
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linear correlation (Plamondon and Lorette, 1989),

but a direct computation of the correlation coef-

ficient is not valid due to the following two prob-

lems:

1. Difference of overall signal duration.
2. Existence of non-linear distortions within sig-

nals.

For a signal function, e.g. xðtÞ, yðtÞ, vðtÞ, it is un-
likely that the signal duration is the same for dif-

ferent samples even from the same signer. In

addition, for different signings, distortions occur

non-linearly within the signals. To correct the
distortion, a non-linear warping process needs to

be performed before comparison. An established

warping technique used in speech recognition is

dynamic time warping, or DTW (Sankoff and

Kruskal, 1983). For the past two decades, the use

of DTW has also become a major technique in

signature verification (Hangai et al., 2000; Nalwa,

1997). Though DTW has been applied to the field
with some success, it has some drawbacks, as we

will explain in details in Section 2.
Fig. 1. Waveforms befor
2. Drawbacks of DTW

The DTW technique is based on the dynamic

programming (DP) matching algorithm to find the

best matching path, in terms of the least global
cost, between an input signal and a template

(Sankoff and Kruskal, 1983). The DTW takes a

signature sample as the input and aligns it non-

linearly with respect to the stored reference sig-

nature. The process changes the input signal

waveform in two aspects:

1. The end of the input waveform will be aligned
with that of the reference.

2. Peaks and valleys will be shifted to align with

those of the reference.

An illustration of the waveforms before and after

DTW is shown in Fig. 1. In Fig. 1, the top two

graphs (a) and (b) are drawn from the reference

signature. The middle two graphs (c) and (d) are
from the sample signature before DTW, while the

bottom two graphs (e) and (f) are from the warped

sample signature. Both x and y are independently
e and after DTW.



Fig. 2. EPs and ripples.
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warped through DTW. From graphs (b), (d) and

(f), one may notice that peaks and valleys of the

sample waveforms are shifted to align with those

of the reference ones. Some of such shifts of peaks

and valleys have been highlighted in graphs (b), (d)
and (f) of Fig. 1.

In general, DTW has two main drawbacks

when applied in signature verification: (i) heavy

computational load, (ii) warping of forgeries. The

first drawback is a known problem in speech

recognition. This is because DTW performs non-

linear warping on the whole signal. The execution

time is proportional to the square of the signal
size (Sankoff and Kruskal, 1983). To reduce the

computation time, Hangai et al. (2000) defined

boundary conditions in the DTW matching

matrix. However the resultant computation time

is still relatively long. It takes on average around

0.4 s, as we will explain in Section 3.1. This

problem of the heavy computation load may turn

out to be critical if an online signature verifi-
cation system deals with multi-user requests at

the same time.

The second drawback, however, is not well

documented in the past literature. When used in

the speech recognition, DTW searches a best way

to trim the input signal to be more recognizable.

However in signature verification, with the pres-

ence of the forgeries, forged signals also undergo
DTW to be trimmed, so as to be more �authentic�.
Hence some adaptations of the algorithm in the

field of signature verification need to be made.

This problem can be implicitly addressed by the

use of an additional motion measure defined by

Sato and Kogure (1982). The motion measure

takes the warping path into account. The warping

path is less likely to be straight for a forged signal
if it undergoes a lot of trimmings during the DTW

process. However, the inclusion of the motion

measure adds to the complexity of the data clas-

sification and the decision-making. Hence it is not

used in many recent researches (Nalwa, 1997; Anil

et al., 2002).

In this paper, we will introduce a simple solu-

tion, without using the motion measure, to ade-
quately address the above two drawbacks.

Considering the fact that the DTW process warps

every point on the signal, we propose a new
warping technique to warp only selective impor-

tant points of the signal.
3. A new warping technique

The proposed warping technique is called the

extreme points warping (EPW). As the name

suggests, the technique warps only the extreme

points (EPs) of the signal. The EPW process

comprises three steps: (i) EPs marking, (ii) EPs

matching, and (iii) segments warping.

3.1. Extreme points marking

The EPs are defined as the signal peaks and

valleys. We first define a rise-distance, denoted by

�r�, as the amplitude from a valley to the following

peak. Similarly we define a drop-distance, denoted

by �d �, as the amplitude from a peak to the fol-

lowing valley. For any peak (or valley), a rise-

distance can be computed at one side of the curve,
while a drop-distance can be computed at the

other side of the curve. The peak or valley is

marked as an EP only if the following condition is

met:

rP h0; dP h0 ð1Þ
where h0 is defined as a threshold. Small ripples are

not considered as EPs. This is because small rip-

ples are unreliable most of the time. In the project,

the threshold h0 is chosen as one pixel. Hence any

ripples with rise or drop distance less than h0 will

not the counted as EPs. Our simple EPs marking

algorithm can identify the important peaks and

valleys along the signal, while excluding the small
ripples, as shown in Fig. 2.



Fig. 4. EPs matching algorithm: (a) the global warping path

and (b) the local warping path.
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After identifying the important peaks and val-

leys as EPs, we will match the EPs of the sample

signal and the reference signal correspondingly.

3.2. Extreme points matching

Due to the signature variations, the two sets of

EPs are not one-to-one matched. Missing or extra

EPs may occur in either signal. Fig. 3(a) and (b)

show two torque signals plotted from a reference

signature and a sample signature, respectively. The

definition of the torque (Nalwa, 1997) will be ex-

plained in Section 4. The EPs are marked with ���
along the two signals.

Through studying the variation phenomena

from the collected database, which comprises 25

users and 1000 signatures, we can summarize three

types of variations. They are:

1. non-synchronicity for the start point––the first

EPs of the two signals may not synchronously

start from a peak (or a valley);
2. existence of ripples––a ripple may be found at

the start, between the consecutive peak/valley

pair and at the end of either signal; however,

the occurrence of two or more ripples is rare be-

tween a genuine signal and a reference signal;

3. non-synchronicity for the end point––the last

EPs of the two signals may not synchronously

end up with a peak (or a valley).

We will define a matching algorithm to identify the

matching pairs of the corresponding EPs despite

the variations mentioned above. Our EPs match-
Fig. 3. EPs from two signals.
ing algorithm is based on the DP matching tech-

nique (Sankoff and Kruskal, 1983). In the classical

DP matching process (Hangai et al., 2000), one

point on one signal can be matched to any point
on the other signal. However in our case, the EPs

are alternating peaks and valleys. Hence the cor-

responding matching pairs of EPs have to be peak-

peak or valley-valley matching. We need to

introduce some new rules in the DP algorithm to

suit the application.

In the EPs matching process, an EP–EP matrix

is first established as in Fig. 4(a). In the matrix, the
EPs on the reference signal form the horizontal

axis and the EPs on the sample signal form the

vertical axis. Note in the matrix, the two sets of the

EPs need to synchronously start with a peak (or a

valley). The global costs at the elements within the

unshaded region in Fig. 4(a) are to be computed.

The warping path is defined by following the least-

global-cost path from (1,1) to (I ; J ).
Fig. 4(b) shows three local warping paths at the

element (m; n). That is to say, if we assume that

(m; n) is a matching pair (i.e. the mth EP on the

reference signal is matched to the nth EP on the

sample signal), the next matching pair can be one

of the three: (mþ 1; nþ 1), (mþ 1; nþ 3) and

(mþ 3; nþ 1). The (mþ 1; nþ 3) means that the

two EPs after the nth EP on the sample signal are
regarded as a pair of ripple and hence are skipped

in the matching. Similarly the matching at

(mþ 3; nþ 1) means that the two EPs after the mth
EP on the reference signal are regarded as a pair of

ripple. Hence they are skipped in the matching

process. Whenever a pair of EPs is skipped, a

skipping cost Sðk; k þ 1Þ is incurred. It is defined as



Fig. 5. An example of EPs matching.
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the city block distance between the kth and the

(k þ 1)th EPs on the signal.

The EPs on the reference signal can be ex-

pressed as two-dimensional data (xi; yi), where xi is
the horizontal position of the EP and yi is the

vertical amplitude of the EP. Similarly the EPs on
the sample signal are expressed as (xj; yj). We de-

fine the local distance at the element (i; j) in the

matrix as

dði; jÞ ¼ jxi � xjj þ jyi � yjj ð2Þ
Note in Eq. (2), the city block distance is adopted

instead of the Euclidean distance. This is to avoid

the situation when a big difference in position or
amplitude may over-influence the matching deci-

sion. We define Dði; jÞ as the global distance at the
element (i; j) in the matrix. As an initial condition,

we have

Dð1; 1Þ ¼ dð1; 1Þ; Dð1; 3Þ ¼ dð1; 3Þ;
Dð3; 1Þ ¼ dð3; 1Þ ð3Þ
We then compute the global costs at the rest of the

elements, progressively using Eq. (4).

Dði; jÞ

¼ min

Dði� 1; j� 3Þ þ dði; jÞ þ qs � Sðj� 2; j� 1Þ
Dði� 1; j� 1Þ þ 1=2dði; jÞ
Dði� 3; j� 1Þ þ dði; jÞ þ qs � Sði� 2; i� 1Þ

2
64

3
75

ð4Þ

where qs is defined as the skipping factor. As dif-

ferent from the normal DTW process (Hangai et

al., 2000), we introduce a skipping cost into Eq.

(4). The skipping cost is usually very small when

skipping a ripple. However it will be much larger if

a pair of important peak and valley is misinter-

preted as a ripple and skipped. The skipping factor
qs is to adjust the influence of the skipping cost in

the decision of matching. Through fine-tuning, it is

found that qs ¼ 2 is an appropriate value, which

will be explained in Section 4.

As an example, we will apply the algorithm to

match the two sets of EPs (see Fig. 3). Firstly an

EP–EP matrix is established in Fig. 5, where the

EPs on the reference signal form the horizontal axis,
and the EPs on the sample signal form the vertical

axis.

As we have explained, the matrix assumes syn-

chronicity of the two sets of EPs. Hence the first
EP (an extra valley) on the reference signal is re-

moved, so that the two sets of EPs start synchro-

nously with a peak point (see Fig. 3). One may also

remove the first EP (a peak) on the sample signal

to make two sets of EPs synchronously start with
a valley. Though it is not proper from visual

inspection (see Fig. 3), it will still from a valid EP–

EP matrix. But the much higher global cost in-

curred at the elements in the second matrix will

indicate that it is not the correct matrix.

In Fig. 5, the circled cells (include the dotted

cells) within the defined boundaries indicate all the

possible peak–peak or valley–valley matching
pairs. Apart from that, peak–valley or valley–peak

matching pairs are regarded as mismatching and

have been avoided in the definition of the matrix.

The global costs are to be computed for every

circled cell (include the dotted cells). The dotted

cells indicate the correct matching pairs, which

follow the least global cost path, as shown in Fig.

5. Fig. 6 shows the result after the EPs matching
process, where the matching pairs are ordered in

sequence.

3.3. Segments warping

After determining the correct matching pairs of

the two sets of the EPs, we will linearly warp the

segments within the consecutive EPs. Fig. 7 shows



Fig. 6. Result after the EPs matching.

Fig. 7. Linearly warp the segments: (a) the segment of a ref-

erence and (b) the segment of a sample.

Fig. 8. Result from the segment warping: (a) before EPW and

(b) after EPW.
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the two corresponding segments. The point (xj; yj)
is an arbitrary point on the segment of a sample

signal.

In the segment warping process, the sample

segment will be linearly stretched to align with the

reference segment. The stretching only changes

the position of a point (i.e. x), without changing the
magnitude (i.e. y). After segment warping, we have
Fig. 9. EPW for the genuine and the forged signals: (a) genuine torque

after EPW and (d) forged torque after EPW.
x0n ¼ Xn; x0nþ1 ¼ Xnþ1 ð5Þ

x0j ¼ Xn þ ðxj � xnÞ �
Xnþ1 � Xn

xnþ1 � xn
ð6Þ

Fig. 8 shows that after segments warping, the

correlation coefficient between the reference signal

(see Fig. 3(a)) and the sample signal (see Fig. 3(b))

is increased from 34.8% to 91.7%. It is noted that

by warping a set of selective EPs, we have achieved
the goal of warping the whole signal.

As different from DTW, which warps every

point on the signal hence destroys the local cur-

vatures, EPW warps a few EPs and the local cur-

vatures between the EPs are preserved. Fig. 9

shows a comparison of the warping results using

EPW for a genuine signal and a forged signal.

As shown in Fig. 9, after EPW, the correlation
coefficient for the genuine signal is increased from
before EPW, (b) forged torque before EPW, (c) genuine torque
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70% to 95.6%, while for forged signal from 70% to

only 81.4%. For the forged signal, even after its

EPs are correctly aligned with the corresponding

reference EPs, it has a much lower correlation

coefficient because of the difference in local cur-

vatures.
4. Verification experiments

To evaluate the proposed new technique, we

perform a comparative analysis between EPW and

DTW in two aspects: error rate and speed. The

comparison is based on the same database and
under the same test conditions.

4.1. Database

A signature database comprising 25 users was

built. Each user donated 30 genuine signature

samples and 10 forgeries in two phases with one-

month interval. Overall 1000 signatures were col-
lected and stored in the database.

The forgeries were collected by encouraging

participants to mimic each other�s signatures as

closely as possible. The forger was allowed to view

the static images of all the authentic samples and

practiced for several minutes before providing the

forgeries. Some genuine and forgery samples are

shown in Fig. 10.
Fig. 10. Signature samples: (a) genuine 1, (b) genuine 2, (c)

forgery 1 and (d) forgery 2.
4.2. Experimental results

To describe the signature shape, the x, y tra-

jectories along the curve are often used. Besides x,
y signals, Nalwa (1997) proposed the use of the
torque, T ðlÞ, and the center of mass, xðlÞ, yðlÞ as

robust characteristic functions to describe the

shape. The three signals are defined below:

xðlÞ ¼
XL

k¼�L

gðkÞxðlþ kÞ ð7Þ

yðlÞ ¼
XL

k¼�L

gðkÞyðlþ kÞ ð8Þ

T ðlÞ ¼
Z þL

�L
gðkÞðyðlþ kÞdxðlþ kÞ

� xðlþ kÞdyðlþ kÞÞ ð9Þ

where xðlÞ and yðlÞ are the x, y coordinates along
the signature curve, while gðkÞ is defined as a

Gaussian computation window by Nalwa (1997)

and �L� is the window length. To sum up, these five

signals x, y, xðlÞ, yðlÞ, and T ðlÞ will be used for

performance evaluation.

Before evaluating the system performance, we

will first need to set the value of the skipping factor

qs, as shown in Eq. (4). The skipping factor qs is to
facilitate the correct matching between EPs. An

appropriate value of qs should result in the mini-

mum mismatches between the genuine signal EPs

and the reference signal EPs. Table 1 shows the

mean correlation coefficients between the EPW-

warped signals with the reference signals among

the 25 users.

While the skipping cost does little help on the
signals like x, y, xðlÞ, yðlÞ, it improves the EPs

matching for the torque signal, which is more

complex and fluctuant than x, y etc. (Nalwa, 1997).

In the project, a value of 2 is chosen for qs.
Table 1

The effect of the skipping factor

qs x y xðlÞ yðlÞ T ðlÞ
0 0.988 0.932 0.993 0.952 0.720

1 0.989 0.961 0.994 0.969 0.903

2 0.989 0.961 0.994 0.968 0.905

3 0.989 0.962 0.994 0.968 0.899



Table 3

Computation times using DTW and EPW for all users (ms)

Users DTW EPW

1 415.9 15.8

2 414.5 17.9

3 414.5 17.2

4 416.0 44.0

5 416.8 50.8

6 415.2 28.7

7 415.2 71.1

8 416.3 41.2

9 416.3 30.4

10 416.0 60.8

11 415.1 51.5

12 416.6 23.3

13 414.2 13.4

14 416.5 39.6

15 416 18.2

16 417 49.8

17 417 49.8

18 415.1 15.5

19 416.4 50.9

10 414.7 24.7

21 414.5 22.4

22 415.5 21.0

23 415.8 48.2

24 415.2 23.6

25 416.7 95.1

Average 415.7 37.0
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To measure the similarity of the two signals,

Nalwa (1997) and Ma and Wijesoma (2000) com-

puted the correlation coefficient between the

warped signal and the reference signal. Hangai et

al. (2000) and Anil et al. (2002) computed the

Euclidean distance between the two signals. In our
performance evaluation, we use both to measure

the performance. The results in terms of the equal

error rate (EER) obtained by adopting DTW and

EPW based on the five signals and two measures

are presented in Table 2.

It should be noted that the values of EER in

Table 2 are obtained based on the signature shape

only, without dynamic features involved, since we
aim to compare DTW and EPW only. For an ef-

fective signature verification system, which adopts

both the shape and dynamic features, the resultant

EER would be significantly lower.

From Table 2, it is noted that under the same

test conditions, the EER of EPW shows im-

provement over DTW. When the Euclidean dis-

tance is used, the average EER of five signals is
33.0% for DTW and 25.4% for EPW, an im-

provement of the factor of 1.30. When the corre-

lation coefficient is used, the average EER is 35.0%

for DTW and 27.7% for EPW, an improvement of

the factor of 1.26. Overall, the EPW shows a

moderate improvement of the factor of 1.3 in

terms of EER as compared with, using the con-

ventional DTW.
Besides error rate, speed is another attribute

used to compare the performance between the

DTW and the proposed EPW. The simulation is

done using Matlab 6.1 on a Pentium IV 1.9 GHz

PC with 256 MB RAM, running Windows 98.

Table 3 summarizes the averaged computation

time of the five signals for each user.
Table 2

EER for EPW and DTW (%)

Signal x y xðlÞ yðlÞ T ðlÞ Average

Euclidean distance

DTW 30.5 34.4 29.5 35.1 35.2 33.0

EPW 23.6 26.3 25.5 26.4 25.4 25.4

Correlation coefficient

DTW 33.5 36.0 33.2 34.8 37.4 35.0

EPW 27.3 27.8 30.6 28.4 2]4.2 27.7
In Table 3, the computation time for EPW is

varying among users. This is because the number

of EPs identified on a signature signal depends on
the signature complexity while the points involved

in DTW matching process are roughly the same.

The average computation time among the 25 users

using DTW is 415.7 ms, while using EPW is only

37.0 ms, an improvement of the factor of 11.

From 0.4 to 0.037 s, one may not be able to

perceive the difference in the real-time applica-

tions. However the improvement would be most
evident if it runs on a slower PC and deals with

multiple users� requests simultaneously.
5. Conclusion

In this paper, we proposed a new warping

technique call EPW to replace the commonly used
DTW. Instead of warping the whole signal as DTW

does, EPW warps a set of selective points, i.e. the

EPs on the signal. Through matching the EPs and
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warping the segments linearly, we achieve the goal

of warping the whole signal. Since EPWwarps only

EPs, the local curvatures between the EPs are

preserved, which prevents forged signals taking

advantages from the warping process. With the

adoption of EPW, the EER is improved by a factor
of 1.3 over using DTW and the computation time is

reduced by a factor of 11. Hence the new technique,

EPW, is quite promising to replace DTW to warp

signals in the functional approach, as part of a

more effective signature verification system.
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