
1

Privacy-Preserving and Traceable Functional
Encryption for Inner Product In Cloud Computing
Muyao Qiu, Jinguang Han, Senior Member, IEEE, Feng Hao, Senior Member, IEEE, Chao Sun, and Ge Wu

Abstract—Cloud computing is a distributed infrastructure that
centralizes server resources on a platform in order to provide
services over the internet. Traditional public-key encryption
protects data confidentiality in cloud computing, while functional
encryption provides a more fine-grained decryption method,
which only reveals a function of the encrypted data. However,
functional encryption in cloud computing faces the problem of
key sharing. In order to trace malicious users who share keys
with others, traceable FE-IP (TFE-IP) schemes were proposed
where the key generation center (KGC) knows users’ identities
and binds them with different secret keys. Nevertheless, existing
schemes fail to protect the privacy of users’ identities. The
fundamental challenge to construct a privacy-preserving TFE-
IP scheme is that KGC needs to bind a key with a user’s
identity without knowing the identity. To balance privacy and
accountability in cloud computing, we propose the concept
of privacy-preserving traceable functional encryption for inner
product (PPTFE-IP) and give a concrete construction which
offers the features: (1) To prevent key sharing, both a user’s
identity and a vector are bound together in the key; (2) The
KGC and a user execute a two-party secure computing protocol
to generate a key without the former knowing anything about
the latter’s identity; (3) Each user can ensure the integrity
and correctness of his/her key through verification; (4) The
inner product of the two vectors embedded in a ciphertext and
in his/her key can be calculated by an authorized user; (5)
Only the tracer can trace the identity embedded in a key. We
formally reduce the security of the proposed PPTFE-IP to well-
known complexity assumptions, and conduct an implementation
to evaluate its efficiency. The novelty of our scheme is to protect
the user’s privacy and provide traceability if required.

Index Terms—Functional Encryption, Inner Production,
Traceability, Privacy, Security.

I. INTRODUCTION

CLOUD computing allows users to outsource data to re-
mote servers and access data from anywhere at anytime.

When users outsource sensitive data to cloud servers, encryp-
tion is a reliable solution to protect data confidentiality in
the cloud [1], [2], [3]. Traditional public-key encryption only
allows for an all-or-nothing decryption approach, meaning that

This work was supported by the National Natural Science Foundation of
China (Grant No. 62372103, 61972190), the Natural Science Foundation
of Jiangsu Province (Grant No. BK20231149), the Jiangsu Provincial Sci-
entific Research Center of Applied Mathematics (Grant No. BK20233002),
the Fundamental Research Funds for the Central Universities (Grant No.
2242021R40011) and the Start-up Research Fund of Southeast Univer-
sity(Grant No. RF1028623300). (Corresponding author: Jinguang Han.)

M. Yao, J. Han, C. Sun and G. Wu are with the School of Cyber Science and
Engineering, Southeast University, Nanjing 210096, China, and J. Han is also
with the Engineering Research Center of Blockchain Application, Supervision
and Management (Southeast University), Minister of Education, Nanjing
210096, China (e-mail: {myqiu, jghan,sunchaomt,gewu}@seu.edu.cn).

H. Feng is with Department of Computer Science, University of Warwick,
Coventry CV4 7AL, United Kingdom (e-mail: feng.hao@warwick.ac.uk).

the decrypted data can either reveal all of the original informa-
tion or nothing at all. Functional encryption (FE) introduces a
novel paradigm of public-key encryption, in which decryption
only reveals the function value of encrypted data [4].

An instance of functional encryption is functional encryp-
tion for inner product (FE-IP), which only computes the inner
product of two vectors related to a user’s key and a ciphertext
without revealing anything else. FE-IP has numerous practi-
cal applications, such as cloud computing [5], [6], machine
learning [7], [8], [9], federated learning [10], [11], [12] and
Internet of Things [13], [14], etc.

In existing FE-IP schemes [15], [16], a central authority
(CA) is required to generate secret keys for users. Hence, the
CA is assumed be fully honest; otherwise, it can impersonate
any user to decrypt ciphertexts and may release users’ personal
information. Han et al. [17] presented a privacy-preserving FE-
IP scheme in which the CA and a user execute a two-party
secure computing protocol to generate a key without the for-
mer knowing anything about the latter’s identity. Although this
approach provides full anonymity in the key issuing process,
it does not address the traceability problem. Therefore, if a
user shares his/her secret key with others, he/she cannot be
identified. To monitor malicious key leakage while protecting
user privacy, we propose the first privacy-preserving traceable
functional encryption for inner product (PPTFE-IP) scheme.
In PPTFE-IP, a tracer is introduced to identify the identity
of a key holder when he/she shares his/her key with others.
However, the CA knows nothing about a user’s identity.

A. Related Work

In this section, we review related schemes.
1) Functional Encryption: Functional encryption (FE) [4]

is a novel paradigm in public-key encryption, in which de-
cryption only reveals a function of the encrypted data without
revealing anything else. The concept of FE was firstly pro-
posed by Boneh et al. [4], who formalized the definition and
security model of this encryption technique.

Abdalla et al. [15] introduced the concept of functional
encryption with inner product (FE-IP), where the decryption
process only outputs the inner product of two vectors asso-
ciated to a ciphertext and a user’s secret key, and presented
a simple FE-IP scheme with selective security. Building on
this work, Abdalla et al. [18] constructed a novel generic
scheme, which is secure against adaptive adversaries. Agrawal
et al. [16] introduced fully secure FE-IP schemes based on the
same assumptions as [15] and gave a simple method to achieve
the bounded collusion FE for all circuits.

In above FE-IP schemes, CA must be trusted fully because
it generates all the secret keys of users. This is known as

2

the key escrow problem [19]. Some FE-IP schemes were
proposed mainly to reduce trust on the CA and solve the key
escrow problem. Abdalla et al. [20] presented a decentralized
FE-IP to transform any scheme with key-derivation into a
decentralized key-derivation scheme. A new primitive called
decentralized multi-client FE-IP was proposed by Chotard et
al. [21] where clients generate ciphertexts non-interactively,
and secret keys are generated in a decentralized way. Jérémy et
al. [22] proposed the first dynamic decentralized FE-IP, which
allows participants to join dynamically during the lifetime of
a system. In these schemes, multiple authorities or clients,
instead of a single entity, issue keys to users. To reduce trust
on the CA and protect privacy, Han et al. [17] introduced
a decentralized privacy-preserving FE-IP scheme, in which a
user and multiple authorities collaborate to generate a secret
key, and the authorities do not know the identity associated
with the key.

2) Traitor Tracing: Traitor tracing schemes are able to trace
the identity of a key holder who leaked the secret key [23].
There are two types of traitor tracing: white-box tracing and
black-box tracing. In white box tracing [24], [25], [26], a ma-
licious user is traced given a well-formed secret key. In black
box tracing [27], [28], the malicious users are traced using a
black box (including an unknown key and algorithm) which
can decrypt ciphertexts. Some schemes [27] introduced black-
box traceable ciphertext-policy attribute-based encryption (CP-
ABE) to trace the malicious user; however, these schemes were
impractical because a composite-order group is required. In
order to overcome the problem, Xu et al. [28] presented a
CP-ABE scheme based on the prime-order group supporting
black-box traceability.

A user’s identity is embedded in his/her secret key in white-
box tracing schemes [24], [25]. In [24], the tracer generates
part of keys for users and records some auxiliary information
for trace. Han et al. [25] used a similar method as [24]
but a binary tree was applied to reduce the cost of storing
users’ identities and corresponding information. In [26], if
the secret key is leaked or abused, any entity can trace the
identity embedded in the key, this is called public traceability.
However, restricting tracing to only the tracer is essential to
ensure user privacy. To curb key leakage issues and trace
users in FE-IP, [29] defined a novel primitive called traceable
functional encryption for inner product (TFE-IP) and proposed
a concrete black-box tracing scheme for FE-IP. Following [29],
Luo et al. [30] introduced the first efficient traceable FE-
IP scheme supporting public, black-box tracing and revoca-
tion, which achieves adaptive security (A-IND-CPA) under
standard assumptions. Luo et al. [30] also proposed the first
generic TFE-IP scheme that achieves adaptive security. Dutta
et al. [31] introduced fully collusion resistant TFE-IP schemes
for the first time which are public and black-box traceable, and
gave generic constructions of TFE-IP based on both pairing
and lattices. Branco et al. [32] introduced a new traceable FE-
IP model based on registered FE where users generate their
secret-public key pairs and register their public keys.

However, a traceable FE-IP scheme with private traceability
has not been considered. Also, users’ privacy and anonymity
may be violated by traceability. To balance the relation-

TABLE I
COMPARISON WITH EXISTING WORK

Scheme Traceability Public/Private Privacy-
Traceability Preservation

[29] Black box Private –
[30] Black box Public –
[31] Black box Public –
[32] Black box Public –
[33] Black box Public –

Ours White box Private ✓

ship between privacy and traceability, we propose a PPTFE-
IP scheme. Though the concept and purpose of tracing in
attribute-based encryption are similar to traceable functional
encryption, challenges encountered and techniques adopted
vary widely. The comparison of different features between
our scheme and the existing schemes is illustrated in Table I.
Our scheme can recover a user’s identity through a well-
formed secret key, while other schemes can trace a user’s
identity via decryption boxes; therefore, our scheme is white-
box traceable, while other schemes are black-box traceable.
Among existing schemes, schemes [30], [31], [33], [32] are
publicly traceable, which undermines user privacy. [29] pro-
vides similar trace functionality with our scheme, namely,
only the tracer can trace the identity embedded in a key.
Therefore, [29] and our scheme are private tracing; on the
contrary, [30], [31], [33], [32] are public tracing. In [17],
to protect users’ privacy, the two-party secure computing
technique was applied to embed identities in secret keys. Since
the KGC knows nothing about users’ identities, it is difficult
to extract the identities of users from their secret keys. In
[29], [30], [31], [32] and [33], to provide traceability, users’
identities were bound with secret keys. If we directly apply
the two-party secure computing technique to these schemes
to construct a PPTFE-IP scheme, the traceability cannot be
guaranteed. The novelty of our scheme is to protect users’
privacy and provide traceability if required.

B. Our Contributions

Our PPTFE-IP scheme balances the relationship between
traceability and anonymity in FE-IP. Specifically, the PPTFE-
IP scheme offers some interesting features:

1) To prevent key sharing, both a user’s identity and a vector
are bound together in the key;

2) The key generation center (KGC) and a user execute a
two-party secure computing protocol to generate a key
with the KGC knowing nothing about the user’s identity;

3) Each user can ensure the integrity and correctness of
his/her key through verification;

4) The inner product of the two vectors embedded in a
ciphertext and in his/her key can be calculated by an
authorized user;

5) Only the tracer can trace the identity embedded in a key.
The contributions of this paper are shown below:

1) We formalize the definitions and security models of
PPTFE-IP.

2) A concrete TFE-IP scheme is constructed on the sym-
metric bilinear groups.

3

3) A privacy-preserving key generation (PPKeyGen) algo-
rithm is proposed for TFE-IP scheme.

4) An implementation is conducted to evaluate the efficiency
of our PPTFE-IP.

5) We formally reduce the security of the proposed PPTFE-
IP to well-known complexity assumptions.

C. Techniques and Challenges

It is nontrivial to construct a PPTFE-IP based on existing
schemes. When constructing our PPTFE-IP scheme, we en-
counter the following challenges:

1) To prevent key sharing and realize tracing, it is necessary
to embed a user’s identity in his/her key. However, there
is a risk that the user’s identity is leaked to the KGC,
threatening the privacy of the user.

2) We require a new traceable FE-IP scheme which supports
privacy-preserving key generation.

3) It is challenging to prevent user collusion attacks.
To address these challenges, we employ the following tech-
nologies:

1) To protect user’s identity, the two-party secure computing
technique is applied to enable the KGC to derive a key
to an anonymous user without knowing his/her identity.
During key generation, the user’s identity and the gener-
ated secret key are unknown to KGC.

2) To enable the tracer to trace the identity of a key holder,
a user’s identity is encrypted under the public key of
the tracer by using a verifiable public-key encryption
scheme. For privacy preservation, during key generation,
the user sends the ciphertext to KGC and proves that
he knows the identity included in the ciphertext. KGC
verifies the identity through the zero-knowledge proof
while not knowing the user’s true identity.

3) To prevent the combination of secret keys, all elements
in a key are bound together by a random number. Hence,
two users cannot collude to combine their secret keys.

D. Organization

We offer an overview of the preliminaries as well as
the formal definition and security models of PPTFE-IP in
Section II. Section III presents the concrete construction of
our PPTFE-IP scheme. Section IV offers a detailed security
proof for PPTFE-IP. We conduct a comparative analysis of our
scheme with existing TFE-IP schemes, implement and evaluate
our scheme in Section V. At last, we conclude this paper and
outline future work in Section VI.

II. PRELIMINARIES

In this section, we present preliminaries along with formal
definitions and security models utilized in this paper. The
symbols employed in this paper are outlined in Table II.

Figure 1 depicts the framework of our PPTFE-IP scheme.
The solid lines represent the necessary flow of the entire
scheme, and the dash lines represents a special case that
trace is required. id∗ represents the identity of the user who
shared his/her secret key with outers. Our scheme works as
follows: At first, the KGC sets up the system, and generates

TABLE II
NOTATION SUMMARY

Notation Description
DL Discrete logarithm
DDH Decisional Diffie-Hellman
q-SDH q-strong Diffie-Hellman
1λ A security parameter
PP Public parameters
FE Functional encryption
FE-IP FE for inner product
TFE-IP Traceable FE-IP
PPTFE-IP Privacy-preserving TFE-IP
PPKeyGen Privacy-preserving key generation algorithm
KGC Key generation center
x⃗ A vector
⟨x⃗, y⃗⟩ The inner product of x⃗ and y⃗
ϵ(λ) A negligible function in λ
⊥ Empty
ζ Failure
com Commitment
decom Decommitment
θ User’s identity
A A probabilistically polynomial time adversary
GG A group generation algorithm
BG A bilinear group generation algorithm
C A challenger
S A simulator

the master secret key and public parameters. Then, the Data
Owner encrypts his data by using the public parameters and
uploads ciphertexts to the Cloud Server. To obtain a secret
key form the KGC without releasing his identity idi, the user
Ui first executes a privacy-preserving secret key generation
algorithm with the KGC. An authorized user can use his secret
key to decrypt the ciphertext and obtain the inner product
⟨f⃗ , m⃗⟩. In the case that traceability is required, the tracer can
identity the real identity of the user who shared his secret key
with others.

A. Bilinear Groups and Complexity Assumptions

Definition 1 (Prime Order Bilinear Groups): Let G be a
(multiplicative) cyclic group generated by g ∈ G with prime
order p and GT be a (multiplicative) cyclic group of prime
order p. If the following conditions are satisfied, a map
e : G×G→ GT is a bilinear pairing:

1 Bilinearity. ∀a, b ∈ Zp, g1, g2 ∈ G, e(ga1 , gb2) =
e(gb1, g

a
2) = e(g1, g2)

a·b;
2 Non-Generation. Let 1 be the identity element in

GT . ∀g1, g2 ∈ G, e(g1, g2) ̸= 1;
3 Computability. ∀g1, g2 ∈ G, e(g1, g2) can be calculated

efficiently.

Definition 2 (Decisional Diffie-Hellman(DDH) Assumption[34]):
GG(1λ) → (G, p, g), where λ is security parameter, G is
a group generated by g ∈ G with prime order p. Given
α, β, γ randomly chosen from Zp, DDH assumption holds
on (p,G) if the tuples

(
gα, gβ , gαβ

)
and

(
gα, gβ , gγ

)
are

computationally indistinguishable by all adversaries A with a
negligible advantage ϵ(λ), in other words,

AdvDDH
A

=
∣∣∣Pr [A(gα, gβ , gαβ) = 1

]
− Pr

[
A(gα, gβ , gγ) = 1

] ∣∣∣

4

Key
Generation
Center

1. Setup

Data
Owner

𝑚

5. Trace

Tracer

2. Encrypt

3. Privacy-Preserving Key Generation

U𝒊

4. Decrypt
Ԧ𝑓,𝑚

𝑖𝑑∗

Key Sharing

Ciphertext Cloud Server

upload

𝑖𝑑?

!

𝑖𝑑𝑖

𝑖𝑑𝑖

Ԧ𝑓

Ԧ𝑓

Fig. 1. The Framework of Our PPTFE-IP Scheme

≤ ϵ(λ).

Definition 3 (Discrete Logarithm (DL) Assumption [35]):
GG(1λ) → (G, p, g), G is a group generated by g ∈ G with
prime order p. Given g, y, the DL assumption is satisfied on
the group (p,G), all A have the negligible advantage ϵ(λ) in
computing x ∈ Zp from y = gx, namely

AdvDL
A =

∣∣∣Pr [y = gx|A (g, y)→ x)]
∣∣∣ ≤ ϵ(λ).

Definition 4 (q-Strong Diffie-Hellman(q-SDH) Assumption[36]):
GG(1λ)→ (e, p,G,Gτ). Suppose that g is a generator of the
group G. q-SDH assumption holds on (e, p,G,Gτ) if given a
(q+1)-tuple

(
g, gx, g(x

2), · · · , g(xq)
)

as input, all adversaries

A output a pair
(
c, g

1
x+c

)
with the negligible advantage,

namely

Advq−SDH
A

=

∣∣∣∣∣Pr [A(g, gx, g(x2), · · · , g(x
q)
)
→
(
c, g

1
x+c

)] ∣∣∣∣∣
≤ ϵ(λ), where x

R← Zp, c ∈ Zp and c ̸= −x.

B. Formal Definition

In a TFE-IP scheme, the tracer can trace the identity of
the corresponding key owner from the secret key. We follow
the definition introduced in [29] and [24] to define our TFE-
IP. Firstly, the definition and security model of our TFE-IP
scheme are formalized, then the formal definition and security
model of our PPTFE-IP scheme are presented.

Definition 5 (TFE-IP): A TFE-IP scheme is formally de-
fined by the five algorithms as follows:

1 Setup
(
1λ
)
→ (msk, Tk, PP). The Setup algorithm

takes a security parameter 1λ as input and outputs the
master secret key msk, trace key Tk and public param-
eters PP .

2 Encrypt(PP, m⃗) → Ct. The Encryption algorithm in-
puts public parameters and a vector m⃗, and produces the
ciphertext Ct as output.

3 KeyGen
(
msk, f⃗ , id

)
→ skf⃗ ,id. The KeyGen algorithm

takes master secret key msk, a vector f⃗ and a user’s

identity id as input, and outputs skf⃗ ,id as user’s secret
key for function f⃗ .

4 Decrypt
(
Ct, skf⃗ ,id, id

)
→ ⟨f⃗ , m⃗⟩ or ⊥. The Decryp-

tion algorithm takes ciphertext Ct, user’s secret key
skf⃗ ,id and the user’s identity id as input, and outputs the
inner product value. If the decryption failed, the algorithm
outputs ⊥.

5 Trace
(
skf⃗ ,id, Tk

)
→ id or ⊥. The Tracing algorithm

takes user’s secret key skf⃗ ,id and the tracer’s trace key
as input, and outputs the user’s identity id or failure ⊥.

C. Security Model

1) s-IND-CPA Security: To define the security, we apply
the selective indistinguishability against the chosen plaintext
attacks (s-IND-CPA) model. The game below executed be-
tween a challenger C and an adversary A is applied to define
this s-IND-CPA model.

• Initialization. Two vectors m⃗0, m⃗1 with the same length
are submitted by the adversary A.

• Setup. The challenger C runs
(
1λ
)
→ (msk, PP),

returns PP to A and creates a set V which is initially
empty.

• Phase-I (KeyGen Query) . A submits an identity id
and a vector f⃗ limiting ⟨f⃗ , m⃗0⟩ = ⟨f⃗ , m⃗1⟩. C executes
KeyGen(msk, f⃗ , id)→ skf⃗ ,id, and returns skf⃗ ,id. C
updates V ← V ∩ {f⃗ , id}. The adversary A queries
multiple times.

• Challenge. C randomly selects a δ ∈ {0, 1}. C executes
Enc(PP, m⃗δ)→ Ct∗, and returns Ct∗ to A.

• Phase-II. Phase-I is repeated.
• Output. A guesses δ′ about δ. In the case that δ′ = δ,
A wins the game.

Definition 6 (s-IND-CPA Security): A traceable functional
encryption for inner product scheme is secure in the s-IND-
CPA model if any adversary A has a negligible advantage ϵ(λ)
in winning the above game, namely

AdvA =
∣∣Pr[δ′ = δ]− 1

2

∣∣ < ϵ(λ).

2) Traceability: For traceability, we follow the security
model proposed in [24], [37], [38]. This security model is

5

described by the following game executed by a challenger C
and an adversary A.

• Setup. C executes Setup
(
1λ
)
, and sends public param-

eters PP to A.
• Key Query. A submits (id, f⃗) in which id represents

the user identity and f⃗ represents the function. C returns
the secret key to A. A can query multiple times.

• Trace Query.A sends a key (ski)i∈[r] = (K1i,K2i,K3i,

K4i,K5i) to C. C runs Trace
(
skf⃗ ,id, tsk, PP

)
→ id,

and sends id to A. A can query multiple times.
• Key Forgery. A forges and produces sk∗ as out-

put. Assume the identity embedded in sk∗ is id∗.
A wins the game if Trace (sk∗, tsk, PP) ̸= id∗ or
Trace (sk∗, tsk, PP) /∈ {⊥, id1, id2, · · · , idq}.

Definition 7 (Traceability): A TFE-IP scheme is fully
traceable if any adversary A wins the above game with a
negligible advantage ϵ(λ), namely

AdvA

= Pr
[
{Trace (sk∗, tsk, PP) /∈ {⊥, id1, id2, · · · , idq}}∨

{Trace (sk∗, tsk, PP) ̸= id∗}
]
< ϵ(λ).

3) PPTFE-IP: A PPTFE-IP scheme comprises the same
Setup, Encryption, Decryption, Trace algorithms as the
TFE-IP scheme mentioned in Section II-B. However, the
KeyGen algorithm in the TFE-IP scheme is replaced by the
PPKeyGen algorithm, which is described below.

PPKeyGen(User(PP, id, f⃗ , decomu)↔KGC(PP,msk,
f⃗ , comu) → (⊥, skf⃗ ,id). This algorithm includes the
interaction process between the user and the KGC.
Let Commitment(PP, id) → (comu, decomu) be a
commitment scheme which inputs the public parameters
and a secret identity id, producing the commitment commu

and decommitment decomu as output. Given the public
parameters PP , the master secret key msk, a vector f⃗ and
the commitment comu, KGC outputs ⊥. The user takes the
public parameters PP , an identity id, a vector f⃗ and decomu

as input. If decommitment(PP, id, decomu, comu) = 1, a
secret key skf⃗ ,id is output; Otherwise, the output fails. The
formalization of the security model for PPKeyGen algorithm
employs two games [39], [40]: selective − failure − blind
and leakage− free.

Selective-failure-blind. The user U is honest and the KGC
is malicious in this game. KGC tries to distinguish the user’s
identity id associated with the key.

• KGC publishes public parameters PP and submits two
identities id0, id1.

• KGC randomly selects δ ∈ {0, 1} and gets two commit-
ments comδ, com1−δ which belongs to id0 and id1 re-
spectively. KGC can use two oracles U(PP, idδ, decomδ)
and U(PP, id1−δ, decom1−δ) to generate skδ for idδ and
sk1−δ for id1−δ .

1)skδ =⊥, sk1−δ =⊥, U returns (ζ, ζ) to KGC;

2)skδ =⊥, sk1−δ ̸=⊥, U returns (⊥, ζ) to KGC;
3)skδ ̸=⊥, sk1−δ =⊥, U returns (ζ,⊥) to KGC;
4)skδ ̸=⊥, sk1−δ ̸=⊥, U returns (sk0, sk1) to KGC.

• KGC guesses δ′ about δ. In the case that δ′ = δ, KGC
wins the game.

Definition 8 (Selective-Failure-Blindness): The PPKeyGen
algorithm is selective - failure - blind if KGC is able to win
the above game with the negligible advantage of ϵ(λ),

AdvKGC =
∣∣Pr[δ′ = δ]− 1

2

∣∣ < ϵ(λ).

Leakage-free. In this game, suppose that the user U is
malicious and the KGC is honest, and user U has interaction
with KGC in an attempt to get informed about the key.
The above game comprises a real-world and an ideal-world
scenario, in which a distinguisher D tries to distinguish the
outputs of each scenario.

• Real-world: The user U chooses identity θ and interacts
with KGC by PPKeyGen, and D can see the interaction
between KGC and U.

• Ideal-world: The simulator S chooses an identity θ, then
asks a trusted party TP to generate a key through Key-
Gen. D witnesses the communication process between
the simulator S and the TP .

Definition 9 (Leakage-Freeness): We call that the algo-
rithm is leakage-free if D can distinguish real-world outputs
from ideal-world with only a negligible advantage of ϵ(λ),

AdvU

=
∣∣∣Pr[D(RealPPKeyGen

U) = 1]− Pr[D(IdealTP
S) = 1]

∣∣∣
< ϵ(λ).

Definition 10 (Security of PPTFE-IP): A PPTFE-IP
scheme Ω = (Setup,Encrypt,PPKeyGen,Decrypt,
Trace) is secure if the following two conditions are satisfied:

• The TFE-IP scheme ∆ = (Setup,Encrypt,
KeyGen,Decrypt,Trace) is s-IND-CPA secure;

• The PPKeyGen algorithm satisfies two properties:
selective-failure-blindness and leakage-freeness.

III. OUR CONSTRUCTIONS

Firstly, a traceable FE-IP scheme is concretely constructed,
then we present the construction of the PPKeyGen algorithm.

A. An overview of Our TFE-IP Scheme

High-level overview. Our TFE-IP scheme works as follows:
Firstly, KGC runs Setup, and generates the master secret
key and public parameters. The tracer calculates a secret-
public key pair for tracing. Secondly, a vector is encrypted
by the data owner using the public parameters. Thirdly, prior
to decryption, a user with the identity θ needs to get a
key sky⃗,θ = {K1,K2,K3,K4,K5} from KGC where K1 is
bound with the vector y⃗ and K2 is bound with the identity
θ. K3,K4 and K5 are used in tracing and decryption. To
prevent collusion attacks, all elements included in a key are
bound together by a random number. Users can verify the

6

Setup. Suppose that BG(1λ) → (e, p,G,GT) and g0, g1, g2 ∈ G are generators. KGC selects s⃗ = (s1, s2, · · · , sl)
R← Zl

p

and computes h⃗ = {hi = gsi1 } for i ∈ [l]. Tracer selects b R← Zp randomly, and calculates B = gb2. KGC selects a R← Zp

and publishes Y = ga0 . KGC sets msk = (a, si) as master secret key, and publishes (⃗h, Y). The tracer’s secret-public key
pair is (b, B). Public parameters of the system can be denoted as PP = (e, p,G,GT , g0, g1, g2, B, Y, h1, · · · , hl).

Encrypt. To encrypt a vector x⃗ = (x1, x2, · · · , xl) ∈ Zl
p, the data owner first chooses r R← Zp randomly, then computes

cti = hri · g
xi
1 for i ∈ [l], ctl+1 = gr1, ctl+2 = gr2, ctl+3 = gr0 .

The ciphertext is Ct =
(
(cti)i∈[l], ctl+1, ctl+2, ctl+3

)
. The data owner sends Ct to the cloud server.

KeyGen. Given a vector y⃗ = (y1, y2, · · · , yl), to generate a secret key for a user with an identity θ, KGC chooses

w, d
R← Zp and computes sky⃗,θ =

{
K1 = g

⟨y⃗,s⃗⟩
0 · B

w
d+a ,K2 =

(
g0 · (g2 ·B)w · gθ2

) 1
d+a ,K3 = g

1
d+a

1 ,K4 = w,K5 = d
}

.

The user receives the key sky⃗,θ and verifies e (K1, g1) = e

(
g0,

(
l∏

i=1

(hi)
yi

))
·e(Bw,K3); e

(
K3, g

K5
0 · Y

)
= e (g0, g1);

e
(
K2, g

K5
0 · Y

)
=e (g0, g0) · e (g0, g2 ·B)

K4 · e (g0, g2)θ. If all the above equations hold, the secret key sky⃗,θ is valid;
otherwise, it is invalid.

Decrypt. After possessing the ciphertext Ct from the cloud server, the user uses his/her secret key (K1,K2,K3,K4,K5)
to calculate the inner product as follows:

e(g0, g1)
⟨x⃗,y⃗⟩ =

e

(
g0,

l∏
i=1

(cti)
yi

)
·e(ctl+1,K2)

e(K1,ctl+1)·e(K3,ctl+3)·e(K
K4
3 ·Kθ

3 ,ctl+2)
.

Further, the user calculates the discrete logarithm of e(g0, g1)⟨x⃗,y⃗⟩ with respect to e(g0, g1) to obtain ⟨x⃗, y⃗⟩. This discrete
logarithmic operation requires that ⟨x⃗, y⃗⟩ should not be too large.

Trace. Given a key sky⃗,θ, the tracer can compute

e (K3, g2)
θ
= e(K2,g1)

e(g0,K3)·e(g2,K
K4
3 ·KK4·b

3)

to recover the user’s identity associated with the key, where b denotes for tracer’s secret key.

Fig. 2. Our TFE-IP Scheme

correctness of his/her secret key. Fourthly, the user can use
his/her secret key to compute the inner-product of two vectors
respectively associated with the ciphertext and the secret key.
Finally, if tracing is required, only the tracer can use his
secret key to recover e (K3, g2)

θ from the secret key sky⃗,θ.
The tracer computes the discrete logarithm of each identity
based on e (K3, g2) to discover the identity embedded in the
secret key.

B. The Construction of Our TFE-IP Scheme

The formal construction of our TFE-IP scheme is described
in Figure 2.
Correctness of our TFE-IP Scheme. The correctness of our
TFE-IP scheme is shown by the following equations.

e

(
g0,

l∏
i=1

(cti)
yi

)
·e(ctl+1,K2)

=

(
l∏

i=1

e(g0, h
r
i ·g

xi
1)yi

)
·e(gr1,

(
g0 ·(g2 ·B)w ·gθ2

) 1
d+a)

= e(g0, g1)
⟨x⃗,y⃗⟩ · e(g0, gr1)⟨y⃗,s⃗⟩ · e(g

w
d+a

1 , Br) · e(g
1

d+a

1 , gr0)

· e(g
w
d+a

1 , gr2) · e(g
1

d+a

1 , gr2)
θ

= e(g0, g1)
⟨x⃗,y⃗⟩ · e(K1, ctl+1) · e(K3, ctl+3)

· e(K3, ctl+2)
w · e(K3, ctl+2)

θ

= e(g0, g1)
⟨x⃗,y⃗⟩ · e(K1, ctl+1) · e(K3, ctl+3)

· e(KK4
3 ·Kθ

3 , ctl+2),

K1=g
⟨y⃗,s⃗⟩
0 ·B

w
d+a ,K2=

(
g0 · (g2 ·B)w · gθ2

) 1
d+a ,

K3=g
1

d+a

1 ,K4=w,K5=d.

Therefore,

e

(
g0,

l∏
i=1

(cti)
yi

)
· e(ctl+1,K2)

e(K1, ctl+1) · e(K3, ctl+3) · e(KK4
3 ·Kθ

3 , ctl+2)

= e(g0, g1)
⟨x⃗,y⃗⟩.

For tracing,

e(K2, g1)

e(g0,K3) · e(g2,KK4
3 ·KK4·b

3)

=
e((g0 · (g2 ·B)w · gθ2)

1
d+a , g1)

e(g0, g
1

d+a

1) · e(g2, g
w
d+a

1 · (g
w
d+a

1)b)
= e (K3, g2)

θ
.

7

PPKeyGen
User KGC(
GID θ,w1

R← Zp, τ
R← Zp

) (
msk s⃗, w2, d

R← Zp

)
1. Select w1

R← Zp, τ
R← Zp, and compute

A1 = hτ ·Bw1 , A2 = (g2 ·B)
w1 · gθ2 . 2. Select w2

R← Zp and compute

Generate ΣU = PoK {(w1, θ, τ) :
A1,A2−−−−→
ΣU

B5 = d,B1 =
l∏

i=1

(gyi0)si · (A1 ·Bw2)
1

d+a ,

A1 = hτ ·Bw1 ∧A2 = (g2 ·B)
w1 · gθ2

}
. B2 = (g0 ·A2 · (g2 ·B)w2)

1
d+a , B3 = g

1
d+a

1 , B4 = h
1

d+a .

3. Compute w = w1 + w2 and set Generate ΣK = PoK
{(
a,w2, (si)i∈[l]

)
:

K1 = B1

Bτ4
,K2 = B2,K3 = B3,

w2,B1,B2,B3←−−−−−−−−
B4,B5,ΣK

B2 = (g0 ·A2 · (g2 ·B)w2)
1

d+a ∧B1 = g
⟨y⃗,s⃗⟩
0

K4 = w,K5 = B5. ·A
1

d+a

1 ·B
w2
d+a ∧B3 = g

1
d+a

1 ∧B4 = h
1

d+a }

Fig. 3. Our PPKeyGen Algorithm

C. Our PPKeyGen Algorithm

In order to prevent user collusion attacks, a user’s identity
is associated with his/her secret key. However, KGC and users
may collude to generate new secret keys on behalf of other
users. Therefore, we propose a PPKeyGen algorithm in Figure
3 to protect user’s privacy and prevent KGC’s corruption.
The user and the KGC collaborate to generate the key in
PPKeyGen algorithm which employs a zero-knowledge proof
and a two-party secure computing protocol, while other users
and the KGC cannot learn the embedded identity from the key.
The instantiation of zero-knowledge proof ΣK and ΣU in our
PPKeyGen algorithm are presented in Appendix.
Correctness of Our Privacy-Preserving Key Generation Al-
gorithm. Let w = w1 + w2, the equations presented below
demonstrate the correctness of the secret keys generated in
Figure 3.

K1 =
B1

Bτ
4

=
g
⟨y⃗,s⃗⟩
0 ·A

1
d+a

1 ·B
w2
d+a(

h
1

d+a

)τ
= g

⟨y⃗,s⃗⟩
0 ·B

w1+w2
d+a = g

⟨y⃗,s⃗⟩
0 ·B

w
d+a ,

K2 = B2 = (g0 ·A2 · (g2 ·B)w2)
1

d+a

=
(
g0 · (g2 ·B)(w1+w2) · gθ2

) 1
d+a

=
(
g0 · (g2 ·B)w · gθ2

) 1
d+a ,

K3 = g
1

d+a

1 ,K4 = w1 + w2 = w,K5 = d.

IV. SECURITY ANALYSIS

Theorem 1: Our TFE-IP scheme is (ϵ(λ), T) secure against
chosen-plaintext attack (CPA) in the selective model if the
DDH assumption holds on the group G with (ϵ(λ)′, T ′), where
ϵ(λ)′ = ϵ(λ)

2 .

Proof: Suppose the existence of an adversary A who can
(t, ϵ)-break the TFE-IP scheme in the IND-CPA security
model, there exists a simulator B who can run A to break the
DDH assumption as below. C randomly selects a µ ∈ {0, 1}.
If µ = 0, C sends (gα, gβ , Z = gαβ) to B; if µ = 1, C sends

(gα, gβ , Z = gτ) to B, in which τ ∈ Zp is a random number.
B outputs its guess µ′ about µ.
Initialization. A submits two vectors x⃗0 =
(x0,0, x0,1, · · ·x0,l) , x⃗1 = (x0,0, x0,1, · · · , x0,l), in which l
represents the length of vectors.
Setup. B selects a, c0, c2 ← Zp, and sets
g1 = g, g0 = gc0 , g2 = gc2 , Y = ga0 . Let spc(x⃗0 − x⃗1)
be a linear space with basis (η⃗1, η⃗2, · · · , η⃗l) and the basis
of spc(x⃗0 − x⃗1)

⊥ is (ζ⃗1, ζ⃗2, · · · , ζ⃗l). B randomly selects
a vector π⃗ = (π1, π2, · · · , πl) ∈ spc(x⃗0 − x⃗1)

⊥, and
computes (hi = (gα1)

πi)i∈[l]. B returns public parameters
PP =

{
g0, g1, g2, Y, (hi)i∈[l]

}
to A. B impliedly defined

s⃗ = (si)i∈[l] = (α · πi)i∈[l].
Phase-I. A submits y⃗ = (yi)i∈[l] ∈ Zp, θ ∈ Zp with
the limitation that y⃗ ∈ spc(x⃗0 − x⃗1)

⊥. B selects random
w, d

R← Zp and computes

K1 = g
⟨y⃗,s⃗⟩
0 ·B

w
d+a = B

w
d+a ,K2 =

(
g0 · (g2 ·B)w · gθ2

) 1
d+a ,

K3 = g
1

d+a

1 ,K4 = w,K5 = d.

B returns to A sky⃗,U =
(
(Ki)i∈[5]

)
.

Challenge. B randomly chooses a δ ∈ {0, 1}. B calculates

ct∗i = Zπi · gxδ,i for i ∈ [l], ct∗l+1 = gβ ,

ct∗l+2 = gβ
c2
, ct∗l+3 = gβ

c0 ,

outputs ciphertext Ct∗ =
(
(ct∗i)i∈[l], ct

∗
l+1, ct

∗
l+2, ct

∗
l+3

)
.

Phase-II. Repeat the same process as in Phase-I.
Output. A guesses δ′ about δ. If δ′ ̸= δ,B produces µ′ = 1
as output; If δ′ = δ,B produces µ′ = 0 as output.
The remaining thing to complete the proof is to calculate the
advantage with which B can break the DDH assumption.

• If µ = 0, Z = gαβ , ct∗i = Zπi · gxδ,i = gαβ
πi ·

gxδ,i , ct∗l+1 = gβ , ct∗l+2 = gβ
c2
, ct∗l+3 = gβ

c0 is a correct
ciphertext of x⃗δ . Therefore, Pr[δ′ = δ|µ = 0] = 1

2+ϵ(λ).
When δ′ = δ,B outputs µ′ = 0, so Pr[µ′ = µ|µ = 0] =
1
2 + ϵ(λ).

• If µ = 1, Z = gτ , ct∗i = Zπi · gxδ,i = gτ πi ·
gxδ,i , ct∗l+1 = gβ , ct∗l+2 = gβ

c2
, ct∗l+3 = gβ

c0 . This
information theoretically hide both x⃗0 and x⃗1. Therefore,

8

Pr[δ′ ̸= δ|µ = 1] = 1
2 . When δ′ ̸= δ,B produces µ′ = 1

as output, so Pr[µ′ = µ|µ = 1] = 1
2 .

In conclusion, the advantage of breaking the DDH assump-
tion by B can be computed as follows:∣∣ 1

2 Pr[µ
′ = µ|µ = 0]− 1

2 Pr[µ
′ ̸= µ|µ = 1]

∣∣
= 1

2 ·
(
1
2 + ϵ(λ)

)
− 1

2 ·
1
2 = ϵ(λ)

2 .

A. Traceability

Theorem 2: The proposed TFE-IP scheme is
(ϵ(λ), T) − traceable if the q-SDH assumption holds
with an advantage no more than ϵ1(λ) and a running time
T1, and the DL assumption holds with an advantage no
greater than ϵ2(λ) and a running time T2, where ϵ(λ) =

max
{

ϵ1(λ)
4 ×

(
1− q

p

)
+ ϵ2(λ)

4 × p−1
p3 ,

ϵ1(λ)
4 ×

((
1− q

p

)
+ 1

q

)}
,

q represents the number of queries made by A and
T = T1 + T2 +O(T1) +O(T2).

Proof: Suppose the existence of an adversary A who can
break the traceability of our scheme, there is a simulator B
who is able to run A to solve the q-SDH problem as follows.
C sends

(
g, gz, gz

2

, · · · , gzq , h, hz
)

to B. B will produce
(c, gz+c) as output where c ∈ Zp.
Setup. B sets (Φi = gzi)i∈[q], randomly selects
a, µ1, µ2, · · ·µq−1

R← Zp, s⃗ = (s1, s2, · · · , sl)
R← Zl

p, and
lets f(z) =

∏q−1
i=1 (z + µi) = Σq−1

i=0 δiz
i, then computes g̃ =∏q−1

i=0 (g
zi)δi = gf(z), ĝ =

∏q−1
i=0 (g

zi+1

)δi = g̃z, h⃗ = {hi =

gsi1 } for i ∈ [l], Y = ga0 . B chooses γ1, γ2, γ3, π, ρ, κ, b
R← Zp,

sets B = g̃b, then calculates g0 = g̃γ1 , g2 =
(
(ĝg̃π)

κ
g̃−1

) 1
ρ =

g̃
(z+π)κ−1

ρ , g̃ = gγ3 . B is the trace public key. A is given public
parameters (e, p, g̃, ĝ, g0, g1, g2, g3, B, Y, h1, · · · , hl) from B.
Key Query. A sends (θi, y⃗i)i≤q to B for the i− th query. B
sets fi(z) =

f(z)
z+µi

= Σq−2
j=0ηijz

j , randomly selects w R← Zp,
computes

νi =

q−2∏
j=0

(Φj)
ηij = gfi(z) = g

f(z)
z+µi = g̃

1
z+µi ,

K1 = g
⟨y⃗,s⃗⟩
0 · νb·wi ,K3 = νγ1

i ,K4 = w,K5 = µi,

K2 =

q−2∏
j=0

(
gz
j+1
)ηij ·κρ ·(γ2·w+θi)

·
q−2∏
j=0

(
gz
j
)ηij ·(((π·κ−1)

ρ)·(γ2·w+θi)+γ1)
,

and returns sk(θi,y⃗i)=(K1,K2,K3,K4,K5) to A. We prove
that sk(θi,y⃗i) is correct.

K1 = g
⟨y⃗,s⃗⟩
0 · νb·wi = g

⟨y⃗,s⃗⟩
0 · g̃

b·w
z+µi = g

⟨y⃗,s⃗⟩
0 ·B

w
z+µi

K2 =

q−2∏
j=0

(
gz
j+1
)ηij ·κρ ·(γ2·w+θi)

·
q−2∏
j=0

(
gz
j
)ηij ·(((π·κ−1)

ρ)·(γ2·w+θi)+γ1)

= g(Σ
q−2
j=0ηij ·z

j+1)·κρ ·(γ2·w+θi)

· g(Σ
q−2
j=0ηij ·z

j)·(((π·κ−1)
ρ)·(γ2·w+θi)+γ1)

= gγ1·fi(z) · gfi(z)·
(z+π)κ−1

ρ ·(γ2·w+θi)

= g̃
γ1
z+µi · g̃

(z+π)κ−1
ρ · γ2·w+θi

z+µi

= g
1

z+µi
0 · g

γ2·w+θi
z+µi

2 = (g0 · (g2 ·B)w · gθi2)
1

z+µi ,

K3 = g
1

z+µi
1 = g̃

γ1
z+µi = νγ1

i .

Trace Query. A adaptively submits a key ski =
(K1,K2,K3,K4,K5) to B. B computes

e(K2,g1)

e(g0,K3)·e(g2,K
K4
3 ·KK4·b

3)
= e (K3, g2)

θ.

B sends to A the discrete logarithm of identity θ.
Key Forgery. A outputs sk(θ∗,y⃗∗) = (K∗

1 ,K
∗
2 , K

∗
3 ,K

∗
4 ,K

∗
5)

and sends the key to B. Let’s consider the two types of
forgery as follows: Type I. The identity associated with the
key was not previously queried, namely, θ∗ /∈ {θ1, θ2, · · · θq}.
Furthermore, this forgery is divided into two cases:
Case − I : θ∗ /∈ {θ1, θ2, · · ·θq}, µ∗ /∈
{µ1, µ2, · · ·µq−1, π}.
Set f(z)∗1 = f(z)

z+µi
= Σq−2

j=0ψjz
j , f(z)∗2 = f(z)·(z+π)

z+µi
=

Σq−1
j=0ψ

′
jz

j , f(z) = (z + µ∗) · σ(z) + χ, σ(z) = Σq−2
j=0σj · zj

and thus K∗
2 = (g0 · (g2 ·B)K

∗
4 · gθ∗

2)
1

z+K∗
5 =(g0 · (g2 ·B)w

∗ ·
gθ

∗

2)
1

z+µ∗ = (g
1

z+µ∗

0) · ((g2 ·B)w
∗ · gθ∗

2)
1

z+µ∗ .
Furthermore, we have

g
1

z+µ∗

0 =K∗
2 ·((g2 ·B)w

∗
·gθ

∗

2)
−1
z+µ∗

=K∗
2 ·((g̃

((z+π)κ−1)·γ2·w
∗

ρ)·g̃
((z+π)κ−1)·θ∗

ρ)
−1
z+µ∗

=K∗
2 ·g̃

−((z+π)κ)·(γ2·w∗+θ∗)

ρ·(z+µ∗) ·g̃
γ2·w

∗+θ∗
ρ·(z+µ∗)

=K∗
2 ·g

−f(z)·((z+π)κ)·(γ2·w∗+θ∗)

ρ·(z+µ∗) · g
f(z)·(γ2·w∗+θ∗)

ρ·(z+µ∗)

= K∗
2 · g

−f∗2 (z)·κ)·(γ2·w∗+θ∗)

ρ · g
f∗1 (z)·(γ2·w∗+θ∗)

ρ

= K∗
2 ·

q−1∏
0

(
gz
i
)−ψ′

i·κ·(γ2·w∗+θ∗)

ρ ·
q−2∏
0

(
gz
i
)ψi·(γ2·w∗+θ∗)

ρ

.

Set Θ = K∗
2 ·

∏q−1
0

(
gz
i
)−ψ′

i·κ·(γ2·w∗+θ∗)

ρ ·∏q−2
0

(
gz
i
)ψi·(γ2·w∗+θ∗)

ρ

, we have Θ = g
1

z+µ∗

0 = g
f(z)·γ1
z+µ∗ =

gγ1
(z+µ∗)·σ(z)+χ

z+µ∗ = gγ1σ(z) · gγ1
χ

z+µ∗ . Therefore, we have

g
1

z+µ∗ =
(
Θ · g−σ(z)

) 1
χ·γ1

=

(
K∗

2 ·
q−1∏
i=0

(
gz
i
)−ψ′

i·κ·(γ2·w
∗+θ∗)

ρ

·
q−2∏
j=0

(
gz
j
)ψj ·(γ2·w∗+θ∗)

ρ ·
q−2∏
k=0

(
gz
k
)(−σk)

 1
χ·γ1

.

B can output (µ∗, g
1

z+µ∗) from the above generation. There-
fore, B is able to utilize A to solve the q − SDH problem.
The probability that µ∗ /∈ {µ1, µ2, · · · , µq−1, µ} is (1− q

p).
Case− II : θ∗ /∈ {θ1, θ2, ..θq}, µ∗ = µi.
In this case, we have K∗

2 = (g0 ·(g2 ·B)w
∗ ·gθ∗

2)
1

z+µ∗ , (K2)i =

9

(g0 · (g2 · B)wi · gθi2)
1

z+µi . Given µ∗ = µi,K
∗
2 = (K2)i, we

obtain

g0 · (g2 ·B)w
∗ · gθ∗

2 = g0 · (g2 ·B)wi · gθi2 .

B can compute logg2 B = θi−θ∗−w∗+wi
w∗−wi

by using A.
Therefore, B is able to break the DL assumption by
using A. The probability of this case can be computed as
1
p ·

1
p · (1−

1
p) =

p−1
p3 .

Type-II. The user’s identity related to the key has been
previously queried, namely, θ∗ ∈ {θ1, θ2, ..θq}. We take the
two cases as follows into consideration.
Case − III : θ∗ ∈ {θ1, θ2, ..θq}, µ∗ /∈
{µ1, µ2, ..µq−1, π}.
B can compute (µ, g

1
z+µ) in the same way as Case-I to

break the q − SDH assumption with the probability that
µ∗ /∈ {µ1, µ2, ..µq−1, µ} is (1− q

p).
Case − IV : θ∗ ∈ {θ1, θ2, ..θq}, µ∗ ∈
{µ1, µ2, ..µq−1, π},K∗

2 = (K2)i.
The probability that µ∗ = µ is 1

q . Because

µ /∈ {µ1, µ2, ..µq−1}, B can compute (µ, g
1

z+µ) in the
same way as Case-I to solve the q − SDH problem.
For the sake of completeness of the proof, we need to analyse
the advantage B posses in solving the q − SDH problem.
The probabilities of Case-I, Case-II, Case-III and Case-IV
forgeries are denoted as Pr[Case − I], Pr[Case − II],
Pr[Case − III] and Pr[Case − IV] respectively. The four
cases are independently and identically distributed, each
occurring with a probability of 1

4 . Hence, the advantage of
breaking the q−SDH assumption and DL assumption by B
can be calculated as follows.

Pr[Type-I]=Pr[Case − I] + Pr[Case − II]

=
ϵ1(λ)

4

(
1− q

p

)
+
ϵ2(λ)

4

p− 1

p3
,

Pr[Type-II]=Pr[Case − III] + Pr[Case − IV]

=
ϵ1(λ)

4

((
1− q

p

)
+
1

q

)
,

ϵ(λ) = max {Pr[Type-I],Pr[Type-II]}

= max

{
ϵ1(λ)

4
×
(
1− q

p

)
+
ϵ2(λ)

4
× p− 1

p3
,

ϵ1(λ)

4
×
((

1− q

p

)
+
1

q

)}
.

B. Privacy Preservation

Theorem 3: The PPKeyGen algorithm depicted in Figure 3
satisfies both leakage− freeness and selective-failure-
blindness under the DL assumption.

Lemma 1: Under the DL assumption, the PPKeyGen algo-
rithm explicated in Figure 3 is selective-failure blindness.

Proof: KGC is malicious and tries to distinguish the user’s
identity θ embedded in the key. Suppose that g0, g1, g2 are
generators in group G, BG(1λ)→ (e, p,G,GT). KGC selects
s⃗ = (s1, s2, · · · , sl)

R← Zl
p and computes h⃗ = {hi =

gsi1 } for i ∈ [l].Tracer selects b
R← Zp randomly and

calculates B = gb2. KGC selects a random a and publishes

Y = ga0 . KGC sets msk = (a, si) as the master secret
key and publishes (⃗h, Y). The tracer’s secret-public key pair
is (b, B). Public parameters of the system can be denoted
as PP = (e, p,G,GT , g0, g1, g2, B, Y, h1, · · · , hl). KGC
submits (θ0, y⃗) and (θ1, y⃗) and selects δ ∈ {0, 1} randomly.
KGC can utilize the user oracles U(PP, θδ, decomδ) and
U(PP, θ1−δ, decom1−δ). Subsequently, KGC and an honest
user U perform the protocol illustrated in Figure 3. The oracle
U will output sk0(θ0, y⃗) and sk1(θ1, y⃗).

1)skδ =⊥, sk1−δ =⊥,U returns (ζ, ζ) to KGC;
2)skδ =⊥, sk1−δ ̸=⊥,U returns (⊥, ζ) to KGC;
3)skδ ̸=⊥, sk1−δ =⊥,U returns (ζ,⊥) to KGC;
4)skδ ̸=⊥, sk1−δ ̸=⊥,U returns (sk0, sk1) to KGC.

In PPKeyGen, the user computes A1, A2, generates ΣU =
PoK{(w1, θ, τ) : A1 = hτ · Bw1 ∧ A2 = (g2 ·B)

w1 · gθ2}
and sends A1, A2,ΣU to KGC. Until this stage, KGC executes
either one or both oracles whose perspective on the two oracles
remains computational indistinguishable, because of the hiding
property of commitment schemes and the zero-knowledge
property of zero-knowledge proofs. When KGC has the ability
to compute the k = (K1,K2,K3,K4,K5) for the first oracle,
it can predict kδ without using the steps below.

• Firstly, KGC verifies ΣK = PoK{
(
a, (si)i∈[l]

)
:B1 =

g
⟨y⃗,s⃗⟩
0 ·A

1
d+a

1 ·B
w2
d+a∧B2 = g

1
d+a

0 ·A
1

d+a

2 ·(g2·B)
w2
d+a∧B3 =

g
1

d+a

1 ∧ e(B3, g
B5
1 · Y) = e(g1, g1) ∧ e(B4, g

B5
1 · Y) =

e(g1, h)}. If it is invalid, KGC returns k0 =⊥.
• For the second oracle, KGC outputs another
χ = (B1, B2, B3, B4, B5) and generates ΣK =

PoK{
(
a, (si)i∈[l]

)
: B1 = g

⟨y⃗,s⃗⟩
0 ·A

1
d+a

1 ·B
w2
d+a ∧B2 =

g
1

d+a

0 ·A
1

d+a

2 ·(g2 ·B)
w2
d+a ∧B3 = g

1
d+a

1 ∧e(B3, g
B5
1 ·Y) =

e(g1, g1) ∧ e(B4, g
B5
1 · Y) = e(g1, h)}. If it is invalid,

KGC returns k1 =⊥.
• If both of the two steps above are successful, then KGC

proceeds as follows:

1)k0 =⊥, k1 =⊥,U returns (ζ, ζ) to KGC;
2)k0 =⊥, k1 ̸=⊥,U returns (⊥, ζ) to KGC;
3)k0 ̸=⊥, k1 =⊥,U returns (ζ,⊥) to KGC.

• If k0 ̸=⊥, k1 ̸=⊥, KGC returns θ0 and θ1. KGC aborts
when any of them fails, otherwise it returns (k0, k1).

The prediction of sk0(θ0, y⃗) and sk1(θ1, y⃗) is right and consis-
tent with the oracle’s distribution. Consequently, if both proofs
are successful, by implementing PPKeyGen(KGC↔U),
KGC can generate a valid secret key that U possesses. There-
fore, if KGC can forecast the output of U(PP, θδ, decomδ)
and U(PP, θ1−δ, decom1−δ), KGC’s advantage in distin-
guishing between the two oracles is the same as the prob-
ability of no interaction. Therefore, the advantage of KGC
should come from the received A1, A2 and the proof ΣU =
PoK{(w1, θ, τ) : A1 = hτ ·Bw1 ∧A2 = (g2 ·B)

w1 ·gθ2}. Due
to the witness indistinguishability property of zero-knowledge
proofs and the hiding property of commitment schemes, KGC
is incapable of distinguishing between U(PP, θδ, decomδ) and
U(PP, θ1−δ, decom1−δ) with a non-negligible advantage.

10

TABLE III
COMMUNICATION COST COMPARISON BETWEEN EXISTING WORK AND OUR TFE-IP SCHEME IN FIGURE 2

Scheme Setup Key Generation EncryptionKeyGen PPKeyGen
[29] (2ℓ+1)|Zp|+(ℓ+1)|G1|+(ℓ+1)|GT | |G2| – ℓ|GT |+ ℓ|G1|

[30]1 (ℓ+ 2)|G|+ 2ℓ|Zp| ℓ|S|+ 2|Zp| – ℓ|Zp|+(ℓ+2)|G|+ℓ|S|

Ours (ℓ+ 5)|G1|+ (ℓ+ 2)|Zp| 2|Zp|+ 3|G1|
User KGC

(ℓ+ 3)|G1|+ |Zp|5|G1|+11|Zp| (4ℓ+5)|Zp|+(ℓ+ 8)|G1|

1. In [30], |S| means the size of one element in the public directory pd, namely, a vector of size ℓ.

TABLE IV
COMPUTATION COST COMPARISON BETWEEN EXISTING WORK AND OUR TFE-IP SCHEME IN FIGURE 2

Scheme Setup Encryption Key Generation Decryption TraceKeyGen PPKeyGen

[29]1 ℓEx1+ℓExT+P ℓEx1+2ℓExT Ex2 – ℓEx1+ℓExT +P 8λN2

µ(λ)
·(ℓEx1+2ℓExT)

[30]1 2ℓEx (2ℓ+ 2)Ex 0 – (ℓ+ 3)Ex
(N+1)λN2

µ(λ)
·(2ℓ+2)Ex

Ours2 (ℓ+ 2)Ex (2ℓ+ 3)Ex 9P+(ℓ+11)Ex

User KGC
(ℓ+2)Ex+5P 4P + 3Ex(3ℓ+ 25)Ex (ℓ+ 18)Ex

+2EH +2EH

1. In [29], [30], N means user number, λ represents security parameter and µ(λ) is a non-negligible function of λ .
2. This cost includes an extra cost of Key Verification, while the other schemes don’t include the Key Verification function.

Lemma 2: The PPKeyGen algorithm, as depicted in Fig-
ure 3, is leakage-free.

Proof: Assuming the existence of a malicious user U in
the real-world experiment, U interacts with an honest KGC
executing the PPKeyGen protocol. A corresponding simulator
S can be established in the ideal experimental, which has
access to the honest KGC performing KeyGen algorithm in
ideal world. S conveys the input of D to U and U’s output
to D, simulating the interaction between D and U. Process of
the real-world experiment is shown below.

• The simulator S sends public parameters PP to mali-
cious user U. U computes A = (A1, A2) and generates
ΣU = PoK{(w1, θ, τ) : A1 = hτ · Bw1 ∧ A2 =
(g2 ·B)

w1 · gθ2}. S aborts if the proof fails. Otherwise, S
can rewind (w1, θ, τ) from ΣU .

• S sends θ to the honest KGC, and executes KeyGen
to generate (K1,K2,K3,K4,K5). S computes B4 =
K4, B1 = K1 ·Bτ

4 , B2 = K2, B3 = K3, B5 = K5.
We assume (K1,K2,K3,K4,K5) is a valid key generated
by the honest KGC under the ideal-world experiment, while
(B1, B2, B3, B4, B5) is a valid key from KGC under the
real-world experiment. Furthermore, (B1, B2, B3, B4, B5) dis-
tributes identically, and so is (K1,K2,K3,K4,K5). There-
fore, D cannot distinguish the real-world experiment from the
ideal-world experiment.

V. COMPARISON AND IMPLEMENTATION

A. Comparison and Efficiency Analysis

We conduct a performance comparison, including commu-
nication cost and computation cost of our PPTFE-IP scheme in
Table III and Table IV with existing schemes [29], [30], [31],
[33] in this subsection. We mainly consider the computation-
ally intensive operations such as exponential, pairing and hash
operations, while disregarding other operations. ℓ represents
the dimension of vectors; |G1|, |GT | and |Zp| represent the
length of an element on group G, GT and Zp respectively;

Ex and ExT represent the cost of performing one exponential
operation on G and GT ; EH represents the time of performing
one hash operation, and P stands for the time of performing
one pairing operation.

Table III presents the communication costs of the three
schemes: [29], Trace-and-Revoke FE-IP scheme under DDH
described in Section 5.2 of [30] and ours. Table IV shows
computation costs of the three schemes. We first construct a
TFE-IP scheme, and then propose a privacy-preserving key
generation algorithm. In Table III and Table IV, we compare
the complexity of the traceable module with that of existing
TFE-IP schemes [29], [30]. From Table III, with the assump-
tion that l≫ 1, we know that the communication cost of our
Setup and Encryption is lower than the other two schemes,
while Key Generation is slightly more expensive than [29],
[30]. Moreover, as observed in Table IV, the computation cost
of our traceable FE-IP scheme is about the same as [29],
[30]. Since [29] and [30] are TFE-IP, we compare our TFE-IP
scheme with them in Table III and IV. As shown in the tables,
the computation cost and communication cost of all algorithms
in our PPTFE-IP scheme are linear with the dimension ℓ,
except the Trace algorithm.

B. Implementation and Evaluation

Our TFE-IP scheme introduced in Figure 2, the PPKeyGen
algorithm depicted in Figure 3 are implemented and evaluated.
We conduct the performance measurements on a computer
running Ubuntu 20.04 (64 bit) system with an Intel (R) Core
(TM) i7-8550U CPU and 8G of RAM. The PBC library [42]
in Linux is utilized to perform bilinear pairing operations.
The end-to-end communication is simulated by using Socket
programming in C language on Linux [43]. In our network
setting, the bandwidth of our network is 909.68MB/s, the
minimum value of RTT (Round Trip Time) is 0.025ms, the
average value is 0.036ms, the maximum value is 0.049ms and
the mean deviation value is 0.006ms.

In practice, the vector length is limited by the efficiency of
the encryption computation, and it is recommended to use vec-

11

Setup Encryption PP KeyGen Decryption Trace

Algorithm

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

T
im

e
 (

s
)

l = 10

l = 20

l = 30

l = 40

l = 50

Fig. 4. The Computation Cost of Our PPTFE-IP Scheme

tors with lengths between 10-100. In federated learning[10],
local lightweight models on edge devices can be updated
by computing gradients via FE-IP, with parameter vectors of
dimensions between 10-100. In IoT[13], the crowdsourcing
platform efficiently implements the nearest task assignments
without revealing sensitive information about tasks and work-
ers using FE-IP in the server assignment model, and the
recommended vector size is 10-20. In cloud computing[41],
FE-IP can be used to compute the inner product of encrypted
feature vectors on the cloud to support privacy-preserving
similarity joins (e.g., medical record matching), the vector
length is typically set to 10-50.

When implementing our scheme, for simplicity, we consider
the five dimensions: ℓ = 10, ℓ = 20, ℓ = 30, ℓ = 40 and
ℓ = 50. Each time is obtained by taking the average value
after 10 experiments. Figure 4 depicts the time spent by the
algorithms in each stage of our PPTFE-IP scheme. The Setup
algorithm takes 34.199ms, 54.722ms, 69.529ms, 87.157ms and
106.472ms to setup the system in the above five cases. The
Encryption algorithm costs 42.920ms, 74.868ms, 107.548ms,
142.085ms and 182.863ms for each case, which takes more
time than Setup. Due to the two- party secure computing, the
PPKeyGen algorithm takes a longer execution time than the
other algorithms. It takes 238.759ms, 368.7528ms, 497.998ms,
632.433ms and 786.247ms to generate a secret key in the
above five cases. Moreover, multiple pairing and exponentia-
tion operations are required during the key verification, which
is time-consuming. The Decryption algorithm costs 28.677ms,
46.864ms, 64.910ms, 80.270ms and 98.845ms respectively.
The Trace algorithm takes 11.307ms, 11.991ms, 12.283ms,
11.405ms and 12.432ms in the five cases, respectively. It
is indicated that our Trace algorithm is efficient since it is
independent of the vector dimension.

VI. CONCLUSION AND FUTURE WORK

Cloud computing is an emerging computing paradigm in
which the resources of computing infrastructure are provided
as a service over the Internet. When users outsource sensitive
data to cloud servers for sharing, traditional public-key encryp-
tion protects data confidentiality in cloud computing, while
functional encryption provides a more fine-grained decryption
method. However, in functional encryption, the user may

collude with malicious users to sell private keys. To protect
users’ privacy and realize traceability in cloud computing,
we introduced the first privacy-preserving traceable functional
encryption (PPTFE-IP) scheme. Specifically, we presented the
concrete construction of TFE-IP and the PPKeyGen algorithm
and a detailed security proof of our proposed scheme. Further-
more, we conducted a comparative analysis of our scheme with
existing traceable FE-IP schemes, implemented a proof-of-
concept prototype and evaluated the efficiency of our scheme.

However, the PPKeyGen algorithm in our scheme is com-
putationally expensive. Therefore, it is desirable to construct
a PPTFE-IP scheme with a more efficient key generation
algorithm. This will be our future work.

REFERENCES

[1] S. Yu, C. Wang, K. Ren and W. Lou, “Achieving secure, scalable, and
fine-grained data access control in cloud computing,” in Proc. INFOCOM
2010, San Diego, CA, USA, pp. 1–9, 2010.

[2] J. Luna, A. Taha, R. Trapero, N. Suri, “Quantitative Reasoning about
Cloud Security Using Service Level Agreements,” IEEE Trans. Cloud
Comput., vol. 5, no. 3, pp. 457-471, Jul.-Sept. 2017.

[3] D. Chen, Z. Liao, Z. Xie, R. Chen, Z. Qin and M. Cao, “MFSSE: Multi-
keyword fuzzy ranked symmetric searchable encryption with pattern
hidden in mobile cloud computing” IEEE Trans. Cloud Comput., vol.
12, no. 4, pp. 1042-1057, Oct.-Dec. 2024.

[4] D. Boneh, A. Sahai and B. Waters, “Functional encryption: Definitions
and challenges,” in Proc. TCC 2011, RI, USA, vol. 6597 of LNCS, pp.
253–273, 2011.

[5] M. Armbrust,A. Fox, R. Griffith, A.D. Joseph, R. Katz, A. Konwinski,
G. Lee, D. Patterson, A. Rabkin, I. Stoica and M. Zaharia, “A view of
cloud computing,” Commun. ACM, vol. 53, pp. 50—58, 2010.

[6] P. Vijaya Bharati, T. Sita Mahalakshmi, “Data storage security in cloud
using a functional encryption algorithm,” Emerging Research in Comput-
ing, Information, Communication and Applications, pp.201–212, 2016.

[7] T. Marc, M. Stopar, J. Hartman, M. Bizjak and J. Modic, “Privacy-
enhanced machine learning with functional encryption,” in Proc. ES-
ORICS 2019, Luxembourg, vol. 11735, pp. 3–21, 2019.

[8] T. Ryffel, D. Pointcheval, F. Bach, E. Dufour-Sans, R. Gay. “Partially
encrypted deep learning using functional encryption,”in Proc. NeurIPS
2019, Vancouver, Canada, pp. 4517–4528, 2019.

[9] X. Chen, C. Li, D. Wang, S. Wen, J. Zhang, S. Nepal, Y. Xiang and
K. Ren, “Android HIV: A study of repackaging malware for evading
machine-learning detection,” IEEE Trans. Inf. Forensics Security, vol. 15,
no. 1, pp. 987–1001, 2020.

[10] R. Xu, N. Baracaldo, Y. Zhou, A. Anwar, J. Joshi, H. Ludwig, “Fedv:
Privacy-preserving federated learning over vertically partitioned data,” in
Proc. AISec 2021,New York, NY, USA, pp. 181–192, 2021.

[11] Y. Chang, K. Zhang, J. Gong and H. Qian, “Privacy-preserving federated
learning via functional encryption, revisited,” IEEE Trans. Inf. Forensics
Security, vol. 18, pp. 1855–1869, 2023.

[12] J. Yao, W. Xu, Z. Yang, X. You, M. Bennis and H.V. Poor, “Wireless
federated learning over resource-constrained networks: digital versus
analog transmissions, ” IEEE Trans. Wireless Commun., vol. 23, no. 10,
pp. 14020–14036, Oct. 2024.

[13] Z. Xu, L. Wu, C. Qin, S. Li, S. Zhang and R. Lu, “PPTA: Privacy-
preserving task assignment based on inner product functional encryption
in SAM, ” IEEE Internet Things J., vol. 10, no. 1, pp. 254–267, Jan.
2023.

[14] X. Feng, X. Zhu, Q. -L. Han, W. Zhou, S. Wen and Y. Xiang, “Detecting
vulnerability on IoT device firmware: A survey,” IEEE/CAA J. Automatica
Sinica, vol. 10, no. 1, pp. 25–41, 2023.

[15] M. Abdalla, F. Bourse, A. De Caro and D. Pointcheval, “Simple
functional encryption schemes for inner products,” in Proc. PKC 2015,
vol. 9020 of LNCS, Gaithersburg, MD, USA, pp. 733–751, 2015.

[16] S. Agrawal, B. Libert and D. Stehlé, “Fully secure functional encryption
for inner products, from standard assumptions,” in Proc. CRYPTO 2016,
vol. 9816 of LNCS, Santa Barbara, CA, USA, pp. 333–362, 2016.

[17] J. Han, L. Chen, A. Hu, L. Chen and J. Li, “Privacy-preserving decen-
tralised functional encryption for inner product,” IEEE Trans. Dependable
Secure Comput., vol. 21, no. 4, pp. 1680–1694, Jul.-Aug. 2024.

12

[18] M. Abdalla, F. Bourse, A. D. Caro and D. Pointcheval, “Better security
for functional encryption for inner product evaluations”, Cryptology
ePrint Archive, Paper 2016/011.

[19] T. H. Yuen, W. Susilo and Y. Mu, “ How to construct identity-based
signatures without the key escrow problem,” Int. J. Inf. Secur., vol.9, pp.
297–311, 2010.

[20] M. Abdalla, F. Benhamouda, M. Kohlweiss and H. Waldner, “ Decen-
tralizing inner-product functional encryption,” in Proc. PKC 2019, vol.
11443 of LNCS, Beijing, China, pp. 128–157, 2019.

[21] J. Chotard, E. Dufour Sans, R. Gay, D. H. Phan and D. Pointcheval,
“Decentralized multi-client functional encryption for inner product,” in
Proc. ASIACRYPT 2018, vol. 11273 of LNCS, Brisbane, QLD, Australia,
pp. 703–732, 2018.

[22] J. Chotard, E. Dufour-Sans, R. Gay, D. H. Phan and D. Pointcheval, “
Dynamic decentralized functional encryption,” in Proc. CRYPTO 2020,
vol. 12170 of LNCS, Santa Barbara, CA, USA, pp. 747–775, 2020.

[23] D. Boneh and M. Franklin, “ An efficient public key traitor tracing
scheme,” in Proc. CRYPTO 1999, vol. 1666 of LNCS, Santa Barbara,
California, USA, pp. 338–353, 1999.

[24] Z. Liu, Z. Cao and D. S. Wong, “White-box traceable ciphertext-policy
attribute-based encryption supporting any monotone access structures,”
IEEE Trans. Inf. Forensics Security, vol. 8, no. 1, pp. 76–88, Jan. 2013.

[25] D. Han, N. Pan and K.-C. Li, “ A traceable and revocable ciphertext-
policy attribute-based encryption scheme based on privacy protection,”
IEEE Trans. Dependable Secure Comput., vol. 19, no. 1, pp. 316–327,
Jan.-Feb. 2022.

[26] P. Zeng, Z. Zhang, R. Lu and K.-K. R. Choo, “Efficient policy-hiding
and large universe attribute-based encryption with public traceability for
internet of medical things,” IEEE Int. Things J., vol. 8, no.13, pp. 10963–
10972, Jul. 2021.

[27] Z. Liu, Z. Cao and D. S. Wong, “Traceable cp-abe: how to trace
decryption devices found in the wild,” IEEE Trans. Inf. Forensics Security,
vol. 10, no. 1, pp. 55–68, Jan. 2015.

[28] S. Xu, J. Yuan, G. Xu, Y. Li, X. Liu, Y. Zhang and Z. Ying, “Efficient
ciphertext-policy attribute-based encryption with blackbox traceability,”
Information Sciences, vol. 538, pp. 19–38, 2020.

[29] X. T. Do, D. H. Phan and D. Pointcheval, “ Traceable inner product
functional encryption,” in Proc. CT-RSA 2020, vol. 12006 of LNCS, San
Francisco, CA, USA, pp. 564–585, 2020.

[30] F. Luo, S. Al-Kuwari, H. Wang and W. Han, “Generic construction of
trace-and-revoke inner product functional encryption,” in Proc. ESORICS
2022, vol. 13554 of LNCS, Copenhagen, Denmark, pp. 259–282, 2022.

[31] S. Dutta, T. Pal, A. K. Singh and S. Mukhopadhyay, “ Embedded identity
traceable identity-based ipfe from pairings and lattices,” Cryptology
ePrint Archive, pp. 2022/1196. DOI: https://eprint.iacr.org/2022/1196.

[32] P. Branco, R. W. F. Lai, M. Maitra, G. Malavolta, A. Rahimi and I. K. Y.
Woo, “ Traitor tracing without trusted authority from registered functional
encryption,” Cryptology ePrint Archive, pp. 2024/179. DOI: https://eprint.
iacr.org/2024/179.

[33] F. Luo, S. Al-Kuwari, H. Wang and X. Yan, “Fully collusion resistant
trace-and-revoke functional encryption for arbitrary identities,” Theoreti-
cal Computer Science, vol. 987, pp. 114368, 2024.

[34] W. Diffie and M. Hellman, “New directions in cryptography,” IEEE
Trans. Inf. Theo., vol. 22, no. 6, pp. 644–654, Nov. 1976.

[35] D. M. Gordon, “Discrete logarithms in gf(p) using the number field
sieve,” SIAM Journal on Discrete Mathematics, vol. 6, no. 1, pp. 124–
138, 1993.

[36] D. Boneh and X. Boyen, “Short signatures without random oracles,”
in EUROCRYPT 2004, vol. 3027 of LNCS, Interlaken, Switzerland, pp.
56–73, 2004.

[37] J. Ning, X. Dong, Z. Cao, L. Wei and X. Lin, “White-box trace-
able ciphertext-policy attribute-based encryption supporting flexible at-
tributes,” IEEE Trans. Inf. Forensics Security, vol. 10, no. 6, pp. 1274–
1288, Jun. 2015.

[38] J. Ning, Z. Cao, X. Dong and L. Wei, “White-box traceable cp-abe for
cloud storage service: How to catch people leaking their access credentials
effectively,” IEEE Trans. Dependable Secure Comput., vol. 15, no. 5, pp.
883–897, Sept.-Oct. 2018.

[39] M. Green and S. Hohenberger, “Identity-based encryption and simulat-
able oblivious transfer,” in Proc. ASIACRYPT 2007, vol. 4833 of LNCS,
Kuching, Malaysia, pp. 265–282, 2007.

[40] J. Camenisch, M. Kohlweiss, A. Rial and C. Sheedy, “Blind and
anonymous identity-based encryption and authorised private searches on
public key encrypted data,” in Proc. PKC 2009, vol. 5443 of LNCS,
Irvine, CA, USA, pp. 196–214, 2009.

[41] X. Yuan, X. Wang, C. Wang, C. Yu and S. Nutanong, “Privacy-
Preserving Similarity Joins Over Encrypted Data,” IEEE Trans. Inf.
Forensics Security, vol. 12, no. 11, pp. 2763-2775, Nov. 2017.

[42] B. Lynn, “The pairing-based cryptography library,” 2006. DOI: https:
//crypto.stanford.edu/pbc/ .

[43] Free Software Foundation, Inc.,“GNU C library: Socket,” 2023. DOI:
https://www.gnu.org/software/libc/manual/html node/Sockets.html .

Muyao Qiu received the B.E. degree in the School
of Cyber Science and Engineering from Southeast
University, Nanjing, China, in 2022. She is currently
pursuing the M.E. degree with Southeast University,
Nanjing, China. Her current research interests in-
clude functional encryption and privacy preservation.

Jinguang Han received the Ph.D. degree from
the University of Wollongong, Australia, in 2013.
He is a Professor with the School of Cyber Sci-
ence and Engineering, Southeast University, China.
His research focuses on access control, cryptogra-
phy, cloud computing, and privacy-preserving sys-
tems. He served as a Program Committee Co-Chair
for ProvSec’2016, FCS’2019, and SPNCE’2020;
and a Program Committee Member for several
conferences, including SecureCom’2023, ISC’2022,
PST’2021, ESORICS’2020, and ICICS’2019.

Feng Hao received the Ph.D. degree in computer
science from the University of Cambridge in 2007.
After working in security industry for several years,
he joined as a Lecturer with the School of Com-
puting, Newcastle University, in 2010, where he
became a Reader in 2014 and a Professor in 2018.
Currently, he is a Professor in security engineering
with the Department of Computer Science, Uni-
versity of Warwick. His research interests include
applied cryptography, system security, and efficient
computing algorithms.

Chao Sun receive the Ph.D. degree from Kyoto uni-
versity, Japan, in 2022. He is an associate professor
in the School of Cyber Science and Engineering,
Southeast University, China. His research includes
post-quantum cryptography, cryptanalysis and math-
ematical aspects of cryptography.

Ge Wu received the M.S. degree from Nanjing Nor-
mal University, China, in 2015, and the Ph.D. degree
from the University of Wollongong, Australia, in
2019. He is currently an associate professor with the
School of Cyber Science and Engineering, Southeast
University, Nanjing, China. His research interests
include cryptography and information security, in
particular the design and security proof of public-
key cryptographic schemes.

