
VERICONDOR: End-to-End Verifiable Condorcet Voting with
support for Strict Preference and Indifference
LUKE HARRISON, University of Warwick, United Kingdom

SAMIRAN BAG, University of Warwick, United Kingdom

HANG LUO, Peking University, China

FENG HAO, University of Warwick, United Kingdom

Condorcet voting is widely regarded as one of the most important voting systems in social choice theory.

However, it has seen little adoption in practice, due to complex tallying and the need to break ties when

there is a Condorcet cycle. Several online Condorcet voting systems have been developed to perform digital

tallying and tie-breaking procedures, but they require voters to completely trust the server. Additionally, many

end-to-end (E2E) verifiable e-voting systems require trustworthy authorities to perform complex decryption

and tallying operations. We propose VERICONDOR, the first E2E verifiable Condorcet e-voting system without

tallying authorities. VERICONDOR allows a voter to fully verify the tallying integrity by themselves while

providing strong protection of ballot secrecy. We present novel zero-knowledge proof techniques to prove

the well-formedness of an encrypted ballot with exceptional efficiency. VERICONDOR supports ranking

candidates with strict preference, as well as indifference. The computational cost is exceptionally efficient for

strict preferences at O(𝑛2) per ballot for 𝑛 candidates, whilst remaining practical for indifferences at O(𝑛3).
In the case of ties, we show how to apply known Condorcet methods to break them in a publicly verifiable

manner. Finally, we present a proof of concept implementation and evaluate its performance.

CCS Concepts: • Security and privacy→ Cryptography.

ACM Reference Format:
Luke Harrison, Samiran Bag, Hang Luo, and Feng Hao. 2024. VERICONDOR: End-to-End Verifiable Condorcet

Voting with support for Strict Preference and Indifference. 1, 1 (June 2024), 31 pages.

1 INTRODUCTION
Many different electoral systems have been proposed in the literature for deciding upon a winner

for a contest or an election. The simplest, and often most-applied electoral system in practice, is the

plurality method, whereby the participating voters in an election each cast a vote for one candidate

and the candidate who receives the most votes is elected as the winner. Within a 2-candidate

election, the basic principle of requiring a winner to receive the most votes is generally accepted.

For larger elections however, the plurality method is known to be susceptible to vote splitting: the
presence of multiple similar candidates may increase the probability that a dissimilar candidate

wins the election. In the setting of a US presidential election, consider a comparison between Trump,

Clinton and Bloomberg. Suppose a voter prefers Bloomberg to Clinton and Clinton to Trump. If

Bloomberg has no chance of winning the election, then the voter who picks Bloomberg as their

most-preferred choice would essentially abdicate their influence on the choice between Clinton

and Trump [1]. This may result in the least desirable candidate, i.e. Trump, winning the election.

Improvements to the plurality method can be made by allowing voters to rank each potential

candidate and by using information from each ranking when determining the contest or election

winner. One of the most important ranking-based electoral systems in social choice theory is

Condorcet voting, which was first proposed by Marquis de Condorcet (1743 – 1794). According to

Condorcet’s criterion, the winner of an election is the candidate who defeats every other candidate

by a pairwise majority [2]. This candidate is considered the most socially-optimal choice and is

Authors’ addresses: Luke Harrison, University of Warwick, United Kingdom, l.harrison.3@warwick.ac.uk; Samiran Bag,

University of Warwick, United Kingdom, Samiran.Bag@warwick.ac.uk; Hang Luo, Peking University, China, hang.luo@

pku.edu.cn; Feng Hao, University of Warwick, United Kingdom, feng.hao@warwick.ac.uk.

, Vol. 1, No. 1, Article . Publication date: June 2024.



referred to as the Condorcet winner. Conversely, a candidate who loses pairwise to every other

candidate is the Condorcet loser.
We consider an example set of rankings in Table 1, building upon the considered election between

Trump, Clinton and Bloomberg [1]. In this example, 40% of voters prefer Trump to Bloomberg, who

in turn is preferred to Clinton. However, both Clinton and Bloomberg would defeat Trump in a

head-to-head contest, as 60% of voters prefer either Clinton or Bloomberg to Trump. Hence, by the

Condorcet criterion, Trump is a Condorcet loser, or in other words, a socially least optimal choice.

However, he wins the plurality voting as the other two candidates have split the anti-Trump vote.

Vote Share 1𝑠𝑡 2𝑛𝑑 3𝑟𝑑

40% Trump Bloomberg Clinton

35% Clinton Bloomberg Trump

25% Bloomberg Clinton Trump

Table 1. An example to illustrate vote splitting.

Condorcet voting is preferred when electing a socially optimal choice is considered desirable.

This voting method has been utilised in practice by multiple groups and organisations including

the Wikimedia Foundation, Debiant, Gentoo, Ubuntu, K Desktop Environment, the pirate party of

Sweden, Open-Stack, ICANN, ACM, IEEE, USENIX and Google for internal decisions and polling [3].

Additionally, the third-largest party in the United States, the Libertarian Party of Washington

(LPWA) (as of March 2021 [4]), utilises Condorcet voting as part of their internal voting rules [5].

Online elections using Condorcet methods are also available. The Condorcet Internet Voting Service

(CIVS)
1
is free and maintained by Andrew Myers of Cornell University. OpaVote

2
is another online

service that supports a variety of Condorcet methods, albeit as a paid commercial service.

Despite its importance to social choice theory, Condorcet voting has seen little adoption in

wider applications due to several difficulties. Firstly, the voting and counting procedures are more

complex compared to those for the plurality method. Voters are required to construct their ballots

by ranking candidates in an election. For large elections, construction and counting of these ballots

when cast on paper can be tedious and prone to human error. Additionally, it can be difficult for a

voter to decide upon a suitable position for every candidate in their ranking; a voter’s opinion may

be indifferent between two candidates or a voter may have strong support for a few candidates and

little or no support for the remaining candidates. Riker [6] highlights that economists who rank

continuous phenomena like money may find allowing indifference to be useful in their rankings,

while political scientists who rank discrete phenomena such as political alternatives may prefer

to only use strict preference in their rankings. The use of computerised input can help voters in

constructing their ballot and the use of digital technologies can help to speed up the counting of

ballots, however the usage of these systems also introduces the threat that the digital data can be

modified to alter the election result. Secondly, in some elections, a Condorcet winner may not exist.

Consider an election between three candidates 𝐴, 𝐵 and𝐶 . If 𝐴 is preferred to 𝐵, 𝐵 is preferred to𝐶

and 𝐶 is preferred to 𝐴 after counting, then there is a circular relation between all three candidates

and there is no Condorcet winner. A few solutions have been proposed to break the tie in the event

that a Condorcet winner does not exist [3]. However, there has been limited research on how a

tie can be broken in a public, yet privacy-preserving manner. Previous solutions typically focus

on specific tie-breaking Condorcet methods facilitated by tallying authorities, such as the papers

1
https://civs1.civs.us/

2
https://www.opavote.com/

, Vol. 1, No. 1, Article . Publication date: June 2024.

https://civs1.civs.us/
https://www.opavote.com/


authored by Hertel et al. [7] and Cortier et al. [8]. In our work, we will address the problem of

breaking ties in a public, yet privacy-preserving manner without the need for any tallying authority.

In this paper, we design a fully verifiable Condorcet e-voting system, addressing both problems

above. Our design builds on the well-established notion of end-to-end (E2E) verifiability [9], which

encompasses the following properties.

(1) Cast as intended – any voter may verify that their cast vote truly represents their chosen

candidate and not another;

(2) Recorded as cast – any voter may verify that their vote is recorded and included as part of the

tallying process;

(3) Tallied as recorded – anyone (including a third-party observer) may verify that the final tally

is truly the result of aggregating each recorded vote.

E2E verifiable e-voting systems often require a selected group of authorities who are supposedly

trustworthy individuals tasked to perform decryption and tallying operations, as well as sometimes

mixing votes using a chain of mix-net servers. We refer to these authorities as tallying authorities or
TAs. Examples of these solutions include Scantegrity II [10], Prêt à voter [11], DEMOS-2 [12] and

Helios [13]. However, in practice, choosing and managing the TAs has proved to be particularly

difficult [14]. These concerns led to the advancement of Self-Enforcing E-Voting systems, often

abbreviated to SEEV systems [15]. These systems realize E2E verifiability without involving any

TAs. Examples include DRE-i [16], DRE-ip [17] and DRE-Borda [18]. Among them, DRE-i and

DRE-ip are for plurality voting while DRE-Borda is for Borda-count voting.

While E2E verifiable systems for plurality voting have been extensively studied in the past,

E2E verifiable solutions for Condorcet voting have received almost no attention. Existing online

Condorcet voting systems (e.g., CIVS and OpaVote) that provide voting services to real-world voters

are not E2E verifiable; if the voting server is compromised, the tallying integrity of an election will

be completely lost. A major challenge in building an E2E verifiable Condorcet voting system, as we

will explain below, is to represent and subsequently prove that an encrypted ballot is in a format

permissible for counting without involving any tallying authorities.

In this paper we propose VERICONDOR, the first E2E-verifiable Condorcet voting system, which

supports both strict preference and indifference in the ranking of candidates. Our system does

not require any tallying authority. This is inspired by DRE-ip [17], which removes the need for

TAs by cancelling out random factors introduced in the public key encryption process. We adopt a

similar approach in our design. We note that DRE-ip is designed for plurality voting, but Condorcet

voting is significantly more complex than plurality voting. We introduce novel zero-knowledge

proof techniques to prove the well-formedness of a Condorcet ballot. VERICONDOR will elect a

Condorcet winner when one exists; in the event that a Condorcet winner does not exist, the system

will elect an alternative winner based on a selection of Condorcet methods in a public verifiable

and privacy-preserving manner. We summarize our contributions as follows.

(1) We propose the first E2E verifiable Condorcet e-voting system without TAs, supporting both

strict preference and indifference. Our system is exceptionally efficient for strict preferences,

incurring only O(𝑛2) computation for each ballot where 𝑛 is the number of candidates. For

indifferences, the cost per ballot remains practical at O(𝑛3).
(2) We discuss how to elect an alternative winner in a publicly verifiable manner, in the event

that the Condorcet winner does not exist, based on a selection of Condorcet methods.

(3) We present rigorous proofs to show that the VERICONDOR protocol is secure based on the

Decision Diffie-Hellman (DDH) assumption in a random oracle model.

(4) We build an open-source proof of concept implementation for the VERICONDOR system and

present detailed performance measurements to demonstrate the feasibility of our system.

, Vol. 1, No. 1, Article . Publication date: June 2024.



A preliminary version of this paper was presented at a conference [19]. This journal paper extends

the conference version as follows. First, we add support for ranking candidates with indifference,
while the previous work only allows strict preference. Permitting indifference poses a significantly

harder challenge than only allowing strict preference in terms of proving the well-formedness

of an encrypted ballot, but at the same time, it also makes our system more versatile to support

applications with different ranking requirements. Second, for the choice of ranking with strict

preference, we improve the earlier work by introducing a new technique that allows us to securely

use only half of the matrix instead of a full matrix to record votes. This reduces the computation by

half, although the system complexity remains the same. Third, we provide an updated open-source

implementation that supports not only strict preference but also indifference. The performance

evaluation and security proofs have also been updated accordingly.

2 PRELIMINARIES
We begin with an introduction of Condorcet methods and how these methods represent and tally

votes containing strict preferences.

2.1 Condorcet Voting with Strict Preference
Elections using Condorcet methods typically require voters to rank the candidates in order of

preference. For simplicity, we discuss ranking with strict preference first, and will cover the case of

ranking with indifference in Section 3.4. For an 𝑛-candidate election with candidates belonging to

the set C = {0, 1, ..., 𝑛 − 1}, each vote may be represented as a permutation 𝜌 = (𝑐0, 𝑐1, ..., 𝑐𝑛−1) of
the set C, where 𝑐𝑎 ∈ C for 𝑎 ∈ [0, 𝑛 − 1] and 𝑐𝑎 ≠ 𝑐𝑏 for all 𝑎, 𝑏 ∈ [0, 𝑛 − 1] and 𝑎 ≠ 𝑏. A candidate

𝑐𝑎 is then preferred to a candidate 𝑐𝑏 if 𝑎 < 𝑏, i.e., candidate 𝑐𝑎 appears before candidate 𝑐𝑏 in 𝜌

when 𝜌 is read from left-to-right in descending order. We may write this preference as 𝑐𝑎 ≻ 𝑐𝑏 .
Consider a 3-candidate election with C = {𝐴, 𝐵,𝐶} (we may assume 𝐴 = 0, 𝐵 = 1 and 𝐶 = 2). A

voter may choose the permutation (𝐵,𝐶,𝐴) as their vote, meaning that they prefer candidate 𝐵 to

all other candidates, candidate 𝐶 to candidate 𝐴 and candidate 𝐴 to no other candidates.

With a ranked list of preferences, it is possible to construct an E2E verifiable voting system using

one of the two trivial methods, but neither is desirable. The first is to simply encrypt the ranked

list, pass the ciphertexts through a mix-net, and finally decrypt all ciphertexts after mixing, similar

to an early version of Helios (1.0) [9]. Here TAs are required to run the mix-net servers, which

is a complex task. Furthermore, the decryption of all votes renders the system vulnerable to an

Italian attack [9], in which a voter is coerced to choose an uncommon permutation of candidates

so the coercer can verify it in the decrypted votes. The second method is to encode all of the 𝑛!

possible ranked lists as voter choices in the DRE-ip protocol [17]. But the O(𝑛!) complexity is

clearly unscalable. Among 𝑛! possible permutations, some of them will be considered uncommon

or obscure. Therefore, concerns on an Italian attack still exist.

An alternative way to present a Condorcet vote is by using a pairwise comparison matrix, which
is useful for simplifying the tallying process. This matrix is also useful to minimize the information

leakage, hence addressing concerns of an Italian attack. However, when the matrix is encrypted,

how can we prove that an encrypted matrix is well-formed without leaking information about

the plaintext vote? The solution is crucial for maintaining E2E verifiability. We refer to a matrix

V = (𝑣𝑖 𝑗 ) as a pairwise comparison matrix, if it satisfies the following basic properties:

∀𝑖 ∈ C : 𝑣𝑖𝑖 = 0 (P1)

∀𝑖, 𝑗 ∈ C : 𝑣𝑖 𝑗 = 0 ∨ 𝑣𝑖 𝑗 = 1 (P2)

∀𝑖, 𝑗 ∈ C, 𝑖 ≠ 𝑗 : 𝑣𝑖 𝑗 = 0⇔ 𝑣 𝑗𝑖 = 1 (P3)

, Vol. 1, No. 1, Article . Publication date: June 2024.



(P1) simply states that no candidate can be preferred to themselves. (P2) states that each entry in

the matrix V can only be 0 or 1. (P3) tells us that if a voter prefers candidate 𝑖 to candidate 𝑗 , then

they do not prefer candidate 𝑗 to candidate 𝑖 and hence 𝑣𝑖 𝑗 and 𝑣 𝑗𝑖 cannot equal the same value.

We emphasize that these properties are necessary, but not sufficient to ensure that the matrix must

encode a valid ballot, because of additional transitivity constraints (e.g., given 𝑖 ≻ 𝑗 and 𝑗 ≻ 𝑘 ,
this imply that we must have 𝑖 ≻ 𝑘). It is possible to exhaustively list out these constraints and

apply corresponding zero-knowledge proof techniques to prove that an encrypted matrix contains

a valid ballot, but this will be extremely inefficient. We will present an efficient solution to prove

the well-formedness of an encrypted ballot in Section 3.3.

Given a permutation 𝜌 of candidates, we can construct a pairwise comparison matrix V by

assigning 𝑣𝑖 𝑗 = 1 and 𝑣 𝑗𝑖 = 0 if candidate 𝑖 is preferred to candidate 𝑗 in 𝜌 . In the case that 𝑖 and

𝑗 represent the same candidate, i.e., 𝑖 = 𝑗 , then we assign 𝑣𝑖𝑖 = 0. Figure 1 illustrates this idea by

showing the pairwise comparison matrix for the vote (𝐵,𝐶,𝐴).

A B C

A 0 0 0
(

0 0 0
)

(𝐵,𝐶,𝐴) → B 1 0 1 → 1 0 1

C 1 0 0 1 0 0

Fig. 1. Obtaining a comparison matrix from (𝐵,𝐶,𝐴).

Assuming that there is a set of𝐾 voters in an election, we may represent the pairwise comparison

matrix for a voter 𝑘 ∈ 𝐾 by V𝑘 . Tallying the votes in an election is then straightforward and simply

consists of computing

∑
𝑘∈𝐾 V𝑘 using matrix addition. We refer to the resulting matrix as the sum

matrix. To illustrate, the sum matrix for votes (𝐵,𝐶,𝐴), (𝐵,𝐴,𝐶) and (𝐴, 𝐵,𝐶) is given in Figure

2. In this example, candidate 𝐵 defeats candidate 𝐴 by two votes to one vote, and also defeats

candidate 𝐶 by three votes to zero votes. Therefore, candidate 𝐵 is the Condorcet winner.

©«
0 0 0

1 0 1

1 0 0

ª®¬ + ©«
0 0 1

1 0 1

0 0 0

ª®¬ + ©«
0 1 1

0 0 1

0 0 0

ª®¬ =
©«
0 1 2

2 0 3

1 0 0

ª®¬
Fig. 2. An illustration of a sum matrix encompassing three votes: (𝐵,𝐶,𝐴), (𝐵,𝐴,𝐶), and (𝐴, 𝐵,𝐶).

2.2 Condorcet Cycle
It may be the case that a Condorcet winner does not exist for an election at all. Consider the sum

matrix illustrated within Figure 3. In this example, candidate 𝐴 defeats candidate 𝐵, candidate 𝐵

defeats candidate 𝐶 , and candidate 𝐶 defeats candidate 𝐴, each by two votes to one vote. There is a

tie between each candidate. Such an outcome is often referred to as a Condorcet cycle [2].

©«
0 1 1

0 0 1

0 0 0

ª®¬ + ©«
0 1 0

0 0 0

1 1 0

ª®¬ + ©«
0 0 0

1 0 1

1 0 0

ª®¬ =
©«
0 2 1

1 0 2

2 1 0

ª®¬
Fig. 3. An illustration of a sum matrix encompassing three votes: (𝐴, 𝐵,𝐶), (𝐶,𝐴, 𝐵), and (𝐵,𝐶,𝐴).

, Vol. 1, No. 1, Article . Publication date: June 2024.



To break the tie, various solutions have been proposed, including the Minimax method, the

Schulze method, Copeland’s method and Black’s method. We will discuss how these methods may

be integrated into our system in a publicly verifiable manner in Section 3.6.

3 THE VERICONDOR SYSTEM
We now describe the operation of VERICONDOR. Our system supports two different ranking

methods: one that permits strict preference only, and another that also permits indifference. The

main difference between these two ranking methods lies in how to prove the well-formedness

of an encrypted ballot. For concreteness, we will describe the system in the context of polling

station voting. This follows the same setting as in the DRE-ip paper [17]. (However, the underlying

protocol can also be implemented for online voting.)

3.1 Requirements and Assumptions
In a supervised polling station environment, we require a mechanism for voters to rank candidates in

order of preference or to indicate indifference between candidates. A touch-screen direct recording

electronic (DRE) could be used in this case, allowing voters to reorganise candidates to their liking.

Although, the method of interaction is largely irrelevant in the context of the wider VERICONDOR

system, and accommodations are possible for voters with particular needs, e.g., the use of assistive

technologies for voters with disabilities. We leave a complete exploration on the usability and

accessibility of a real-world implementation of VERICONDOR for future work.

We assume there is a secure voter registration process before the election and that only eligible

voters are permitted to vote. On the election day, we require voters to be properly authenticated at

the polling station. After being authenticated, each voter obtains an anonymous voting credential,

which can be a one-time passcode or a randomly assigned smart card. With this credential, the voter

enters a private voting booth and logs on to a DRE machine to vote. Since the voter ranks candidates

through a touch screen, the DRE machine learns the voter’s choice by definition. However, the

machine does not know the voter’s real identity, therefore the voter’s privacy is preserved through

anonymity. When a voter confirms casting their ballot, the DRE machine aggregates the ballot to a

running tally in memory, transforms it into an encrypted version (for storage and voter verification),

and finally securely deletes the plain ballot from the memory. (Here, for simplicity, we assume the

protocol is implemented on a DRE machine; in practice it can be easily implemented on a server

which is linked up with multiple DRE machines as done in the 2019 DRE-ip e-voting trial [20], so

that the tallying can be performed at a polling station level or a precinct level.) Each DRE machine

is connected to a local printer for printing paper-based receipts for each voter. Like any other E2E

voting system [9], VERICONDOR requires a secure, publicly-accessible, and append-only
3
bulletin

board (BB) to facilitate both vote auditing and E2E verifiability. All the receipts that are printed on

paper are also published on the BB. In the event that a DRE machine is completely compromised

by an adversary, we limit the information leakage to the adversary as just the partial tally at the

time of compromise. In this scenario, we will show that the attacker is unable to modify the tally

without being detected by the public (due to the E2E property of the system).

3.2 A Basic Scheme
We first present a basic scheme that works generally with different ways of ranking candidates,

i.e., whether ranking requires strict preference or permits indifference. Later, we will provide two

3
In practice, such assumptions can be difficult to realise. Relaxing these is a problem in and of itself, and multiple works

(e.g., [21–23]) provide attempts for this.

, Vol. 1, No. 1, Article . Publication date: June 2024.



detailed constructions for the two ranking methods, based on strict preference and indifference, in
Sections 3.3 and 3.5 respectively. Our protocol comprises three phases: setup, voting and tallying.

3.2.1 Setup. Let 𝑝 and 𝑞 be two large primes such that 𝑞 | 𝑝 − 1. Denote by G𝑞 the subgroup of

prime order 𝑞 of the group Z∗𝑝 . All modular operations are performed with reference to the modulus

𝑝 unless stated otherwise.

The setup phase involves generating two random generators of G𝑞 , denoted by 𝑔0 and 𝑔1 whose

discrete logarithm is unknown. To construct a pair of generators 𝑔0 and 𝑔1, we may first fix 𝑔0 to be

any non-identity element in G𝑞 and compute 𝑔1 based on a one-way hash function with 𝑔0 and

public contextual information (e.g. election title, date and candidates) as the input [20]. As part

of the setup phase, the election organisers need to decide whether to require ranking under strict

preference, or to permit indifference within votes for the chosen 𝑛 candidates.

3.2.2 Voting. On the election day, a voter is first authenticated at the polling station and obtains

an anonymous credential, e.g., a one-time passcode or a random smart card. The voter enters a

private voting booth, logs onto the DRE machine with the obtained credential and starts voting.

In VERICONDOR, casting a vote is done in two steps. In the first step, a voter ranks 𝑛 candidates

in their order of preference and clicks the “next” button. The printer will print the first half of

the receipt, containing the encrypted ballot. In the second step, the voter is prompted to choose

“confirm” or “cancel” for the selection. In case of “confirm”, the printer will print the second half

of the receipt, containing a confirmation message that the vote has been cast. In case of “cancel”,

the printer will print the second half of the receipt containing the selected order of candidates in

plaintext and random factors used in the ballot encryption to allow voter-initiated auditing [24].

All receipts are digitally signed to prove data authenticity and are published on the bulletin board.

We will explain each of the two steps in more detail below.

In the first step, after the voter has ranked all 𝑛 candidates, the system will represent the ranked

list using an 𝑛 × 𝑛 pairwise comparison matrix. (For the simplicity of illustration, here we use a full

matrix to represent a vote; in Section 3.3, we will show that if only strict preference is allowed, we
can optimize the representation by using only half of a matrix). We denote the plaintext pairwise

comparison matrix as V𝑘 = (𝑣𝑖 𝑗 )𝑘 where 𝑘 is a unique ballot index (𝑘 = 0, 1, 2, . . .). The DRE-machine

holds two 𝑛 × 𝑛 matrices S = (𝑠𝑖 𝑗 ) and T = (𝑡𝑖 𝑗 ) which are both initialised to 0𝑛,𝑛 . The matrix T
is used to store the running tally of the votes received so far while the matrix S is used to store

the aggregated random numbers introduced in the encryption process. The system keeps both S
and T secret until the end of the election. Once a voter clicks the “next” button, the DRE-machine

generates an 𝑛 × 𝑛 matrix X𝑘 = (𝑥𝑖 𝑗 )𝑘 containing random numbers as follows:

∀𝑖 ∈ C : (𝑥𝑖𝑖 )𝑘 = 0 (X1)

∀𝑖, 𝑗 ∈ C, 𝑖 ≠ 𝑗 : (𝑥𝑖 𝑗 )𝑘 ∈𝑅 Z∗𝑞 (X2)

We use (∈𝑅) to denote uniformly random selection from a set. (X1) states that the main diagonal

of V𝑘 always consists of 0s. (X2) represents a selection of values taken uniformly at random from

Z∗𝑞 . The DRE translates the ranked list into an 𝑛 × 𝑛 matrix and produces an encrypted ballot

𝐵𝑘 = ⟨𝑏𝑘 , 𝑌𝑘⟩ where:
∀𝑖 ∈ C : (𝑏𝑖𝑖 )𝑘 = 1 (BC1)

∀𝑖, 𝑗 ∈ C, 𝑖 ≠ 𝑗 : (𝑏𝑖 𝑗 )𝑘 = 𝑔
(𝑥𝑖 𝑗 )𝑘
0

𝑔
(𝑣𝑖 𝑗 )𝑘
0

(BC2)

∀𝑖, 𝑗 ∈ C : (𝑌𝑖 𝑗 )𝑘 = 𝑔
(𝑥𝑖 𝑗 )𝑘
1

(BC3)

In these equations, “BC” refers to ballot construction. A ballot is encrypted in a way similar to

ElGamal encryption, but no private key (i.e., the discrete logarithm relation between 𝑔0 and 𝑔1)

, Vol. 1, No. 1, Article . Publication date: June 2024.



is available to perform decryption. Instead, the decryption is performed by cancelling out the

random factors (𝑥𝑖 𝑗 ) for all ballots in the tallying process, similar to DRE-ip [17]. (BC1) states that

the encryption of a ranking order between the same candidate is just 1. This is because for any

candidate 𝑖 , both (𝑥𝑖𝑖 )𝑘 and (𝑣𝑖𝑖 )𝑘 are 0 and hence (𝑏𝑖𝑖 )𝑘 must equal 1. (BC2) and (BC3) represent

the main encryption of V𝑘 using X𝑘 , 𝑔0 and 𝑔1, fulfilling the following logical relation (which can

be enforced by a disjunctive ZKP [25]):(
log𝑔0
(𝑣𝑖 𝑗 )𝑘 = log𝑔1

(𝑌𝑖 𝑗 )𝑘
)
∨

(
log𝑔0
(𝑣𝑖 𝑗 )𝑘/𝑔0 = log𝑔1

(𝑌𝑖 𝑗 )𝑘
)

The DRE-machine additionally constructs a set of non-interactive ZKPs (NIZKPs) confirming

the well-formedness of the ballot 𝐵𝑘 ; we discuss the details of NIZKPs in Section 3.3 for ranking

candidates based on strict preference and Section 3.5 for permitting indifference. Each ballot 𝐵𝑘
and its corresponding set of NIZKPs are printed on a paper receipt, along with a digital signature

to prove authenticity. (In a practical implementation, it is possible to print only a hash rather than

the full data on the user receipt, and publish the hash together with the full cryptographic data on

the BB for public verification [20].)

In the second step, the voter can choose to either audit (i.e., cancel) or confirm their ballot. In the

case of auditing the ballot, the DRE-machine additionally prints the voter’s ranking of candidates,

and the random matrix X𝑘 on the same receipt along with a digital signature. The ballot 𝐵𝑘 is

included in a set A of audited ballots and the entire content of the receipt is posted to the BB as an

audited ballot. The voter can check that the printed ranking of candidates reflects their original

selection in Step 1; if not, a dispute should be raised immediately to the election staff in the polling

station. The voter does not need to understand any cryptographic data printed on the receipt. They

just need to check the same receipt is published on the bulletin board.

In the case that the voter chooses to confirm the ballot, the DRE-machine updates the matrices

S = (𝑠𝑖 𝑗 ) and T = (𝑡𝑖 𝑗 ) as follows:

∀𝑖, 𝑗 ∈ C, 𝑘 ∈ C : 𝑠𝑖 𝑗 = 𝑠𝑖 𝑗 + (𝑥𝑖 𝑗 )𝑘 (T1)

∀𝑖, 𝑗 ∈ C, 𝑘 ∈ C : 𝑡𝑖 𝑗 = 𝑡𝑖 𝑗 + (𝑣𝑖 𝑗 )𝑘 (T2)

The DRE-machine then securely deletes X𝑘 and V𝑘 . The machine will print a message to the voter

receipt to confirm that the ballot has been cast and will publish the receipt on the BB. The voter

just needs to check that the same receipt is published. The ballot 𝐵𝑘 will be included in a set C of

confirmed ballots recorded on the BB.

3.2.3 Tallying. When the election day finishes, the DRE-machine publishes S and T on the BB.

The matrix S holds the sums of all randomness generated per each entry in a pairwise comparison

matrix, which is necessary for verification of the final tally. The matrix T holds the aggregated

preferences after voters have cast their ballots and hence is used to determine the final winner of

an election. To verify the tallying integrity of this result, anyone can perform the following checks:

1) the NIZKPs of well-formedness for each ballot hold; 2) the digital signatures are valid; 3) and the

following equations hold:

∀𝑖, 𝑗 ∈ C : 𝑔𝑠𝑖 𝑗
0
𝑔
𝑡𝑖 𝑗
0

=
∏
𝑘∈C

(𝑏𝑖 𝑗 )𝑘 (TV1)

∀𝑖, 𝑗 ∈ C : 𝑔𝑠𝑖 𝑗
1

=
∏
𝑘∈C

(𝑌𝑖 𝑗 )𝑘 (TV2)

We use “TV” to refer to tally verification. (TV1) and (TV2) can be performed by anyone with read

access to the public BB. One must simply use the published values of S, T, and all confirmed ballots

, Vol. 1, No. 1, Article . Publication date: June 2024.



to compute the left-hand side and right-hand side of each equation, and then compare the results

for equality. If the comparison fails, then the election organisers must be notified immediately.

3.3 ZKPs of Well-formedness for Ranking with Strict Preference
When we represent a Condorcet vote with a list of ranked candidates in strict preference in a

comparison matrix, it is critical to ensure that the matrix, after being encrypted, is well-formed.

Consider the following matrix as an example.

𝐴 𝐵 𝐶

𝐴
(

0 0 1
)

𝐵 1 0 0

𝐶 0 1 0

(1)

The above matrix satisfies (P1), (P2) and (P3) listed under Section 2.1, but does not represent a valid

ranked list. Here, candidate 𝐴 is preferred to candidate 𝐶 , candidate 𝐶 is preferred to candidate 𝐵

and candidate 𝐵 is preferred to candidate 𝐴. This forms a cycle. Clearly, the vote is malformed.

We define a pairwise comparison matrix to be valid or well-formed if it represents one of the

𝑛! fully ranked lists for an 𝑛-candidate election. An invalid pairwise comparison matrix is one

that contains a cycle or breaks transitivity constraints. Transitivity constraints refer to the basic

property that a voter’s preferences are transitive, e.g., if 𝐴 is preferred to 𝐵 and 𝐵 is preferred to 𝐶

in V, then we expect 𝐴 to be preferred to𝐶 in V. Let us first consider the transitivity constraints for

three candidates (out of a total of 𝑛 candidates). We must take every triple of unique candidates

(𝑖, 𝑗, 𝑘), where 𝑖, 𝑗, 𝑘 ∈ C ∧ 𝑖 ≠ 𝑗 ≠ 𝑘 and verify whether the following logical statements hold:

𝑖 ≻ 𝑗 ∧ 𝑗 ≻ 𝑘 ⇒ 𝑖 ≻ 𝑘
𝑖 ⊁ 𝑗 ∧ 𝑗 ⊁ 𝑘 ⇒ 𝑖 ⊁ 𝑘 (2)

We define each of the statements in Equation 2 as a constraint. To enforce each constraint will

require a corresponding zero-knowledge proof (ZKP). We will also need a conjunctive ZKP to prove

that all constraints are satisfied. To quantify the number of constraints, let us first consider the

transitive relations among three candidates. It is not difficult to count that the number of constraints

required is

(
𝑛
3

)
× 3! × 2 = 2𝑛(𝑛 − 1) (𝑛 − 2). Hertel et al. [7] show that enforcing the transitive

relations for any three candidates is sufficient to ensure the transitive relations for 𝑛 ≥ 3 candidates.

This results in O(𝑛3) constraints, which is not ideal for elections with multiple candidates.

We propose a more efficient approach for verifying validity based upon an observation between

valid pairwise comparison matrices and their corresponding row sums. We observe that the vectors

of row sums for the valid matrix in Figure 1 and the invalid one in Equation 1 are (0, 2, 1) and
(1, 1, 2) respectively; the former is a permutation of the set of candidates C, whilst the latter is not.
This observation actually holds for any pairwise comparison matrix, as shown in Theorem 3.1.

Theorem 3.1. An 𝑛 × 𝑛 binary matrix V = (𝑣𝑖 𝑗 ) satisfying 𝑣𝑖𝑖 = 0, 𝑣𝑖 𝑗 = 0 ∨ 𝑣𝑖 𝑗 = 1 and

𝑣𝑖 𝑗 = 0⇔ 𝑣 𝑗𝑖 = 1 for all 𝑖, 𝑗 ∈ [0, 𝑛 − 1], 𝑖 ≠ 𝑗 is valid if and only if (∑𝑛−1
𝑗=0 𝑣𝑖 𝑗 )𝑛−1𝑖=0 , the vector of row

sums for V, is a permutation of the set of candidates C.

Theorem 3.1 has been proved in our earlier conference version of the paper [19] (see Appendix A).

This theorem provides an efficient way to verify the validity of pairwise comparison matrices

compared to the approaches that quantify transitivity constraints. Essentially, it allows us to change

a complex problem of proving the well-formedness of the comparison matrix to a simpler but

equivalent problem of proving that the vector sum is a permutation of C. As an example, consider

, Vol. 1, No. 1, Article . Publication date: June 2024.



the pairwise comparison matrix for the vote 𝐷 ≻ 𝐵 ≻ 𝐴 ≻ 𝐶 below.

𝐴 𝐵 𝐶 𝐷

𝐴 ©«
0 0 1 0 ª®®¬

𝐵 1 0 1 0

𝐶 0 0 0 0

𝐷 1 1 1 0

(3)

Based on Theorem 3.1, proving the validity of the matrix is equivalent to proving that the vector

sum is a permutation of {0, 1, 2, 3}, for which there are efficient zero-knowledge proof techniques

available. Based on this result, we can construct an efficient system to support verifiable Condorcet

voting with strict preference, as shown in our earlier paper [19]. The resultant system complexity

is O(𝑛2), which is the best one may hope for given the use of a 𝑛 × 𝑛 matrix to record a vote.

In this journal paper, we present a new theorem (following Theorem 3.1), which leads to a

more compact representation of a ballot. The O(𝑛2) system complexity remains the same, but the

computational cost per ballot is reduced by half. This improvement is based on the observation that

one does not need to use the full pairwise comparison matrix to determine if a vote is well-formed.

In fact, if we examine the upper triangular matrix above the diagonal and the lower triangular

matrix below the diagonal, we find that they are mirrors of each other, with any strict preferences

swapped. More specifically, given any pairwise comparison matrix V = (𝑣𝑖 𝑗 ) under the assumption

that only strict preference is permitted, we have 𝑣𝑖 𝑗 = 1− 𝑣 𝑗𝑖 for all 𝑖, 𝑗 ∈ [0, 𝑛 − 1], 𝑖 ≠ 𝑗 . More than

half of a ballot is redundant if the ballot is constructed via the encryption of a full 𝑛 × 𝑛 pairwise

comparison matrix.

Given a pairwise comparison matrix V, we refer to the upper triangular of this matrix as U = (𝑢𝑖 𝑗 ).
We have 𝑢𝑖 𝑗 = 1 if 𝑖 ≻ 𝑗 in 𝜌 and 𝑢𝑖 𝑗 = 0 if 𝑗 ≻ 𝑖 in 𝜌 . Note that U consists of

1

2
𝑛 (𝑛 − 1) entries. We

may then rewrite

(∑𝑛−1
𝑗=0 𝑣𝑖 𝑗

)𝑛−1
𝑖=0

as the following.

(
𝑛−1∑︁
𝑗=0

𝑣𝑖 𝑗

)𝑛−1
𝑖=0

=

(
𝑛−1∑︁
𝑖=𝑐+1

𝑢𝑐𝑖 +
𝑐−1∑︁
𝑖=0

1 − 𝑢𝑖𝑐

)𝑛−1
𝑐=0

=

([
𝑛−1∑︁
𝑖=𝑐+1

𝑢𝑐𝑖

]
+ 𝑐 −

[
𝑐−1∑︁
𝑖=0

𝑢𝑖𝑐

])𝑛−1
𝑐=0

From this result, we form a corollary from Theorem 3.1 below.

Corollary 3.1. A triangular matrix U = (𝑢𝑖 𝑗 ) encodes one of the 𝑛! possible votes for an 𝑛-

candidate election, under the assumption that only strict preferences are permitted in the election,

iff

( [∑𝑛−1
𝑖=𝑐+1 𝑢𝑐𝑖

]
+ 𝑐 −

[∑𝑐−1
𝑖=0 𝑢𝑖𝑐

] )𝑛−1
𝑐=0

is a permutation of the set of candidates C.

Based on Corollary 3.1, we can compute the vector sum of the matrix in Eq. (3) to be (1, 2, 0, 3),
by using only a triangular matrix instead of a full one. Without loss of generality, we use the upper

triangular matrix. Performing verification for pairwise comparison matrices runs in time O(𝑛2),
regardless of whether Theorem 3.1 or Corollary 3.1 is used. Both greatly simplify the ZKPs in

VERICONDOR as we will explain. The benefit of using the latter however is that it results in the

construction of smaller ballots with less complex ZKPs. These smaller ballots and ZKPs are more

efficient to construct and verify, and less time is needed for a voter or a third party to verify that a

ballot has been recorded and included in the final tally.

It is largely the same to generate individual ballots and construct and verify the tallies when

Corollary 3.1 is used in place of Theorem 3.1. Let U𝑘 = (𝑢𝑖 𝑗 )𝑘 denote the triangular matrix for a

voter 𝑘 ∈ 𝐾 . The major difference is that one must substitute (𝑢𝑖 𝑗 )𝑘 for (𝑣𝑖 𝑗 )𝑘 in (BC2), (BC3), (T1)

and (T2). It is also possible to make use of the upper triangular matrices for X𝑘 , T and S within (X2),

, Vol. 1, No. 1, Article . Publication date: June 2024.



(BC2), (BC3), (T1), (T2), (TV1) and (TV2). Equations (X1) and (BC1) can be omitted when Corollary

3.1 is used as the diagonal is not included within U𝑘 .
To verify the well-formedness of triangular matrices in encrypted ballots, we must verify that

each entry in U𝑘 is either a 0 or a 1 and that the vector

( [∑𝑛−1
𝑖=𝑐+1 (𝑢𝑐𝑖 )𝑘

]
+ 𝑐 −

[∑𝑐−1
𝑖=0 (𝑢𝑖𝑐 )𝑘

] )𝑛−1
𝑐=0

is a

permutation of C. For the latter, consider the following equivalence.

𝑔𝑐
0
·
∏𝑛−1
𝑖=𝑐+1 (𝑏𝑐𝑖 )𝑘∏𝑐−1
𝑖=0 (𝑏𝑖𝑐 )𝑘

= 𝑔
∑𝑛−1

𝑖=𝑐+1 (𝑥𝑐𝑖 )𝑘−
∑𝑐−1

𝑖=0 (𝑥𝑖𝑐 )𝑘
0

· 𝑔[
∑𝑛−1

𝑖=𝑐+1 (𝑢𝑐𝑖 )𝑘]+𝑐−[
∑𝑐−1

𝑖=0 (𝑢𝑖𝑐 )𝑘]
0

It is then sufficient to prove the following (based on Bag et al. [18]).∧
𝑐′ ∈ C

𝑐′ ∈
([

𝑛−1∑︁
𝑖=𝑐+1
(𝑢𝑐𝑖 )𝑘

]
+ 𝑐 −

[
𝑐−1∑︁
𝑖=0

(𝑢𝑖𝑐 )𝑘

])𝑛−1
𝑐=0

These relations are equivalent to the following logical statement.∨
𝑐 ∈ C

𝑔𝑐
0
·
∏𝑛−1
𝑖=𝑐+1 (𝑏𝑐𝑖 )𝑘∏𝑐−1
𝑖=0 (𝑏𝑖𝑐 )𝑘

= 𝑔
∑𝑛−1

𝑖=𝑐+1 (𝑥𝑐𝑖 )𝑘−
∑𝑐−1

𝑖=0 (𝑥𝑖𝑐 )𝑘
0

· 𝑔J
0

For all J ∈ C, exactly one of the above disjunctions should hold. We make use of the above logical

statement to form a conjunctive ZKP that proves whether a triangular matrix is well-formed when

encrypted. We denote this ZKP as 𝑃𝑊𝐹 {𝐵𝑘 = ⟨𝑏𝑘 , 𝑌𝑘⟩}. Its definition is given below.

𝑃𝑊𝐹 {𝐵𝑘 = ⟨𝑏𝑘 , 𝑌𝑘⟩} =

𝑃𝐾

{
(𝑥𝑖 𝑗 )𝑘 :

((
log𝑔0
(𝑢𝑖 𝑗 )𝑘 = log𝑔1

(𝑌𝑖 𝑗 )𝑘
)
∨

(
log𝑔0
(𝑢𝑖 𝑗 )𝑘/𝑔0 = log𝑔1

(𝑌𝑖 𝑗 )𝑘
))

(C1)

∧
∨
𝑐 ∈ C

log𝑔0

(
𝑔𝑐
0
· 𝑔−J

0
·
∏𝑛−1
𝑖=𝑐+1 (𝑏𝑐𝑖 )𝑘∏𝑐−1
𝑖=0 (𝑏𝑖𝑐 )𝑘

)
= log𝑔1

(∏𝑛−1
𝑖=𝑐+1 (𝑌𝑐𝑖 )𝑘∏𝑐−1
𝑖=0 (𝑌𝑖𝑐 )𝑘

) }
(C2)

For brevity we refer to this entire proof as just 𝑃𝑊𝐹 {𝐵𝑘 } from now on. 𝑃𝑊𝐹 {𝐵𝑘 } is realised as a

proof of knowledge 𝑃𝐾 {(𝑥𝑐𝑐′ )𝑘 } consisting of two conjunctive statements labelled (C1) and (C2)

above. We adopt the ZKP proposed by Bag et al. [18] for proving that one set is a permutation

of another. Bag et al’s technique is simple and reasonably efficient with a O(𝑛2) complexity. We

note that the complexity of the scheme proposed by Bag et al. may be improved to O(𝑛 log𝑛),
e.g., by using BulletProof [26], however this will not change the overall O(𝑛2) complexity for our

protocol, which is determined by the triangular matrix of size
1

2
𝑛(𝑛 − 1). These ZKPs are then made

non-interactive by applying the Fiat-Shamir heuristic [27]. Same as in DRE-ip [17], we require

including the unique ballot index 𝑘 into the hash function to bind the proof to each ballot. This

prevents the “replay attack” as reported on Helios 2.0 [28].

Statement (C1) is straightforward to implement. In Appendix B, we detail the ZKP necessary

for the non-trivial statement (C2). This statement makes use of Corollary 3.1. If Theorem 3.1 is

used instead, one must instead provide a ZKP for the statement

∨
𝑖 ∈ C

∏𝑛−1
𝑗=0 (𝑏𝑖 𝑗 )𝑘 = 𝑔

∑𝑛−1
𝑗=0 (𝑥𝑖 𝑗 )𝑘 + J

0
,

alongside ZKPs that specify 𝑣𝑖 𝑗 = 1 − 𝑣 𝑗𝑖 .

3.4 Support for Indifference
So far we have assumed that a voter ranks candidates in strict preference, but sometimes a voter

may be indifferent between two alternatives if they cannot decide whether to rank one alternative

above another. Previously, we introduced votes as a single permutation 𝜌 that encodes the strict

preference relation (≻) implicitly. To model indifference, we introduce an additional vector a where

, Vol. 1, No. 1, Article . Publication date: June 2024.



∀𝑖 ∈ [0, 𝑛 − 2] : a𝑖 ∈ {(≻), (∼)}. The vector a defines the relation between successive elements in 𝜌 ,

with (≻) representing a strict preference between two candidates and (∼) representing indifference
between two candidates.

Let 𝜌𝑥 denote the candidate at position 𝑥 in 𝜌 . Suppose we have 𝜌𝑥 = 𝑖 and 𝜌𝑧 = 𝑗 with 𝑖, 𝑗 ∈ C
and 𝑥 < 𝑧. A candidate 𝑖 is then preferred to candidate 𝑗 in the vote (𝜌, a) if ∃𝑦 ∈ [𝑥, 𝑧) : a𝑦 = (≻);
again, we may write this preference as 𝑖 ≻ 𝑗 . We say that candidate 𝑖 is indifferent to candidate

𝑗 if ∀𝑦 ∈ [𝑥, 𝑧) : a𝑦 = (∼); we may write this indifference as 𝑖 ∼ 𝑗 or 𝑗 ∼ 𝑖 . Consider the set of
candidates C = {𝐴, 𝐵,𝐶, 𝐷}; again, we assume 𝐴 = 0, 𝐵 = 1, 𝐶 = 2 and 𝐷 = 3. Then one example

of a vote is the pair ⟨(𝐵,𝐴,𝐶, 𝐷), (≻,∼, ≻)⟩. In this vote, 𝐵 is preferred to all other candidates, 𝐴

and 𝐶 are indifferent and both 𝐴 and 𝐶 are preferred to 𝐷 . We may also write this more succinctly

as 𝐵 ≻ 𝐴 ∼ 𝐶 ≻ 𝐷 . The total number of possible votes in this formalisation is the same as the

number of weak orderings of 𝑛 possible items (also known as the Fubini number or ordered Bell

number), expressed as 𝑇 (𝑛) = ∑𝑛
𝑚=1𝑚!

{
𝑛
𝑚

}
where

{
𝑛
𝑚

}
= 1

𝑚!

∑𝑚
𝑖=0 (−1)𝑖

(
𝑚
𝑖

)
(𝑚 − 𝑖)𝑛 denotes the

Stirling numbers of the second kind [29].

We may also make use of the pairwise comparison matrix scheme to tally votes containing

indifference. Given a vote (𝜌, a), we define the associated pairwise comparison matrix V = (𝑣𝑖 𝑗 )
with indifferences as follows.

∀𝑖 ∈ [0, 𝑛 − 1] : 𝑣𝑖𝑖 = 0 (S1)

∀𝑖, 𝑗 ∈ [0, 𝑛 − 1], 𝑖 ≠ 𝑗 : 𝑣𝑖 𝑗 = 0 ∨ 𝑣𝑖 𝑗 = 1 (S2)

∀𝑥, 𝑧 ∈ [0, 𝑛 − 1], 𝑥 < 𝑧, 𝜌𝑥 = 𝑖, 𝜌𝑧 = 𝑗 : ∃𝑦 ∈ [𝑥, 𝑧) : a𝑦 = (≻) ⇒ 𝑣𝑖 𝑗 = 1 ∧ 𝑣 𝑗𝑖 = 0 (S3)

∀𝑥, 𝑧 ∈ [0, 𝑛 − 1], 𝑥 < 𝑧, 𝜌𝑥 = 𝑖, 𝜌𝑧 = 𝑗 : ∀𝑦 ∈ [𝑥, 𝑧) : a𝑦 = (∼) ⇒ 𝑣𝑖 𝑗 = 1 ∧ 𝑣 𝑗𝑖 = 1 (S4)

The idea that no candidate may be preferred or indifferent to themselves is stated by (S1). The

condition that each entry in the matrix can only be a 0 (representing a pairwise defeat) or a

1 (for strict preference or indifference) is expressed by (S2). Statements (S3) and (S4) define the

construction of a pairwise comparison matrix from a given vote (𝜌, a). (S3) states that if candidate
𝑖 is preferred to candidate 𝑗 in a vote (𝜌, a), then this strict preference is reflected by candidate 𝑖

defeating candidate 𝑗 and candidate 𝑗 losing to candidate 𝑖 in V. (S4) states that if candidates 𝑖 and
𝑗 are indifferent in a vote (𝜌, a), then this indifference is reflected by candidates 𝑖 and 𝑗 pairwise

defeating each other in V. Figure 4 illustrates this construction for the vote 𝐵 ≻ 𝐴 ∼ 𝐶 ≻ 𝐷 . Similar

to the earlier example of the matrix with strict preference, these four properties do not consider

transitivity constraints, and hence are not sufficient to ensure a given matrix must encode a valid

ballot; more details on enforcing the well-formedness of a matrix will be presented in Section 3.5.

A B C D

𝐵 ≻ 𝐴 ∼ 𝐶 ≻ 𝐷 →

A 0 0 1 1

→
©«

0 0 1 1 ª®®¬
B 1 0 1 1 1 0 1 1

C 1 0 0 1 1 0 0 1

D 0 0 0 0 0 0 0 0

Fig. 4. Obtaining a pairwise comparison matrix with indifferences from 𝐵 ≻ 𝐴 ∼ 𝐶 ≻ 𝐷 .

We may again make use of matrix addition to construct the sum matrix permitting indifference.
Consider the votes 𝐵 ≻ 𝐴 ∼ 𝐶 ≻ 𝐷 , 𝐶 ∼ 𝐵 ≻ 𝐴 ≻ 𝐷 and 𝐷 ≻ 𝐵 ∼ 𝐶 ∼ 𝐴. The process of

constructing the sum matrix composing these three votes is basically the same as tallying votes of

strict preference (Fig. 2) and is illustrated by Figure 5.

, Vol. 1, No. 1, Article . Publication date: June 2024.



©«
0 0 1 1

1 0 1 1

1 0 0 1

0 0 0 0

ª®®®¬ +
©«
0 0 0 1

1 0 1 1

1 1 0 1

0 0 0 0

ª®®®¬ +
©«
0 1 1 0

1 0 1 0

1 1 0 0

1 1 1 0

ª®®®¬ =

©«
0 1 2 2

3 0 3 2

3 2 0 2

1 1 1 0

ª®®®¬
Fig. 5. Construction of the sum matrix with votes 𝐵 ≻ 𝐴 ∼ 𝐶 ≻ 𝐷 , 𝐶 ∼ 𝐵 ≻ 𝐴 ≻ 𝐷 , and 𝐷 ≻ 𝐵 ∼ 𝐶 ∼ 𝐴.

3.5 ZKPs of Well-formedness for Ranking With Indifference
We now propose a solution to well-formedness verification for pairwise comparison matrices,

assuming that indifference is permitted. Unlike the case of strict preference, when indifference is
permitted, there is no longer symmetry in the comparison matrix. As a result, we must use a

full matrix to represent the vote. We say that a matrix is well-formed under indifference or valid
under indifference if it represents one of the 𝑇 (𝑛) possible votes for an 𝑛-candidate election that

permits indifference (be reminded that 𝑇 (𝑛) = ∑𝑛
𝑚=1𝑚!

{
𝑛
𝑚

}
from Section 3.4). A matrix is said to

be malformed under indifference or invalid under indifference if it does not satisfy each of (S1), (S2),

(S3) and (S4), or the matrix breaks a constraint. In addition to the two constraints from Eq. (2), we

require the following five constraints between 𝑖, 𝑗, 𝑘 satisfying 𝑖, 𝑗, 𝑘 ∈ C ∧ 𝑖 ≠ 𝑗 ≠ 𝑘 .

𝑖 ∼ 𝑗 ∧ 𝑗 ≻ 𝑘 ⇒ 𝑖 ≻ 𝑘
𝑖 ∼ 𝑗 ∧ 𝑗 ⊁ 𝑘 ⇒ 𝑖 ⊁ 𝑘

𝑖 ≻ 𝑗 ∧ 𝑗 ∼ 𝑘 ⇒ 𝑖 ≻ 𝑘
𝑖 ⊁ 𝑗 ∧ 𝑗 ∼ 𝑘 ⇒ 𝑖 ⊁ 𝑘

𝑖 ∼ 𝑗 ∧ 𝑗 ∼ 𝑘 ⇒ 𝑖 ∼ 𝑘 (4)

We require more constraints to satisfy the case with indifference, although the scaling of these

constraints remains O(𝑛3). More importantly however, Theorem 3.1 does not hold for matrices

containing indifferences. Theorem 3.1 provides an efficient method for verifying well-formedness

of strict preferences, which we desire to use within VERICONDOR. In the following, we show how

to reduce the computational burden of permitting indifferences.

It is straightforward to verify that a matrix satisfies both (S1) and (S2) once encrypted. It is less

straightforward to verify (S3) and (S4), or equivalently, that all transitivity constraints hold for a

matrix once encrypted. We propose an augmentation to VERICONDOR which adds an additional

matrix to a vote. Now, a vote consists of a pairwise comparison matrix V𝑘 = (𝑣𝑖 𝑗 )𝑘 as well as a new
indifference matrix VI

𝑘
=

(
𝑣I
𝑖 𝑗

)
𝑘
. The purpose of VI

𝑘
is to state all indifferences for a particular voter.

We define VI
𝑘
through the following properties:

∀𝑖 ∈ C : 𝑣I𝑖𝑖 = 0 (P
I
1
)

∀𝑖, 𝑗 ∈ C, 𝑖 ≠ 𝑗 : 𝑣I𝑖 𝑗 = 0 ∨ 𝑣I𝑖 𝑗 = 1 (P
I
2
)

∀𝑖, 𝑗 ∈ C, 𝑖 ≠ 𝑗 : 𝑣𝑖 𝑗 = 0 ∨ 𝑣I𝑖 𝑗 = 0 (P
I
3
)

(P
I
1
) and (P

I
2
) mirror the properties (P1) and (P2). The most important property here is (P

I
3
), which

states that 𝑣I
𝑖 𝑗
= 0 holds when 𝑣𝑖 𝑗 = 1. This allows specification of an indifference between 𝑖 and 𝑗

by setting 𝑣I
𝑗𝑖
= 1; if 𝑣𝑖 𝑗 = 1, then 𝑣 𝑗𝑖 = 0 and 𝑣𝑖 𝑗 + 𝑣I𝑖 𝑗 = 𝑣 𝑗𝑖 + 𝑣I𝑗𝑖 = 1, or 𝑖 ∼ 𝑗 . We assume each vote

for a voter 𝑘 is transformed into the two matrices V𝑘 and VI
𝑘
when it is cast. Then, the combined

pairwise comparison matrix with indifferences is computed as V𝑘 + VI
𝑘
.

, Vol. 1, No. 1, Article . Publication date: June 2024.



Whilst the properties (P
I
1
), (P

I
2
) and (P

I
3
) are necessary for specifying indifferences, they are

not sufficient for ensuring that the indifferences specified are sensible. For example, suppose

𝑖 ≻ . . . ≻ ℎ ≻ . . . ≻ 𝑗 for an arbitrary candidate ℎ by V𝑘 and that we only state 𝑣I
𝑗𝑖
= 1. Then, the

resulting matrix V𝑘 +VI
𝑘
would not represent a possible vote; we would have 𝑖 ∼ 𝑗 but neither 𝑖 ∼ ℎ

nor 𝑗 ∼ ℎ. We would also be expected to state 𝑣I
ℎ𝑖

= 1 and 𝑣I
𝑗ℎ

= 1 for any candidate ℎ contained

between 𝑖 and 𝑗 in a ranking encoded by V𝑘 . We require an additional condition to ensure that

any specified indifferences in VI
𝑘
are sensible with respect to the matrix V𝑘 . This is given by the

following theorem.

Theorem 3.2. Suppose V is a pairwise comparison matrix satisfying Theorem 3.1 and VI is an
indifference matrix satisfying (P

I
1
), (P

I
2
) and (P

I
3
). Consider any pair of distinct candidates 𝑖, 𝑗 with

any candidate ℎ such that 𝑖 ≻ . . . ≻ ℎ ≻ . . . ≻ 𝑗 by V. Then 𝑣I
ℎ𝑖

= 1 (𝑖 ∼ ℎ) and 𝑣I
𝑗ℎ

= 1 ( 𝑗 ∼ ℎ) when

the following holds: 𝑣I
𝛼𝛽

= 0 ∨
(
(𝑣𝛼^)𝑘 + (𝑣𝛼^)I𝑘

)
=

(
(𝑣𝛽^)𝑘 + (𝑣𝛽^)I𝑘

)
for all ^ ≠ 𝛼 ≠ 𝛽 .

Proof. Suppose 𝑣I
𝛼𝛽

= 0 ∨
(
(𝑣𝛼^)𝑘 + (𝑣𝛼^)I𝑘

)
=

(
(𝑣𝛽^)𝑘 + (𝑣𝛽^)I𝑘

)
holds for all ^ ≠ 𝛼 ≠ 𝛽 when

𝑣I
𝑖 𝑗
= 1 for any distinct pair of candidates 𝑖, 𝑗 . First, we prove 𝑗 ∼ ℎ. From V, we know the following:

𝑣𝑖ℎ = 1, 𝑣ℎ𝑖 = 0, 𝑣 𝑗ℎ = 0 and 𝑣ℎ𝑗 = 1. Then, by (P
I
3
), we know 𝑣I

𝑖ℎ
= 𝑣I

ℎ𝑗
= 0. We then have(

(𝑣𝑖ℎ)𝑘 + (𝑣𝑖ℎ)I𝑘
)
=

(
(𝑣 𝑗ℎ)𝑘 + (𝑣 𝑗ℎ)I𝑘

)
= 1. Since 𝑣 𝑗ℎ = 0, it must be that 𝑣I

𝑗ℎ
= 1 and hence 𝑗 ∼ ℎ.

Next, we prove 𝑖 ∼ ℎ. The condition

(
(𝑣𝛼^)𝑘 + (𝑣𝛼^)I𝑘

)
=

(
(𝑣𝛽^)𝑘 + (𝑣𝛽^)I𝑘

)
(^ ≠ 𝛼 ≠ 𝛽)

applies for any distinct pairs of candidates 𝛼, 𝛽 when 𝑣I
𝛼𝛽

= 1. Since 𝑣I
𝑗ℎ

= 1, we may then write(
(𝑣ℎ^)𝑘 + (𝑣ℎ^)I𝑘

)
=

(
(𝑣 𝑗^)𝑘 + (𝑣 𝑗^)I𝑘

)
(^ ≠ ℎ ≠ 𝑗). From V, we know 𝑣 𝑗𝑖 = 0. We then have(

(𝑣ℎ𝑖 )𝑘 + (𝑣ℎ𝑖 )I𝑘
)
=

(
(𝑣 𝑗𝑖 )𝑘 + (𝑣 𝑗𝑖 )I𝑘

)
. Since 𝑣ℎ𝑖 = 0, it follows that 𝑣I

ℎ𝑖
= 1 and hence 𝑖 ∼ ℎ. □

Theorem 3.2 provides a method for verifying all indifferences specified within VI . The main idea

is to directly compare the preferences between two candidates 𝑖 and 𝑗 . If 𝑣I
𝑖 𝑗
= 1, then we expect 𝑖

and 𝑗 to essentially be the same candidate; 𝑖 and 𝑗 should each defeat, lose to, or be indifferent to,

the same candidates. Therefore, by comparing their vectors of preferences or indifferences, given by

V𝑖 + VI
𝑖
for 𝑖 and V𝑗 + VI

𝑗
for 𝑗 , we can determine whether any specified indifferences are sensible.

We simply need to verify 𝑣I
𝛼𝛽

= 0 ∨
(
(𝑣𝛼^)𝑘 + (𝑣𝛼^)I𝑘

)
=

(
(𝑣𝛽^)𝑘 + (𝑣𝛽^)I𝑘

)
for all 𝛼, 𝛽, ^ such that

^ ≠ 𝛼 ≠ 𝛽 . The overall complexity for this is O(𝑛3), however the complexity for verifying only the

strict preferences remains O(𝑛2). This is still practical, as we demonstrate in Section 5.

We now describe the additional cryptographic operations required to permit indifferences in

VERICONDOR. When a vote is cast, VERICONDOR converts it into a pairwise comparison matrix

V𝑘 and an indifference matrix VI
𝑘
. Then, VERICONDOR encrypts both V𝑘 and VI

𝑘
using the modified

ballot construction equations below.

∀𝑖 ∈ C :
(
𝑏𝑖𝑖

)
𝑘
= 1 ∧

(
𝑏I𝑖𝑖

)
𝑘
= 1 (BC

I
1
)

∀𝑖, 𝑗 ∈ C, 𝑖 ≠ 𝑗 :
(
𝑏𝑖 𝑗

)
𝑘
= 𝑔
(𝑥𝑖 𝑗 )𝑘
0

𝑔
(𝑣𝑖 𝑗 )𝑘
1

∧
(
𝑏I𝑖 𝑗

)
𝑘
= 𝑔

(
𝑥I
𝑖 𝑗

)
𝑘

0
𝑔

(
𝑣I
𝑖 𝑗

)
𝑘

1
(BC

I
2
)

∀𝑖, 𝑗 ∈ C :
(
𝑌𝑖 𝑗

)
𝑘
= 𝑔
(𝑥𝑖 𝑗 )𝑘
1

∧
(
𝑌 I𝑖 𝑗

)
𝑘
= 𝑔

(
𝑥I
𝑖 𝑗

)
𝑘

1
(BC

I
3
)

Here, X𝑘 =
(
𝑥𝑖 𝑗

)
𝑘
and XI

𝑘
=

(
𝑥I
𝑖 𝑗

)
𝑘
denote the randomness used to encrypt V𝑘 and VI

𝑘
respectively.

The main difference in the encryption here is the usage of 𝑔1 in (BC
I
2
), which is necessary for

, Vol. 1, No. 1, Article . Publication date: June 2024.



utilising of a zero knowledge proof of equality as we will explain. Let 𝐵𝑘 = ⟨𝑏𝑘 , 𝑌𝑘⟩ denote the
encrypted ballot for V𝑘 and 𝐵I

𝑘
= ⟨𝑏I

𝑘
, 𝑌 I
𝑘
⟩ denote the encrypted ballot for VI

𝑘
. The following

logical relations must be fulfilled.(
log𝑔0

(
𝑏𝑖 𝑗

)
𝑘
= log𝑔1

(
𝑌𝑖 𝑗

)
𝑘

)
∨

(
log𝑔0

(
𝑏𝑖 𝑗

)
𝑘
/𝑔1 = log𝑔1

(
𝑌𝑖 𝑗

)
𝑘

)
(
log𝑔0

(
𝑏I𝑖 𝑗

)
𝑘
= log𝑔1

(
𝑌 I𝑖 𝑗

)
𝑘

)
∨

(
log𝑔0

(
𝑏I𝑖 𝑗

)
𝑘
/𝑔1 = log𝑔1

(
𝑌 I𝑖 𝑗

)
𝑘

)
The system also maintains the two matrices S and T for tallying. The tallying procedure is slightly

different to account for the new matrix VI
𝑘
used in votes. We give the new tallying procedure below.

∀𝑖, 𝑗 ∈ C, 𝑘 ∈ C : 𝑠𝑖 𝑗 = 𝑠𝑖 𝑗 +
(
𝑥𝑖 𝑗

)
𝑘
+

(
𝑥I𝑖 𝑗

)
𝑘

(T
I
1
)

∀𝑖, 𝑗 ∈ C, 𝑘 ∈ C : 𝑡𝑖 𝑗 = 𝑡𝑖 𝑗 +
(
𝑣𝑖 𝑗

)
𝑘
+

(
𝑣I𝑖 𝑗

)
𝑘

(T
I
2
)

We utilise the following tally verification equations for voting with indifferences. The procedure to

verify these equations remains the same as the case for strict preference; one must simply compute

and compare the left-hand side and right-hand side of each equation for equality, and notify the

election organisers if any comparison fails.

𝑔
𝑠𝑖 𝑗
0
𝑔
𝑡𝑖 𝑗
1

=
∏
𝑘∈C

(
𝑏𝑖 𝑗

)
𝑘
·
(
𝑏I𝑖 𝑗

)
𝑘

(TV
I
1
)

𝑔
𝑠𝑖 𝑗
1

=
∏
𝑘∈C

(
𝑌𝑖 𝑗

)
𝑘
·
(
𝑌 I𝑖 𝑗

)
𝑘

(TV
I
2
)

To verify the well-formedness of encrypted ballots permitting indifferences, we must first verify that

V𝑘 is a correct pairwise comparison matrix of strict preferences satisfying Theorem 3.1, and then

verify that VI
𝑘
is an indifference matrix satisfying Theorem 3.2. The former is straightforward to

achieve using the ZKP discussed in Section 3.3 for strict preferences, albeit with a small modification

that takes into account the new ballot construction equations (specifically the new usage of 𝑔1 in

(BC
I
2
)). It is less straightforward to verify that VI

𝑘
is an indifference matrix satisfying Theorem 3.2.

Consider the following equivalence.(
𝑏𝑖 𝑗

)
𝑘
·
(
𝑏I𝑖 𝑗

)
𝑘
= 𝑔
(𝑥𝑖 𝑗 )𝑘+

(
𝑥I
𝑖 𝑗

)
𝑘

0
· 𝑔(𝑣𝑖 𝑗 )𝑘+

(
𝑣I
𝑖 𝑗

)
𝑘

1

For all 𝑖, 𝑗 ∈ [0, 𝑛 − 1], the above must hold. As our protocol is additively homomorphic by design,

the result contains the summation (𝑣𝑖^)𝑘 +
(
𝑣I
𝑖^

)
𝑘
. Hence, we may simply prove equality in zero

knowledge to ensure Theorem 3.2 holds for a pair of distinct candidates 𝑖, 𝑗 in an encrypted ballot.

This is done through the following proof of well-formedness for encrypted indifference matrices.

𝑃I𝑊𝐹

{
𝐵I
𝑘
=

〈
𝑏I
𝑘
, 𝑌 I
𝑘

〉 }
=

𝑃𝐾

{ (
𝑥I𝑖 𝑗

)
𝑘
:

(
log𝑔0

(
𝑏I𝑖 𝑗

)
𝑘
= log𝑔1

(
𝑌 I𝑖 𝑗

)
𝑘

)
∨

(
log𝑔0

(
𝑏I𝑖 𝑗

)
𝑘
/𝑔1 = log𝑔1

(
𝑌 I𝑖 𝑗

)
𝑘

)
(C
I
1
)

∧
(
𝑖 ≠ 𝑗 ⇒

(
log𝑔0

(
𝑏𝑖 𝑗

)
𝑘
= log𝑔1

(
𝑌𝑖 𝑗

)
𝑘

)
∨

(
log𝑔0

(
𝑏I𝑖 𝑗

)
𝑘
= log𝑔1

(
𝑌 I𝑖 𝑗

)
𝑘

))
(C
I
2
)

∧
(
log𝑔0

(
𝑏I𝑖 𝑗

)
𝑘
= log𝑔1

(
𝑌 I𝑖 𝑗

)
𝑘

(C
I
3
)

∨ ∀^ ≠ 𝑖 ≠ 𝑗 :

(
log𝑔0

(
(𝑏𝑖^)𝑘 ·

(
𝑏I𝑖^

)
𝑘

)
= log𝑔0

( (
𝑏 𝑗^

)
𝑘
·
(
𝑏I𝑗^

)
𝑘

))
∨

(
log𝑔0

(
(𝑏𝑖^)𝑘 ·

(
𝑏I𝑖^

)
𝑘

)
= log𝑔0

( (
𝑏 𝑗^

)
𝑘
·
(
𝑏I𝑗^

)
𝑘

)) )}
, Vol. 1, No. 1, Article . Publication date: June 2024.



The conditions (C
I
1
) and (C

I
2
) ensure that VI

𝑘
is an indifference matrix at every entry other than

those on the diagonal (we do not need a ZKP for the diagonal entries as these have a fixed value of 1).

The other condition (C
I
3
) ensures that VI

𝑘
is a well-formed indifference matrix through application

of Theorem 3.2. Almost all conditions in this proof have O(𝑛2) complexity, with only (C
I
3
) having

a complexity of O(𝑛3). We discuss the time complexity of this proof further in Section 5.

3.6 Electing a Winner
In a Condorcet election, several candidates may end up with a tie (forming a Condorcet cycle).

To break the tie, several Condorcet methods have been proposed in the past literature, such as

Black’s method [30], the Minimax method [31, 32], the Schulze method [3], Copeland’s method [33],

Ranked Pairs [34], Dodgson’s method [35] and the Kemeny-Young method [36, 37]. We now discuss

how our proposed VERICONDOR system could be used in conjunction with existing Condorcet

methods, to elect an alternative winner in a publicly verifiable manner, in the event that there is

no Condorcet winner for an election. In particular we focus upon Black’s method, the Minimax

method, the Schulze method, Copeland’s method and Ranked Pairs. We do not consider either

Dodgson’s method or the Kemeny-Young method as these two methods both require solving an

NP-hard problem when determining the Condorcet winner [38] and hence are much less efficient

than the other listed methods. The methods which we do consider each provide different degrees of

simplicity as well as satisfy different voting system criteria and hence anyone running an election

using VERICONDOR can choose a suitable and efficient Condorcet method for their election.

Of the methods we consider, the Schulze method, Copeland’s method and the Ranked Pairs

method are straightforward to utilise with rankings that contain indifference; these methods can be

directly used with VERICONDOR. Permitting indifference across Black’s method and the Minimax

method is less straightforward. We explain the difficulties or interpretations for both of these

methods as we consider them.

Black’s method. Black’s method uses the Borda count system in the event that there is no

Condorcet winner for an election [30]. Adapting VERICONDOR to support Black’s method is

straightforward for strict preferences: we simply run VERICONDOR and DRE-Borda [18] in parallel.

Running these two methods in parallel is necessary as Borda count requires additional information

concerning a number of points given to each candidate; this information cannot be feasibly acquired

from the comparison matrix. Running VERICONDOR in parallel with DRE-Borda will increase the

computational cost since two different electoral methods need to be run simultaneously.

It is also possible to permit indifferences within Black’s method, although this is not ideal and

may lead to strategic voting [39]. Black’s method is still compatible with VERICONDOR, assuming

that voters are not strategic when constructing their votes; a requirement which is difficult to

achieve in practice.

The Minimax method. The Minimax method elects the winner whose greatest pairwise defeat

is smaller than the greatest pairwise defeat of any other candidate [31, 32]. Electing a winner using

the Minimax method in VERICONDOR is straightforward for strict preferences since the final sum

matrix contains all information needed; the winner is the result of argmin𝑖∈C (max𝑗∈C (𝑡 𝑗𝑖 )).
Three interpretations are possible in order to utilise the Minimax method with votes containing

indifferences, namely: pairwise opposition, winning votes and margins [40]. Of these three inter-
pretations, only the latter two satisfy Condorcet’s criterion; as such, we only focus on these two

interpretations. Let 𝑑𝑖 𝑗 denote the number of voters ranking 𝑖 above 𝑗 in T. Under winning votes,
𝑠𝑐𝑜𝑟𝑒𝑖 𝑗 is defined as the number of voters ranking 𝑖 above 𝑗 only when this score exceeds the

number ranking 𝑗 above 𝑖 , i.e. 𝑠𝑐𝑜𝑟𝑒𝑖 𝑗 = 𝑑𝑖 𝑗 if 𝑑𝑖 𝑗 > 𝑑 𝑗𝑖 and 𝑠𝑐𝑜𝑟𝑒𝑖 𝑗 = 0 otherwise. Under margins,
𝑠𝑐𝑜𝑟𝑒𝑖 𝑗 is defined as the margin of victory of 𝑖 over 𝑗 , i.e. 𝑠𝑐𝑜𝑟𝑒𝑖 𝑗 = 𝑑𝑖 𝑗 − 𝑑 𝑗𝑖 . Using either definition

, Vol. 1, No. 1, Article . Publication date: June 2024.



of 𝑠𝑐𝑜𝑟𝑒 , a winner for the Minimax method may then be determined using the standard procedure,

albeit substituting 𝑠𝑐𝑜𝑟𝑒 𝑗𝑖 for 𝑡 𝑗𝑖 . In either case, the Minimax method is simple and efficient; electing

a winner using the Minimax method has a runtime of O(𝑛2).
The Schulze method. The Schulze method may be divided into two stages [3]; the first stage

determines potential winners and the second stage computes a Tie-Breaking Ranking of Candidates

(TBRC) to elect a winner if there are multiple potential winners.

It is straightforward to apply the first stage of the Schulze method to VERICONDOR. We first

define a path from a candidate 𝑖 to a candidate 𝑗 as a permutation 𝜋 where 𝜋0 = 𝑖 and 𝜋𝑛−1 = 𝑗 .

We then define the strength of a path 𝜋 as 𝑠𝜋 = min𝑙∈C (T(𝜋𝑙 , 𝜋𝑙+1) − T(𝜋𝑙+1, 𝜋𝑙 )). Denote by 𝑃𝑖 𝑗
the set of all paths between two candidates 𝑖 and 𝑗 . The output of the first stage is then a matrix

W = (𝑤𝑖 𝑗 ) where each𝑤𝑖 𝑗 is the strength of the strongest path from candidate 𝑖 to candidate 𝑗 , i.e.,

𝑤𝑖 𝑗 = max𝜋∈𝑃𝑖 𝑗 (𝑠𝜋 ). We say that candidate 𝑖 is a potential winner if and only if𝑤𝑖 𝑗 ≥ 𝑤 𝑗𝑖 for every

other candidate 𝑗 . The strongest paths, and hence the potential winners, may be calculated using

the Floyd-Warshall algorithm [3]. The Floyd-Warshall algorithm is an efficient algorithm with a

runtime of O(𝑛3) to compute all strongest paths.

There are a couple of different approaches which may be used to break ties as part of the second

stage of the Schulze method. Two candidates 𝑖 and 𝑗 may be declared indifferent in a ranking using

the Schulze method if the weakest link in the strongest path from 𝑖 to 𝑗 is the same link as the

weakest link in the strongest path from 𝑗 to 𝑖 [3]. In this case we may declare the weakest link as

forbidden and recalculate the strongest paths, avoiding any forbidden links. This is repeated until no

forbidden links are used as part of any strongest paths. This approach is straightforward to apply to

the final tally matrix T of VERICONDOR and only requires an extension to the first stage to account

for recomputation of strongest paths containing forbidden links. This approach however only

computes a partial order of candidates [3]; Schulze proposes an additional tie-breaking approach

that may be used to compute a total order of candidates. The alternative approach requires selection

of votes at random and their rankings used to create a Tie-Breaking Ranking of Links (TBRL)

before the TBRC is computed [3]. This is not compatible with VERICONDOR as the DRE-machine

securely deletes each individuate vote V𝑘 after the vote is confirmed and hence this information

is not available for computing a total order of candidates. Only a partial order of candidates is

possible using the Schulze method in conjunction with VERICONDOR.

Copeland’s method. Copeland’s method assigns a number of points to a candidate depending

upon their number of pairwise victories, pairwise ties and pairwise defeats [41]. We may model this

precisely using a results matrix; in a pairwise comparison between a candidate 𝑖 and a candidate 𝑗 ,

let Γ = (𝛾𝑖 𝑗 ) and define 𝛾𝑖 𝑗 = 1 if 𝑡𝑖 𝑗 > 𝑡 𝑗𝑖 , 𝛾𝑖 𝑗 =
1

2
if 𝑡𝑖 𝑗 = 𝑡 𝑗𝑖 and 𝛾𝑖 𝑗 = 0 if 𝑡𝑖 𝑗 < 𝑡 𝑗𝑖 . The Copeland

score for a candidate 𝑖 is computed as

∑
𝑗∈C 𝛾𝑖 𝑗 and the candidate with the highest Copeland score

wins the election. In the event that the Copeland score for a candidate is 𝑛 − 1, then this candidate

is also the Condorcet winner. Copeland’s method is simple to utilize as part of VERICONDOR. It is

also a flexible method; the number of points assigned as part of the definition of 𝛾𝑖 𝑗 may be changed

for convenience [42]. For example, tallying could be simplified to make use of only integer additions

by assigning points from {1, 0,−1} or {2, 1, 0} as opposed to assigning points from

{
1, 1

2
, 0

}
. The

disadvantage with using Copeland’s method is that it has no associated tie-breaking procedure and

hence one must be decided upon in the event that Copeland’s method produces multiple winners.

Borda count could be used to break ties resulting from Copeland’s method, however, like Black’s

method, this requires running VERICONDOR and DRE-Borda in parallel.

Ranked Pairs. The Ranked Pairs method begins by sorting pairs of candidates; a pair of candi-

dates (𝑖0, 𝑗0) is ranked higher than a pair of candidates (𝑖1, 𝑗1) if 𝑡𝑖0 𝑗0 > 𝑡𝑖1 𝑗1 [34]. In the event where

𝑡𝑖0 𝑗0 = 𝑡𝑖1 𝑗1 , a method is needed to break the tie. This may be done by firstly computing a TBRC and

, Vol. 1, No. 1, Article . Publication date: June 2024.



using the TBRC to create a Tie-Breaking Ranking of Pairs (TBRP) [43]. If 𝑡𝑖0 𝑗0 = 𝑡𝑖1 𝑗1 and 𝑖0 ≠ 𝑖1, then

the TBRP ranks (𝑖0, 𝑗0) higher if 𝑖0 is ranked higher in the TBRC than 𝑖1. If 𝑖0 = 𝑖1, then the TBRP

ranks (𝑖0, 𝑗0) higher if 𝑗0 is ranked higher in the TBRC than 𝑗1. Tideman proposes computing the

TBRC by selecting a voter at random and using their vote to break the tie [34]; this is not possible

to perform within VERICONDOR due to each V𝑘 being securely deleted by the DRE-machine. The

TBRC may be computed by randomly generating a permutation of candidates, however this would

reward nomination of clones [34]: candidates who are similar to existing candidates and whose

addition to the election may result in a different winner for the election.

Once all pairs of candidates are sorted, a final ranking of candidates may then be constructed.

The candidate who beats the other candidate in the first pair ranked highest in the sorted list is

added to the final ranking first. Then the pair ranked next highest is considered and its winning

candidate added to the final ranking provided that this does not cause a cycle [34]; this may be

performed by representing the final ranking as a directed graph with candidates as nodes and edges

as pairs of candidates and checking for a cycle using Depth First Search (DFS). The final ranking is

complete once all pairs have been considered and the overall winner of an election using Ranked

Pairs is the candidate at the beginning of the final ranking; the winner may be determined using a

topological sort on the directed (acyclic) graph representing the final ranking. The use of DFS and

topological sort to compute the final ranking means that Ranked Pairs is an efficient method to

pair with VERICONDOR as both DFS and topological sort have a runtime of O(𝑛2).
Summary. Table 2 summarizes the support for five different Condorcet methods to elect an

alternative winner in VERICONDOR in the event that a Condorcet winner does not exist. The pros

and cons of each method have been well studied in the past. Here, we mainly focus on whether

these methods can be conducted in a publicly verifiable yet privacy-preserving manner.

Method Partial Total
Black ✓

Minimax ✓
Schulze ✓
Copeland ✓

Ranked Pairs ✓

Table 2. Summary of support for different Condorcet methods in VERICONDOR.

Our analysis shows that the tallying result in the pairwise comparison matrix is sufficient to

break a tie in the general case, although for Black’s and Copeland’s methods, a DRE-Borda count

system needs to be run in parallel, which increases computation. For Schulze’s method and Ranked

Pairs, under certain conditions, they need the access to the original individual ballots to decide an

alternative winner, but that is not possible in VERICONDOR since VERICONDOR only stores the

aggregated results in the comparison matrix, not individual votes.

4 SECURITY ANALYSIS
We next prove the E2E-verifiability of VERICONDOR and the secrecy of ballots against an adversary

who attempts to learn the plaintext values of individual honest voters via collusion with [ dishonest

voters. In particular, we prove that the adversary with [ colluding voters can only learn the partial

tally of the𝑚 − [ honest votes (assuming𝑚 confirmed votes) based on the DDH assumption [44].

Since we require a secure hash function for transforming an interactive ZKP to a non-interactive

ZKP based on Fiat-Shamir heuristics, our proofs are in a random oracle model. In this analysis, we

will not explicitly consider the ZKPs in our security proofs for simplicity. We note that ZKPs serve

, Vol. 1, No. 1, Article . Publication date: June 2024.



to prove the well-formedness of an encrypted ballot and reveal nothing more than the truth of the

statement. First of all, we state the DDH assumption below.

Assumption 4.1. Given 𝑔,𝑔𝑎, 𝑔𝑏 and Ω ∈ {𝑔𝑎𝑏, 𝑅}, where 𝑎, 𝑏 ∈ Z∗𝑞 and 𝑅 ∈ G𝑞 , it is hard to decide

whether Ω = 𝑔𝑎𝑏 or Ω = 𝑅.

4.1 E2E-Verifiability
We show that VERICONDOR satisfies the three requirements of end-to-end verifiability, namely

the cast as intended, recorded as cast and tallied as recorded requirements [9]. It is straightforward

to see that our system satisfies the “cast as intended” requirement based on the well-established

voter-initiated auditing technique [24]. The DRE machine commits to the encrypted ballot by

printing it on the paper receipt. In the case of auditing (i.e., when the voter chooses to cancel the

selection), the DRE machine reveals the randomness X𝑘 and the ranked list in plaintext on the same

receipt, enabling the voter to verify that the ranked list truthfully reflects the intended vote. Since

the receipt is also published on the bulletin board, anyone will be able to verify that the initially

committed ciphertext is a truthful encryption of the ranked list based on the revealed randomness

X𝑘 . A voter may choose to audit their vote for any number of times. In the case of confirming

a vote, the voter obtains a receipt for the confirmed vote and can check that the same receipt is

published on the BB. This fulfills the “recorded as cast” requirement.

Finally, we show VERICONDOR satisfies the “tallied as recorded” requirement. We utilise a

similar proof technique as the one used for DRE-ip [17]. For our proof, we consider the case for

strict preferences within Theorem 4.1. Theorem 4.1 shows that if the ballots are well-formed, i.e.,

𝑃𝑊𝐹 {𝐵𝑘 } holds, and the tally verification equations (TV1) and (TV2) hold, then, anyone is able

to verify that the final tally on the BB is the correct tally representing the matrix addition of all

confirmed votes, i.e., every V𝑘 for 𝑘 ∈ C.

Theorem 4.1. In VERICONDOR, assuming that all proofs of well-formedness are valid, if ∀𝑘 ∈
𝐾 : 𝑃𝑊𝐹 {𝐵𝑘 } holds and additionally ∀𝑖, 𝑗 ∈ C :

∏
𝑘∈C (𝑏𝑖 𝑗 )𝑘 = 𝑔

𝑠𝑖 𝑗
0
𝑔
𝑡𝑖 𝑗
0
∧∏

𝑘∈C (𝑌𝑖 𝑗 )𝑘 = 𝑔
𝑠𝑖 𝑗
1

also holds,

then the reported tally T is the correct tally of all confirmed ballots in C on the BB.

Proof. Suppose that ∀𝑘 ∈ 𝐾 : 𝑃𝑊𝐹 {𝐵𝑘 } holds and also that ∀𝑖, 𝑗 ∈ C : ∏
𝑘∈C (𝑌𝑖 𝑗 )𝑘 = 𝑔

𝑠𝑖 𝑗
1

holds.

We show that

∏
𝑘∈C (𝑏𝑖 𝑗 )𝑘 = 𝑔

𝑠𝑖 𝑗
0
𝑔
𝑡𝑖 𝑗
0

holds if and only if 𝑡𝑖 𝑗 =
∑
𝑘∈C (𝑣𝑖 𝑗 )𝑘 also holds for all 𝑖, 𝑗 ∈ C.

(⇒) Suppose ∏
𝑘∈C (𝑏𝑖 𝑗 )𝑘 = 𝑔

𝑠𝑖 𝑗
0
𝑔
𝑡𝑖 𝑗
0

for all 𝑖, 𝑗 ∈ C. By definition of (𝑏𝑖 𝑗 )𝑘 , we have (𝑏𝑖 𝑗 )𝑘 =

𝑔
(𝑥𝑖 𝑗 )𝑘
0

𝑔
(𝑣𝑖 𝑗 )𝑘
0

and hence

∏
𝑘∈C (𝑏𝑖 𝑗 )𝑘 =

∏
𝑘∈C 𝑔

(𝑥𝑖 𝑗 )𝑘
0

𝑔
(𝑣𝑖 𝑗 )𝑘
0

= 𝑔
∑

𝑘∈C (𝑥𝑖 𝑗 )𝑘
0

𝑔
∑

𝑘∈C (𝑣𝑖 𝑗 )𝑘
0

. By applying

(TV2), we have 𝑠𝑖 𝑗 =
∑
𝑘∈C (𝑥𝑖 𝑗 )𝑘 . It is then clear that 𝑡𝑖 𝑗 =

∑
𝑘∈C (𝑣𝑖 𝑗 )𝑘 .

(⇐) Suppose 𝑡𝑖 𝑗 =
∑
𝑘∈C (𝑣𝑖 𝑗 )𝑘 for all 𝑖, 𝑗 ∈ C. By definition of (𝑏𝑖 𝑗 )𝑘 , we have (𝑏𝑖 𝑗 )𝑘 =

𝑔
(𝑥𝑖 𝑗 )𝑘
0

𝑔
(𝑣𝑖 𝑗 )𝑘
0

and also

∏
𝑘∈C (𝑏𝑖 𝑗 )𝑘 = 𝑔

∑
𝑘∈C (𝑥𝑖 𝑗 )𝑘

0
𝑔
∑

𝑘∈C (𝑣𝑖 𝑗 )𝑘
0

. By applying (TV2) and our initial as-

sumption we get the result

∏
𝑘∈C (𝑏𝑖 𝑗 )𝑘 = 𝑔

𝑠𝑖 𝑗
0
𝑔
𝑡𝑖 𝑗
0
. This completes the proof. □

Theorem 4.1 holds regardless of whether votes are represented as full matrices or triangular

matrices. If indifference is permitted, one must substitute (𝑣𝑖 𝑗 )𝑘 for (𝑣𝑖 𝑗 )𝑘 + (𝑣I𝑖 𝑗 )𝑘 . One can then

show, albeit with 𝑃I
𝑊𝐹

, (TV
I
1
) and (TV

I
2
), that T is the correct tally when an indifference matrix is

also included in the construction of S and T.

4.2 Ballot Secrecy
We now consider the notion of ballot secrecy for an election, which describes the natural requirement

of a voting system in preserving the privacy of votes cast in an election. We make use of Benaloh’s

definition of privacy [45] and define privacy to be maintained if an attacker colluding with a set of [

, Vol. 1, No. 1, Article . Publication date: June 2024.



voters has a negligible chance to distinguish between any two elections where both elections have

the same partial tally of honest votes. In 2015, Bernhard et al. [46] proposed a newer game-based

definition of privacy called BPRIV. The game model used in the BPRIV definition assumes “an

honest single trustee” who not only performs verifiable decryption but also is tasked to remove

duplicate ballots. The authors remark that the BPRIV definition can be extended in a multi-trustee

scenario. However, we find the BPRIV definition not suitable in our case since VERICONDOR does

not involve any tallying authorities (or trustees). We note that the need to remove duplicate ballots

in the BPRIV model is motivated by addressing a replay attack reported on Helios 2.0 [28]. The

replay attack is possible in Helios 2.0 because there is no unique identity included in the ballot

ZKP (this is not a simple omission, but an inherent issue in the protocol design as no such identity

is available at the time when the ZKP is generated). However, the replay attack is prevented in

VERICONDOR by design since each ballot is identified by a unique index, which is included in the

ballot well-formedness ZKP (as part of the input to the hash function).

Assumption 4.2. Let us consider the following security experiment 𝐸𝑥𝑝𝑅𝑁𝐷A (_). For any two

elements 𝑔𝑎, 𝑔𝑏 ∈ G𝑞 , let us define 𝐷𝐻𝑔 (𝑔𝑎, 𝑔𝑏) = 𝑔𝑎𝑏 .

𝐸𝑥𝑝𝑅𝑁𝐷A (_)
𝑔

$← G𝑞
𝐴

$← G𝑞
𝑑

$← {0, 1}
𝑑 ′ ← AO(·) (𝑔,𝐴)
Return 𝑑 = 𝑑 ′

O()
𝐵

$← G𝑞
Ω0 ← 𝐷𝐻𝑔 (𝐴, 𝐵)
Ω1

$← G𝑞
Return (𝐵,Ω𝑑 )

In the experiment, the challenger first randomly selects two elements 𝑔, and 𝐴, from the group

G𝑞 . It then invokes the adversary A with these elements. A is given oracle access to O. O may

be queried 𝑝𝑜𝑙𝑦 (_) times. On every query to O, it selects a random 𝐵 from G𝑞 , and computes

𝐷𝐻𝑔 (𝐴, 𝐵). O then returns 𝐵, and either 𝐷𝐻𝑔 (𝐴, 𝐵) or a random element from G𝑞 depending upon

a secret bit 𝑑 chosen by the challenger in the experiment.

The advantage of an adversary A, against 𝐸𝑥𝑝𝑅𝑁𝐷A (_) is defined as below.

𝐴𝑑𝑣𝑅𝑁𝐷A (_) =
����𝑃𝑟 [𝐸𝑥𝑝𝑅𝑁𝐷A (_) = 1] − 1

2

����
For any PPT adversary A, 𝐴𝑑𝑣𝑅𝑁𝐷A (_) ≤ 𝑛𝑒𝑔𝑙 (_).

Lemma 4.1. The DDH assumption implies assumption 4.2.

Proof. This Lemma is proved as Lemma 4 in Kurosawa and Nojima [47]. □

Assumption 4.3. Let us consider the following security experiment 𝐸𝑥𝑝𝑅𝑁𝐷1

A (_). In this experi-

ment, the challenger samples 𝑔, and 𝐴, randomly from G𝑞 . The adversary passes two inputs to the

oracle O, whenever it is called. Each of the two inputs is a bit. The oracle O randomly samples an

element 𝐵 ∈𝑅 G𝑞 . The oracle O selects one of them depending upon a bit 𝑑 chosen by the challenger

in the experiment 𝐸𝑥𝑝𝑅𝑁𝐷1

A (_), and computes Ω𝑑 as shown in the description. Then O returns 𝐵,

and Ω𝑑 to the adversary.

, Vol. 1, No. 1, Article . Publication date: June 2024.



𝐸𝑥𝑝𝑅𝑁𝐷1

A (_)
𝑔

$← G𝑞
𝐴

$← G𝑞
𝑑

$← {0, 1}
𝑑 ′ ← AO(·,· ) (𝑔,𝐴)
Return 𝑑 = 𝑑 ′

O(𝑣0, 𝑣1)
𝐵

$← G𝑞
Ω0 ← 𝐷𝐻𝑔 (𝐴, 𝐵) ∗ 𝑔𝑣0
Ω1 ← 𝐷𝐻𝑔 (𝐴, 𝐵) ∗ 𝑔𝑣1
Return (𝐵,Ω𝑑 )

The advantage of an adversary A, against 𝐸𝑥𝑝𝑅𝑁𝐷1

A (_) is then given as:

𝐴𝑑𝑣𝑅𝑁𝐷1

A (_) =
����𝑃𝑟 [𝐸𝑥𝑝𝑅𝑁𝐷1

A (_) = 1] − 1

2

����
For any PPT adversary A, 𝐴𝑑𝑣𝑅𝑁𝐷1

A (_) ≤ 𝑛𝑒𝑔𝑙 (_).

Lemma 4.2. Assumption 4.2 implies 4.3.

Proof. The lemma can be easily proven by application of the triangle inequality for com-

putational indistinguishability [48]: for any three distributions 𝐷0, 𝐷1 and 𝐷2, we have that

𝑆𝐷 (𝐷0, 𝐷2) ≤ 𝑆𝐷 (𝐷0, 𝐷1) + 𝑆𝐷 (𝐷1, 𝐷2), where 𝑆𝐷 denotes the statistical difference between two

distributions. Using the triangle inequality, one can show that 𝐴𝑑𝑣𝑅𝑁𝐷1

A (_) ≤ 2 ∗𝐴𝑑𝑣𝑅𝑁𝐷A (_). □

We shall now define the indistinguishability notion in a Condorcet election. The following security

experiment 𝐸𝑥𝑝𝐼𝑁𝐷−𝑉𝑜𝑡𝑒A (_) models the scenario where the adversary chooses two different sets of

votes having the same cardinality and the same tally. The challenger randomly picks one of them

and converts the set of votes into encrypted ballots following our Condorcet e-voting scheme. The

adversary’s task is to identify the set of votes that was selected by the challenger.

Definition 4.1. Consider the security experiment 𝐸𝑥𝑝𝐼𝑁𝐷−𝑉𝑜𝑡𝑒A (_). In this experiment, the chal-

lenger first chooses two random generators 𝑔0, and 𝑔1. It then creates two bulletin boards 𝐵𝐵0, and

𝐵𝐵1, both are initialized to empty. It also stores three (𝑛 − 1) × (𝑛 − 1) triangular matrices 𝑋,𝑉0, and

𝑉1 that are initialized to 0𝑛,𝑛 . That is, 𝑋 (𝑖, 𝑗) = 0, and 𝑉0 (𝑖, 𝑗) = 𝑉1 (𝑖, 𝑗) = 0,∀𝑖, 𝑗 ∈ [0, 𝑛 − 1], 𝑖 < 𝑗 .

Assume that Γ is the set of all (𝑛 − 1) × (𝑛 − 1) triangular comparison matrices. Hence, for each

𝜏 ∈ Γ, 𝜏 (𝑖, 𝑗) ∈ {0, 1},∀𝑖, 𝑗 ∈ [0, 𝑛 − 1], 𝑖 < 𝑗 . The challenger then invokes A0. A0 is given access

to the oracle O. A passes two inputs 𝑣0 ∈ Γ, and 𝑣1 ∈ Γ to the oracle O, every time it is called. O
selects random (𝑛 − 1) × (𝑛 − 1) triangular matrix 𝑥 ∈ Z𝑛 (𝑛−1)/2𝑝 , and generates 𝑐0, and 𝑐1 as shown

in the experiment. They represent the ballots for the two sets of votes, 𝑣0 and 𝑣1. It stores 𝑐0, and

𝑐1 in 𝐵𝐵0, and 𝐵𝐵1. It stores the cumulative values of the selected randomnesses in the triangular

matrix 𝑋 . Similarly, it stores the cumulative values of 𝑣0, and 𝑣1 in𝑉0, and𝑉1 respectively. WhenA0

returns, the challenger invokes A1 with 𝑋 , and one of 𝐵𝐵0, and 𝐵𝐵1. The goal of A1 is to identify

the correct bulletin board. A wins the game if A1 can identify the bulletin board, and if 𝑉0 = 𝑉1.

Thus, in this experiment the adversary is required to distinguish between the bulletin boards of

two Condorcet elections in which the votes are chosen by the adversary with the only condition

that the tallies 𝑉0, and 𝑉1 must be equal. If the tallies are not equal, then the adversary can trivially

distinguish between both bulletin boards. The two tallies in both bulletin boards must therefore be

the same, however the individual inputs may be different and chosen by the adversary themselves.

, Vol. 1, No. 1, Article . Publication date: June 2024.



𝐸𝑥𝑝𝐼𝑁𝐷−𝑉𝑜𝑡𝑒A (_)
𝑔1, 𝑔0

$← G𝑞
𝐵𝐵0 = 𝐵𝐵1 = ∅
𝑉0 = 𝑉1 = 0

𝑋 = 0

𝑠𝑡 ← AO(·,· )
0

(𝑔1, 𝑔0)
𝑑

$← {0, 1}
𝑑 ′ ← A1 (𝑠𝑡, 𝐵𝐵𝑑 , 𝑋 )
Return (𝑉0 = 𝑉1) ∧ (𝑑 = 𝑑 ′)

O(𝑣0, 𝑣1)
𝑥

$← Z𝑛 (𝑛−1)/2𝑝

𝑐0 (𝑖, 𝑗) ← (𝑔𝑥 (𝑖, 𝑗 )
0

𝑔
𝑣0 (𝑖, 𝑗 )
0

, 𝑔
𝑥 (𝑖, 𝑗 )
1
) : 𝑖, 𝑗 ∈ [0, 𝑛 − 1], 𝑖 < 𝑗

𝑐1 (𝑖, 𝑗) ← (𝑔𝑥 (𝑖, 𝑗 )
0

𝑔
𝑣1 (𝑖, 𝑗 )
0

, 𝑔
𝑥 (𝑖, 𝑗 )
1
) : 𝑖, 𝑗 ∈ [0, 𝑛 − 1], 𝑖 < 𝑗

𝑋 (𝑖, 𝑗) ← 𝑋 (𝑖, 𝑗) + 𝑥 (𝑖, 𝑗) : 𝑖, 𝑗 ∈ [0, 𝑛 − 1], 𝑖 < 𝑗

𝐵𝐵𝑖 ← 𝐵𝐵𝑖
⋃{𝑐𝑖 } : 𝑖 = 0, 1

𝑉0 (𝑖, 𝑗) ← 𝑉0 (𝑖, 𝑗) + 𝑣0 (𝑖, 𝑗) : 𝑖, 𝑗 ∈ [0, 𝑛 − 1], 𝑖 < 𝑗

𝑉1 (𝑖, 𝑗) ← 𝑉1 (𝑖, 𝑗) + 𝑣1 (𝑖, 𝑗) : 𝑖, 𝑗 ∈ [0, 𝑛 − 1], 𝑖 < 𝑗

The advantage of an adversary A, against 𝐸𝑥𝑝𝐼𝑁𝐷−𝑉𝑜𝑡𝑒A (_) is defined as below.

𝐴𝑑𝑣 𝐼𝑁𝐷−𝑉𝑜𝑡𝑒A (_) =
����𝑃𝑟 [𝐸𝑥𝑝𝐼𝑁𝐷−𝑉𝑜𝑡𝑒A (_) = 1] − 1

2

����
Lemma 4.3. For any PPT adversary A = (A0,A1), we have 𝐴𝑑𝑣 𝐼𝑁𝐷−𝑉𝑜𝑡𝑒A (_) ≤ 𝑛𝑒𝑔𝑙 (_).

Proof. We show that if there exists an adversaryA = (A0,A1), against the security experiment

𝐸𝑥𝑝𝐼𝑁𝐷−𝑉𝑜𝑡𝑒A (_), it could be used in the construction of another adversary B, against the security
experiment 𝐸𝑥𝑝𝑅𝑁𝐷1

B (_) of Assumption 4.3. B works as follows; it receives as input 𝑔0, and 𝐴. It

invokes A with (𝑔0, 𝐴). Whenever A0 makes a query to the oracle O with input 𝑣0, and 𝑣1, B
also makes 𝑛(𝑛 − 1)/2 queries of the form (𝑣0𝑡 (𝑖, 𝑗), 𝑣1𝑡 (𝑖, 𝑗)) in the experiment 𝐸𝑥𝑝𝑅𝑁𝐷1

B (_) for
all 𝑖, 𝑗 ∈ [0, 𝑛 − 1], 𝑖 < 𝑗 , and 𝑡 ∈ [0, [ − 1]. Here, [ is the total number of queries to O made by

A0 in 𝐸𝑥𝑝
𝐼𝑁𝐷−𝑉𝑜𝑡𝑒
A (_). B does not know the value of [. Therefore, it makes a random guess of

[ ∈𝑅 𝑝𝑜𝑙𝑦 (_). If the guess is incorrect,B aborts and returns a random bit.B receives (𝐵(𝑖, 𝑗),Ω(𝑖, 𝑗))
as the value returned by the oracle in 𝐸𝑥𝑝𝑅𝑁𝐷1

B (_).
For each of the first [ − 1 queries, B has to make 𝑛(𝑛 − 1)/2 queries to its internal oracle,

and receives 𝑛(𝑛 − 1)/2 responses which we denote as (𝐵𝑘 (𝑖, 𝑗),Ω𝑘 (𝑖, 𝑗)), for 𝑖, 𝑗 ∈ [0, 𝑛 − 1], 𝑖 <
𝑗, 𝑘 ∈ [0, [ − 2]. The last query made by A0 in 𝐸𝑥𝑝

𝐼𝑁𝐷−𝑉𝑜𝑡𝑒
A (_) is (𝑣0[−1, 𝑣1[−1). Let 𝑉 (𝑖, 𝑗) =∑[−1

𝑘=0
𝑣0𝑘 (𝑖, 𝑗) =

∑[−1
𝑘=0

𝑣1𝑘 (𝑖, 𝑗),∀𝑖, 𝑗 ∈ [0, 𝑛 − 1], 𝑖 < 𝑗 . Now, B selects random 𝑋 (𝑖, 𝑗) $←− Z𝑝 for all
𝑖, 𝑗 ∈ [0, 𝑛 − 1], 𝑖 < 𝑗 . B then sets the following values for all 𝑖, 𝑗 ∈ [0, 𝑛 − 1], 𝑖 < 𝑗 :

𝐵[−1 (𝑖, 𝑗) =
𝐴𝑋 (𝑖, 𝑗 )∏[−2
𝑘=0

𝐵𝑘 (𝑖, 𝑗)

Ω[−1 (𝑖, 𝑗) =
𝑔𝑋 (𝑖, 𝑗 )+𝑉 (𝑖, 𝑗 )∏[−2
𝑘=0

Ω𝑘 (𝑖, 𝑗)

Let us denote 𝐵𝐵𝑑 = {(𝐵𝑘 ,Ω𝑘 ) : 𝑘 ∈ [0, [ − 1]}. All zero knowledge proofs are simulated by B.
Invoke A1 with 𝐵𝐵𝑑 . If A1 can identify 𝑑 , so can B. If B can make a correct guess of the value of

[, the advantage of B will be same as that of A. If B cannot guess it correctly, then the advantage

will be 0. Therefore, the following holds.

𝑃𝑟 [𝐸𝑥𝑝𝑅𝑁𝐷1

B (_) = 1] ≥ (1/𝑝𝑜𝑙𝑦 (_)) ∗ 𝐸𝑥𝑝𝐼𝑁𝐷−𝑉𝑜𝑡𝑒A (_) + (1 − 1/𝑝𝑜𝑙𝑦 (_)) ∗ 1
2

One may then re-arrange the above to produce𝐴𝑑𝑣𝑅𝑁𝐷1

B (_) ≥ 1/𝑝𝑜𝑙𝑦 (_) ∗𝐴𝑑𝑣 𝐼𝑁𝐷−𝑉𝑜𝑡𝑒A (_), then
it is the case that 𝐴𝑑𝑣 𝐼𝑁𝐷−𝑉𝑜𝑡𝑒A (_) ≤ 𝑝𝑜𝑙𝑦 (_) ∗𝐴𝑑𝑣𝑅𝑁𝐷1

B (_). □

, Vol. 1, No. 1, Article . Publication date: June 2024.



Now, we show that our scheme is secure against active adversary that can corrupt some but not

all the voters. We show using the experiment 𝐸𝑥𝑝𝐼𝑁𝐷−𝑉𝑜𝑡𝑒A (_) to prove this fact. The difference

between 𝐸𝑥𝑝𝐼𝑁𝐷−𝑉𝑜𝑡𝑒A (_) and a real Condorcet election is that in a real election, the attacker may

compromise some but not all the voters. We show that an attacker that corrupts an arbitrary

number of voters can only learn the partial tally of honest voters. Hence, the attacker can only

infer whatever the partial tally allows them to infer. The attacker cannot distinguish between all

possible voting patterns that results into the same tally. In order for proving the fact, we consider

an election where some voters are honest and others are corrupt. The attacker chooses the votes of

corrupt voters, whereas the honest votes are selected by the challenger from one of two sets of

votes that correspond to the same partial tally. The task of the attacker is to identify the correct

set of votes that represent the set of honest votes. All the NIZK proofs of well-formedness are

simulated by the challenger. So, the attacker will have negligible advantage to distinguish the NIZK

proofs from real ones. So, the actual advantage of the attacker comes from the encrypted ballots.

The following lemma proves that the attacker will have negligible advantage in distinguishing

between the two sets of honest votes.

Lemma 4.4. Let us assume that in an arbitrary Condorcet election, there are 𝑚 voters, where
𝑚 ∈ 𝑝𝑜𝑙𝑦 (_). The voters are indexed as 𝑃𝑖 : 𝑖 ∈ [1,𝑚]. Let 𝐻 be the set of indices of honest users. All
other voters are compromised by the attacker A. We denote by 𝑉𝑖 , the triangular comparison matrix
that represents the vote of 𝑃𝑖 , for 𝑖 ∈ [1,𝑚]. Consider two sets of triangular comparison matrices
Ψ0 = {

−→
𝑉 0𝑖 : 𝑖 ∈ [1, |𝐻 |]} and Ψ1 = {

−→
𝑉 1𝑖 : 𝑖 ∈ [1, |𝐻 |]}, satisfying

∑ |𝐻 |
𝑖=1

−→
𝑉 0𝑖 =

∑ |𝐻 |
𝑖=1

−→
𝑉 1𝑖 . As such, the

adversary will not be able to distinguish between {𝑉𝑖 : 𝑖 ∈ 𝐻 } = Ψ0 and {𝑉𝑖 : 𝑖 ∈ 𝐻 } = Ψ1.

Proof. We show that if there exists such an adversaryA, it could be used in the construction of

another adversary B = (B0,B1), against the security experiment 𝐸𝑥𝑝𝐼𝑁𝐷−𝑉𝑜𝑡𝑒B (_). B functions as

follows. First,B0 receives the two generators𝑔0, and𝑔1.B0 queries O with (𝑣, 𝑣) wheneverA enters

a vote 𝑣 for a corrupt voter. The two parameters passed to O are the same. For the uncompromised

voters in the set 𝐻 , B0 selects
−→
𝑉 0𝑖 , and

−→
𝑉 1𝑖 , for some 𝑖 ∈ [1, |𝐻 |]. B0 sends (

−→
𝑉 0𝑖 ,
−→
𝑉 1𝑖 ) to O. Since,

the number of honest voters is |𝐻 | which is the same as |Ψ0 | and |Ψ1 |, B0 can set a unique pair of

votes from (Ψ0,Ψ1) that will represent the vote of the 𝑖𝑡ℎ honest voter. Once all𝑚 queries to O
have been done, B0 returns. Then B1 is invoked with 𝐵𝐵𝑑 (𝑑 ∈ {0, 1}). B sends it to A. If A can

identify 𝑑 , so can B1. Hence, the result holds. □

Using the same method, one can show that the Condorcet e-voting scheme using indifference is

also secure against an adversary that can corrupt an arbitrary number of voters, and the adversary

only learns the partial tally of honest votes from the bulletin board.

5 PERFORMANCE ANALYSIS
We build a proof of concept implementation of VERICONDOR in Java

4
, supporting two different

ranking methods, based on strict preference and indifference respectively. We evaluate the system

performance both theoretically and empirically using microbenchmarks. The theoretical analysis is

found matching the empirical results.

5.1 Theoretical Estimates
To estimate the theoretical performance of our system for ranking under strict preference and
indifference, we mainly focus upon the number of exponentiations required in each case. This is

because exponentiation is the most demanding operation in VERICONDOR, regardless of which

4
The source code of our implementation: https://osf.io/n2afp/?view_only=bd54965fd92640fdbf02547d0dd23a34.

, Vol. 1, No. 1, Article . Publication date: June 2024.

https://osf.io/n2afp/?view_only=bd54965fd92640fdbf02547d0dd23a34


ranking method is chosen. We consider the performance of generating individual ballots, verifying

the well-formedness proofs, and lastly verifying the tally verification equations.

When generating individual ballots, we must perform their ballot construction equations as well

as the equations for constructing their well-formedness proofs. Summing the exponentiations for

these steps gives us an estimate for the running time of ballot creation. To estimate the running

time of well-formedness proof verification, we may simply enumerate the exponentiations required

for the verification procedures. The running time of tally verification is slightly more complex

to estimate as it is defined over a set of confirmed ballots C, hence we also consider the number

of multiplications required for tally verification (in terms of |C|) in addition to the number of

exponentiations required. Our estimates are summarised in Table 3. For comparison, we also give

the performance results of applying a full matrix to represent a ballot under strict preference based on
Theorem 3.1, as done in our earlier paper [19]. Our improved representation, based on Corollary 3.1,

uses only a triangular matrix, and reduces the computation by about half.

Protocol
Ballot

Construction
Well-formedness

Verification
Tally

Verification
Exponentiations Exponentiations Exponentiations Multiplications

Strict Preference

(Full Matrix)

16𝑛2 − 5𝑛 19𝑛2 − 5𝑛 3𝑛2 𝑛2 (2|C| + 1)

Strict Preference

(Triangular Matrix)

15

2
𝑛2 − 5

2
𝑛 17

2
𝑛2 − 5

2
𝑛 3

2
𝑛2 − 3

2
𝑛

(
𝑛2 − 𝑛

) (
|C| − 1

2

)
Indifference

(Full Matrix)

11𝑛3 − 9𝑛2 + 16𝑛 12𝑛3 − 3𝑛2 + 18𝑛 3𝑛2 𝑛2 (2|C| + 3)

Table 3. Performance estimates for the different protocols in VERICONDOR.

Our estimates show that VERICONDOR remainsO(𝑛2) in terms of the number of exponentiations

required when constructing ballots containing strict preferences only or verifying their well-

formedness proofs. The overall complexity when using a triangular matrix (Corollary 3.1) is the

same as that of using the full matrix (Theorem 3.1), however the factors are roughly halved. We

show that this results in a more desirable performance in practice in Section 5.2. When indifferences

are permitted, the number of exponentiations required rises to O(𝑛3) for both ballot construction

and proof verification. This complexity is less desirable, although still remains practical. It is up to

the election organiser to decide whether to permit voters to state indifferences between candidates

at the cost of lengthening the ballot construction and proof verification procedures. Regardless of

the protocol chosen however, the tally verification procedures all require O(𝑛2) exponentiations.
The number of multiplications needed for tally verification is a product of both 𝑛2 and |C|, which
is likely to be insignificant in practice as the running time of VERICONDOR is dominated by the

more expensive exponentiation operations.

5.2 Microbenchmarks
We recorded the average time to run ballot creation, well-formedness verification and tally veri-

fication of all three protocols discussed previously within our proof of concept implementation.

We consider two cases for each construction: 1) a 2048-bit 𝑝 , 𝑔0 and 𝑔1 with a 224-bit 𝑞 for 112-bit

security; and 2) a 3072-bit 𝑝 , 𝑔0 and 𝑔1 with a 256-bit 𝑞 for 128-bit security. To maintain consistency

, Vol. 1, No. 1, Article . Publication date: June 2024.



with the benchmarking procedure in our earlier paper [19], we make use of the same number

of votes (50 votes [19]) when benchmarking tally verification (for a complete implementation, it

would be desirable to consider larger numbers of votes, as well as the storage needed for these).

Our results are shown across Figures 6, 7 and 8.

Fig. 6. 112-bit (left) and 128-bit (right) security benchmarks for VERICONDOR utilising full matrix.

Fig. 7. 112-bit (left) and 128-bit (right) security benchmarks for VERICONDOR utilising triangular matrix.

Fig. 8. 112-bit (left) and 128-bit (right) security benchmarks for VERICONDOR permitting indifference.

, Vol. 1, No. 1, Article . Publication date: June 2024.



Our microbenchmark results remain consistent with the theoretical runtime analysis of each

construction. Tally verification for all constructions is the least demanding procedure, followed

by ballot construction, then well-formedness verification. It is clear from Figures 6, 7 and 8 that

exponentiation has the largest effect on the average running times of VERICONDOR, regardless

of the chosen ranking method. We also expect the usage of a triangular matrix instead of a full

one for strict preference to approximately halve the time needed to perform the ballot construction,

well-formedness verification and tally verification procedures; it is clear from Figures 6 and 7 that

this expectation holds in our experiment.

We may see from Figure 8 that permitting indifferences within votes has a significant impact on

the running time of ballot construction and proof verification. This is due to the need for two 𝑛 × 𝑛
matrices to represent each vote as well as the need for more complex proofs compared to the case

of strict preference. Reducing the average running time for ballot construction and well-formedness

verification would be beneficial here. This may be achieved in practice by making use of Elliptic

Curve Cryptography (ECC) instead (the specification of the protocol would remain unchanged).

Additionally, each entry in a ballot may be generated and verified in parallel. It should be noted

that these improvements can also be applied to the ranking method based on strict preference, or
for any elections that contain a significantly large number of candidates. However, the latter kind

of election is typically uncommon in practice. Huber et al. note that Condorcet elections typically

contain fewer than a dozen candidates [49] due to the need for voters to rank every candidate

against all others in a Condorcet election. For a large number of candidates, this ranking can quickly

become tedious.

6 RELATEDWORK
A number of verifiable e-voting schemes have been proposed in the literature. The vast majority of

these schemes focus on plurality voting [10–13, 50]. Few schemes are designed for ranked-choice

voting. Examples include DRE-Borda [18] for Borda count, the work of Ramchen et al. for Instant

Runoff Voting (IRV) [51], the work of Lee and Doi for Condorcet voting [52] and the works of

Hertel et al. [7], Cortier et al. [8] and Huber et al. [49] for various voting systems that include

Condorcet voting. For comparisons with VERICONDOR, we consider only those systems that

provide a verifiable solution to Condorcet voting.

Lee and Doi proposed in 2005 a TA-based partially verifiable voting scheme designed specifically

to elect a Condorcet winner for an election [52]. Their scheme assumes a trusted voting client,

which encrypts the voter’s choice honestly. It is possible to use a similar voter-initiated auditing

technique [24] to allow the voter to check whether a vote is “cast as intended” without having

to trust the voting client, but this depends on how this technique is integrated into the overall

voting system, which is not described in their paper. Their scheme involves the encryption and

permutation of comparison matrices under an ElGamal cryptosystem, and requires trustworthy

authorities to perform the mixing and decryption operations. Lee and Doi specify the requirement

of two different authorities: a tallying authority for performing the encryption and permutation

procedures and a “judging authority” for performing decryption and determining the Condorcet

winner. Lee and Doi’s scheme also assumes that candidates are ranked in strict preference only,

with no support for indifference between candidates. The computational cost of their scheme is

O(𝑛3), while it is O(𝑛2) for strict preferences in VERICONDOR.

Hertel et al. proposed in 2021 several new instantiations to the Ordinos [53] voting system

to permit verifiable Condorcet voting [7]. Ordinos uses an additively homomorphic 𝑡-out-of-𝑛

threshold public key encryption scheme where 𝑛 is the number of secret key shares with 𝑡 ≤ 𝑛 of

these shares being necessary for successful decryption. It requires a set of TAs to perform homo-

morphic aggregation of votes and computation the tally through a secure multi-party computation

, Vol. 1, No. 1, Article . Publication date: June 2024.



(MPC) protocol. Ordinos aims to maintain a tally-hiding property, whereby only the final winner

of an election is revealed and the remainder of the tally remains hidden (except to the TAs). The

new instantiations for Ordinos provided by Hertel et al. also utilise a comparison matrix scheme

for verifiable Condorcet voting, with well-formedness maintained through NIZKPs. The scheme

proposed by Hertel et al. assumes candidates are ranked in strict preference only, with no support

for indifference within rankings. The cost of generating each ballot including the well-formedness

proof in their scheme is O(𝑛3), whilst it is O(𝑛2) for strict preferences in VERICONDOR.

Cortier et al. provide a collection of MPC building blocks for designing tally-hiding e-voting

schemes and demonstrate how a Condorcet e-voting system is constructed using these building

blocks [8]. The authors motivate the usage of an ElGamal cryptosystem over Pallier and require a

set of TAs to perform aggregation of votes. The authors utilise a shuffling scheme to verify whether

comparison matrices are well-formed. This scheme, first presented by Haines et al. [54], is based

on the observation that shuffling the rows and columns of a comparison matrix according to a

ranked list preserves the well-formedness property of the original matrix. Cortier et al. extend

this scheme to permit indifference by allowing voters to send a vector of encrypted bits that

specifies which candidates are indifferent within their vote. The voter must then modify the initial

matrix into a transformed matrix that encodes their provided indifference. The overall cost of

ballot construction and proof verification in their scheme is O(𝑛2), which does improve upon

the O(𝑛3) costs in VERICONDOR for indifferences. However, Cortier et al. require TAs to verify

the shuffle. The number of exponentiations required by the TAs depends on the information

leakage deemed acceptable by the election organisers and is either 49.5𝑚𝑛2𝑎 log𝑛 (partial MPC) or

49.5𝑚𝑛2𝑎 log𝑛 + 198𝑛3𝑎 log𝑚 (full MPC), assuming𝑚 voters, 𝑛 candidates and 𝑎 authorities [8]. As

VERICONDOR is free from any TAs, it avoids all the associated computational or communication

costs between them.

Huber et al. describe Kryvos, a tally-hiding verifiable e-voting system that supports various voting

methods including Condorcet. The authors utilise Pedersen commitments [55] and require a set of

talliers and a voting authority. The talliers must carry out homomorphic aggregation of votes, with

a designated tallier computing both the election result and a Succinct Non-interactive Argument of

Knowledge (SNARK) [56] proving knowledge of the tally [49]. Kryvos utilises comparison matrices

for Condorcet voting but does not permit voters to be indifferent between candidates. The tally

is computed by aggregating all matrices as Pedersen commitments, with the designated tallier

publishing the Condorcet winner or set of potential winners. Generating a ballot together with its

well-formedness proof is O(𝑛3) in Kryvos for strict preferences, while it is O(𝑛2) in VERICONDOR.

Summary. VERICONDOR provides multiple benefits not present in the reviewed works. The

most notable is no requirement for any TA, which is a necessity for other works [7, 8, 49, 52]. The

removal of TAs simplifies election management; a voter can fully verify the tallying integrity by

themselves without involving any TA. Additionally, VERICONDOR achieves the O(𝑛2) complexity

for the computation of each ballot for strict preferences, which is probably the best one can hope

for given the use of a 𝑛 × 𝑛 comparison matrix to record a Condorcet vote. VERICONDOR is also

flexible enough to support indifferences within votes, albeit with a less desirable time complexity

of O(𝑛3). This complexity still remains practical however. At the end of an election, VERICONDOR

presents an aggregated comparison matrix, from which a Condorcet winner or an alternative

winner based on the Condorcet methods can be announced. This method avoids revealing the

individual ballots, hence preventing the so-called Italian attack [49]. Based on definitions by Huber

et al. [49], our protocol can be considered as “partially tally-hiding”. A “fully tally-hiding” scheme

only reveals who is the winner without publishing any tally. This property can be achieved by

involving TAs as shown in several works [7, 8, 49]. We note that while the tally is hidden from

voters, it can still be computed by the TAs. Hence, the TAs need to be trusted to keep the tally

, Vol. 1, No. 1, Article . Publication date: June 2024.



secret. Since VERICONDOR does not involve any TAs, it does not provide the “fully tally-hiding”

property. Extending VERICONDOR to support this property is a subject for further research.

7 CONCLUSION
In this paper we proposed VERICONDOR: the first E2E-verifiable Condorcet voting system without

any tallying authorities. Our system is based on tallying votes in a pairwise comparison matrix and

applies novel methods to provewell-formedness of thematrix with exceptional efficiency. It supports

ranking candidates in strict preference, as well as permitting indifference. The computational costs

are exceptionally efficient for strict preferences at O(𝑛2) for 𝑛 candidates, and remain practical

for indifferences at O(𝑛3). The system elects a Condorcet winner when they exist, and has the

flexibility to support several Condorcet methods to break a tie and elect an alternative winner in

the event that a Condorcet winner does not exist. It protects the secrecy of ballots and limits any

colluding set of voters to learn nothing more than the total tally and the partial tally of their votes.

When the voting machine is completely breached by a powerful adversary, the tallying integrity

remains intact due to E2E-verifiability, and information leakage is limited to only the partial tally

at the time of compromise.

ACKNOWLEDGEMENTS
The authors would like to thank the anonymous reviewers for their helpful comments. The first

author is funded by an EPSRC studentship (No. 2436418). The last author is supported by an EPSRC

grant (EP/T014784/1). We thank Julian Liedtke for confirming the 𝑂 (𝑛3) complexity for the ballot

well-formedness proof in their paper [7].

REFERENCES
[1] A. Sen. Majority Decision and Condorcet Winners. SC&W, 54(2):211–217, 2020.

[2] H.P. Young. Condorcet’s Theory of Voting. APSR, pages 1231–1244, 1988.
[3] M. Schulze. The Schulze Method of Voting. arXiv preprint arXiv:1804.02973, 2018.
[4] R. Winger. Ballot Access News. http://ballot-access.org/2021/03/28/march-2021-ballot-access-news-print-edition/,

2021. Online; accessed 29 November 2022.

[5] Libertarian Party of Washington. Constitution of the Libertarian Party of Washington State. https://lpwa.org/wp-

content/uploads/2022/07/LPWA_Constitution_updated_at_convention_26March2022.pdf#page=10, 2022. Online;

accessed 29 November 2022.

[6] W.H. Riker. Voting and the Summation of Preferences: An Interpretive Bibliographical Review of Selected Developments

during the Last Decade. APSR, 55(4):900–911, 1961.
[7] F. Hertel, N. Huber, J. Kittelberger, R. Küsters, J. Liedtke, and D. Rausch. Extending the Tally-Hiding Ordinos System:

Implementations for Borda, Hare-Niemeyer, Condorcet, and Instant-Runoff Voting. Cryptology ePrint Archive, 2021.
[8] V. Cortier, P. Gaudry, and Q. Yang. A Toolbox for Verifiable Tally-Hiding E-Voting Systems. In ESORICS, pages 631–652.

Springer, 2022.

[9] F. Hao and P.YA. Ryan. Real-World Electronic Voting: Design, Analysis and Deployment. CRC Press, 2016.

[10] D. Chaum, R. Carback, J. Clark, A. Essex, S. Popoveniuc, R.L. Rivest, P.YA. Ryan, E. Shen, and A.T. Sherman. Scantegrity

II: End-to-End Verifiability for Optical Scan Election Systems using Invisible Ink Confirmation Codes. EVT, 8:1–13,
2008.

[11] P.YA. Ryan, D. Bismark, J. Heather, S. Schneider, and Z. Xia. Prêt à Voter: A Voter-Verifiable Voting System. IEEE TIFS,
4(4):662–673, 2009.

[12] A. Kiayias, T. Zacharias, and B. Zhang. DEMOS-2: Scalable E2E Verifiable Elections without Random Oracles. In

ACMCCS, pages 352–363, 2015.
[13] B. Adida. Helios: Web-based Open-Audit Voting. In USENIX Security Symposium, volume 17, pages 335–348, 2008.

[14] B. Adida, O.De Marneffe, O. Pereira, JJ. Quisquater, et al. Electing a University President using Open-Audit Voting:

Analysis of Real-World Use of Helios. EVT/WOTE, 9(10), 2009.
[15] F. Hao, M.N. Kreeger, B. Randell, D. Clarke, S.F. Shahandashti, and P.HJ. Lee. Every Vote Counts: Ensuring Integrity in

Large-Scale Electronic Voting. In EVT/WOTE 2014, 2014.
[16] F. Hao. DRE-i and Self-Enforcing E-Voting. Chapter of Real World Electronic Voting, page 343, 2016.

, Vol. 1, No. 1, Article . Publication date: June 2024.

http://ballot-access.org/2021/03/28/march-2021-ballot-access-news-print-edition/
https://lpwa.org/wp-content/uploads/2022/07/LPWA_Constitution_updated_at_convention_26March2022.pdf#page=10
https://lpwa.org/wp-content/uploads/2022/07/LPWA_Constitution_updated_at_convention_26March2022.pdf#page=10


[17] S.F. Shahandashti and F. Hao. DRE-ip: A Verifiable E-Voting Scheme without Tallying Authorities. In ESORICS, pages
223–240. Springer, 2016.

[18] S. Bag, M.A. Azad, and F. Hao. E2E Verifiable Borda Count Voting System without Tallying Authorities. In ARS, pages
1–9, 2019.

[19] L. Harrison, S. Bag, H. Luo, and F. Hao. VERICONDOR: End-to-End Verifiable Condorcet Voting without Tallying

Authorities. In ASIACCS 2022, pages 1113–1125, 2022.
[20] F. Hao, S. Wang, S. Bag, R. Procter, S.F. Shahandashti, M. Mehrnezhad, E. Toreini, R. Metere, and L.YJ. Liu. End-to-End

Verifiable E-Voting Trial for Polling Station Voting. IEEE S&P, 18(6):6–13, 2020.
[21] C. Culnane and S. Schneider. A Peered Bulletin Board for Robust Use in Verifiable Voting Systems. In IEEE CSF 2014,

pages 169–183. IEEE, 2014.

[22] A. Kiayias, A. Kuldmaa, H. Lipmaa, J. Siim, and T. Zacharias. On the Security Properties of E-Voting Bulletin Boards.

In SCN 2018, pages 505–523. Springer, 2018.
[23] L. Hirschi, L. Schmid, and D. Basin. Fixing the Achilles Heel of E-Voting: The Bulletin Board. In IEEE CSF 2021, pages

1–17. IEEE, 2021.

[24] J. Benaloh. Ballot Casting Assurance via Voter-Initiated Poll Station Auditing. EVT, 7:14–14, 2007.
[25] J. Camenisch and M. Stadler. Proof Systems for General Statements about Discrete Logarithms. Technical Report/ETH

Zurich, Department of Computer Science, 260, 1997.
[26] B. Bünz, J. Bootle, D. Boneh, A. Poelstra, P. Wuille, and G. Maxwell. Bulletproofs: Short Proofs for Confidential

Transactions and More. In IEEE S&P 2018, pages 315–334. IEEE, 2018.
[27] A. Fiat and A. Shamir. How to Prove Yourself: Practical Solutions to Identification and Signature Problems. In TACT,

pages 186–194. Springer, 1986.

[28] V. Cortier and B. Smyth. Attacking and Fixing Helios: An Analysis of Ballot Secrecy. JCS, 21(1):89–148, 2013.
[29] N.J.A. Sloane. The Online Encyclopedia of Integer Sequences. http://oeis.org, 2022. Sequence A000670.

[30] D. Black et al. The Theory of Committees and Elections. 1958.

[31] P.B. Simpson. On Defining Areas of Voter Choice: Professor Tullock on Stable Voting. QJoE, 83(3):478–490, 1969.
[32] G.H. Kramer. A Dynamical Model of Political Equilibrium. JET, 16(2):310–334, 1977.
[33] A.H. Copeland. A Reasonable Social Welfare Function. Technical report, mimeo, 1951. University of Michigan, 1951.

[34] T.N. Tideman. Independence of Clones as a Criterion for Voting Rules. SC&W, 4(3):185–206, 1987.

[35] C. Dodgson. A Method of Taking Votes on More Than Two Issues. TOCAE, 1876.
[36] J.G. Kemeny. Mathematics Without Numbers. Daedalus, 88(4):577–591, 1959.
[37] H.P. Young and A. Levenglick. A Consistent Extension of Condorcet’s Election Principle. JOAM, 35(2):285–300, 1978.

[38] J. Bartholdi, C.A. Tovey, and M.A. Trick. Voting Schemes for Which It Can Be Difficult to Tell Who Won The Election.

SC&W, 6(2):157–165, 1989.

[39] Iain McLean Arnold B Urken et al. Classics of Social Choice. University of Michigan Press, 1995.

[40] R.B. Darlington. Are Condorcet and Minimax Voting Systems the Best? arXiv preprint arXiv:1807.01366, 2018.
[41] D.G. Saari and V.R. Merlin. The Copeland Method: I.: Relationships and the Dictionary. ET, 8(1):51–76, 1996. ISSN

09382259, 14320479. URL http://www.jstor.org/stable/25054952.

[42] D.D. Nguyen. Using Social Choice Function Vs. Social Welfare Function To Aggregate Individual Preferences In Group

Decision Support Systems. IJMIS, 18(3):167–172, 2014.
[43] T.M. Zavist and T.N. Tideman. Complete Independence of Clones in the Ranked Pairs Rule. SC&W, 6(2):167–173, 1989.

[44] D.R. Stinson and M. Paterson. Cryptography: Theory and Practice. CRC press, 2018.

[45] J.D.C. Benaloh. Verifiable Secret-Ballot Elections. 1989.

[46] D. Bernhard, V. Cortier, D. Galindo, O. Pereira, and B. Warinschi. SoK: A Comprehensive Analysis of Game-Based

Ballot Privacy Definitions. In IEEE S&P 2015, pages 499–516. IEEE, 2015.
[47] K.Kurosawa and R.Nojima. Simple adaptive oblivious transfer without random oracle. In Mitsuru Matsui, editor,

ASIACRYPT 2009, pages 334–346. Springer, 2009. ISBN 978-3-642-10366-7.

[48] J.K.H. Iv, M. Georgiou, A.J. Malozemoff, and T. Shrimpton. Security Foundations for Application-Based Covert

Communication Channels. In IEEE S&P 2022, pages 1971–1986. IEEE, 2022.
[49] N. Huber, R. Kuesters, T. Krips, J. Liedtke, J. Mueller, D. Rausch, P. Reisert, and A. Vogt. Kryvos: Publicly Tally-Hiding

Verifiable E-Voting. Cryptology ePrint Archive, 2022.
[50] S. Bell, J. Benaloh, M.D. Byrne, D. DeBeauvoir, B. Eakin, P. Kortum, N. McBurnett, O. Pereira, P.B. Stark, D.S. Wallach,

et al. STAR-Vote: A Secure, Transparent, Auditable, and Reliable Voting System. In EVT/WOTE 2013, 2013.
[51] K. Ramchen, C. Culnane, O. Pereira, and V. Teague. Universally Verifiable MPC and IRV Ballot Counting. In ICOFCADS,

pages 301–319. Springer, 2019.

[52] YC. Lee and H. Doi. On the Security of Condorcet Electronic Voting Scheme. In International Conference on Computa-
tional and Information Science, pages 33–42. Springer, 2005.

, Vol. 1, No. 1, Article . Publication date: June 2024.

http://oeis.org
http://www.jstor.org/stable/25054952


[53] R. Küsters, J. Liedtke, J.Müller, D. Rausch, and A. Vogt. Ordinos: A Verifiable Tally-Hiding E-Voting System. In EuroS&P
2020, pages 216–235. IEEE, 2020.

[54] T. Haines, D. Pattinson, and M. Tiwari. Verifiable Homomorphic Tallying for the Schulze Vote Counting Scheme. In

WCOVS:TTE, pages 36–53. Springer, 2019.
[55] T.P. Pedersen. Non-Interactive and Information-Theoretic Secure Verifiable Secret Sharing. In AICC, pages 129–140.

Springer, 1991.

[56] J. Groth. On the Size of Pairing-Based Non-Interactive Arguments. In TAAOCT, pages 305–326. Springer, 2016.

APPENDIX
A PROOF OF THEOREM 3.1

Proof (⇒). First, we prove that for a valid matrix, the vector of row sums is a permutation of

C. Consider an 𝑛-candidate election with a set of candidates C = {0, ..., 𝑛 − 1}. Let V = (𝑣𝑖 𝑗 ) be
a valid pairwise comparison matrix representing one of the possible 𝑛! votes. We may write the

vote (permutation) encoded by V as 𝜌 = (𝑐0, 𝑐1, . . . , 𝑐𝑛−1) where 𝑐𝑎 ∈ C for 𝑎 ∈ C and 𝑐𝑎 ≠ 𝑐𝑏 for

all 𝑎, 𝑏 ∈ C and 𝑎 ≠ 𝑏. We consider each element in 𝜌 one at a time, starting with 𝑐0. Element 𝑐0
is preferred to 𝑐1, 𝑐2, . . . , 𝑐𝑛−1 by 𝜌 . Hence 𝑣𝑐0𝑐1 = 1, 𝑣𝑐1𝑐0 = 0, . . . , 𝑣𝑐0𝑐𝑛−1 = 1, 𝑣𝑐𝑛−1𝑐0 = 0. There are

𝑛− 1 entries of 1 in the row of V corresponding to 𝑐0. Now consider 𝑐1: 𝑐1 is preferred to 𝑐2, . . . , 𝑐𝑛−1.
Hence 𝑣𝑐1𝑐2 = 1, 𝑣𝑐2𝑐1 = 0, . . . , 𝑣𝑐1𝑐𝑛−1 = 1, 𝑣𝑐𝑛−1𝑐1 = 0. There are exactly 𝑛 − 2 entries of 1 in the row

of V corresponding to 𝑐1. Repeating this process for each 𝑐 ∈ C results in each row of V having a

unique number of entries of 1 and hence

∑𝑛−1
𝑗=0 𝑣𝑖 𝑗 gives unique results for unique values of 𝑖 , with

results belonging to [0, 𝑛 − 1]. This is by definition a permutation over C.
(⇐). Next, we show that if the vector of row sums in a matrix is a permutation of C, the matrix

is valid. Suppose we have a pairwise comparison matrix V with the property that its vector of

row sums is a permutation over a set of candidates C = {0, ..., 𝑛 − 1}. Denote the vector of row
sums for V as VΣ

. By definition each element in VΣ
must belong to 𝐶 and VΣ

must contain no

duplicated elements. Hence there is a unique maximum in VΣ
, being the value 𝑛 − 1. Now consider

each element in VΣ
in turn, starting with 𝑛 − 1: there must be an 𝑖0 such that

∑𝑛−1
𝑗=0 𝑣𝑖0 𝑗 = 𝑛 − 1. By

the definition of a pairwise comparison matrix, row 𝑖0 of V must consist of exactly 𝑛 − 1 entries of 1.
Hence for all other rows 𝑖𝑘 , where 0 ≤ 𝑘 < 𝑛− 1, the candidate represented by row 𝑖0 is preferred to
all other candidates represented by rows 𝑖𝑘 . Now consider the next largest element of VΣ

, being the

unique value 𝑛 − 2: there must be an 𝑖1 such that

∑𝑛−1
𝑗=0 𝑣𝑖1 𝑗 = 𝑛 − 2. Row 𝑖1 must consist of exactly

𝑛 − 2 entries of 1, again by definition of a pairwise comparison matrix as well as by our previous

deduction that row 𝑖0 consists of 𝑛 − 1 entries of 1, so entry 𝑣𝑖1𝑖0 must be a 0. Hence the candidate

represented by row 𝑖1 is preferred to all other candidates 𝑖𝑘 where 0 ≤ 𝑘 < 𝑛 − 2. Repeating this
process for each row results in the candidate represented by row 𝑖0 being preferred to the candidate

represented by row 𝑖1, who is then preferred to the candidate represented by row 𝑖2 and so on, down

to the candidate represented by row 𝑖𝑛−1. We may write this as the permutation 𝜌 = (𝑖0, 𝑖1, . . . , 𝑖𝑛−1).
This is one of the 𝑛! possible votes for this election. This completes the proof. □

B NIZKP FOR COROLLARY 3.1
From Corollary 3.1, we know that a triangular matrix U represents one of the 𝑛! votes for an

𝑛-candidate election iff the vector

( [∑𝑛−1
𝑖=𝑐+1 (𝑢𝑐𝑖 )𝑘

]
+ 𝑐 −

[∑𝑐−1
𝑖=0 (𝑢𝑖𝑐 )𝑘

] )𝑛−1
𝑐=0

is a permutation of C.
For the latter, consider the following equivalence.

𝑔𝑐
0
·
∏𝑛−1
𝑖=𝑐+1 𝑏𝑘 (𝑐, 𝑖)∏𝑐−1
𝑖=0 𝑏𝑘 (𝑖, 𝑐)

= 𝑔
∑𝑛−1

𝑖=𝑐+1 (𝑥𝑐𝑖 )𝑘−
∑𝑐−1

𝑖=0 (𝑥𝑖𝑐 )𝑘
0

· 𝑔[
∑𝑛−1

𝑖=𝑐+1 (𝑢𝑐𝑖 )𝑘]+𝑐−[
∑𝑐−1

𝑖=0 (𝑢𝑖𝑐 )𝑘]
0

, Vol. 1, No. 1, Article . Publication date: June 2024.



It is then sufficient to prove the following (based on Bag et al. [18]).∧
𝑐′ ∈ C

𝑐′ ∈
([

𝑛−1∑︁
𝑖=𝑐+1
(𝑢𝑐𝑖 )𝑘

]
+ 𝑐 −

[
𝑐−1∑︁
𝑖=0

(𝑢𝑖𝑐 )𝑘

])𝑛−1
𝑐=0

These relations are equivalent to the following logical statement.∨
𝑐 ∈ C

𝑔𝑐
0
·
∏𝑛−1
𝑖=𝑐+1 (𝑏𝑐𝑖 )𝑘∏𝑐−1
𝑖=0 (𝑏𝑖𝑐 )𝑘

= 𝑔
∑𝑛−1

𝑖=𝑐+1 (𝑥𝑐𝑖 )𝑘−
∑𝑐−1

𝑖=0 (𝑥𝑖𝑐 )𝑘
0

· 𝑔J
0

For all J ∈ C, exactly one of the above disjunctions should hold. Suppose that, for a fixed J , the

𝑚𝑡ℎ
disjunction is true. Denote (𝑏Π−𝑚 )𝑘 =

∏𝑛−1
𝑖=𝑚+1 (𝑏𝑚𝑖 )𝑘∏𝑚−1
𝑖=0 (𝑏𝑖𝑚 )𝑘

and (XΣ−
𝑚 )𝑘 =

∑𝑛−1
𝑖=𝑚+1 (𝑥𝑚𝑖 )𝑘 −

∑𝑚−1
𝑖=0 (𝑥𝑖𝑚)𝑘 .

We then have 𝑔𝑚
0
· (𝑏Π−𝑚 )𝑘 = 𝑔

(XΣ−
𝑚 )𝑘

0
𝑔
J
0
. The prover (the DRE-machine) chooses a random 𝑢𝑚 ∈𝑅 Z∗𝑞

and computes 𝑡 ′𝑚 = 𝑔
𝑢𝑚
0

. The prover then chooses 𝑟0, 𝑟1, . . . , 𝑟𝑚−1, 𝑟𝑚+1, 𝑟𝑚+2, . . . , 𝑟𝑛−1 ∈𝑅 Z∗𝑞 and

also 𝑐0, 𝑐1, . . . , 𝑐𝑚−1, 𝑐𝑚+1, 𝑐𝑚+2, . . . , 𝑐𝑛−1 ∈𝑅 Z∗𝑞 and computes:

∀𝑖 ∈ C − {𝑚} : 𝑡 ′𝑖 = 𝑔
𝑟𝑖
0

(
𝑔𝑖
0
· (𝑏Π−𝑖 )𝑘
𝑔
J
0

)𝑐𝑖
(mod 𝑝)

Let the grand challenge be 𝑐 = 𝐻 (𝑘, 𝑗, 𝑏Π−
𝑘
, 𝑡 ′
0
, 𝑡 ′
1
, . . . , 𝑡 ′𝑛−1), where 𝐻 (·) denotes a cryptographic

hash function. The prover then computes:

𝑐𝑚 = 𝑐 −
∑︁

𝑖 ∈ C−{𝑚}
𝑐𝑖 (mod 𝑞)

𝑟𝑚 = 𝑢𝑚 − 𝑐𝑚 (XΣ−
𝑚 )𝑘 (mod 𝑞)

The subproof is then successful if the following 𝑛 verification equations are satisfied:

∀𝑖 ∈ C : 𝑔𝑟𝑖
0
≡

𝑡 ′𝑖(
𝑔𝑖
0
· (𝑏Π−

𝑖
)𝑘

𝑔
J
0

)𝑐𝑖 (mod 𝑝)

, Vol. 1, No. 1, Article . Publication date: June 2024.


	Abstract
	1 Introduction
	2 Preliminaries
	2.1 Condorcet Voting with Strict Preference
	2.2 Condorcet Cycle

	3 The VERICONDOR System
	3.1 Requirements and Assumptions
	3.2 A Basic Scheme
	3.3 ZKPs of Well-formedness for Ranking with Strict Preference
	3.4 Support for Indifference
	3.5 ZKPs of Well-formedness for Ranking With Indifference
	3.6 Electing a Winner

	4 Security Analysis
	4.1 E2E-Verifiability
	4.2 Ballot Secrecy

	5 Performance Analysis
	5.1 Theoretical Estimates
	5.2 Microbenchmarks

	6 Related work
	7 Conclusion
	References
	A Proof of Theorem 3.1
	B NIZKP for Corollary 3.1

