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Abstract

In the age of IoT (Internet of Things), Machine-to-Machine (M2M) communication has gained significant popularity
over the last few years. M2M communication systems may have a large number of autonomous connected devices that
provide services without human involvement. Interacting with compromised, infected and malicious machines can bring
damaging consequences in the form of network outage, machine failure, data integrity, and financial loss. Hence, users
first need to evaluate the trustworthiness of machines prior to interacting with them. This can be realized by using a
reputation system, which evaluates the trustworthiness of machines by utilizing the feedback collected from the users
of the machines. The design of a reliable reputation system for the distributed M2M communication network should
preserve user privacy and have low computation and communication overheads. To address these challenges, we propose
an M2M-REP System (Machine to Machine REPutation), a privacy-preserving reputation system for evaluating the
trustworthiness of autonomous machines in the M2M network. The system computes global reputation scores of machines
while maintaining privacy of the individual participant score by using secure multi-party computation techniques. The
M2M-REP system ensures correctness, security and privacy properties under the malicious adversarial model, and allows
public verifiability without relying on a centralized trusted system. We implement a prototype of our system and evaluate
the system performance in terms of the computation and bandwidth overhead.

Keywords: Machine to Machine Communications, Edge Computing, Internet of Things, Reputation System, Privacy-
Preservation, Secure Computation, Trust

1. Introduction

The Internet of Things (IoT) is a system of intercon-
nected and autonomous computing devices (objects, things,
sensors, devices, machines, vehicles etc.) that has the abil-
ity to perform specific functions without requiring human
intervention. The projected forecast for the IoT ecosystem
shows that the number of connected IoT devices across the
globe will grow up to more than 26 billion by the year 2020
[1],[2]. The projected forecast shows that there will be a
large number of interconnected Vehicles and Machines [3]
in the IoT ecosystem, establishing an Internet of Vehi-
cles (IoV) and an Internet of Machines (IoM) networks.
Specifically, there will be more than one billion Machine-
to-Machine (M2M) devices and more than 250 million con-
nected vehicles by the year 2020 [3, 4, 5]. The emergence
of new telecommunication technologies (e.g. 4G, 5G net-
works) has also enabled mobile edge providers to provide
real-time computing resources and services to the vehicles,
IoT devices, and consumers near their premises. Vehicles
and Machines in the M2M network interact directly with
each other to gather information about the road condi-
tions e.g. traffic congestion, roadside accidents etc. These
nodes can also interact with the edge computing nodes or
edge-base stations to outsource their time-sensitive com-
putation tasks or have value-added services from the edge
nodes e.g. for entertainment.

In the edge computing setup, edge nodes and value-
added servers are typically deployed near the premises of
their consumers to provide delay tolerant services. In this
particular setting, nodes and machines are distributed and
autonomous, thus can be exposed to attacks such as injec-
tion of malware to the unsecured machines, physical tam-
pering of the machines, and attacks on the core network
[6]. The compromised malicious machines not only dis-
seminate unwanted content (i.e. trojans, worms, viruses,
fake files, spam etc.) [7] to their users but also pose a
threat to secretly collecting private information of users
for malicious purposes. To protect consumers from having
an interaction with the malicious actors in the network,
there is a need to build a secure and reliable reputation
system for the autonomous and distributed M2M and IoT
systems [6]. The reputation system would enable machines
and consumers to evaluate the trustworthiness of any ma-
chine in the network [8, 9, 10, 11] prior to initiating a
request to the machine, based on the past behavior of ma-
chine towards its users.

Reputation systems have been widely used in a number
of domains to evaluate the trustworthiness of nodes e.g. in
the vehicular ad-hoc networks to evaluate the trustworthi-
ness of vehicles [9, 10, 11], P2P (peer to peer) networks
[12, 13, 14] to evaluate the trustworthiness of peers pro-
viding content, in an online marketplace for evaluating the

Preprint submitted to Elsevier Computers & Security December 1, 2018



reputation of consumers and sellers [15, 16, 17, 18], and
computing reputation of users in a service provider net-
work (email, telephony, social networks) [19, 20, 21, 22] for
identifying malicious users in a collaborative way. A rep-
utation system can operate in two modes: the centralized
mode -- having a centralized trusted authority for collect-
ing and processing ratings submitted by the participants,
and the distributed mode -- aggregating ratings in a com-
pletely distributed way. The centralized systems [17, 15]
are mainly used in the online marketplaces, but a central-
ized trusted system poses a threat to the privacy of the
participants i.e. identities and rating scores are exposed to
the central entity. The distributed reputation systems [23,
14, 24] have been widely used in a P2P network but these
systems have extensive network resources and also have
a threat to the privacy of participants. In order to pro-
tect the privacy of participants (vehicles, devices or users),
the reputation system can provide anonymity through the
identity anonymization [25, 26, 27]. However, anonymiza-
tion is vulnerable to de-anonymization techniques [28, 29].
The privacy of feedback provider can be protected using
distributed trusted third parties and cryptographic tools
[30, 13, 31, 32, 33, 34]. These systems either depend on
a set of trusted peers [13, 35, 30] or the centralized sys-
tem [34, 12] for the privacy protection. However, finding a
set of trusted peers may prove difficult in a decentralized
network.Furthermore, most of the existing systems are de-
signed for semi-honest participants (participants who are
honest in providing feedback) [13, 36, 35, 34], which could
be easily circumvented in practice.

The reputation system for the distributed IoV and M2M
systems should have following properties: 1) The design
should protect the private information of participants pro-
viding the feedback scores; 2) it should not have any trusted
centralized system for the management of cryptographic
parameters and collection of feedback; 3) it should not
have excessive computation and communication overhead
in order to make the system suitable for resource-constrained
devices, and 4) the computation should be verifiable by all
participants.

To address these challenges, this paper describes the
design of an M2M-REP (Machine to Machine REPuta-
tion) system that computes global reputation of machines
in the network using secure multiparty computation tech-
niques. The aggregated reputation score of a machine is
computed in a decentralized and secure way without dis-
closing any private information of participants. The par-
ticipating machines or participants (human) first assign
a trust score to the machine based on the experience of
their interactions with the machine, and then, they report
cryptograms of trust scores to the public bulletin board.
The reputation aggregator or reputation requester then
computes global reputation of a machine by simply using
the cryptograms from the bulletin board using a secure
multi-party computation method without learning the in-
dividual trust-scores. The system does not require any
trusted third party and trusted setup for the management

of cryptographic parameters. Specifically, we present the
protocol operations for the malicious adversarial model,
where participants may attempt to provide false scores
(out-of-range trust values) for the purpose of maliciously
increasing or decreasing the aggregate reputation of some
machines. The design also allows verifying operations by
the protocol participants without relying on any trusted
setup. Further, the system does not require participants
to remain online during the aggregation process in con-
trast to existing reputation systems [14, 37, 38, 39] where
feedback providers are required to remain online during
the aggregation process.

This journal article extends our previous conference pa-
per [40] in several aspects. First, we provide full security
proofs for the malicious adversarial model, considering the
condition where the adversary may collude with a set of
participants (Section 5). Second, we present a full proto-
type implementation and evaluate the performance of the
prototype with regard to the bandwidth and computation
overhead (Section 6). Third, we analyze the computa-
tional complexity of the M2M-REP system in comparison
to other centralized and decentralized reputation systems
(Section 6). Finally, this article provides discussions on the
salient features and limitations of the system (Section 7).
In summary, this paper makes the following contributions.

• We propose a novel decentralized privacy-preserving
reputation system for computing the trustworthiness
of machines in the M2M network. This approach
uses secure multi-party cryptographic techniques and
efficient zero-knowledge proof of knowledge to enable
participants to report their trust scores in a privacy-
preserving way.

• We provide detail analysis on the security, privacy
and correctness properties of the proposed system
for the malicious adversarial model.

• We provide a prototype implementation of the cryp-
tographic operations to evaluate the efficacy of the
system in terms of the bandwidth consumption and
computational overhead. We also compare the com-
plexity of the proposed system with the other rele-
vant systems.

The remaining part of the paper is organized as follows.
Section 2 reviews related works on the computation of rep-
utation in an M2M and P2P (peer to peer) networks. Sec-
tion 3 describes preliminaries and formalizes the problem.
Section 4 describes the design of the proposed M2M Repu-
tation system. Section 5 analyses the security and privacy
properties of the proposed system. Section 6 presents the
prototype implementation and evaluates the system’s per-
formance for the bandwidth and computation overhead.
Section 7 provides discussion on the important features
and limitations of the M2M-REP system. Finally, Section
8 concludes the paper.
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2. State of the Art

We present related work in two aspects: first, works
performed in the domain of M2M network, and second,
the P2P (peer to peer) network. Liu et al. [38] proposed
a trust and reputation system for blocking the malicious
machines from distributing content in the M2M network.
It considers the trust values from participants, pairwise
rating similarity measure and controlled propagation of
trust ratings for computing the reputation of the machine.
The privacy of participant has not been considered in this
approach. Nitti et al. [41] proposed two reputation man-
agement models for detecting the malicious nodes in an
IoT network. In the first model, each object computes the
direct trustworthiness of other objects based on its direct
experience, and in the second model, the trustworthy in-
formation of an object is propagated and stored using the
DHT (Distributed Hash Table) structure. This enables all
objects to have the same information about other objects
in the system. In this approach, the direct feedback could
be revealed to other objects, thus disclosing connectivity
network of machines or objects. Yan et al. [34] proposed
two approaches for protecting privacy and feedback scores
of the participating nodes while computing trust and rep-
utation of nodes. The first approach is based on the PKC
(Public Key Cryptography) and uses an additive homo-
morphic system to protect the integrity of feedback pro-
vided by the participating nodes. The second approach
is based on the additive pallier-cryptosystem. However,
the privacy efficiency of these schemes relies on the trust-
worthiness of participating nodes i.e. nodes are honest in
providing the correct feedback. The first scheme achieves
better computational efficiency, while the second approach
provides greater security at the expense of a higher compu-
tational cost. In [42], data from the smart grid application
is aggregated by having the concentrators in the neighbor-
hood of a smart grid network. Chen et al. [43] presents a
fuzzy theory based trust and reputation model for the IoT
network by utilizing cooperation among the IoT devices.
However, the system has not considered the privacy of the
participants.

Stojmenovic et al. [44] presented a decentralized auction-
based system for the cyber-physical systems, but the sys-
tem does not provide any security and privacy aspects of
machines participating in the auction process. Efthymiou
et al. [45] use anonymization techniques to protect privacy
of reading data by anonymizing the smart meter data be-
fore submitting it to a third party arbitrator; however,
anonymized data is subject to the de-anonymization at-
tack by correlating information from multiple sources [28].
A non-trusted aggregator can evaluate the feedback values
provided by the participants without imposing any limit
on the number of participants [46]; however, it requires a
large number of encryption keys to manage the individual
feedbacks and decryption of the final scores.

Several decentralized and distributed systems have been
proposed for the reputation aggregation in a P2P network.

In [47] a decentralized system is proposed for the aggregat-
ing reputation of nodes in a P2P network; however, a mali-
cious node can easily track activities of others by assigning
a specific reputation score to the target node. In [48] a se-
cure homomorphic cryptographic system is proposed that
ensures privacy of nodes while computing global reputa-
tion of the nodes. This system has desired properties of
security and privacy for the honest participants, however,
it can be misused by the malicious nodes. In [14] an Eigen
trust algorithm is proposed for aggregating the feedback
scores in a decentralized P2P network. However, in the
Eigen trust algorithm, the participating nodes know com-
munication network of others, and further nodes need to
remain online during the aggregation process. In [37, 13]
a decentralized privacy preserving reputation protocol is
proposed for the reputation aggregation under the mali-
cious adversarial model. The protocol computes the ag-
gregate reputation score by using the set of trusted users
to whom participants submit their trust scores. However,
having a set of pre-trusted users is not always feasible in
a P2P network. It is desirable to have a system that is
not dependent on a set of pre-trusted peers. In [26], an-
other decentralized reputation system is proposed but it
requires a trusted module chip at each participating agent
or peers for the privacy protection. Ernesto et al. [23]
proposed a P2Prep protocol which operates in two phases.
First, the requester peer finds a set of peers that hold the
required content, and second, it pools others to collect
the votes about the behavior of the selected peers. The
requester then uses the aggregate opinion to make the de-
cision. Dimitriou et al. [49] proposed a voting-base rep-
utation system for the decentralized network but it only
ensures the privacy of participants under the semi-honest
adversarial model.

Raya at al.[50] proposed a system that protects private
information of vehicles in a vehicular network by pseudonymiz-
ing the identity of the vehicles using anonymous public
keys and a public key infrastructure (PKI). The trusted
authority is responsible for controlling messages between
vehicles and aggregation of responses .However, the trusted
party poses a threat to the privacy of vehicles. Sun et al.
[51] proposed a pseudonym-based scheme that provides
traceability as required by the law enforcement agencies
while providing desired security and privacy features to
vehicles in the network. Parno et al. [52] discussed chal-
lenges in securing the vehicular networks and proposed a
number of security mechanisms for securing the vehicular
networks. Castelluccia et al. [53] used a method based on
homomorphic encryption to aggregate the data collected
from nodes in the wireless sensor networks. Keke et al.
[54] proposed a security model that uses a multi-channel
communications model to resolve the conflict between pri-
vacy protection and efficiency. Meng at al. [55] proposed
a distributed communication mechanism for the exchange
of communication messages between machines in the net-
work in an industrial system architecture. The system
only focuses on the exchange of messages between ma-
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chines by relying on the trustworthiness of machines in
the network. Chen et al. [56] developed an approach
for the trust and reputation management of IoT objects
based on a distributed collaborative filtering system to se-
lect feedback from the participants. The approach uses a
number of metrics such as the similarity in the rating of
connectivity network of objects, social contact, and com-
munity of interest relationships; however, privacy was not
considered in the design.

To the best of our knowledge, this work is the first that
computes the aggregated reputation of the machines in an
M2M network system while preserving privacy of partici-
pating machines or users in a decentralized way. The pro-
posed system ensures privacy of feedback providers for the
honest-but-curious and the malicious adversarial models.
Furthermore, the proposed system allows participants to
verify the well-formedness of input as well as the integrity
of the aggregated reputation. The small computation and
bandwidth overhead make the scheme feasible for the net-
works and nodes that are resource-constrained.

3. Preliminaries

This section describes preliminaries that are necessary
to describe the design of the proposed system in Section
4.

3.1. Graph Representation of M2M Network

The human-machine or machine to machine network
can be represented as a directed weighted bipartite graph
network G(P,N, V,W ) as shown in Figure 1, where P rep-
resents the identity of the participant accessing the ma-
chine services, N represents the identity of machine pro-
viding the services, edge V represents the edge between
machine and the participant; it exists only if P interacted
with the N at least once. The weight W represents the
trust weight a participant has assigned to the machine for
his past transactions. The participants in the M2M net-
work can be either a machine, a device or a human using
the machine. The weights on edges between nodes are
computed after the completion of a transaction and it can
be either 1 (trusted interaction), -1 (untrusted interaction)
or 0 (uncertain or no interaction). The graph presented in
Figure 1 can be represented as a sparse matrix where the
row represents identities of participants and the column
represents identities of the machines.

Pij =

{
connected; if Pi interacted Nj

non− connected; Otherwise
(1)

3.2. Problem Statement

Suppose there is a machine network of n machines
(N1, N2, . . . , Nn) and there are p (P1, P2, . . . , Pp) users
interacting with the machines. Each user in a network

Figure 1: The representation of M2M and Human Participants and
a Graph Network.

evaluates the trustworthiness of its directly interacted ma-
chines and assigns a direct trust score based on the out-
come of transactions. Consider a trust matrix M = (vij),
where (i, j) ∈ N,P , vij is the direct trust score assigned
by the participant i to the machine j. The direct trust
matrix can be represented as a matrix:

M =


v11 v21 v31 · · · vn1
v12 v22 v32 · · · vn2
...

...
...

. . .
...

v1n v2n v3n · · · vpn

 (2)

The trust value vij assigned by the participant Pi to the
machine Nj can have one of the following three values:

vij =


−1; if Machine is not trustworthy

1; if machine is trustworthy

0; if the status is uncertain or not interacted

(3)
There are some machines or users who want to interact or
download content from the unknown machines in the net-
work. Having interaction with the non-reputed machines
has the risk of bringing damaging consequences in terms
of data and financial loss if the content from the interacted

4



machine is packed with malware. Furthermore, the par-
ticipants may hesitate to interact with the unknown ma-
chines because of fear of losing private information to the
untrusted machines. The participant wishes to have infor-
mation about the trustworthiness of machine he wishes to
communicate with prior to submitting a request. This can
be done by asking other peers for their feedback about the
machine. There is a global trust vector representing the
global reputation or global trustworthy score of machines
R = (t1, t2, . . . , tn)′ such that each ti ∈ [1, h],∀i ∈ [n], h
being a small integer. The global trust vector represents
the aggregate trustworthiness or reputation of machines
as perceived by participants who have already interacted
with the machines.

Let us assume there is an M2M network comprising
n machines N1, N2, . . . , Nn. Every participant holds a
feedback trust vector Vi = (vi1, vi2, . . . , vin), where vij ∈
{−1, 0, 1} as represented in Equation 3. The global rep-
utation of the machines can be represented as a vector
of scores R = (t1, t2, . . . , tn). ti ∈ [1, h],∀i ∈ [n]. If the
machine is appearing for the first time, then the value of
ti for such a machine is initialized with 1 i.e. trusted.
This would provide new machines a fair chance to intro-
duce themselves to users in the network. In Equation 2
the columns of the matrix Mnxn are the local trust vec-
tors (feedback scores) held by the p participants, that is
M = [V1||V2|| . . . ||Vn]. All the collaborating participants
collaborate secretly for computing the temporary global
reputation vector R′ = (R′1, R

′
2, . . . , R

′
n), where

R′j = bnh+
∑n
i=1Mij∗ti

nh+
∑n
i=1 Ri

∗ (h − 1)e,∀j ∈ [n]. The updated

global reputation vector T ′ = (t′1, t
′
2, . . . , t

′
n) for the iter-

ative process (next aggregation cycle) can be computed
as:

t′i = 1 +R′i (4)

The problem is to compute the global trust vector of
the machine by aggregating the feedback scores assigned
to the machine by the participants in a secure and pri-
vate way. The participant in our settings can be either
a machine or a human user using the services. The chal-
lenges in the design of a reputation aggregation system
for the distributed human-centric M2M network are four-
fold: 1) the reputation aggregation process should ensure
the privacy of participants providing the trust feedback, 2)
the computation should be carried out without the use of
any trusted setup or trusted third entity, 3) the feedback
of participants should also be included in the final repu-
tation aggregation process even if the participants of the
protocol are off-line at the time of the aggregation process,
4) it should provide public verifiability.

3.3. Adversary Model

The privacy-preserving reputation system ensures that
the trust scores of participants should not be used to infer
the private information of feedback providers. The feed-
back values should be revealed as an aggregate result. Let

TR be some private trust score which is held by the par-
ticipants and is exchanged to the bulletin board as the
input. The bulletin board, aggregator, adversary, and par-
ticipants are considered as preserving the privacy of partic-
ipants if they cannot infer any information apart from the
aggregated reputation score of the target machine. The
design of M2M-REP system ensures privacy and correct-
ness for the honest but curious and malicious adversarial
models. In the honest-but-curious model, the participants
always provide the correct feedback about their interac-
tions with the machines, however, they can try to learn the
private information of other participants from the feedback
values. In the malicious model, the participants can try to
manipulate the feedback values in order to assign a high
or low score to the specific machine, and further, they may
try to learn the private information of other participants.

3.4. Notations

The notations used throughout the paper are summa-
rized in Table 1. We denote the set of all machines as
N = {N1, N2, . . . Nn}. There is the set of participants
P = {p1, p2, . . . pn} using the services from Ni. We use
V ′i = (vi1, vi2, . . . , vin)′ to represent the local trust vector
of Pi for the interacted machines. The Vector R represents
the global reputation of machines in the setup and T ′ is
the updated global reputation vector for the proceeding
aggregation cycle. For the cryptographic operation, we
use xi to represent the private key of Pi, Xi = gxi repre-
sents the public key of the Pi and Y = gyi1 represents the
restructured key of Pi.

3.5. Homomorphic Cryptographic System

The homomorphic cryptographic system performs com-
putation over the encrypted data without decrypting the
encrypted data. The result of the computation performed
over the encrypted data is similar to the computation
performed over the non-encrypted data i.e. Encpk(a) ∗
Encpk(b) = Encpk(a+b). The homomorphic cryptographic
system consists of three major algorithms: Key generation
– responsible for generating the public and the private
keys, Encryption – responsible for encrypting the data,
and the Decryption – responsible for decrypting the re-
sults performed over the encrypted data. In this paper,
we consider the additively homomorphic encryption sys-
tem as we are only aggregating the feedback values from
the participants.

The cryptographic primitives used in the design of M2M-
REP is adapted from a decentralized aggregation system
used in an electronic voting system [57] without relying
on any trusted authority for the result aggregation. In [57]
a group of n voters compute a final tally T =

∑n
i=1 vi,

where vi ∈ {0, 1} is the secret input of voter Vi,∀i ∈ [n].
However, we modify the scheme presented in [57], so as
to incorporate three values that are vi ∈ {0, 1,−1}, assign
weights to the inputs which are proportional to the value
of the quantitative reputation of the feedback provider,
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and also modify the zero knowledge proof for 1-out of 3
values.

Let P = {1, 2, . . . , n} are the users or machines in the
network holding the feedback scores (0,1,-1) for a certain
machine. Let G be a DSA-like multiplicative group con-
taining p elements. Let g be a generator of G. We assume
that in G, the Decisional Diffie-Hellman (DDH) problem
is hard to compute. In order to provide the feedback ,
the ith user first generates a random value xi ∈ Z?q for all
i ∈ N . The value of xi is set as the private key and value
of public key Xi is computed as follows.

Xi = gxi (5)

The machine or user then makes this public key available
to others. Each of the participants in the system then
computes the restructured key as follows.

Yi =
∏

j∈N,j<i
Xi

/ ∏
j∈N,j>i

Xi. (6)

Computing Yi as above ensures that the following equation
holds ∏

i∈N
Y xii = 1. (7)

The possible trust score that a participant can assign to
his interacted machines is 1 (trusted), or -1 (non-trusted),
or 0 (not interacted with). The cryptogram of trust score
is generated as following:

ci =


c1i = Y xii g; if the feedback is 1

c0i = Y xii ; if the feedback is 0

c−1i = Y xii /g; if the feedback is − 1

(8)

Furthermore, the user also computes and presents a
zero-knowledge proof of well-formednessNIZK[xi : Xi, Yi, ci]
for the encrypted feedback scores. A non-interactive zero-
knowledge proof (NIZK), is a zero-knowledge proof of the
statement where the sender (prover) can prove to the re-
ceiver (verifier) that a given statement is true, without
revealing any other information. In M2M-REP, we prove
the knowledge of a secret value is 0, 1 or -1. A NIZK
proof can be generated using the Σ protocol [58] and the
Fiat-Shamir heuristic [59].

4. M2M-REP: System Architecture and Protocol
Operations

In this section, we present the architecture of an M2M-
REP system and detail its protocol operations.

4.1. System Model

The M2M-REP system is a decentralized system. The
system architecture of M2M-REP is shown in Figure 2.
The system consists of three major components: the ma-
chines providing services to their users or participants, the

Notation Meaning
N1, N2, . . . , Nn machines
P1, P2, . . . , Pn participants
NIZK non-interactive zero knowledge
G cyclic group of p elements in which

DDH problem is hard
[n] the set {1, 2, . . . , n}
[a, b] the set {a, a+ 1, . . . , b}
cij encrypted feedback generated by Pi for

Pj .
bae nearest integer of a
(xi1, xi2, . . . , xin) private key of Pi
(gxi1 , gxi2 , . . . , gxin) public key of Pi
(gyi1 , gyi2 , . . . , gyin) restructured key of Pi
Vi =
(vi1, vi2, . . . , vin)′

local trust vector of Pi

M the matrix [V1||V2|| . . . ||Vn]
uj

∑n
k=1 tkvkj

R =
(t1, t2, . . . , tn)′

(n× 1) global reputation vector

T ′ (n×1) updated global reputation vector
for next cycle

Table 1: Notations & abbreviations used in the design of M2M-REP.

participants that are using services of machines and pro-
vide feedback, and the public bulletin board that holds en-
crypted trust scores and the non-interactive zero-knowledge
proof reported by the participants. The participants eval-
uate the trustworthiness of the machine by assigning the
trust score to the interacted machine and report encrypted
trust score together with a non-interactive zero-knowledge
(NIZK) to the bulletin board.

4.2. Protocol Assumptions

We assume that each participant has a unique identity
(IP address, identity) and can access services from the
value-added machines and nodes. The participants wish
to report their experience with the interacted machine to
collaboratively suggest to others whether to interact with
the machine or not and identify the non-trusted machines.
There is a publicly accessible append only bulletin board
to which the participants report their encrypted feedback
and the NIZK proof of knowledge . The participants or
feedback providers authenticate every message they upload
to the bulletin board by digitally signing the message. We
assume that participants have only append & read access
to the Bulletin Board (BB) over the authentic channel.
Further, we assume that participants are only providing
feedback for the machines whom they have interacted with
during the aggregation time window.

4.3. Protocol Operations

The reputation aggregation process in an M2M-REP
system consists of three steps. 1) Each participant gener-
ates the secret and public keys; keeps the secret keys to
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Figure 2: M2M-REP system architecture. Participants assign direct scores to machines with whom they interacted. The encrypted feedback
is then sent to the bulletin board. The reputation is then aggregated without revealing the individual trust scores.

themselves, and publishes the public keys on the bulletin
board. 2) The participants then compute the restructured
key from the public keys, and generate the cryptogram of
feedback and associated NIZK proof using the private key
and the restructured key. They then publish cryptograms
along with NIZK proofs to the bulletin board (BB). 3) Fi-
nally, participants compute the global reputation vector
by multiplying the published cryptograms. The reputa-
tion aggregation procedure is represented in Algorithm 1
and detailed as below:

4.3.1. Reporting Public Keys

In a setup phase each participant pi, i ∈ [P ] chooses a
random secret key xi = (xi1, xi2, . . . , xin) ∈R Znp . It keeps
the secret key xi = (xi1, xi2, . . . , xin) and publishes the
corresponding public key Xi = (gxi1 , gxi2 , . . . , gxin) on the
public bulletin board.

4.3.2. Reporting Trust Scores

This phase consists of two steps: first, generating the
restructured key, and second creating the cryptogram of
the direct trust score.

In first step, the participant Pi generates gyij , a re-
structured public key as follows:

gyij =

i−1∏
k=1

gxkj/

n∏
k=i+1

gxkj ,∀j ∈ [n] (9)

where yij is

yij =

i−1∑
k=1

xkj −
n∑

k=i+1

xkj (10)

gyij =

i−1∏
k=1

gxkj/

n∏
k=i+1

gxkj (11)

In a second step, each participant Pi, i ∈ [n] computes
a feedback Ci = (ci1, ci2, . . . , cin), where the value of each
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Algorithm 1 Computing Reputation

1: input: Participants with Trust Scores of Interacted
Machines

2: output: Reputation of Machines in the Network

3: procedure Cryptographic Keys(Given: cyclic
Group G with generator g)

4: xij ← ∈ Z?q , i, j ∈ N
5: Xij ← gxij , i, j ∈ N
6: Publish Xij on the bulletin Board for all i, j ∈ N
7: Publish NIZK Proof of Knowledge of xij on the bulletin

Board for all i, j ∈ N
8: For Each participant Pi in the Network Compute Yij

as:
9: Yij ←

∏
k∈N,k<iXkj

/∏
k∈N,k>iXkj .

10: procedure Creating Cryptograms(Given
xij , Yij , g, T = (t1, t2, . . . , tn) and Score)

11: cij ← Y
xij
i gti ; if the trust score is 1

12: cij ← Y
xij
i ; if the score is 0

13: cij ← Y
xij
ij /gti ; if the trust score is − 1

14: Generate NIZK Proof of Well-formedness of cij as dis-
cussed in section 4.3.4

15: Publish Feedback and NIZK on the Bulletin Board

16: procedure Computing Reputation(Given: Cryp-
tograms of Scores and NIZK)

17: lj =
∏n
i=1 cij = g

∑n
k=1 tkvkj = guj ,∀j ∈ [1, n].

18: uj = logg lj ,∀j ∈ [1, n].
19: u′j = uj + n ∗ h,∀j ∈ [1, n].

20: R′j = d u′j(h−1)
nh+

∑n
i=1 ti

e,∀j ∈ [1, n]

21: T ′ = (1 +R′1, 1 +R′2, . . . , 1 +R′n)

cij is computed as following:

cij = gxijyijgtivij (12)

As the values of gxij are available publicly on the bul-
letin board, Pi can compute gyij for all j ∈ [n] without
calculating yij . Hence, participants Pi can compute cij as
following:

cij = (gyij )xijgtivij (13)

The participant also provides NIZK (non-interactive zero
knowledge proof) to ensure that the feedback provided by
Pi is one of the three values (0,1 and -1). The NIZK proof
consists of a witness to the fact that cij ∈ {gxijyij/gti , gxijyij ,
gxijyijgti}. The construction of this proof is discussed
in Section 4.3.4. Pi posts on the bulletin board Ci and
PWij [·] for all j ∈ [n].

4.3.3. Reputation Computation

Once the encrypted direct trust scores of machines
have been reported to BB (bulletin board), anyone (Net-
work Manager, the aggregator, the system administra-
tor or any participant) can compute the global reputa-
tion score of any particular machine in the network as

R = (R1, R2, . . . , Rn), where the value Ri is computed as
below:

lj =

n∏
k=1

cij (14)

=

n∏
k=1

gxkjykjgtk∗vkj (15)

= g
∑n
k=1 xkjykjg

∑n
k=1 tkvkj (16)∑n

k=1 xkjykj =
∑n
k=1 xkj(

∑k−1
m=1 xmj −

∑n
m=k+1 xmj) =∑n

k=1

∑
m<k xmjxkj −

∑n
k=1

∑
m>k xmjxkj .

Now,
∑n
k=1

∑
m<k xmjxkj =

∑n
m,k=1,m<k xmjxkj =∑n

m,k=1,m>k xmjxkj =
∑n
k=1

∑
m>k xmjxkj .

Thus,
n∑
k=1

xkjykj = 0 (17)

Hence,
lj = g

∑n
k=1 tkvkj = guj (18)

Since, uj ∈ [−nh, nh], a limited brute force search on lj
would yield uj . Let, u′j = uj + n ∗ h,∀j ∈ [1, n]. Then, the
aggregator can compute

R′j = b u′j(h−1)
nh+

∑n
i=1 ti

e and update the global trust vector T ′

for the next aggregation cycle using Equation 4.

4.3.4. Verification

The verification process is performed for two opera-
tions, the knowledge of the secret key and the well-formedness
of trust score.

Proof of knowledge of the secret key : The participant
Pi; i ∈ [1, n] generates secret keys xij for all j ∈ [1, N ].
The participant Pi publishes corresponding public keys
Xij = gxij ,∀j ∈ [1, n] along with the NIZK proof of
knowledge of xij , j ∈ [1, n]. These NIZK proofs can be
constructed as follows. The prover generates a random
r ∈R Zp and computes a commitment com = gr. Let, the
challenge of the NIZK proof be ch. The prover calculates a
response res = r− ch ∗xij . The prover then publishes the
commitment com and the response res. The verification
is performed as follows:

gres
?
= com/(gxij )ch (19)

If Equation 19 is satisfied, then the proof is correct. This
NIZK proof has one commitment and one response. Hence,
the size of the proof is 2. The proof is computed in 1
modular exponentiation and the verification requires two
exponentiations, respectively.

Proof of knowledge of the well-formedness: The ver-
ification of well-formedness of the feedback score at the
BB is the fundamental step in the design of the M2M-
REP system. This verification would prevent participants
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from providing out-of-range false values about machines in
order to disrupt the system and maliciously increase the
reputation of some machines. This would also prevent ma-
licious participants to assign high trust scores by making
the artificial social circle. M2M-REP provides verification
by checking the values of zero-knowledge proof that pro-
vides information whether the reported local trust is −1
or 0 or 1 in a non-interactive way and without learning the
value of the feedback.

Each encrypted feedback is of the form cij = gxijyijgtivij ,
where gxij , gyij is provided on the bulletin board, vij is
−1 or 0 or 1, and ti comes from the global trust vector
T . Here, we discuss how each participant can construct a
NIZK proof PWij [cij : gxij , gyij , tj ]. This proof consists of
a witness to the fact that exactly one of the three state-
ments below is true:
1) cij = gxijyijgtj

2) cij = gxijyij

3) cij = gxijyij/gtj

where g, gxij , gyij and tj are public. This is a 1-out-of-3
statement. Let us assume that the first statement is true,
that is cij = gxijyijgtj . Hence, the prover will have to pro-
vide a real proof for the first statement and two simulated
proofs for two other statements. For the sake of clarity, we
denote cij , xij , yij , tj as c, x, y and t respectively. Hence,
the prover has to prove that c = gxyg−1, or gxy or gxyg.
The prover chooses a random r1 ∈R Zp and computes
a commitment com1 = gr1 , com′1 = (gy)r1 . The prover
then chooses random challenges ch2, ch3 ∈R Zp and two
responses res2, res3 ∈R Zp and computes 4 commitments:
com2 = gres2(gx)ch2 , com′2 = (gy)res2cch2

com3 = gres3(gx)ch3 , com′3 = (gy)res3(c ∗ gt)ch3

Let the grand challenge of the NIZK statement be ch. The
prover calculates ch1 = ch − ch2 − ch3. Then the prover
computes a response res1 = r1 − x ∗ ch1.

The verification equations are as below:

1. gress
?
= coms

(gx)chs
,∀s ∈ {1, 2, 3}

2. (gy)res1
?
=

com′1
(c/gt)ch1

3. (gy)res2
?
=

com′2
cch2

4. (gy)res3
?
=

com′3
(c∗gt)ch3

If these six verification equations are satisfied, then the
proof is accepted. The total number of commitments of
the proof is 6, the total number of responses is 3 and the
total number of challenges is 3. Hence, the size of the
NIZK proof is 12.

Similarly, NIZK proof can be generated for the two
other cases, that is for c = gxy and for c = gxy/gt.

4.4. Public Bulletin Board

Public Bulletin Board (BB) is used to provide a way
for the exchange of trust scores and cryptographic param-
eters among the participants of the M2M-REP system.

The bulletin board itself does not have the ability to gen-
erate the cryptograms. It can only write the information
provided by the participants. The bulletin board can also
validate the well-formedness of the received feedbacks be-
fore putting them on the bulletin board, and make sure
that no entity (participants or other parties) could delete
or change the published data.
The bulletin board holds the following key information:
the cryptograms of the feedback scores, zero-knowledge
proofs to prove that cryptograms are well-formed, and the
identity of the machine for which feedback is provided.
Anyone can access the information from the bulletin board
to compute the aggregated reputation of the machine in
the network. All the computation performed on the infor-
mation obtained from the bulletin board will be publicly
verifiable by executing the aggregation process.
There are a few ways of implementing the functionalities of
a bulletin board. One possible way is to use the distributed
database by using the blockchain technology [60, 61] to
hold the cryptograms submitted by the participants. An
implementation of the bulletin board for small-scale board-
room voting based on Ethereum’s blockchain is presented
by McCorrry et al. [62]. An alternative method is to use a
mirrored website as a bulletin board [63, 64, 65]. Only au-
thenticated users can post messages on the bulletin board
and all posted data are publicly readable. The user is not
allowed to overwrite or alter the published data. To over-
write or alter previous data, the user must do this for all
mirrored websites, which will make the tampering publicly
evident.

5. Security Analysis of M2M-REP

In this section, we analyze correctness, security and
privacy properties of the M2M-REP system.

5.1. Correctness of Our Scheme

In this section, we prove that our scheme is correct.
The scheme correctly computes the updated reputation
vector T ′ = (t′1, t

′
2, . . . , t

′
n) as discussed in section 4.3, uj =∑n

k=1 tkvkj , where tk ∈ [1, h]. Now, uj + n ∗ h,∀j ∈ [1, n]

and R′j = b u′j(h−1)
nh+

∑n
i=1 ti

e. Let, k be such that uk = h ∗∑n
i=1 ti, and hence, u′k = nh+h∗

∑n
i=1 ti. Then R′k = h−1

and t′k = h. Thus, our protocol assigns maximum weight
to the machine who is trusted by everyone. Also, note that
if there exists a machine Mr such that ur = −nh, then u′r
will be 0. So, R′r will be 0 too, ensuring that t′r = 1.
So, the machine who is not trusted by anyone else would
get the lowest possible weight 1. All other machines will
get weights in between 1 and h depending upon the value
of weighted sum of scores obtained by them. Hence, the
scheme is correct.

5.2. Security Analysis

We analyze the security and privacy aspects of the pro-
posed M2M-REP system for the malicious participants
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model. The malicious participants also have the ability
to collude with other participants to find the trust scores
assigned by the target participant. Let us assume that the
adversary A colluded with k (N1, N2, . . . , Nk ) number of
participants. The honest participants are {Ni : i ∈ [k, n]}.
The adversary A acquires the local trust scores and the
secret keys of the colluding participants. In Lemma 5,
we prove that the adversary is only able to learn the par-
tial aggregated sum of the targeted honest participants i.e.∑n
i=k+1 tivij for the honest participants j ∈ [n]. Lemma

5 proves that the aggregation protocol of the M2M-REP
system would not allow the adversary to correlate infor-
mation from the colluding participants and the aggregated
sum to infer the trust scores assigned by the targeted par-
ticipant. Further, the adversary would not be able to infer
the communication network of the targeted participant as
well. In a nutshell, the M2M aggregation protocol in an
SMC (Secure Multi-party Computation) setting achieves
the maximum protection of trust scores and relationship
network without the use of a trusted setup and a set of
preselected trusted users.

Assumption 1. [DDH assumption] Given g, ga, gb ∈ G
and a challenge Ω ∈R {gab, R}, it is hard to decide whether
Ω = gab or Ω = R.

Assumption 2. Given g, ga, gb ∈ G,t ∈ Zp, and a chal-
lenge Ω ∈ {gabgt, gabg−t, gab}, it is hard to decide whether
Ω = gabgt or Ω = gabg−t or Ω = gab.

Lemma 1. Assumption 1 implies assumption 2.

Proof. According to assumption 1, (g, ga, gb, t, gab)
c
≈

(g, ga, gb, t, R)
c
≈ (g, ga, gb, t, R ∗ gt)

c
≈ (g, ga, gb, t, gabgt).

Similarly, (g, ga, gb, t, gab)
c
≈ (g, ga, gb, t, R)

c
≈ (g, ga, gb, t, R∗

g−t)
c
≈ (g, ga, gb, t, gabg−t). Hence, the result.

Lemma 2. If there exists two participants Pi and
Pj, such that ti = tj = t. If for some r ∈ [n] vαr +
vβr = 0, for some r ∈ [n], vαr and vβr cannot be
compromised.

Proof. Let

M =



v11 v12 · · · . . . v1n
v21 v22 · · · . . . v2n
. . . . . . . . . . . . . . . . . . . . . . . . .
· · · · · · vαr · · · · · ·
. . . . . . . . . . . . . . . . . . . . . . . . .
· · · · · · vβr · · · · · ·
. . . . . . . . . . . . . . . . . . . . . . . . .
vn1 vn2 · · · . . . vnn



T

Now, consider these 3 cases:
(i) vαr = 1, vβr = −1
(ii) vαr = −1, vβr = 1
(iii) vαr = 0, vβr = 0
Our aim is to show that the final bulletin board does not

provide any information that could make these three cases
distinguishable from each other. We prove it by show-
ing that if there exists an adversary A, who can distin-
guish between these three cases, it could be used as a
distinguisher against Assumption 2. Let, g, ga, gb,Ω ∈
{gabgt, gabg−t, gab} be given inputs. The distinguisher D
needs to find whether Ω = gabgt, or Ω = gabg−t, or
Ω = gab. The distinguisher uses A to distinguish them.
We assume that the adversary A has compromised all
other n − 2 participants in the protocol except Pα and
Pβ . So, it can program them with trust values of its own
choice. The distinguisher D against Assumption 2 works
an follows:
she lets A control an arbitrary number of participants ex-
cept Pα and Pβ . Let, SA be the set of all participants for
which all the secret information including trust values and
secret keys are selected by A. For the rest of n− 2− |SA|
peers, the trust values and the secret keys are assigned
by D. Now, let the public key of peer Pi be given by
Pubi = (gxi1 , gxi2 , . . . , gxin). The distinguisher D implic-
itly assigns ga = gxαr and gb = gxβr . D chooses random
values for all values of xik,∀i ∈ {α, β} and k ∈ [n] \ {r}.
For all participants in SA, A selects their public keys and
trust values. Now, for all i ∈ [n] − {α, β}, such that
Pi /∈ SA, D publishes the vector Ci = (ci1, ci2, . . . , cin)
as cij = gxijyijgtvij , j ∈ [n]. Since, the values of xij , yij
are known to D, it can calculate cijs for all i, j such that
Pi /∈ SA

⋃
{Pα, Pβ} and j ∈ [n]. Similarly, for all i such

that Pi ∈ SA, A can compute Ci as it selects all secrets
for these participants. Now for i ∈ {α, β}, for j ∈ [n]\{r},
D can calculate cij as it knows all the necessary secrets.
Now, D assigns cαr = gaK1/Ω and cβr = gbK2Ω, where

K1 =
∑α−1
k=1 xkr −

∑β−1
k=α+1 xkr −

∑n
k=β+1 xkr and K2 =∑α−1

k=1 xkr +
∑β−1
k=α+1 xkr−

∑n
k=β+1 xkr. Since, D has cho-

sen all these values itself, it can compute K1 and K2.
Now, observe that since cαr = gxαryαrgtvαr , and D has
set cαr = gaK1/Ω, if Ω = gabgt, we will implicitly have
vαr = −1. Similarly, since cβr = gxβryβrgtvβr , and D
has set cβr = gbK2Ω, if Ω = gabgt, we will implicitly have
vβr = 1. Similarly, if Ω = gabg−t, we have vαr = −vβr = 1.
Also if Ω = gab, we have vαr = vβr = 0. Now, if A can
properly distinguish the bulletin boards for the three cases,
then D can also distinguish between the three plausible
values of Ω. Hence, the lemma holds.

Lemma 2 proves that when there exist two honest par-
ticipants having the same weight such that the sum of their
inputs is zero, then the adversary, who has corrupted all
other participants, will not be able to distinguish between
the following three cases:

1. vαr = 1, vβr = −1

2. vαr = −1, vβr = 1

3. vαr = 0, vβr = 0

The reason behind this is the fact that our scheme only al-
lows everyone (including the adversary) to learn the weighted
sum of the inputs. The weights are publicly known. Also
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known to the adversary, is the set of inputs of all the n−2
colluding participants. Thus, the adversary can find the
weighted sum of the two honest participants. This leaves
the adversary with a linear relation of the form v1+v2 = λ,
where v1 and v2 are the inputs of the two honest partici-
pants and λ can be obtained via dividing the weighted sum
of the two honest participants by the weights of the two
honest participants. In Lemma 2, we show that the adver-
sary will not be able to distinguish between all the possible
values of v1 and v2 that make the sum equal to 0. Also,
in Lemma 3, we show that a similar adversary will not be
able to distinguish between the two cases (v1, v2) = (1, 0)
and (v1, v2) = (0, 1), when the sum of v1 and v2 is 1,
since these are the only possible values that could make
v1 + v2 = 1. Similarly, Lemma 3 also proves that when
v1 + v2 = −1, the same adversary will not be able to find
whether (v1, v2) = (−1, 0) or (v1, v2) = (0,−1).

Lemma 3. If there are two honest participants Pα
and Pβ such that tα = tβ = t and vαr + vβr ∈ {−1, 1}
for some r ∈ [n], vαr and vβr, and there exists ex-
actly one k ∈ {α, β}, such that vkr = 0, no adversary
can deduce whether k = α or k = β.

Proof. Let,

M =



v11 v12 · · · . . . v1n
v21 v22 · · · . . . v2n
. . . . . . . . . . . . . . . . . . . . . . . . .
· · · · · · vαr · · · · · ·
. . . . . . . . . . . . . . . . . . . . . . . . .
· · · · · · vβr · · · · · ·
. . . . . . . . . . . . . . . . . . . . . . . . .
vn1 vn2 · · · . . . vnn



T

Now consider these two cases;

1. vαr + vβr = 1

2. vαr + vβr = −1

We can divide case 1 into two subcases as follows;
(i) vαr = 1, vβr = 0,
(ii) vαr = 0, vβr = 1.
Similarly, we can divide case 2 into these two subcases;
(i) vαr = −1, vβr = 0,
(ii) vαr = 0, vβr = −1

We shall prove that the two subcases of case 1 are in-
distinguishable; the proofs for the other cases are omitted
as they easily follow case 1. We prove this by showing
that if there exists an adversary A who can distinguish
between the two sub-cases of case 1, it can be used as an
adversary against the DDH assumption. Let, g, ga, gb,Ω ∈
{gab, gabgt} be given inputs. The distinguisher D needs to
find whether Ω = gab or Ω = gabgt. The distinguisher uses
A for this purpose. We assume that D has compromised
all the n − 2 peers other than Pα and Pβ . So, it can ei-
ther program them with trust values of its own choice or
may allow A to do the same. The distinguisher D works

as follows: it lets A control an arbitrary number of peers
except Pα and Pβ . Let SA be the set of all peers con-
trolled by A. For all peers in SA, A selects the values of
all secret keys and the trust vectors suitably. For the rest
of n− 2− |SA| peers, the distinguisher D selects all trust
values and secrets randomly. Let, the public key of peer
Pi be given by Pubi = (gxi1 , gxi2 , . . . , gxin). D inserts ga

as gxαr and gb as gxβr . For i ∈ {α, β} and k ∈ [n] \ r,
D chooses random values as xik. Now, for all i such that
Pi ∈ SA, A publishes the vector Ci = (ci1, ci2, . . . , cin),
where cij = gxijyijgvijti ,∀j ∈ [n]. Since, A selects all
secrets for these peers, it can compute the vector Ci for
these peers. Similarly, for all i ∈ [n] − {α, β} such that
Pi /∈ SA, D computes the vector Ci. Since, D selects
the secrets for all these peers, it can compute the vec-
tors Ci for all these peers. Now for i ∈ {α, β}, and for
j ∈ [n] \ {r}, D can calculate cij as it knows all the nec-
essary secrets. Now, D assigns cαr = gaK1gt/Ω and cβr =

gbK2Ω, where K1 =
∑α−1
k=1 xkr−

∑β−1
k=α+1 xkr−

∑n
k=β+1 xkr

and K2 =
∑α−1
k=1 xkr +

∑β−1
k=α+1 xkr −

∑n
k=β+1 xkr. Since,

∀k ∈ [n], gxkr are known to D, it can compute K1 and
K2, and hence can compute cαr, cβr. Observe that since,
cαr = gxαryαrgvαrtα = gxαryαrgvαrt, and D has set cαr =
gaK1gt/Ω, if Ω = gabgt, then we will have vαr = 0 and if
Ω = gab, then we will have vαr = 1. Similarly, since cβr =
gxβryβrgvβrtβ = gxβryβrgvβrt, and D has set cβr = gbK2Ω,
if Ω = gabgt, we will have vβr = 0 and if Ω = gab, we
will have vβr = 1. All these cryptograms are uploaded to
the bulletin board. Now, if A can properly distinguish the
bulletin boards for the two sub-cases, namely for Ω = gab

and Ω = gabgt, then D can also distinguish between the
three plausible values of Ω.

Using the above method, we can prove the lemma for
the second case as well. The proof is almost same as above.
However, in this case, the distinguisher will have to set
cαr = gaK1/Ω and cβr = gbK2Ω/gt. Everything else should
remain same. So, if Ω = gab, we will have vαr = 0 and
vβr = −1. Alternatively, if Ω = gabgt, we will have vαr =
−1 and vβr = 0. The proofs for the second and other
cases are omitted as they easily follow the proof for the
first case.

The security of the M2M-REP reputation protocol un-
der the DDH assumption is proved in Lemma that proves
the security of multi-party computation under Assumption
3 . Hence, the protocol is secure under the DDH assump-
tion.

Assumption 3. Let gai , gbi , i = 1, 2, . . . , t be given. Also
let, Ω1 = (l1, l2, . . . , lt+1),Ω2 = (l′1, l

′
2, . . . , l

′
t+1), where

li = gaibigmi and l′i = gaibigni , i = 1, 2, . . . , t and lt+1 =
1∏t

j=1 g
aibi

gmt+1 , l′t+1 = 1∏t
j=1 g

aibi
gnt+1 . Again assume,

g
∑t+1
i=1 mi

c
≈ g

∑t+1
i=1 ni . Now, given Ω ∈ {Ω1,Ω2}, it is hard

to decide whether Ω = Ω1 or Ω = Ω2.

Lemma 4. DDH assumption implies assumption 3.
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Proof. According to the DDH assumption given g, gai , gbi ,

gaibi
c
≈ R. Hence, gaibigmi

c
≈ R

c
≈ gaibigni ,∀i ∈ [t].

Hence, Ω1 = (l1, l2, . . . , lt+1) = (ga1b1gm1 , ga2b2gm2 , . . . ,

gatbtgmt , 1∏t
j=1 g

aibi
gmt+1)

c
≈ (ga1b1gm1 , ga2b2gm2 , . . . ,

gatbtgmt , 1∏t
j=1 g

aibigmi
g
∑t+1
i=1 mi)

c
≈ (R1, R2, . . . , Rt,

1∏t
j=1 Ri

g
∑t+1
i=1 mi)

c
≈ (R1, R2, . . . , Rt,

1∏t
j=1 Ri

g
∑t+1
i=1 ni)

c
≈ (ga1b1gn1 , ga2b2gn2 , . . . , gatbtgnt , 1∏t

j=1 g
aibigni

g
∑t+1
i=1 ni)

c
≈ (ga1b1gn1 , ga2b2gn2 , . . . , gatbtgnt , 1∏t

j=1 g
aibi

gnt+1)

= (l′1, l
′
2, . . . , l

′
t+1) = Ω2.

In Lemma 5, we extend the results of Lemma 2 and 3.
In Lemma 2 and 3, we considered the privacy of two honest
users having the same weight in a setting where all other
participants are corrupted by the adversary. In Lemma 5,
we consider the scenario where there are a number of hon-
est participants each one having a distinct weight. Here,
we also show that the adversary is strictly limited to learn
the weighted sum of the inputs of the uncompromised par-
ticipants. Let, V1, V2, . . . , Vt be the t uncompromised par-
ticipants, with weights equal to w1, w2, . . . , wt, and inputs
equal to v1, v2, . . . , vt, then the adversary can only com-
pute

∑t
i=1 wivi. This is a linear equation where wi’s are

public and vi’s can be only −1, 0 or 1. Note that, the ad-
versary can compute the same by subtracting the weighted
sum of the inputs of the compromised participants from
the weighted sum of all inputs. That is, the adversary will
not learn anything extra other than the output of the pro-
tocol. In other words, our protocol does not divulge any
information that the adversary cannot deduce from the
final output of the protocol. Thus, our scheme is secure.

Lemma 5. Let us assume that the adversary A colludes
with peers in the set SA = {Pi : i ∈ [k]} for some arbitrary
k. Let,

M =


v11 v21 · · · vk1 vk+11 vk+21 · · · vn1

v12 v22 · · · vk1 vk+12 vk+22 · · · vn2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
v1k v2k · · · vkk vk+1k vk+2k · · · vnk
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
v1n v2n · · · vkn vk+1n vk+2n · · · vnn



M
′
=


v11 v21 · · · vk1 v′k+11 v′k+21 · · · v′n1

v12 v22 · · · vk1 v′k+12 v′k+22 · · · v′n2

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
v1k v2k · · · vkk v′k+1k v′k+2k · · · v′nk
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
v1n v2n · · · vkn v′k+1n v′k+2n · · · v′nn



Also assume that
∑n
i=k+1 tivij =

∑n
i=k+1 tiv

′
ij ,∀j ∈

[n].The adversary A will not be able to distinguish between
the two bulletin boats corresponding to the two sets of local
trust values M and M ′.

Proof. Let us denote the compromised participants as P1, P2,
. . . , Pκ. The adversary chooses the critical parameters for
all the compromised participants. This includes the scores
and the secret keys. So, the adversary A can compute

the feedbacks for all the compromised participants. Let us
also assume that the secret key of Pi is (xi1, xi2, . . . , xin)
and the corresponding public key is (gxi1 , gxi2 , . . . , gxin).
Hence the feedback of Pi, i ∈ [k + 1, n] will be Ci =
(ci1, ci2, . . . , cin) when M is used as the matrix of local
trust values. We again assume that the feedback of Pi is
C ′i = (c′i1, c

′
i2, . . . , c

′
in) when M ′ is the matrix of local trust

values. Here, cij = gxijyijgtivij and c′ij = gxijyijgtiv
′
ij ;∀i, j ∈

[n]. We know that gxnjynj = 1∏n−1
k=1 g

xkjykj
,∀j ∈ [n]. Hence,

cnj = gtnvnj

Kj
∏n−1
k=κ+1 g

xkjykj
. According to the assumption∑n

i=k+1 tivij =
∑n
i=k+1 tiv

′
ij ,∀j ∈ [n]. Now, from As-

sumption 3, we can say (ck+1j , ck+2j , . . . ,

cnjKj)
c
≈ (gxk+1jyk+1jgtk+1vk+1j , gxk+2jyk+2jgtk+2vk+2j , . . . ,

gxn−1jyn−1jgtn−1vn−1j , gtnvnj∏n
z=k+1 g

xzjyzj )
c
≈ (gxk+1jyk+1jgtk+1v

′
k+1j , gxk+2jyk+2jgtk+2v

′
k+2j , . . . , gxn−1jyn−1j

gtn−1v
′
n−1j ,

tnv
′
nj∏n

z=k+1 g
xzjyzj ) = (c′k+1j , c

′
k+2j , . . . , c

′
n−1j , c

′
nj ∗

Kj). Hence the lemma holds.

5.3. Integrity Analysis

We analyze the privacy of collaborating participants in
two aspects: first the adversary does not know the trust
scores of the collaborating participants, and second, the
scores on the bulletin board are unlinkable. Each partici-
pant can have the global reputation of machines from the
public bulletin board, which could not be used in correla-
tion with information from other participants to infer the
local trust scores of the target participants and their rela-
tionship network (which participants are connected with
which machines). The published feedback on the bulletin
board is the valid score of either −1, 0, or 1 in the fol-
lowing format gxygv for v = −1, 0, or 1. The associated
1-out-of-3 NIZK reveals nothing more than the statement
of feedback correctness: the v is either −1, 0, or 1. The en-
crypted trust score ensures that participating users would
not learn anything about the feedback except the final ag-
gregated reputation score. The final global reputation is
public on the public bulletin board, and it is impossible
to ensure the privacy of feedback if exceptionally all par-
ticipants collaborate with each other against the target
participant, but this is an extreme scenario. The feedback
values are fully protected if the adversary colludes with
only a few interacted machines of the target participant as
shown by Lemma 5.

6. Complexity Analysis and Evaluation

In this section, first, we analyze the complexity of pro-
tocol operations of M2M-REP, and then provide the pro-
totype implementation to analyze the computation and
bandwidth overhead.

6.1. Complexity Analysis

Table 2 presents the computational and communica-
tion complexity of the protocol for the user and the ag-
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Entity Computational overhead Communication overhead
Keys feedback NIZK Proof Keys feedback NIZK Proof

Participant O(n) O(n) O(n) O(n) O(n) O(n)
Aggregator - O(n) brute force search O(n2) O(n2) O(n2) O(n2)

Table 2: Computational and Communication Complexity of Cryptographic Operations of M2M.

Proposal Architecture Adversarial Model Privacy Complexity
Kamvar et al. [14] Decentralized Honest privacy not protected O(logn)

Zhai et al. [30] Distributed Honest depends on selected peers O(logn)+O(logn)
Bethencourt et al. [12] Centralized Malicious depends on trusted party O(1)

Stefanos et al. [66] Decentralized Semi-honest protects privacy - -
Clark et al. [67] Decentralized Semi-honest protects privacy - -
Hasan et al. [37] Decentralized Malicious depends on preselected peers O(n)+(logN)

Androulaki et al. [36] Decentralized Semi-honest compromised if users collude O(n)
Gudes et al. [35] Decentralized Semi-honest depends on witness peers O(n2)+O(N)
Nitti et al. [41] Distributed Honest privacy not protected - -
Chen et al. [43] Distributed Honest privacy not protected - -
Yan et al.[34] Centralized Semi-honest privacy protected O(N)

Hasan et al. [13] Decentralized Semi-honest depends on preselected peers O(n)
Nithyanand et al.[48] Distributed Semi-honest privacy protected O(N2)

Pavlov et al. [47] Distributed Semi-honest privacy depend on witness peers O(N3)
Lin et al. [38] Distributed Honest privacy not protected O(n2)
M2M-REP Decentralized Malicious/Semi-honest protects privacy O(n)+O(n)

Table 3: Comparison of M2M Reputation System with other Centralized and Decentralized Reputation Systems.n is the number of users and
N is preselected or witness peers.

gregator. At the user side, the protocol requires n expo-
nentiations to generate the keys (public, private and re-
structured), and the cryptograms of trust score, and 11n
exponentiations to generate the proof of knowledge of the
secret key and the well-formedness proofs. Here, n is the
total number of machines in the network. Similarly, the
aggregator requires O(n2) for the verification of the well-
formedness and O(n) for the computation of final global
reputation score. In aggregate, the total computational
cost for generating the cryptogram (feedback and NIZK)
is O(n)+O(n). In terms of bandwidth, the protocol incurs
the following costs for reporting the cryptograms to the
bulletin board at the user side: O(n) bandwidth is required
for exchanging the keys, O(n) for the exchange of partic-
ipants identities, O(n) for the encrypted trust scores, and
O(n) for exchanging the non-interactive zero-knowledge
proof.

In Table 3, we compare the M2M-REP system with
centralized and decentralized privacy preserving reputa-
tion schemes with respect to computational complexity,
system architecture, adversarial model and the privacy im-
plication of the system. From Table 3, we can observe that
our approach achieves acceptable computational overhead
when compared to other reputation systems for the ma-
licious models e.g. the approach of Hasan et al. has a
computation complexity of O(n + logN), but requires a
pre-trusted set of users for the privacy protection and the
approach of Bethencourt et al. [12] that requires a trusted
centralized system for receiving and aggregation of feed-
back from clients.

6.2. Prototype Implementation

We now evaluate the performance of the M2M-REP
system. We implemented cryptographic operations of M2M-
REP in Java using the bouncy castle cryptographic library.
We used the standard NIST Curve P-256 [68] and SHA-512
for 128-bit security. The experiments were performed on
an Intel i-7 CPU (3.4GHz) system, having 8GB memory
with a Windows 10 operating system. The implementa-
tion consists of two parts. 1) The client-side module that
computes and reports cryptograms of trust scores to the
bulletin board, and 2) the aggregator module that com-
putes aggregated reputation of machines by utilizes cryp-
tograms from the bulletin board. The functionalities of
the client and the aggregator are implemented as separate
Java modules, and the bulletin board is implemented as a
web server.

At the client side, the computation time is measured for
three major operations: 1) generating the encryption keys
(private, public, and restructured public keys), 2) creat-
ing a cryptogram of trust score, and 3) generating a non-
interactive zero-knowledge proof of well-formedness. At
the aggregator side, the evaluation is performed for com-
puting the global reputation.

6.3. Computation Runtime

We begin by analyzing the amount of CPU time re-
quired to compute the cryptograms at the client side for
a varied number of machines. The computation time at
the client side depends on three major operations: gen-
erating cryptographic parameters (public, private and re-
structured keys), creating a cryptogram of trust score and
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the NIZK proof. We evaluate the performance over the sin-
gle core of Intel 3.4GHz CPUs with 8GB of memory. The
number of machines is varied from 100 to 100K. We iterate
experiments 10 times and report the average computation
time. Figure 3.A presents the computational run time re-
quired for generating the cryptograms with the different
number of machines. We observe that the time required
to generate the cryptograms for 1000 machines is around
less than 50 seconds, however, it increases linearly with
the number of machines in the aggregation time window.
The computation time is acceptable as normally a large
number of participants only interact with a small subset
of machines. The key generation and encryption are very
efficient operations since they only involve simple compu-
tations. On the other hand, generating a NIZK proof is
the most expensive operation as it requires 10 modular
exponentiations for generating and making the proof non-
interactive, respectively. If we exclude the NIZK proof
(i.e. if we consider only honest but curious model) then
the computation time required even for a large number
of machines reduces to around 200 seconds i.e. for 100K
machines. M2M-REP operations can be parallelized and
implemented over multiple cores. The parallelization of
computation over multiple cores would significantly reduce
the computation time within acceptable bounds even for
a very large number of machines.

At the aggregator side, the time required for comput-
ing the aggregated reputation score for 100K responses is
around 100 seconds which can also be reduced further by
parallelization of computation over multiple cores.

6.4. Communication Bandwidth

Regarding the bandwidth overhead, each participant
needs to send the public keys, the cryptograms of trust
scores and the associated NIZK proofs of cryptogram’s
well-formedness to the public bulletin board. This re-
sults in a bandwidth overhead of around less than 20MB if
the client provides feedback for 1000 machines in the net-
work as shown in Figure 3.B. Generations of the keys and
the encrypted feedbacks are lightweight operations. The
computation of NIZK proofs in the feedback phase is the
most expensive operation. The use of NIZK proofs of well-
formedness brings the benefit of not allowing the malicious
participant to significantly influence the aggregation pro-
cess. The bandwidth overhead also increases linearly with
the number of machines. Specifically, for the 100K ma-
chines, this results in a bandwidth of around 120MB. It
can be observed that the‘honest but curious’ model would
not incur high communication overhead.

7. Salient Features and Limitations

In this section, we outline main features of the proposed
system and its limitations.

(a) Computation Runtime

(b) Communication Bandwidth

Figure 3: Computation and Communication Cost for the Feedback
provider.

7.1. Features of The Protocol

The main features of the protocol are as follows:

1. The encrypted direct trust scores of participants (feed-
backs for their interacted machines) are available on
the public bulletin board, which can be used by any-
one to deduce the aggregated reputation of the ma-
chine. The requesting participant does not require
to ask her friends about the reputation of unknown
peers, instead, she has to query the bulletin board for
the updated reputation of any machine in the net-
work. Further, the reputation of any machine can be
computed any time whether the feedback provider is
online or offline. The participant can also verify the
well-formedness of input scores and reputation scores
without learning anything about participants. The
system ensures privacy-preservation at every stage
of computation.

2. The system does not ensure that the participating
users are providing honest recommendations (i.e. a
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machine provided honest content but may be rated
by some others as being malicious intentionally). It
assumes that participants act honestly while select-
ing their feedback scores. However, all the partici-
pants are strictly limited to providing within-range
inputs (i.e. values of 0, -1 and 1) and are required to
demonstrate this by means of zero-knowledge proofs
of well-formedness of feedbacks. The well-formedness
proofs of trust score do not allow participants to re-
port out-of-range trust scores. This would prevent
participants from maliciously increasing or decreas-
ing reputation of some specific machines. Further-
more, the collaborating participant cannot alter or
delete already submitted trust scores available on the
bulletin board.

3. The collaborating participants do not require to re-
main online during the aggregation process. The
participant can submit the direct score and leave the
network without deleting their data on the bulletin
board or reassigning any of their unfinished tasks to
other participants.

7.2. Limitations

The M2M-REP system restricts participants from pre-
senting invalid feedback through the usage of proofs of
well-formedness. However, it does not provide any mech-
anism for demonstrating whether the feedback providers
have indeed had transactions with the machine or not.
This limitation can be addressed through the use of unique
token issued to the feedback provider, but generating such
a token without a trusted system in a decentralized net-
work is a challenging task. In this setup, the feedback
is only posted on the bulletin board if the participants
prove holding of a token. We are looking into the possi-
ble ways to generate the unique token and its associated
zero-knowledge proof to ensure that the feedback provider
is a valid participant. The current design of M2M-REP
system does not offer any personalization, i.e. it does not
allow appraisal of feedback scores from a finite subset of all
participants. As part of our future work, we are looking
into methods of improving this baseline method so that
the requester or the aggregator can select a subset of feed-
back providers without letting them know while ensuring
the preservation of the privacy and security properties.
This can be analogous to the schemes for collaborative
filtering and collaborative recommendation with privacy-
preservation.

8. Conclusion

M2M-REP is a privacy-preserving decentralized rep-
utation system for evaluating the trustworthiness of ma-
chines in the autonomous M2M communication system.
Specifically, the trustworthiness of machines is computed
by aggregating the direct trust scores obtained from the
users, who already have had interactions with the ma-
chines. We achieve properties relating to privacy-preservation

through the use of secure multi-party computation tech-
niques. The system exhibits the following properties: 1)
the computation operations of M2M are decentralized and
no trusted authority is required for preserving the partic-
ipant privacy, 2) the participants cannot provide out-of-
range encrypted trust scores which diminishes the freedom
of malicious participants, 3) it incurs reasonable commu-
nication and computation overheads with the added ben-
efit of privacy protection under the malicious adversarial
model, and 4) it provides public verifiability of computa-
tion. We prototype the functionalities of this system in or-
der to evaluate the computation and communication over-
head. Our reputation scheme has minimal computation
and communication overheads with the additional proper-
ties of decentralization, verification, and privacy preserva-
tion under the malicious adversarial model.
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