
Synergies Between Complexity Theory and Nondeterministic
Kolmogorov Complexity

Halley Goldberg* Jinqiao Hu† Zhenjian Lu‡ Jingyi Lyu§ Igor C. Oliveira¶

February 8, 2026

Abstract

We investigate central questions in complexity theory through the lens of time-bounded Kolmogorov
complexity, focusing on nondeterministic measures [AKRR03] and their extensions. In more detail, we
consider succinct encodings of a string by programs that may be nondeterministic (nK), randomized
(rK), or combine both resources – yielding richer notions such as rnK, pnK, and their generalizations
to higher levels of the polynomial hierarchy. Among other contributions, we obtain the following results:

1. Unconditional Complexity Lower Bounds. Let RnKt[s(n)] denote the set of strings x such that
nKt(x) ≥ s(|x|). We show that RnKt[γ·n] /∈ NTIME[2o(n)] ∩ coNTIME[2o(n)], for every constant
1/2 < γ < 1. For the problem of estimating rnKt complexity, the randomized extension of nKt, we
establish lower bounds against AMTIME[npolylog(n)] and SIZE[npolylog(n)]. These results can be seen
as a significant strengthening of the 15-year old lower bound RnKt[Ω(n)] /∈ NP ∩ coNP obtained in
[All10, AKRR11], and are among the strongest known unconditional lower bounds in meta-complexity.

2. Proof Complexity and Symmetry of Information. [HIL+23, HLO24] showed that cryptographic
one-way functions exist if and only if the symmetry of information (SoI) principle fails on average for
pKt complexity. In contrast, we establish that SoI holds on average in the presence of nondeterminism,
i.e., pnKt(x, y) ≈ pnKt(y) + pnKt(x | y) with high probability if (x, y) is generated by a polynomial-
time sampler. On the other hand, we prove that if SoI holds in the worst case for pnKt complexity then
coNP ⊈ AM. In particular, bridging the gap between average-case and worst-case SoI for pnKt would
imply that certain coNP statements do not admit feasible proofs.

3. Average-Case vs Worst-Case Complexity. We consider the longstanding problem of relating the
average-case and worst-case complexities of the polynomial hierarchy (PH), i.e., showing that DistPH ⊆
AvgBPP =⇒ PH ⊆ BPP. Building on [Hir20, HLO25], we prove that this implication holds if and
only if Gap-MINpKTPH ∈ prBPP =⇒ Mild-Gap-MINpKTPH ∈ prBPP, i.e., the complexities of
approximating pKt with an oracle to PH with respect to different approximation regimes are related.
Consequently, progress on the meta-complexity of nondeterministic variants of Kolmogorov complexity
is unavoidable in order to understand the average-case complexity of the polynomial hierarchy.

These results reveal deep links between complexity theory and nondeterministic Kolmogorov com-
plexity, pointing to several directions for further research.

*Simon Fraser University. E-mail: halley goldberg@sfu.ca
†University of Warwick. E-mail: jinqiao.hu@warwick.ac.uk
‡University of Victoria. E-mail: zhenjianlu@uvic.ca
§Tsinghua University. E-mail: lv-jy22@mails.tsinghua.edu.cn
¶University of Warwick. E-mail: igor.oliveira@warwick.ac.uk

1

Contents
1 Introduction 3

1.1 Overview . 3
1.2 Results . 3

1.2.1 Unconditional Complexity Lower Bounds for Estimating Complexity 3
1.2.2 Proof Complexity and Symmetry of Information . 5
1.2.3 Average-Case vs. Worst-Case Complexity in the Polynomial Hierarchy 7

1.3 Techniques . 9

2 Preliminaries 15
2.1 Computational Models . 16
2.2 Kolmogorov Complexity . 17

2.2.1 Definitions . 17
2.2.2 Useful Tools . 21

2.3 Average-Case Complexity . 22
2.4 Pseudorandomness . 23

3 Useful Results About Nondeterministic Kolmogorov Complexity 24
3.1 nK . 24
3.2 rnK . 26
3.3 pnK . 30

4 Unconditional Lower Bounds for Estimating Complexity 31
4.1 Hardness of MnKtP . 31

4.1.1 Randomness Efficient Success Amplification for rK . 31
4.1.2 Reconstruction from Oracle Access to Dense Language . 33
4.1.3 Derandomizing rKL . 35
4.1.4 Iterative Construction of High-Complexity Strings . 37
4.1.5 Limitations of the Iterative Construction for γ ≤ 1/2 . 39

4.2 Hardness of Gap-MrnKtP . 40
4.2.1 Exponential AMTIME ∩ coAMTIME Lower Bound via Iterative Construction 40
4.2.2 AMTIME Lower Bound via Explicit Constructions . 44
4.2.3 Non-Uniform Lower Bound via Near-Maximum Circuit Lower Bounds 46

5 Nondeterminism, Symmetry of Information, and Proof Complexity 50
5.1 Average-Case Symmetry of Information for pnKt . 50

5.1.1 A Semi-Symmetry of Information Theorem for pnKt . 50
5.1.2 From Semi-SoI for pnKt to Average-Case SoI for pnKt . 51

5.2 Worst-Case Symmetry of Information for pnKt and coNP vs. AM 52
5.3 The Case of rnKt . 56
5.4 Relativization Barriers for Symmetry of Information . 57

6 Average-Case Versus Worst-Case Complexity 61
6.1 Characterizing Easiness of NP via Easiness of Mild-Gap-MINpKTPH 61

6.1.1 The Easy Direction . 61
6.1.2 The Hard Direction . 62

6.2 Worst-Case Easiness of Gap-MINpKTPH from Average-Case Easiness of PH 68
6.3 Average-Case Easiness of PH from Worst-Case Easiness of Gap-MINpKTPH 69

6.3.1 Technical Tools . 69
6.3.2 Proof of Lemma 6.13 . 74

6.4 The Deterministic Case . 75
6.5 A Relativization Barrier . 76

A On Symmetry of Information for nKt 81

2

1 Introduction

1.1 Overview

Over the last decade, several fundamental problems from algorithms and complexity theory have been
investigated through the lens of (time-bounded) Kolmogorov complexity and meta-complexity. Significant
and influential advances have occurred in areas such as learning theory [CIKK16], cryptography [LP20],
and average-case complexity [Hir21]. In some cases, such as [Hir21] and subsequent work [GKLO22],
although the result itself is not about Kolmogorov complexity, the only known proof technique uses Kol-
mogorov complexity in an essential way. We refer to the surveys [LO22, Hir22a, MP25] for more context
and background.

These and other developments have led to a renewed interest in time-bounded Kolmogorov complexity,
meta-complexity, and their applications in theoretical computer science (see, e.g., [Sim23]). An important
perspective explored in many results, specially in the last few years, has been the use of extensions of the
classical theory of time-bounded Kolmogorov complexity to more powerful computational settings, such as
probabilistic Kolmogorov complexity [GKLO22, LO22]. Indeed, many if not most results in the area from
the last few years employ probabilistic variants of Kolmogorov complexity (see, e.g., [Ila23, San23, HIL+23,
HN23, LP23, Hir23, GK23, HLO24, HLN24, LS24, HKLO24, GK24, LORS24, HN25, KK25, LP25]).

In this work, we advance this approach by further developing the theory of nondeterministic Kolmogorov
complexity. Building on and extending previous work [AKRR03, BLvM05, All10, AKRR11, HLO25], we
demonstrate its relevance to several central problems in complexity theory. Specifically, our contributions
span three fundamental areas: unconditional complexity lower bounds, NP versus coNP and related sep-
arations, and the average-case complexity of the polynomial hierarchy. In each of these, we show that
nondeterministic Kolmogorov complexity and its extensions offer a productive – and in some contexts,
unavoidable – perspective on long-standing challenges in complexity theory.

Next, we explain our results in detail.

1.2 Results

1.2.1 Unconditional Complexity Lower Bounds for Estimating Complexity

We will consider certain natural extensions of Levin’s Kt complexity [Lev84] to the setting of non-
deterministic computations [AKRR11]. As usual, in order to define time-bounded notions of Kolmogorov
complexity, we fix a time-efficient universal machine U , and consider programs Π encoded with respect to
U (see Section 2).

For a string x ∈ {0, 1}∗, the nondeterministic time-bounded Kolmogorov complexity of x is defined as

nKt(x) ≜ min
Π∈{0,1}∗, t∈N

{
|Π|+ ⌈log t⌉

∣∣∣∣∣ ∀w ∈ {0, 1}t,Π(w) outputs x or ⊥ in t steps;

∃w ∈ {0, 1}t,Π(w) outputs x in t steps

}
.

In other words, by viewing w as a nondeterministic string, in at least one computational path, the program
Π outputs x, while in every computational path, Π outputs either x or the failure symbol ⊥. For this
reason, the program Π uniquely specifies x. In addition, x can be recovered from Π in time at most t using
nondeterminism.

Lower bounds for nKt. Let MnKtP be the following problem: Given (x, 1s), where x ∈ {0, 1}∗ and
s ∈ N, decide whether nKt(x) ≤ s (“yes” case) or nKt(x) > s (“no” case). Moreover, for s : N → N, we
let RnKt[s] = {x ∈ {0, 1}∗ | nKt(x) ≥ s(|x|)}. We say that a language L is dense if there is a positive
constant b such that, for every large enough n, we have |L ∩ {0, 1}n| ≥ 2n/nb.

3

Theorem 1.1 (Complexity Lower Bounds for Estimating nKt). There is a constant ε > 0 such that

MnKtP ̸∈ NTIME[2εn] ∩ coNTIME[2εn].

Moreover, given a constant 1/2 < γ < 1, there exists ε = ε(γ) > 0 such that, for every dense language
L ⊆ RnKt[γ·n], we have L ̸∈ NTIME[2εn] ∩ coNTIME[2εn].

It was previously known that MnKtP /∈ NP∩coNP [All10, AKRR11]. In contrast, Theorem 1.1 provides
an exponential lower bound on the complexity of MnKtP. More generally, it shows that distinguishing
strings of bounded complexity (“structure”) from random strings (“randomness”) is hard.

We observe that, in order to obtain a lower bound of the form 2Ω(n) forRnKt[γ·n], our techniques require
assuming γ > 1/2; see Section 4.1.5 for details. Establishing lower bounds of magnitude 2Ω(n) forRnKt[γ·n]
when 0 < γ ≤ 1/2 remains an open problem.

Since MnKtP ∈ PNEXP ⊆ NEXP/poly and every language in NEXP non-uniformly reduces to MnKtP
[AKRR11], it follows that MnKtP ̸∈ SIZE[poly] if and only if NEXP ⊈ SIZE[poly]. In particular, a
breakthrough complexity separation would follow if we could show that MnKtP ̸∈ SIZE[poly]. While we
currently don’t know how to prove the required lower bound for MnKtP, we are able to establish such a
lower bound for the related problem of estimating rnKt, the randomized extension of nKt.

For a string x ∈ {0, 1}∗, the randomized nondeterministic time-bounded Kolmogorov complexity of x is
defined as

rnKt(x) ≜ min
Π∈{0,1}∗, t∈N

{
|Π|+ ⌈log t⌉

∣∣∣∣ Pr
r∼{0,1}t

[
∀w ∈ {0, 1}t,Π(w; r) outputs x or ⊥ in t steps;

∃w ∈ {0, 1}t,Π(w; r) outputs x in t steps

]
≥ 2

3

}
.

Equivalently, there exists a nondeterministic program Π(r) such that, with probability at least 2/3 over r,
Π(r) uniquely specifies x and enables its recovery in nondeterministic time at most t.

Lower bounds for rnKt. For two functions s1, s2 : N → N, let Gap-MrnKtP[s1, s2] be the following
promise problem: Given x ∈ {0, 1}∗, decide whether rnKt(x) ≤ s1(|x|) (“yes” case) or rnKt(x) > s2(|x|)
(“no” case). For a promise problem Π = (YES,NO) and a complexity class C, we say that Π /∈ C if there is
no language L ∈ C such that YES ⊆ L and NO ⊆ {0, 1}∗ \ L. For a language O and a function s : N→ N,
we let SIZEO[s] denote the set of languages computed by Boolean circuits with oracle access to O and of
size at most s(n). Similarly toRnKt[s], we can also consider the setRrnKt[s], which is defined in the natural
way using rnKt instead of nKt.

Theorem 1.2 (Complexity Lower Bounds for Estimating rnKt). The following statements hold:

1. For every constant 1/2 < γ < 1, there exists a constant ε > 0 such that

Gap-MrnKtP[γ · n, n− 1] ̸∈ AMTIME[2εn] ∩ coAMTIME[2εn].

Moreover, given a constant 1/2 < γ < 1, there exists ε(γ) > 0 such that, for every dense language
L ⊆ RrnKt[γ·n], we have L ̸∈ AMTIME[2εn] ∩ coAMTIME[2εn].

2. For every constant γ > 0,

Gap-MrnKtP
[
2log

γ n, n− 1
]
̸∈ AMTIME

[
npolylog(n)

]
.

Moreover, for every dense language L ⊆ RrnKt[2log
γ n], we have L ̸∈ coAMTIME

[
npolylog(n)

]
.

4

3. For every constant γ > 0 and O ∈ AM ∩ coAM,

Gap-MrnKtP
[
2log

γ n, n− 1
]
̸∈ SIZEO

[
npolylog(n)

]
.

Moreover, for every dense language L ⊆ RrnKt[2log
γ n], we have L ̸∈ SIZEO[npolylog(n)

]
.

To the best of our knowledge, no previous lower bounds against AM, SIZE[poly], and exponential time
nondeterministic classes were known for natural meta-computational problems. These results thus provide
the strongest unconditional lower bounds in meta-complexity to date.

1.2.2 Proof Complexity and Symmetry of Information

Symmetry of Information (SoI) is a fundamental property of (time-unbounded) Kolmogorov complex-
ity [ZL70] with applications in various areas (e.g., [SUV17, LV19]). It states that for any strings x, y ∈
{0, 1}n,

K(x, y) ≈ K(y) + K(x | y) ≈ K(x) + K(y | x),

up to an additive O(log n) term. In other words, describing x and y jointly is no shorter, up to logarithmic
terms, than describing one optimally and the other given the first. The trivial direction,

K(x, y) ≤ K(x) + K(y | x) +O(log n),

follows easily by construction, while the non-trivial part asserts that

K(x, y) ≥ K(x) + K(y | x)−O(log n).

While SoI holds for time-unbounded Kolmogorov complexity and fails for Kt complexity [Ron04] (see
Appendix A for related discussions), whether this property is valid for various other notions of time-bounded
Kolmogorov complexity remains unknown. We refer to [KK25] and references therein for more background
on SoI and its connections to complexity theory.

A sequence of papers [HIL+23, HLO24, HLN24] established that the failure of time-bounded versions
of SoI (in a certain average-case sense) is equivalent to the existence of cryptographic one-way functions.
In other words, the existence of provably secure cryptography is intimately connected to time-bounded SoI.

Here we establish a connection between time-bounded SoI and the NP vs. coNP problem (i.e., whether
there is a proof system for which every tautology admits a short proof). In order to discuss our results and
contrast them with previous work, we need to introduce probabilistic extensions of Kt and nKt, in the sense
of [GKLO22] (see also [LO22]).

Probabilistic variants of Kt and nKt. Informally, pKt is simply Kt in the presence of public randomness,
i.e., x has “small” pKt complexity if with probability at least 2/3 over the randomness r, x has “small”
Kt complexity given access to r. Formally, for x ∈ {0, 1}∗, its probabilistic time-bounded Kolmogorov
complexity [HLO24] is given by

pKt(x) ≜ min

{
k ∈ N

∣∣∣∣ Pr
r∼{0,1}2k

[
Kt(x | r) ≤ k

]
≥ 2

3

}
,

where Kt(x | r) denotes the conditional Kt complexity of x given r, i.e., the minimum value |Π| + ⌈log t⌉
over all pairs (Π, t) such that Π is a program that outputs x when given r and runs in at most t steps.

5

Analogously, for a string x ∈ {0, 1}∗, its probabilistic nondeterministic time-bounded Kolmogorov
complexity [HLO24] is defined as

pnKt(x) ≜ min

{
k ∈ N

∣∣∣∣ Pr
r∼{0,1}2k

[
nKt(x | r) ≤ k

]
≥ 2

3

}
.

In other words, bounded pnKt complexity means that in the presence of a typical random string r, x has
bounded nKt complexity.

In more detail, [HLO24] showed that one-way functions exist if and only if SoI fails on average for
pKt, i.e., there is a polynomial-time samplable distribution family {Dn}, where each Dn is supported over
{0, 1}n × {0, 1}n, and a polynomial q such that for every constant c > 0 and for every large enough n,

Pr
(x,y)∼Dn

[pKt(x, y) < pKt(x) + pKt(y | x)− c · log n] ≥ 1

q(n)
.

This means that, under the widely-believed assumption that one-way functions exist, SoI fails on average
for pKt (and for related notions such as Kt and rKt).

In contrast, adapting previous work [HLO25], we show (unconditionally) that SoI holds on average
when both randomness and nondeterminism are present.

Theorem 1.3 (Average-Case Symmetry of Information for Nondeterministic Kolmogorov Complexity). For
every polynomial-time samplable distribution family {Dn}n∈N, where each Dn is supported over {0, 1}n ×
{0, 1}n, there exists a constant c > 0 such that for all large enough n, k ∈ N,

Pr
(x,y)∼Dn

[pnKt(x, y) ≥ pnKt(x) + pnKt(y | x)− c · log n− log k] ≥ 1− 1

k
.

Similarly,

Pr
(x,y)∼Dn

[
rnKt(x, y) ≥ rnKt(x) + rnKt(y | x)− c · log3 n− log k

]
≥ 1− 1

k
.

It is unclear how to extend the proof of Theorem 1.3 to the worst case, i.e., to prove that the relevant
inequality holds for all strings x, y ∈ {0, 1}n. Interestingly, we are able to show that this would separate
coNP from NP in a strong sense, as stated below. Let TAUT ⊆ {0, 1}∗ denote the set of tautologies, i.e.,
Boolean formulas F that always evaluate to 1.

Theorem 1.4. Item 1 implies Item 2 in the following.

1. (Worst-Case Symmetry of Information for Nondeterministic Kolmogorov Complexity). There exists
a constant c > 0 such that for all large enough n ∈ N and x, y ∈ {0, 1}n,

pnKt(x, y) ≥ pnKt(x) + pnKt(y | x)− e,

where e = logc n (resp. e = c · log n).

2. (Hardness of Proving Tautologies). TAUT /∈ AMTIME[t(n)], where t(n) = 2log
d n, for any d ≥ 1(

resp. t(n) = 2n
ε

for some ε ≥ 0
)
.

The above implication remains valid if pnKt is replaced with rnKt in the first item.

6

While several results establish that lower bounds follow from the failure of SoI (see, e.g., [LW95, Hir22c,
HIL+23, HLO24, HLN24]), an interesting aspect of Theorem 1.4 is that here a lower bound follows from
the validity of SoI in a time-bounded setting. In a sense, Theorem 1.4 reduces the lower bound problem of
separating coNP from AM to an upper bound task: showing that for every large enough n and x, y ∈ {0, 1}n,
we have

pnKt(y | x) ≤ pnKt(x, y)− pnKt(x) + poly(log n). (∗)

It is worth mentioning that SoI has been successfully employed as an approach to obtain unconditional
complexity lower bounds [Hir22c]. SoI also plays an important role in the proof of some results from
Section 1.2.1, as explained in Section 1.3.

Next, we show a general result implying that any proof of Equation (∗) must employ non-relativizing
techniques.

Theorem 1.5 (Strong Failure of SoI in Some Oracle World). There exist an oracle O and a constant ε > 0
as follows. For all sufficiently large n ∈ N, there exist strings x, y ∈ {0, 1}n such that, for every complexity
measure µ ∈ {rKt, pKt, nKt, rnKt, pnKt},

µO(x, y) < µO(x) + µO(y | x)− ε · n.

The relativized failure of SoI was known for deterministic and non-deterministic polynomial-time (dis-
tinguishing) complexity (see [BF95, LR05, Lee06]). In contrast, Theorem 1.5 considers Levin-style mea-
sures and their randomized extensions, providing an oracle world where SoI fails in a strong sense for all
these measures and for the same sequence of pairs of strings.

We note that, in order to show the weaker separation NP ⊈ BPP, it is enough to establish Equation (∗)
under the assumption that NP ⊆ BPP (since TAUT /∈ AM implies in particular that NP ⊈ BPP). By
a similar argument, to show NEXP ⊈ BPP, it suffices to prove that NEXP ⊆ BPP =⇒ Equation (∗).
Consequently, as an approach to lower bounds, symmetry of information might be useful even if Equation (∗)
turns out to be false.1

1.2.3 Average-Case vs. Worst-Case Complexity in the Polynomial Hierarchy

Understanding the relation between the worst-case and average-case complexities of NP is a central open
problem in computational complexity theory. In particular, resolving this question is a crucial milestone
for the goal of constructing cryptographic schemes grounded in the worst-case intractability of NP (see,
e.g., [BT06]).

Formally, we would like to show that if NP is easy on average (i.e., DistNP ⊆ AvgBPP) then NP is easy
in the worst case (i.e., NP ⊆ BPP). In order to establish this implication, it is necessary to first establish a
similar result for problems in the polynomial hierarchy (PH), i.e., to prove that if DistPH ⊆ AvgBPP then
PH ⊆ BPP.2 In the terminology of Impagliazzo’s five possible complexity worlds [Imp95], this corresponds
to excluding PH-Heuristica, that is, excluding the possibility that we live in a computational world where
every problem in PH is easy on average but some problems in PH are hard in the worst case.

We show that excluding PH-Heuristica is equivalent to a problem about the meta-complexity of nonde-
terministic Kolmogorov complexity. In order to explain this result, we need to introduce some definitions.

1Interestingly, it is known that NP ⊆ BPP implies that symmetry of information holds for other time-bounded Kolmogorov
complexity measures [Hir22c].

2In order to see this, it is enough to observe that NP ⊆ BPP if and only if PH ⊆ BPP.

7

Gap-MINpKTPH and Mild-Gap-MINpKTPH. First, we observe that, up to a constant factor, nKt(x) is
simply Kt||SAT(x), i.e., the Kt complexity of x when we consider programs that can make non-adaptive
queries to a SAT oracle (see Section 3.1 for the details). More generally, we will consider time-bounded
programs that can make adaptive queries to problems in the polynomial hierarchy.

For a string x ∈ {0, 1}n, a time bound t, a parameter λ ∈ [0, 1], and an oracle O ⊆ {0, 1}∗, the
probabilistic t-time bounded Kolmogorov complexity of x is defines as

pKt,O
λ (x) ≜ min

{
s ∈ N

∣∣∣∣ Pr
r∼{0,1}t

[
Kt,O(x | r) ≤ s

]
≥ λ

}
,

where Kt,O(x | r) denotes the conditional t-time bounded Kolmogorov complexity of x with oracle access
to O. We often omit the parameter λ when λ = 2/3.

For a function ρ : N → N and an oracle O, let Gapρ-MINpKTO be the following promise prob-
lem: Given (x, 1s, 1t), where x ∈ {0, 1}∗ and s, t ∈ N, decide whether pKt,O(x) ≤ s (“yes” case) or
pKρ(t),O(x) > s+ log ρ(t) (“no” case).

LetO be an oracle. We say that Gap-MINpKTO ∈ prBPP if there exist a polynomial ρ and a probabilis-
tic polynomial-time algorithm that solves Gapρ-MINpKTO. Also, we say that Gap-MINpKTPH ∈ prBPP if
for every O ∈ PH, Gap-MINpKTO ∈ prBPP.

We also consider the problem Mild-Gap-MINpKTO, which is similar to Gap-MINpKTO except for that
in the no case, we have pKt+ρ(|x|),O(x) > s+ log ρ(t) instead of pKρ(t),O(x) > s+ log ρ(t). Thus the key
difference between these promise problems is the gap in the time bounds, which are of the form t versus
poly(t) and t versus t+ poly(n), respectively.3

We are now ready to state our result.

Theorem 1.6. The following statements are equivalent:

1. (Exclusion of PH-Heuristica). DistPH ⊆ AvgBPP =⇒ PH ⊆ BPP.

2. (Meta-Complexity of pKPH). Gap-MINpKTPH ∈ prBPP =⇒ Mild-Gap-MINpKTPH ∈ prBPP.

We can also obtain a deterministic analogue of the above result by considering the problem of estimating
Kt,PH instead of pKt,PH (see Theorem 6.21).

Consequently, the average-case vs. worst-case complexity of PH is intrinsically connected to the relative
complexity of estimating the PH-oracle time-bounded Kolmogorov complexity in two different approxima-
tion regimes.

As alluded to in Section 1.1, [Hir21, GKLO22] established using techniques from time-bounded Kol-
mogorov complexity and meta-complexity that if DistPH ⊆ AvgBPP then PH ⊆ BPTIME[2O(n/ logn)] (a
weaker form of Item 1 in Theorem 1.6). Moreover, this is the only known proof of this result. Theorem 1.6
sheds light into this by showing that understanding the complexity of computing time-bounded Kolmogorov
complexity is unavoidable. For this reason, we believe that this result is of particular conceptual interest.

It follows from the proof of Theorem 1.6 and previous work [Imp11, HN21] that any efficient reduc-
tion from Mild-Gap-MINpKTPH to Gap-MINpKTPH must use non-relativizing techniques. In other words,
there is an oracle world where Gap-MINpKTPH ∈ prBPP while Mild-Gap-MINpKTPH /∈ prBPP (see
Section 6.5 for more details). We note that some reductions in meta-complexity employ non-relativizing
techniques, such as [Hir22b]. In particular, we see this relativization result as a guiding principle rather

3Formally, we need to allow a small gap in the probability λ (in pKt,O
λ (x)) when specifying the “yes” and “no” cases of

Mild-Gap-MINpKTO . However, for simplicity we avoid this discussion in the exposition given here. We refer to Section 2.2 for
the precise definition of each computational problem.

8

than an insurmountable barrier. Indeed, Theorem 1.6 and prior work [Hir21, GKLO22, Hir22b] suggest that
ruling out PH-Heuristica using techniques from probabilistic and nondeterministic Kolmogorov complexity
is a promising research direction.

1.3 Techniques

We now discuss key ideas and techniques behind the proof of each result stated in Section 1.2.

Lower bounds for computing nKt (Theorem 1.1). In previous work, Allender et al. obtained the weaker
lower bound MnKtP ̸∈ NP ∩ coNP [AKRR11]. Firstly, the authors proved that

NEXP ⊆ PMnKtP/poly,

using reconstruction of pseudo-random generators. Assuming MnKtP ∈ NP ∩ coNP and applying a Karp-
Lipton style argument, it follows that

NEXP ⊆ PSPACE.

Secondly, they proved
PSPACE ⊆ ZPPMnKtP,

again using reconstruction of PRGs. By assumption, this implies

PSPACE ⊆ ZPPNP∩coNP ⊆ NP ∩ coNP.

Combining the aforementioned inclusions, NEXP ⊆ NP ∩ coNP, contradicting the non-deterministic time-
hierarchy theorem.

We notice that the proof of [AKRR11] can be extended to a larger time bound, but due to the two separate
steps, the approach faces a half-exponential barrier. In particular, within the framework of [AKRR11], the
strongest lower bound one can hope to prove is MnKtP ̸∈ NTIME[T (n)] ∩ coNTIME[T (n)] for a time
bound T (n) satisfying T (T (n)) = o(2n). Without a significant new idea, the approach cannot prove lower
bounds with T (n) = 2n

ε
for a constant ε > 0, let alone T (n) = 2εn.

In Theorem 1.1, we overcome the half-exponential barrier and establish a strong lower bound for any
dense language that only accepts strings of large nKt complexity. The proof works by a combination of the
following elements:

• The SoI lower bound technique from [Hir22c];

• Derandomization using nondeterminism [AKRR11];

• Probability amplification for rK with controlled randomness complexity;

• Iterated construction of a string of large complexity.

Next, we provide more background and explain how these techniques are combined in the proof of Theo-
rem 1.1. We begin by discussing the ingredients in the proof that MnKtP /∈ NTIME[2εn] ∩ coNTIME[2εn]
(ie. the first part of Theorem 1.1).

Hirahara developed an approach to lower bounds that exploits a connection between Symmetry of Infor-
mation and the easiness of meta-computational problems [Hir22c]. The approach is inspired by a technique
from the Ph.D. thesis of Ronneburger, which excludes SoI for Kt unconditionally [Ron04]. Since we will
build on this approach, we give a brief overview below.

9

Specifically, [Hir22c] shows that MrKtP ̸∈ BPTIME[2εn] for some constant ε > 0. The proof consists
of two steps. First, the author shows that MrKtP ∈ BPTIME[2εn] implies SoI for rKt. That is, for any two
strings x, y ∈ {0, 1}n,

rKt(x, y) ≥ rKt(x | y) + rKt(y)−O(εn).

The proof of this implication employs reconstruction of pseudo-random generators. Define RrKt := {x |
rKt(x) ≥ |x|}, and use Ul to denote uniform distribution over {0, 1}l. Then, roughly speaking, the key
intuition is that RrKt cannot distinguish between the following three distributions:

D1 := G1(x;Ud1) ◦G2(y;Ud2),
D2 := Um1 ◦G2(y;Ud2),
D3 := Um1 ◦ Um2 ,

where Gi : {0, 1}n × {0, 1}di → {0, 1}mi for i ∈ {1, 2} are some PRGs based on a construction of Raz et
al. [RRV02] (see [Hir20, Section 4.2]), d1, d2 = O(log3 n), and we leave m1,m2 ≤ 2n to be specified later
(See Lemma 2.27).

If RrKt distinguishes D1 from D2 in presence of y, a randomized reconstruction procedure with oracle
access to RrKt can produce x given y with non-trivial probability in polynomial time, yielding an upper
bound on rKpoly(n),RrKt(x | y) (See Corollary 4.6). Furthermore, assuming MrKtP ∈ BPTIME[2εn] enables
us to eliminate the oracle in this rKpoly(n) upper bound. Specifically, one obtains

rKt(x | y) ≤ m1 +O(εn).

Given the arbitrariness of m1, we may now pick m1 = rKt(x | y) − O(εn) to contradict the previous
inequality, thereby establishing indistinguishability (for RrKt) betweenD1 andD2. Similarly, picking m2 =
rKt(y) − O(εn) establishes indistinguishability between D2 and D3. By a hybrid argument, RrKt cannot
distinguish D1 from D3. Therefore, with non-zero probability over s ∼ D1,

rKt(s) ≳ m1 +m2 −O(1) = rKt(x | y) + rKt(y)−O(εn).

On the other hand, since d1, d2 ≤ O(log3 n), and G1, G2 are efficiently computable given x, y, and seeds of
length d1 and d2, it holds that rKt(s) ≈ rKt(x, y) for any such s. This gives us SoI for rKt.

The second step of the proof in [Hir22c] follows the technique of [Ron04] (along with the assumption
that MrKtP ∈ BPTIME[2εn]) for showing that SoI does not hold. By a standard counting argument, there
exists a string y ∈ {0, 1}n such that rKt(y) ≥ n. We may find the lexicographically first such string
y∗ by brute-force, assuming easiness of MrKtP. There likewise exists a string x ∈ {0, 1}n such that
rKt(x | y∗) ≥ n, and by SoI, for such x, we have rKt(x, y∗) ≥ 2n − O(εn). Again, we may find the
lexicographically first such string x∗ by brute-force. Note that the two brute-force searches to find y∗ and x∗

take time 2n+O(εn) overall, with only n as input. This implies that rKt(x∗, y∗) ≤ n+O(εn), a contradiction
for small enough ε > 0. It follows that MrKtP is hard.

A limitation of the argument from [Hir22c] above, which blocks its direct translation to MnKtP, is the
randomness required in the reconstruction procedure of the pseudo-random generator. Randomized com-
plexity measures such as rKt naturally incorporate the presence of randomness by definition, but randomness
is not allowed in the definition of nKt. Thus, it is not straightforward to give an upper bound on nKt as in
Corollary 4.6. (For the same reason, the argument does not generalize to prove MKtP lower bounds, and in
fact it remains open whether MKtP /∈ P unconditionally.)

We get around this limitation in the case of nKt by making use of non-determinism to derandomize
reconstruction. As a first attempt, we notice that if MnKtP ∈ NTIME[2εn] ∩ coNTIME[2εn] for a small
constant ε > 0, then for any m ∈ N, any string s such that nKt(s) ≥ m will have MnKtP-oracle circuit

10

complexity at least m/polylog(m). In particular, arguing in the contrapositive, assume that s is the truth-
table of an MnKtP-oracle circuit C of size less than m/(logm)5. Then, we may encode the circuit C with
fewer than m/ logm bits into an nKt-description for s, and moreover, we may collapse the non-determinism
required to simulate the assumed NTIME[2εn]∩coNTIME[2εn] oracle gates into the non-determinism in the
definition of nKt. Overall, this implies

nKt(s) <
m

logm
+ log(m · 2εm)

< m.

To obtain such s efficiently, again applying the assumption that MnKtP is easy, we can non-deterministically
guess s and refute when nKt(s) is not large enough. Then, we can plug s into the (relativized) pseudo-
random generator from [IW97] to derandomize the reconstruction procedure of [RRV02, Hir20], resulting in
an nKtMnKtP upper bound rather than an rKtMnKtP upper bound. In this case, we can again use the assumed
easiness of MnKtP to collapse the oracle into the non-determinism in the definition of nKt, resulting in an
nKt upper bound without any oracle.

The technique in the previous paragraph can be used to obtain the lower bound MnKtP /∈ NTIME[T (n)]∩
coNTIME[T (n)] for T (n) = 2n

ε
, but it does not suffice for T (n) = 2εn. This is because, in order to de-

randomize the reconstruction procedure of [RRV02, Hir20] via [IW97], we would need a string of MnKtP-
oracle complexity some large polynomial in n, so we would need to query the MnKtP-oracle at length nc

for some constant c ∈ N. Hence, the derandomized reconstruction would take time at least T (nc), and when
T (n) > 2n

1/c
, it holds that T (nc) > 2n, yielding a trivial upper bound on the relevant nKt complexity. To

obtain a lower bound with T (n) = 2εn, a key observation is that the reconstruction procedure in question
only requires O(n) bits of randomness. Then, instead of [IW97], we apply the PRG of [RRV02, Hir20] for
a second time, instantiated with a different set of parameters, to derandomize the reconstruction procedure.
The upshot is that a truth-table with nKt complexity O(n) suffices to generate the O(n) pseudo-random bits
to fool reconstruction. In order for the argument to go through in this setting, we use some similar ideas
as described in the previous paragraph: arguing, for example, that assuming easiness of MnKtP, a string
of high nKt complexity must also have high rKtMnKtP complexity. We note that the analysis here is quite
delicate. For example, one must keep careful track of the randomness length in the definition of rK as well
as the input lengths of oracle queries. See Section Section 4.1.3 for more details.

However, one problem remains: the reconstruction of the pseudo-random generator in [Hir22c] only
recovers x with 1/poly(n) probability, so we need some additional advice to identify x after derandomiza-
tion. But the advice depends on our non-deterministic choice of hard truth table s, so we cannot store it in
the description. Nevertheless, using ideas from pair-wise independent sampling (see e.g. [Gol97]), we can
amplify the success probability of reconstruction from 1/poly(n) to 2/3, but still only using O(n) bits of
randomness (see Section 4.1.1). This eliminates the additional advice after derandomization, because we
can just output the string that appears the most often.

We have given a brief overview of the proof for the main part of Theorem 1.1. Next we discuss the proof
for the moreover part. We observe that most of the arguments (reconstruction, derandomization, etc.) in
the first step of the proof (i.e., getting weak symmetry of information from easiness of MnKtP) still work,
because we are only using the fact thatRnKt[n] is dense. Therefore the proof extends to any dense language
L ⊆ RnKt[n].

For the second step of the proof, weak symmetry of information only guarantees existence of x such
that nKt(x, y∗) ≥ 2n−O(εn), but does not guarantee (x, y∗) ∈ L, so it is possible we cannot find such x∗

in the second brute-force. Fortunately, the first step of the proof actually gives us something stronger than
symmetry of information: For any x, y ∈ {0, 1}∗, when output length of G1, G2 are configured as before,
∃z1, z2 such that G1(x, z1) ◦ G2(y, z2) ∈ L (see Lemma 4.9 for more detail). Then in the second step,

11

given y ∈ L, we enumerate over not only x, but also z1, z2, to find G1(x, z1) ◦ G2(y, z2) ∈ L, which are
guaranteed to exist and verifiable in presence of L-oracle.

This works for any dense language L ∈ RnKt[(1−o(1))·n]. However, if L ∈ RnKt[γ·n] for some γ ∈ (0, 1),
then we only get

nKt(x, y) ≥ γ · (nKt(x | y) + nKt(y))−O(εn)

for the first step. Then in the second step, we can find y∗1 ∈ L so that nKt(y∗1) ≥ γ · n, and then we can find
x∗1 ∈ {0, 1}n and y∗2 = G1(x

∗
1, z1,1) ◦G2(y

∗
1, z1,2) ∈ L such that

nKt(y∗2) ≥ γ · (nKt(x∗1 | y∗1) + nKt(y∗1))−O(εn) ≥ (γ + γ2) · n−O(εn).

We can see the problem here: when γ ≤ (
√
5 − 1)/2 ≈ 0.618, we are not guaranteed that nKt(y∗2) ≥

(1+Ω(1)) ·n, so we cannot derive a contradiction. However, we apply our extended weak SoI (Lemma 4.9)
again on y∗2 , which enables us to find x∗2 ∈ {0, 1}n and y∗3 = G1(x

∗
2, z2,1) ◦G2(y

∗
2, z2,2) such that

nKt(y∗3) ≥ γ · (nKt(x∗2 | y∗2) + nKt(y∗2))−O(εn) ≥ (γ + γ2 + γ3) · n−O(εn).

Iterating the construction k times, we will obtain a string y∗k, such that

nKt(y∗k) ≥ (γ + γ2 + · · ·+ γk) · n−O(kεn) =
γ − γk+1

1− γ
· n−O(kεn).

Hence when γ > 1/2, we can find a large enough constant k such that nKt(s∗k) ≥ (1+Ω(1)) ·n−O(kεn).
For each iteration, we do exhaustive search only to find x∗k ∈ {0, 1}n and two seeds of length polylog(n),
so the time it takes to construct s∗k is only k · 2n · 2O(εn), resulting in a contradiction for a small enough
constant ε > 0.

The detailed proof can be found in Section 4.1.4. On the other hand, Section 4.1.5 discusses the limits
of our techniques for γ ≤ 1/2.

Lower bounds for computing rnKt (Theorem 1.2). We now move on to techniques behind Theorem 1.2.
The proof of Item 1 is a natural extension to the rKt result in [Hir22c], in the sense that the correspon-
dence between AM computation and rnK complexity (see Lemma 3.11) is a natural analogy to that between
BPTIME computation and rK complexity. Conceptually, it is even simpler than the proof for Theorem 1.1
since derandomization is not required here. Still, the combination of randomness and nondeterminism makes
some parts of the argument slightly more involved, and we include a complete proof in Section 4.2.1 to keep
the presentation self-contained.

Proof of Item 2 and Item 3 exploit new results from [CLL24], where explicit construction algorithm for
dense coAM properties is proposed in the form of Arthur-Merlin protocol with non-binary output. Briefly
speaking, a non-binary public coin protocol (P, V) has procedure identical to the normal version of Arthur-
Merlin protocol, except that V outputs a string instead of a bit in the end. At the start of the protocol,
prover P (which is computationally unbounded) and verifier V both receive an advice string α. Then in
the i-th round, V sends uniform randomness ri to P , and P returns answer wi based on α, {rj}j≤i and
{wj}j<i. After constant rounds of interaction, V outputs a string x, based on α, {rj} and {wj}. [CLL24]
then defined single-valued Arthur-Merlin protocol as non-binary public coin protocol with conformity and
resiliency conditions respectively, analogous to completeness and soundness condition in normal Arthur-
Merlin protocol. See Section 4.2.2 for detail.

The main technical result of [CLL24] (see Section 4.2.2 for details) proves that for every dense enough
L ∈ coAM, there exists a sequence {xn} and non-binary public-coin protocol (P, V) satisfying

• (P, V) is single-valued Arthur-Merlin protocol computing {xn};

12

• The advice complexity l(n) is small, and V can be computed efficiently;

• For infinitely many n, xn ∈ L ∩ {0, 1}n.

We note that sequence {xn} computed by such efficient non-binary Arthur-Merlin protocol admits
small rnK complexity, say, rnKt(xn) ≤ θ(n) < n − 1. This is a non-binary analogy of instantiat-
ing non-deterministic computation into non-deterministic Kolmogorov complexity (as in Lemma 3.5 and
Lemma 3.11). Then we consider any dense language L ⊆ RrnKt[θ(n)+1] and assume L ∈ coAM. By the
existence of such Arthur-Merlin protocol, we know that for infinitely many n, L ∩ {0, 1}n contains string
with rnKt complexity smaller than θ(n) + 1, leading to immediate contradiction. In our formal proof, we
extend this idea to quasi-polynomial time regime by simple padding argument.

One important corollary of this explicit construction protocol in [CLL24] is (AMEXP∩coAMEXP)/2n
ε ⊈

SIZEO[2n/n] for any oracle O ∈ AM ∩ coAM, as stated in [CLL24, Theorem 1.2]. This follows from the
close connection between explicit construction and circuit lower bounds: Roughly speaking, if we define
Πhard as the set of strings in {0, 1}2n that are not truth table of circuits of size at most 2n/n, then Πhard

is dense, and Πhard ∈ coAM. Then using the explicit construction protocol from above, we can efficiently
construct a sequence of strings {h2n} such that h2n ∈ Πhard ∩ {0, 1}2

n
for infinitely many n. If we define

a language Lhard whose truth table on input length n is h2n , then Lhard ∈ (AMEXP ∩ coAMEXP)/2n
ε \

SIZEL[2n/n].
Our idea for proving Theorem 1.2, Item 3 is to instantiate classical pseudo-random generator construc-

tion from [IW97] by truth table of Lhard, obtaining a family of multi-sets {Ts}s∈N which are pseudo-random
against (AM ∩ coAM)-oracle circuits of size s on infinitely many input lengths s.

Note that, because Lhard is computable in (AMEXP∩coAMEXP)/2n
ε

and [IW97] generator is polynomial-
time computable, every element inside Ts has rnKt complexity bounded by 2O(logε s). Therefore, any dense
language L consisting only of strings with large rnKt complexity distinguishes Ts from uniform random
strings, for every sufficiently large s. The pseudorandom condition then gives L /∈ SIZEAM∩coAM[poly(n)].
Similarly to Item 2, the lower bound is later amplified to quasi-polynomial by padding argument.

Proof complexity and symmetry of information (Theorems 1.3, 1.4, and 1.5). We discuss the tech-
niques used to prove Theorem 1.3 and Theorem 1.4. We focus here on the versions of these statements
concerning pnKt rather than rnKt, since both versions admit similar proofs. The proof of Theorem 1.5
is basically a relativizing version of the argument used in Theorem 1.4, adapted so that it works for all
measures µ ∈ {rKt, pKt, nKt, rnKt, pnKt} and gives a linear gap ε · n instead of just polylogarithmic.4

Theorem 1.3 states that, unconditionally, SoI holds for pnKt with high probability over random strings
sampled efficiently. The theorem is proved by an argument closely resembling one from [HLO25]. Briefly,
the starting point is a worst-case “semi-SoI” statement for pnKt due to [HLO25].5 That is, for some poly-
nomial p, for all sufficiently large n, t ∈ N and strings x, y ∈ {0, 1}n,

pKt(x, y) ≳ pnKp(t)(x) + pnKp(t)(y | x). (1)

Following [HLO25], we apply the fact that, for distributions D ∈ PSAMP, with high probability over
(x, y) ∼ D,

K(x, y) ≳ pKpoly(n)(x, y),

4To the best of our knowledge, our approach to show failure of SoI in some relativized world is completely different than the
one in [LR05, Lee06].

5In fact, by an alternate proof, we obtain a stronger form of the statement with pKp(t)(x) replacing pnKp(t)(x). See Section 5.1.1
for details.

13

and pnKt(x, y) ≳ K(x, y) unconditionally. Given these observations, Theorem 1.3 follows from a simple
adaptation of the right-hand side of Equation (1) to the setting of pnKt: noting, for example, that pnKt(x) ≲
pnKpoly(n)(x).

We now move on to describe the proof of Theorem 1.4, which builds on techniques from [Ron04,
CLL24, HLO24]. We would like to argue in the contrapositive: namely, assuming NP is contained in
coAMTIME[npolylog(n)] and demonstrating asymmetry of information for pnKt. Here, our starting point is
the proof technique excluding SoI for Kt in [Ron04].

Unfortunately, the same argument does not yield asymmetry in the case of nKt, let alone pnKt. The
problem in the case of nKt is that, during the exhaustive search over programs of length n, one must deter-
mine whether a given program has a unique nondeterministic output. This requires searching over witnesses
of length up to 2n, meaning that exhaustive search would take time doubly-exponential in n. The problem
in cases of randomized notions of Kt complexity is that known exponential-time procedures for determining
complexity are probabilistic, so they cannot be relied upon to produce canonical high-complexity strings. In
our case, of course, we must overcome both of these issues.

To that end, a first observation is that there exists a randomized SAT-oracle algorithm (which we denote
BSAT) for approximating pnKt complexity. More specifically, given a pair of strings u ∈ {0, 1}n and
v ∈ {0, 1}≤2n , BSAT runs in time 2O(n), accepts with high probability if pnKt(u | v) ≥ 2n/3, and rejects
with high probability if pnKt(u | v) < n/2.6 At a high level, our approach entails derandomizing BSAT

appropriately, yielding an adequately efficient procedure to produce a canonical string x with pnKt(x) ≥
n/2 (and, likewise, a canonical string y with pnKt(y | x) ≥ n/2).

We now describe how to derandomize BSAT. Here we apply the framework due to Chen et al. [CLL24].
In more detail, we adapt results of [CLL24] to obtain a family of multisets {Ts}s∈N pseudorandom infinitely
often against (AM ∩ coAM)-oracle circuits of size s. Moreover, for any desired constant δ > 0, each Ts

has a representation of rnKt complexity at most 2(log s)
δ
, and each Ts contains at most poly(s) elements.

Making use of our assumption that NP ⊆ coAMTIME[npolylog(n)], on input (u, v), BSAT can be simulated
by an (AM ∩ coAM)-oracle circuit C(u,v) of size at most 2poly(n) that treats its input as internal randomness
for BSAT. Thus, for infinitely many choices of s = 2poly(n), the pseudorandom set Ts fools such circuits C.

Combining the above ideas, for infinitely many input lengths n ∈ N and any desired constant δ′ > 0, we
may obtain a pair of strings x, y ∈ {0, 1}n with pnKt(x) ≥ n/2 and pnKt(y | x) ≥ n/2, but pnKt(x, y) ≤
rnKt(x, y) ≤ 2n

δ′
. For example, let x be the lexicographically first string of length n such that C(x,ϵ)

accepts with probability greater than 1/2 over Ts, where ϵ denotes the empty string. On one hand, the lower
bound pnKt(x) ≥ n/2 follows from the definition of C(x,ϵ) and the pseudorandom property of Ts. (One
may define y such that pnKt(y | x) ≥ n/2 similarly.) On the other hand, given Ts, an exhaustive procedure
to construct x and y runs in time 2poly(n) provided an (AM ∩ coAM)-oracle. This, together with the upper
bound on rnKt(Ts), implies rnKtAM∩coAM(x, y) ≤ 2n

δ′/2
. The desired bound rnKt(x, y) ≤ 2n

δ′
follows by

“collapsing” the (AM ∩ coAM)-oracle into the nondeterminism in the definition of rnKt.
Of course, the pair x, y obtained above does not yet witness asymmetry, since n/2 + n/2 ≪ 2n

δ′
. To

obtain a suitable pair of strings, we apply the above approach iteratively, as in [HLO24]; in particular, we
obtain a sequence of ℓ := 2n

δ′
strings x1, ..., xℓ ∈ {0, 1}n such that∑

i∈[ℓ]

pnKt(xi | x1, ..., xi−1) ≥ ℓ · n/2

but
pnKt(x1, ..., xℓ) ≤ ℓ.

6An algorithm with these parameters can be obtained from Lemma 5.4 combined with success amplification for pnKt following
[GKLO22].

14

The above can then be used to show a violation of the standard formulation of SoI for pnKt; see Section 5.2
for further details.

Average-case complexity and meta-complexity (Theorem 1.6). Our contribution in Theorem 1.6 is
mainly conceptual. The proof builds on techniques from prior work [Hir20, HLO25]. Recall that our goal
is to establish the equivalence between the following two implications:

• DistPH ⊆ AvgBPP =⇒ NP ⊆ BPP (note that NP ⊆ BPP if and only if PH ⊆ BPP),

• Gap-MINpKTPH ∈ prBPP =⇒ Mild-Gap-MINpKTPH ∈ prBPP.

To establish this equivalence, it suffices to prove the following two results:

1. DistPH ⊆ AvgBPP ⇐⇒ Gap-MINpKTPH ∈ prBPP,

2. NP ⊆ BPP ⇐⇒ Mild-Gap-MINpKTPH ∈ prBPP.

The first item can be seen as a randomized extension of the main result from [Hir20], which shows that
DistPH ⊆ AvgP if and only if Gap-MINKTPH ∈ P. It is worth noting that a significant portion of that work
is devoted to showing that if Gap-MINKTPH ∈ P, then one can construct an explicit pseudorandom genera-
tor. This, in turn, implies that BPP = P, which is essential for establishing that DistPH ⊆ AvgP. By instead
considering the randomized setting and the notion of probabilistic Kolmogorov complexity pKt,PH in place
of Kt,PH, we bypass the need for such a pseudorandom generator construction, thereby also significantly
simplifying the proof.

The second item follows the approach developed in [HLO25], which shows that if MINnKT ∈ BPP,
then NP ⊆ BPP. In fact, the same conclusion is proved for the problem MINpnKT. A key technical
component of their proof is a language compression result for the notion of probabilistic nondeterministic
Kolmogorov complexity, pnKt (see [HLO25, Theorem 4]).

Our first observation is that pKt,SAT is a stronger notion than pnKt, in the sense that pKpoly(t),SAT(x) ≲
pnKt(x) for any x and t (see Lemma 3.15). Therefore, pKt,SAT also satisfies the desired language compres-
sion property. This turns out to be sufficient for the proof to go through in the case where MINpKTSAT is
assumed to be easy.

Another observation is that, while the original proof crucially explore the fact that in the problem
MINnKT the time bounds in the yes and no cases are the same—unlike in Gap-MINnKT, where the time
bound is t in the yes case and poly(t) in the no case—the argument can still be adapted to accommodate a
mild gap, where the no case has a time bound of the form t+p(n), with p(n) being a polynomial independent
of t. This, in turn, allows us to assume only that Mild-Gap-MINpKTSAT is easy.

Acknowledgements. This work received support from the UKRI Frontier Research Guarantee Grant
EP/Y007999/1 and the Centre for Discrete Mathematics and its Applications (DIMAP) at the University
of Warwick.

2 Preliminaries

We use ϵ to denote the empty string. The length of a string x is denoted |x|. Given strings x ∈ {0, 1}n
and y ∈ {0, 1}m, we let x ◦ y ∈ {0, 1}n+m denote their concatenation.

We write x ∼ D to denote that x is sampled according to the distribution D. For an element a in the
support of D, we let D(a) denote its probability. We use Uℓ to denote the uniform distribution over {0, 1}ℓ.

15

2.1 Computational Models

We consider multi-tape Turing machines over the alphabet Σ = {0, 1,⊥}. In addition to the usual input
tape and work tapes, in some contexts we allow a machine to access three additional tapes: one holding an
auxiliary string, one holding a non-deterministic guess, and one holding the randomness. We assume that
the machine has sequential access (i.e., no random access) to the randomness tape and the non-deterministic
tape.7

For a machine M , time bound t, and string x, we let Kt
M (x) be the minimum length of a string p ∈

{0, 1}∗ such that M outputs x on input string p when running for at most t steps. We say that a (universal)
machine U is time-efficient if for every machine U ′ there is a constant C such that, for every string x and
time bound t, we have KC·t log t

U (x) ≤ Kt
U ′(x) + C. It is known that time-efficient machines exist (see,

e.g., [LV19]). We fix such a machine U when specifying Kolmogorov complexity.
We also assume an encoding function ⟨·⟩ for machines (which we omit for notational simplicity) such

that U , when given (the encoding of) a machine M , an input α, an auxiliary string x, a non-deterministic
guess w, and a random string r, runs in time Õ(|M |, t) and outputs the string produced by M(α;x;w; r),
where |M | denotes the encoding length of M and t is the number of steps M runs on (α;x;w; r).

A program Π is defined as a pair Π := (M,α), where M is a valid encoding of a machine and α ∈
{0, 1}∗ is an “advice” string. The output of Π on (x;w; r) (which corresponds to the auxiliary input, the
non-deterministic guess, and the randomness), denoted Π(x;w; r), is given by M(α;x;w; r).

The running time of the program Π on input (x,w, r) is defined to be the number of steps M runs on
input (α;x;w; r).

We also define the size of the program Π. To encode a machine-advice pair (M,α), we use the following
format:

s1 01 ⟨M⟩ s2 01α,

where ⟨M⟩ is an encoding of the machine M ,8 and s1 (resp. s2) is the binary representation of the integer
specifying the length of ⟨M⟩ (resp. α), with each bit duplicated. The size of Π, denoted |Π|, is the total bit
length of this description.

We say that a program Π non-deterministically outputs y on input (x; r) in time t if:

• ∀w ∈ {0, 1}t, Π(x;w; r) outputs either y or ⊥ in time t, and

• ∃w ∈ {0, 1}t, Π(x;w; r) outputs y in time t.

A Computational Model with Efficient Composition. The above computational model suffices for most
of our results, except for Theorem 1.6. As in the main result of [HLO25], Theorem 1.6 requires a com-
putational model that possesses an additional natural efficiency property called “efficient composition”.
Specifically, this property states that there exists a polynomial p such that the following holds. For any
x, y, z, r ∈ {0, 1}∗, if:

• there is a program of size s1 that outputs y on input (x; r) in time t1, and

• there is a program of size s2 that outputs z on input y in time t2,

then there is a program of size s1 + s2 + log p(|x| + |y| + |z|) that outputs z on input (x; r) in time
t1 + p(t2) + p(|x| + |y| + |z|). (As discussed in detail in [HLO25], this property is typically implicitly
assumed in the literature on time-bounded Kolmogorov complexity.)

7To avoid confusion, sequential access means that the tape head can remain at a given tape cell or move left or right at each step
of the computation. In particular, we do not require read-only or one-way access to the tape.

8As noted above, we assume a fixed standard encoding for Turing machines.

16

To guarantee the efficient composition property, we consider a sequence of machine-advice pairs. More
formally, a program Π is now defined as

Π := ((M1, α1), . . . , (Mℓ, αℓ)) ,

where each Mi is a valid encoding of a machine and αi ∈ {0, 1}∗. The output of Π on (x; r) (which
corresponds to the auxiliary input and the randomness), denoted Π(x; r), is obtained as follows:9

• Let y1 be the output of M1(α1;x; r). Let t1 be the number of steps M1(α1;x; r) takes to produce y1.

• Let y2 be the output of M2(α2;x ◦ y1; r[t1+1:|r|]), and let t2 be the corresponding running time.

...

• Let yℓ be the output of Mℓ(αℓ;x ◦ yℓ−1; r[tℓ−1+1:|r|]), and let tℓ be the corresponding running time.

• Output yℓ.

The running time of the program Π on input (x; r) is given by
∑ℓ

i=1 ti.
We now describe how the program Π is encoded. A machine-advice pair is encoded as described before.

The full description of Π is obtained by concatenating the encodings of all pairs (Mi, αi) for i ∈ [ℓ]. The
size of Π, denoted |Π|, is the total bit length of this description.

It can be shown that this definition of a program satisfies the efficient composition property (see [HLO25,
Proposition 57]). The definition can be extended to programs that have oracle access to a language O in the
natural way.

2.2 Kolmogorov Complexity

2.2.1 Definitions

In this subsection, we provide formal definitions for various notions of time-bounded Kolmogorov com-
plexity.

Time-Bounded Kolmogorov Complexity. We begin with deterministic versions of time-bounded Kol-
mogorov complexity.

Definition 2.1 (Kt). For x, y, r ∈ {0, 1}∗, t ∈ N, and a oracleO, the t-time-bounded Kolmogorov complexity
of x conditioning on (y; r) and given oracle O is defined as

Kt,O(x | y; r) ≜ min
Π∈{0,1}∗

{
|Π|

∣∣ ΠO(y; ϵ; r) outputs x within t steps
}
.

We define Kt,O(x | y) as Kt,O(x | y; ϵ), and Kt,O(x) as Kt,O(x | ϵ).

Definition 2.2 (Kt). For x, y, r ∈ {0, 1}∗ and a oracle O, the time-bounded Levin–Kolmogorov complexity
of x conditioning on (y; r) and given oracle O is defined as

KtO(x | y; r) ≜ min
Π∈{0,1}∗

t∈N

{
|Π|+ ⌈log t⌉

∣∣ ΠO(y; ϵ; r) outputs x within t steps
}
.

We define KtO(x | y) as KtO(x | y; ϵ), and KtO(x) as KO(x | ϵ).
9For a string z of length ℓ and a subset S ⊆ [ℓ], where [ℓ] = {1, 2, . . . , ℓ}, we let zS denote the substring of z obtained by

concatenating the bits of z at indices in S. For a < b, we let [a : b] denote the set {a, a+ 1, . . . , b}.

17

We can consider the case where the oracle calls are non-adaptive. In this case, we will write Kt,∥O(x)
or Kt∥O(x).

Next, we will define other variants of the time-bounded Kolmogorov complexity measure. For simplic-
ity, we will define only the basic versions without oracles. These can easily be generalized to settings where
an oracle is present.

Time-Bounded Kolmogorov Complexity with Randomness. We now define probabilistic variants of
time-bounded Kolmogorov complexity. These definitions include a parameter λ in the subscript to denote
the “success probability”. We will often omit the subscript when λ = 2/3.

Definition 2.3 (rKt). For x, y ∈ {0, 1}∗, λ ∈ [0, 1], t ∈ N, the randomized t-time-bounded Kolmogorov
complexity of x conditioning on y is defined as

rKt,O
λ (x | y) = min

Π∈{0,1}∗

{
|Π|

∣∣∣∣∣ Pr
r∼{0,1}t

[Π(y; ϵ; r) outputs x within t steps] ≥ λ

}
.

Definition 2.4 (rKt). For x, y ∈ {0, 1}∗, λ ∈ [0, 1], the randomized time-bounded Levin–Kolmogorov
complexity of x conditioning on y is defined as

rKtOλ (x | y) = min
Π∈{0,1}∗

t∈N

{
|Π|+ ⌈log t⌉

∣∣∣∣∣ Pr
r∼{0,1}t

[Π(y; ϵ; r) outputs x within t steps] ≥ λ

}
.

Definition 2.5 (pKt). For x, y ∈ {0, 1}∗, λ ∈ [0, 1], t ∈ N, the probabilistic t-time-bounded Kolmogorov
complexity of x conditioning on y is defined as

pKt
λ(x | y) ≜ min

{
s ∈ N

∣∣∣∣∣ Pr
r∼{0,1}t

[∃Π ∈ {0, 1}s s.t. Π(y; ϵ; r) outputs x within t steps] ≥ λ

}
.

Equivalently,

pKt
λ(x | y) ≜ min

{
s ∈ N

∣∣∣∣ Pr
r∼{0,1}t

[
Kt(x | y; r) ≤ s

]
≥ λ

}
.

Definition 2.6 (pKt). For x, y ∈ {0, 1}∗, λ ∈ [0, 1], t ∈ N, the probabilistic time-bounded Levin–
Kolmogorov complexity of x conditioning on y is defined as

pKtλ(x | y) ≜ min

{
s ∈ N

∣∣∣∣ Pr
r∼{0,1}2s

[Kt(x | y; r) ≤ s] ≥ λ

}
.

Time-Bounded Kolmogorov Complexity with Nondeterminism. Next, we define nondeterministic vari-
ants of time-bounded Kolmogorov complexity.

Definition 2.7 (nKt). For x, y, r ∈ {0, 1}∗ and t ∈ N, the nondeterministic t-time-bounded Kolmogorov
complexity of x conditioning on (y; r) is defined as

nKt(x | y; r) ≜ min
Π∈{0,1}∗

{
|Π|

∣∣∣∣∣ ∀w ∈ {0, 1}t,Π(y;w; r) outputs x or ⊥ in t steps;

∃w ∈ {0, 1}t,Π(y;w; r) outputs x in t steps

}
.

We define nKt(x | y) as nKt(x | y; ϵ), and nKt(x) as nKt(x | ϵ).

18

Definition 2.8 (nKt). For x, y, r ∈ {0, 1}∗, the nondeterministic time-bounded Levin–Kolmogorov com-
plexity of x conditioning on (y; r) is defined as

nKt(x | y; r) ≜ min
Π∈{0,1}∗

t∈N

{
|Π|+ ⌈log t⌉

∣∣∣∣∣ ∀w ∈ {0, 1}t,Π(y;w; r) outputs x or ⊥ in t steps;

∃w ∈ {0, 1}t,Π(y;w; r) outputs x in t steps

}
.

We define nKt(x | y) as nKt(x | y; ϵ), and nKt(x) as nKt(x | ϵ).

Time-Bounded Kolmogorov Complexity with Randomness and Nondeterminism. Finally, we define
time-bounded Kolmogorov complexity notions that incorporate both randomness and nondeterminism.

Definition 2.9 (rnKt). For x, y ∈ {0, 1}∗, λ ∈ [0, 1] and t ∈ N, the randomized nondeterministic t-time-
bounded time-bounded Kolmogorov complexity of x conditioning on y is defined as

rnKt
λ(x | y) ≜ min

Π∈{0,1}∗

{
|Π|

∣∣∣∣∣ Pr
r∼{0,1}t

[
∀w ∈ {0, 1}t,Π(y;w; r) outputs x or ⊥ in t steps;

∃w ∈ {0, 1}t,Π(y;w; r) outputs x in t steps

]
≥ λ

}
.

Definition 2.10 (rnKt). For x, y ∈ {0, 1}∗, λ ∈ [0, 1], the randomized nondeterministic time-bounded
Levin–Kolmogorov complexity of x conditioning on y is defined as

rnKtλ(x | y) ≜ min
Π∈{0,1}∗

t∈N

{
|Π|+ ⌈log t⌉

∣∣∣∣∣ Pr
r∼{0,1}t

[
∀w ∈ {0, 1}t,Π(y;w; r) outputs x or ⊥ in t steps;

∃w ∈ {0, 1}t,Π(y;w; r) outputs x in t steps

]
≥ λ

}
.

Definition 2.11 (pnKt). For x, y ∈ {0, 1}∗, λ ∈ [0, 1] and t ∈ N, the probabilistic nondeterministic t-time-
bounded time-bounded Kolmogorov complexity of x conditioning on y is defined as

pnKt
λ(x | y) ≜ min

s ∈ N

∣∣∣∣∣∣∣ Pr
r∼{0,1}t

∃Π ∈ {0, 1}
≤s such that the following conditions hold:

∀w ∈ {0, 1}t,Π(y;w; r) outputs x or ⊥ in t steps;

∃w ∈ {0, 1}t,Π(y;w; r) outputs x in t steps

 ≥ λ

.

Equivalently,

pnKt
λ(x | y) ≜ min

{
s ∈ N

∣∣∣∣ Pr
r∼{0,1}t

[
nKt(x | y; r) ≤ s

]
≥ λ

}
.

Definition 2.12 (pnKt). For x, y ∈ {0, 1}∗, λ ∈ [0, 1], t ∈ N, the probabilistic nondeterministic time-
bounded Levin–Kolmogorov complexity of x conditioning on y is defined as

pnKtλ(x | y) ≜ min

{
s ∈ N

∣∣∣∣ Pr
r∼{0,1}2s

[nKt(x | y; r) ≤ s] ≥ λ

}
.

Computational Problems. In the remainder of this subsection, we formally define promise languages
regarding decision of time-bounded complexity.

Definition 2.13. Let α, β be any N → N function such that α(n) < β(n) holds for any n ∈ N. We define
promise language MKtP[α(n), β(n)] ≜ (YES,NO) as{

YES = {x | Kt(x) ≤ α(n)}
NO = {x | Kt(x) ≥ β(n)}

.

19

We also define an alternative of MKtP with variable threshold, namely, Gapρ-MKtP ≜ (YES,NO), such
that {

YES = {(x, 1s) | Kt(x) ≤ s}
NO = {(x, 1s) | Kt(x) ≥ s+ ρ(|x|)}

,

where ρ is any N → N function. For a complexity class C, we say that Gapρ-MKtP ∈ C if there exists a
constant c > 0 such that Gapρ-MKtP ∈ C with ρ(n) = c log n.

Definition 2.14. Let θ : N→ N. DefineRKt[θ(n)] as

RKt[θ(n)] ≜ {x | rnKt(x) ≥ θ(|x|)}

We can extend the above definitions to any measure in {Kt, rKt, pKt, nKt, rnKt, pnKt}, resulting in
notions such as MrnKtP,RrnKt[θ(n)], and so on.

Definition 2.15 (MINKT). For an oracle O, we define the promise language MINKTO ≜ (YES,NO) as{
YES =

{
(x, 1s, 1t) | Kt,O(x) ≤ s

}
NO =

{
(x, 1s, 1t) | Kt,O(x) > s

} .

Definition 2.16 (Gap-MINKT). For an oracle O and ρ : N→ N, we define the promise language

Gapρ-MINKTO ≜ (YES,NO)

as YES =
{
(x, 1s, 1t) | Kt,O(x) ≤ s

}
NO =

{
(x, 1s, 1t) | Kρ(t),O(x) ≥ s+ log ρ(t)

} .

For a complexity class C, we say that Gapρ-MINKT ∈ C if there exists a constant c > 0 such that
Gapρ-MINKT ∈ C with ρ(n) = nc.

Definition 2.17 (Mild-Gap-MINKT). For an oracle O and a function ρ : N → N, we define the promise
language Mild-Gapρ-MINKTO ≜ (YES,NO) asYES =

{
(x, 1s, 1t) | Kt,O(x) ≤ s

}
NO =

{
(x, 1s, 1t) | Kt+ρ(|x|),O(x) ≥ s+ log ρ(t)

} .

For a complexity class C, we say that Gapρ-MINKT ∈ C if there exists a constant c > 0 such that
Gapρ-MINKT ∈ C with ρ(n) = nc.

Definition 2.18 (MINpKT). For an oracle O, we define the promise language MINpKTO ≜ (YES,NO) asYES =
{
(x, 1s, 1t, 1a, 1b) | pKt,O

b/a(x) ≤ s
}

NO =
{
(x, 1s, 1t, 1a, 1b) | pKt,O

(b−1)/a(x) > s
} .

Definition 2.19 (Gap-MINpKT). For an oracle O and ρ : N→ N, we define the promise language

Gapρ-MINpKTO ≜ (YES,NO)

20

as YES =
{
(x, 1s, 1t, 1a, 1b) | pKt,O

b/a(x) ≤ s
}

NO =
{
(x, 1s, 1t, 1a, 1b) | pKρ(t+a+b),O

b/a (x) ≥ s+ log ρ(t+ a+ b)
} .

For a complexity class C, we say that Gapρ-MINpKT ∈ C if there exists a constant c > 0 such that
Gapρ-MINpKT ∈ C with ρ(n) = nc.

Definition 2.20 (Mild-Gap-MINpKT). For an oracle O and a function ρ : N → N, we define the promise
language Mild-Gapρ-MINpKTO ≜ (YES,NO) asYES =

{
(x, 1s, 1t, 1a, 1b) | pKt,O

b/a(x) ≤ s
}

NO =
{
(x, 1s, 1t, 1a, 1b) | pKt+ρ(|x|+a+b),O

(b−1)/a (x) ≥ s+ log ρ(t+ a+ b)
} .

For a complexity class C, we say that Gapρ-MINpKT ∈ C if there exists a constant c > 0 such that
Gapρ-MINpKT ∈ C with ρ(n) = nc.

2.2.2 Useful Tools

Here, we state some useful tools about Kolmogorov complexity.

Lemma 2.21 (Standard Counting Argument). For any λ ∈ (1/2, 1) and κ ∈ {K,Kt, rKt
λ, nK

t, rnKt
λ}, and

for all n, γ ∈ N, we have

Pr
x∼{0,1}n

[κ(x) < n− γ] <
1

2γ
.

Also, for any λ ∈ (0, 1) and κ ∈ {pKt
λ, pnK

t
λ}, and for all n, γ ∈ N, we have

Pr
x∼{0,1}n

[κ(x) < n− γ] <
1

λ · 2γ
.

Moreover, the inequalities above continue to hold in the presence of an oracle O and when conditioning on
a fixed string y.

Proof. For simplicity, we consider the oracle-free case and y = ϵ. (The general case is analogous.) The
case of K directly follows from counting. Indeed, the number of Turing machines with length at most n− γ
is less than 2n−γ , therefore

Pr
x∼{0,1}n

[K(x) < n− γ] <
2n−γ

2n
=

1

2γ
.

The remaining cases (except κ = pKt
λ and κ = pnKt

λ) follows similarly, since each Turing machine can
correspond to at most one string under the setting that λ > 1/2.

For κ = pKt
λ, pnK

t
λ, consider a bipartite graph where the left vertices represent randomness-program

pairs {0, 1}t × {0, 1}<n−γ , and the right vertices represent strings in {0, 1}n. There is an edge between a
left vertex (r,M) and a right vertex y if M(x) outputs x. For a right vertex x to have pKt

λ-complexity at
most n− γ, it must have degree at least 2t · λ.

However, there are less than 2t · 2n−γ total edges in the graph. Therefore, the number of right vertices
with degree at least 2t · λ is less than 2n−γ/λ.

Lemma 2.22 (See [HIL+23, Lemma 9]). There exists a universal constant b > 0 such that for any distri-
bution family {Dn}n∈N, where each Dn is over {0, 1}n, and γ ∈ N,

Pr
x∼Dn

[
K(x) < log

1

Dn(x)
− γ

]
<

nb

2γ
.

21

Theorem 2.23 (Efficient Coding Theorem [LOZ22]). For every polynomial-time samplable distribution
family {Dn}n∈N, where each Dn is supported over {0, 1}n, there exists a polynomial p such that for every
x ∈ Support(Dn),

pKp(n)(x) ≤ log
1

Dn(x)
+ log p(n).

Lemma 2.24 (Following [GKLO22, Lemma 18]). There exists a universal constant c > 0 such that for any
x ∈ {0, 1}∗, time bound t ∈ N and computable language L, K(x | t) ≤ pKt,L(x) + c · log |x|.

2.3 Average-Case Complexity

We review some basic definitions and facts in average-case complexity. For more information about
average-case complexity, we refer to [BT06].

Recall that a pair (L,D) is a distributional problem if L ⊆ {0, 1}∗ and D = {Dn}n∈N is a distribution
family, where each Dn is a distribution over {0, 1}∗.

We let DistNP denote the set of distributional problems (L,D) such that L ∈ NP and D is polynomial-
time samplable. Here, a distribution family D = {Dn}n∈N is polynomial-time samplable if there exists
a randomized polynomial-time algorithm A such that for every n ≥ 1, the output of A(1n) is distributed
according toDn. We let PSAMP be the collection of distribution families that can be sampled in polynomial
time. For a complexity class C (e.g., C = NP), we let DistC denote the set of distributional problems (L,D)
with L ∈ C and D ∈ PSAMP.

A distributional problem (L,D) is said to admit a (errorless) heuristic scheme if there exists a determin-
istic polynomial-time algorithm A such that the following holds for every n, k ∈ N:

1. For every x ∈ Support(Dn), A(x, 1n, 1k) ∈ {L(x),⊥},

2. and
Pr

x∼Dn

[
A(x, 1n, 1k) = ⊥]

]
≥ 1− 1

k
.

We let AvgP denote the set of distributional problems that admit a heuristic scheme.
Similarly, a distributional problem (L,D) is said to admit a randomized (errorless) heuristic scheme if

there exists a probabilistic polynomial-time algorithm A such that the following holds for every n, k ∈ N:

1. For every x ∈ Support(Dn),

Pr
A

[
A(x, 1n, 1k) ∈ {L(x),⊥}

]
≥ 4

5
,

2. and

Pr
x∼Dn

[
Pr
A
[A(x, 1n, 1k) = ⊥] < 1

5

]
≥ 1− 1

k
.

We let AvgBPP denote the set of distributional problems that admit a randomized heuristic scheme.
We will need the following result.

Theorem 2.25 ([IL90]). Let A be any oracle. If (NPA,U) ⊆ AvgBPP, then for every distribution D ∈
PSAMP and L ∈ NPA, we have (L,D) ∈ AvgBPP.

22

2.4 Pseudorandomness

Theorem 2.26 ([IW97]). There is a polynomial-time computable function F : {0, 1}∗ × {0, 1}∗ → {0, 1}∗
such that the following holds. For every ε > 0, there exists c, d ∈ N such that

F : {0, 1}nc × {0, 1}d logn → {0, 1}n,

and if f : {0, 1}c logn → {0, 1} is a function with L-oracle Boolean circuit complexity at least nεc, then the
function Gf (-) := F (tt(f), -) is a pseudorandom generator mapping {0, 1}d logn to {0, 1}n, such that for
any L-oracle Boolean circuit D : {0, 1}n → {0, 1} of size at most n,∣∣∣∣ Pr

x∈{0,1}n
[D(x) = 1]− Pr

s∈{0,1}d logn
[D(Gf (s)) = 1]

∣∣∣∣ ≤ 1

n
.

We will also need the following black-box pseudorandom generator. We closely follow the construction
in [Hir20, Section 4.2], which uses the weak design from [RRV02] and the list-decodable error-correcting
code from [Sud97]. But our construction is different in two ways. First, in [Hir20], ECC list-decodable
for distance 1/2 − 1/2m2 is used. Here we have an additional parameter ε (which is the advantage of the
distinguisher), and we use the same family of ECC, but the list-decodable distance is set as 1/2 − ε/2m.
Second, in [Hir20], the reconstruction algorithm outputs a list of strings. Here after we obtain the list of
strings, we just take a uniformly random sample from the list.

Lemma 2.27. For all sufficiently large n,m ∈ N such that m ≤ 2n and any ε > 0, there exists a triple
(G,A,R(-)) such that

G : {0, 1}n × {0, 1}d → {0, 1}m,

A : {0, 1}n × {0, 1}d → {0, 1}m,

R(-) : {0, 1}m × {0, 1}d × {0, 1}r → {0, 1}n,

and for every x ∈ {0, 1}n and any D : {0, 1}m → {0, 1} such that

Pr
z∼Ud

[D(G(x; z)) = 1]− Pr
w∼Um

[D(w) = 1] ≥ ε,

it holds that
Pr

w∼Ur
z∼Ud

[
RD(A(x, z), z, w) = x

]
≥ 1

poly(m/ε)
.

We define the parameter ε > 0 as security parameter. Here, we have d = O(log3(n/ε)), r = O(m).
Moreover, G and A can be computed in time poly(n/ε), and RD can be computed in time poly(n/ε) with
oracle access to D.

Proof. Similar to [Hir20, Section 4.2].

Direct Product Generator . For x, y ∈ {0, 1}n, we denote their inner product by x · y =
⊕n

i=1 xiyi.

Definition 2.28 (Direct Product Generator (DPG) [Hir21]). For n, k ∈ N, the k-wise direct product gener-
ator is the function

DPk : {0, 1}n × {0, 1}nk → {0, 1}nk+k,

defined by
DPk(x, z1 ◦ · · · ◦ zk) = (z1 ◦ · · · ◦ zk ◦ x · z1 ◦ · · · ◦ x · zk).

Lemma 2.29 (pKt Reconstruction Lemma [GKLO22]). There is a polynomial p
DP

such that the following
holds. For every n,m, k ∈ N+, x ∈ {0, 1}n, let D be a function that (1/m)-distinguishes DPk(x;Unk)
from Unk+k. Then

pKp
DP

(n+m+k),∥D(x) ≤ k + log p
DP
(n+m+ k).

23

3 Useful Results About Nondeterministic Kolmogorov Complexity

In this section, we present several useful facts about various nondeterministic and relativized notions of
Kolmogorov complexity. We note that all the results presented here also hold for the corresponding notions
in the presence of any oracle. For simplicity, in below, we consider only the cases without oracles. It is
straightforward to adapt all the proofs to handle the more general setting.

3.1 nK

Lemma 3.1. There exists a constant c > 0 such that for any strings x, y ∈ {0, 1}∗ and t ∈ N,

Kt′,∥SAT(x | y) ≤ nKt(x | y) + c · log t,

where t′ = (t+ |y|)c.

Proof. Let x, y ∈ {0, 1}∗ and t ∈ N. We assume without loss of generality that t ≥ |x|. Define k = nKt(x |
y), and let Π ∈ {0, 1}k be a program that nondeterministically outputs x on input y in time t.

Given Π, |x|, t, and y, we reconstruct x as follows: For each i ∈ [|x|], we use the SAT oracle to answer
the following query:

Does there exist a w ∈ {0, 1}t such that ΠO(y;w) outputs a string z ∈ {0, 1}|x| in time t and
the i-th bit of z is 1?

We then set the i-th bit of x to be 1 if and only if the answer to this query is yes.
It is easy to verify that the above procedure runs in time poly(|x| + |y| + t). Also, by the fact that Π

nondeterministically outputs x on input y in time t, it can correctly recover x. Thus, for t′ = poly(|y|+ t),
we obtain

Kt′,∥SAT(x | y) ≤ |Π|+O(log |t|)
≤ k +O(log t),

as desired.

Corollary 3.2. There exists a constant c > 0 such that for any strings x, y ∈ {0, 1}∗,

Kt∥SAT(x | y) ≤ c · nKt(x | y) +O(log |y|).

Proof. Let x, y ∈ {0, 1}∗ and k = nKt(x | y). Then there exists a nondeterministic program Π that outputs
x given y in time t, where |Π|+ ⌈log t⌉ ≤ k. This implies nKt(x | y) ≤ |Π|.

By Lemma 3.1, we have
Kt′,∥SAT(x | y) ≤ |Π|+O(log t),

where t′ = poly(|y|+t). It follows that there exists a nondeterministic program of size at most |Π|+O(log t)
that outputs x given y in time t′, which implies

nKt(x | y) ≤ |Π|+O(log t) + log t′ ≤ nKt(x | y) +O(log |y|),

as desired.

Lemma 3.3. For every language A ∈ NP, there exists a constant c ∈ N such that for any strings x, y ∈
{0, 1}∗ and t ∈ N,

nKtc(x | y) ≤ Kt,∥A(x | y) + c · log t.

24

Proof. Let x, y ∈ {0, 1}∗ and t ∈ N, and define k = Kt,∥A(x | y). Then there exists a program Π ∈ {0, 1}k
that on input y, makes only non-adaptive queries to A and outputs x within time t.

As in the proof of [HLO25, Lemma 31], we will eliminate the oracle access to A by guessing the answers
to the (non-adaptive) queries to A and verifying them with the help of an additional small amount of advice.
We provide the details for completeness.

Suppose A is the following oracle:

A(q) = 1 ⇐⇒ ∃w ∈ {0, 1}poly(|q|) such that V (q, w) = 1,

where V is some polynomial-time verifier. Let q1, q2, . . . , qℓ, where ℓ ≤ t, be the (non-adaptive) queries
made by d to the oracle A. Also, let p be the number of positive answers to these queries, i.e., p :=∑ℓ

i=1A(qi). We then non-deterministically guess ℓ witnesses (w1, w2, . . . , wℓ) =: w and count the number
of indices i for which V (qi, wi) = 1. Denote this number by uw. If uw is not equal to p, we output ⊥.
Otherwise, for each wi that satisfies the verifier V , we set the answer to the query qi to be 1, and we let
the rest of the answers be 0. We then run d while simulating the oracle A using the answers obtained as
described above.

Note that, given the number p, which can be specified using ⌈log ℓ⌉ ≤ ⌈log t⌉ bits, the above procedure
can be implemented to run in time poly(t). Also, it is easy to observe that there exists some guess of
w = (w1, w2, . . . , wℓ) that satisfies uw = p. Moreover, for any guess of w that satisfies uw = p, the
answers obtained are the correct answers to the queries (q1, q2, . . . , qℓ) for A. It follows that there exists a
program of size at most |Π|+O(log t) that, given y, runs in time poly(t) and outputs x non-deterministically.
Thus, for some constant c ∈ N,

nKtc(x | y) ≤ |Π|+ c · log t
≤ k + c · log t,

as desired.

As a corollary of Lemma 3.3, we get the following.

Corollary 3.4. For every language A ∈ NP, there exists a constant c ∈ N such that for any strings
x, y ∈ {0, 1}∗,

nKt(x | y) ≤ c · Kt∥A(x | y).

Lemma 3.5. There is a constant c > 0 such that the following holds. For any time-constructible, non-
decreasing T : N → N, T (n) ≥ n, and every L ∈ NTIME[T (n)] ∩ coNTIME[T (n)], x, y ∈ {0, 1}∗ and
t ∈ N,

nKT (t)c(x | y) ≤ nKt,L(x | y).
Specifically, restricting query length to at most ℓ ∈ N, for every x, y ∈ {0, 1}∗ and t ∈ N,

nK(t+T (ℓ))c(x | y) ≤ nKt,L≤ℓ(x | y).

Proof. Let L ∈ NTIME[T (n)]∩ coNTIME[T (n)], x, y ∈ {0, 1}∗, and t ∈ N. Define k = nKt,L(x | y), and
let Π ∈ {0, 1}k be a program that non-deterministically outputs x in time t given y and oracle access to L.

We now simulate the program Π without oracle access to L. To do this, whenever Π makes a query q ∈
{0, 1}ℓ to L, we non-deterministically guess an answer (“yes” or “no”) along with a witness wq ∈ {0, 1}T (ℓ)

certifying that answer. Since L ∈ NTIME[T (n)]∩ coNTIME[T (n)], each such guess can be verified in time
poly(T (ℓ)). Whenever the verification fails, halt with ⊥ being the output. This yields a nondeterministic
program of size at most |Π|+O(log t) that outputs x in time poly(t+ T (ℓ)) given y (without oracle access
to L). Therefore,

nK(t+T (ℓ))c(x | y) ≤ nKt,L(x | y) + c · log log t
for some constant c > 0, as desired.

25

Again, as a corollary of Lemma 3.5, we get the following.

Corollary 3.6. For every L ∈ NP ∩ coNP, there exists a constant c > 0 such that for every x, y ∈ {0, 1}∗,

nKt(x | y) ≤ c · nKtL(x | y).

3.2 rnK

We prove that the success probability of rnKt
δ can be amplified, a task that is non-trivial if we start with

a probability of success δ that is not noticeably larger than 1/2. For randomized notions of Kolmogorov
complexity such as rKt, success amplification in this regime can be achieved using standard hashing-based
techniques. However, in rnKt we have both randomness and nondeterminism, and must ensure that a good
choice of the randomness leads to a nondeterministic encoding that never outputs the wrong string. This
creates an additional difficulty and requires a modified construction.

To achieve success amplification for rnKt, we use an idea from [BLvM05]. Roughly speaking, on top
of the hashing-based framework for success amplification, we also consider the average number of positive
NP queries. Then, using a frequency analysis and concentration bounds, one can prove that when we take
enough samples, with high probability the number of wrong NP-oracle answers is small. The technique
essentially allows one to reduce the argument to that of randomized time-bounded Kolmogorov complexity,
i.e., when nondeterminism is not present.

Lemma 3.7 (Success Amplification for rnKt). For any oracle O, any time bound t ∈ N, any ε, δ ∈ (0, 1)
and any strings x, y ∈ {0, 1}∗ such that |x|+ |y| ≤ t, we have

rnK
p(t log(1/ε)/δ),O
1−ε (x | y) ≤ rnKt,O

δ (x | y) + log p(t log(1/ε)/δ).

Proof. Let M be the program for rnKt,O
δ (x | y). By definition, we have

Pr
r∼Ut

[
∃w ∈ {0, 1}t,MO(y, r, w) outputs x in t steps,

∀w ∈ {0, 1}t,MO(y, r, w) outputs x or ⊥ in t steps.

]
≥ δ.

For any string r ∈ {0, 1}t, define a string sr ∈ {0, 1}n, such that the i’th bit of sr is 1 iff there exists some
w ∈ {0, 1}t such that the i’th bit of MO(y, r, w) is 1. In other words, sr is the bit-wise OR of outputs on all
computation paths when the random string is r. We also define dr ∈ [0, 1] as

dr :=
w(sr)

n
,

where w(·) is the Hamming weight of a string. We define d as the average dr over r ∼ Ut, i.e.

d = E
r∼Ut

[dr].

For any λ ∈ (0, 1), define Aλ as

Aλ :=

{
s ∈ {0, 1}n

∣∣∣∣ Pr
r∼Ut

[sr = s] ≥ λ

}
.

By definition, x ∈ Aδ. We take k independent samples r1, . . . , rk ∼ Ut. The following claim is crucial to
our proof:

Claim 3.8. For k =
⌈
1024n2 log(6/ε)

δ2

⌉
, with probability at least 1 − ε over r1, . . . , rk ∼ Ut, the following

three conditions hold:

26

(i) |{i ∈ [k] | sri = x}| ≥ δk
2 .

(ii) For any string x′ /∈ Aδ/8, |{i ∈ [k] | sri = x′}| ≤ δk
4 .

(iii) |dr1+···+drk
k − d| ≤ δ

32n .

Proof of Claim 3.8. Since Prr∼Ut [sr = x] ≥ δ, by Chernoff bound, the probability of Item (i) being vio-
lated is at most

Pr
r1,...,rk∼Ut

[
|{i ∈ [k] | sri = x}| ≤ δ

2
· k

]
≤ exp

(
−2k · δ

2

4

)
≤ ε

3
.

Similarly, the probability of Item (iii) being violated is at most

Pr
r1,...,rk∼Ut

[∣∣∣∣dr1 + · · ·+ drk
k

− d

∣∣∣∣ ≥ δ

32n

]
≤ 2 exp

(
−2k · δ2

1024n2

)
≤ ε

3
.

For Item (ii), let x′ be any string in {0, 1}n \ Aδ/16. Then we have Prr∼Ut [sr = x′] ≤ δ/16. Then by
Chernoff bound, we get

Pr
r1,...,rk∼Ut

[
|{i ∈ [k] | sri = x′}| ≥ δ

4
· k

]
≤ exp

(
−2k · δ

2

64

)
≤ ε

3
· 2−n.

Applying union bound over all x′ ∈ {0, 1}n \ Aδ/16, the probability of Item (ii) being violated is at most
ε/3. Applying union bound over Items (i) to (iii), these three conditions hold together with probability at
least 1− ε. ⋄

Notice that |Aδ/8| ≤ 8/δ. Applying Lemma 4.3 to Aδ/8, there exists a string u ∈ {0, 1}O(log(n/δ)),
such that the algorithm B(1n, u) runs in poly(n) time and outputs a circuit that computes a function H :
{0, 1}n → {0, 1}O(log(1/δ)), satisfying H(x) ̸= H(x′) for every distinct pair x, x′ ∈ Aδ/8. Then our
algorithm for recovering x works as follows:

(a) Set k =
⌈
1024n2 log(6/ε)

δ2

⌉
, and take k independent samples r1, . . . , rk ∼ Ut.

(b) For each i ∈ [k], non-deterministically guess n strings wi,1, . . . wi,n ∈ {0, 1}t. We then compute
ŝri ∈ {0, 1}n, where the j’th bit of ŝri is 1 iff the j’th bit of MO(y, ri, wi,j) is 1. We also compute
d̂ri := w(ŝri)/n, where w(·) is the Hamming weight of a string.

(c) Set the threshold a = ⌈k(d− δ
32n)⌉. If d̂r1 + · · ·+ d̂rk < a, then outputs ⊥ and halts.

(d) Let Â be the set of strings appearing at least ⌊3δ8 · k⌋ times in ŝr1 , . . . , ŝrk . If there exists a unique
string x̂ ∈ Â such that H(x̂) matches the stored hash value H(x), outputs x̂; otherwise outputs ⊥.

Notice that we only need to store (M,n, k, a, u,H(x)), which takes |M | + O(log n log(1/ε)
δ) bits. The

running time of the above algorithm is also bounded by poly(nt log(1/ε)δ). It remains to estimate the success
probability.

Claim 3.9. If the random strings r1, . . . , rk sampled by our algorithm satisfy Items (i) to (iii) of Claim 3.8,
then

1. For all nondeterministic guesses {wi,j}i∈[k],j∈[n], our algorithm either outputs x or ⊥; and

2. There exists some nondeterministic guess {wi,j}i∈[k],j∈[n] such that our algorithm outputs x.

27

Proof of Claim 3.9. We first prove Item 1. If the algorithm reaches step (d) of the algorithm, then we have

d̂r1 + · · ·+ d̂rk ≥ k

(
d− δ

32n

)
.

But since r1, . . . , rk also satisfies Item (iii) of Claim 3.8, we have

dr1 + · · ·+ drk ≤ k

(
d+

δ

32n

)
.

Subtracting the two inequalities, we get

(dr1 − d̂r1) + · · ·+ (drk − d̂rk) ≤
δk

16n
.

By averaging argument, we get ∣∣∣∣{i ∈ [k]

∣∣∣∣ dri − d̂ri ≥
1

n

}∣∣∣∣ ≤ δk

16
.

Since dri counts the number of 1 in the bitwise OR of all computation paths, dri ≥ d̂ri ; and if dri = d̂ri ,
then sri = ŝri must hold. Also because dri , d̂ri are both multiples of 1/n, dri ̸= d̂ri implies dri−d̂ri ≥ 1/n.
Therefore sri ̸= ŝri implies dri − d̂ri ≥ 1/n, and we get

|{i ∈ [k] | sri ̸= ŝri}| ≤
δk

16
. (2)

By Item (i) of Claim 3.8, we get

|{i ∈ [k] | sri = x}| ≥ δk

2
. (3)

Combining Equations (2) and (3), we get

|{i ∈ [k] | ŝri = x}| ≥ δk

2
− δk

16
=

7δk

16
>

3δk

8
.

Therefore, by step (d) of the algorithm, x ∈ Â holds. Also, by Item (ii) of Claim 3.8, for any x′ ̸∈ Aδ/8, we
have

|{i ∈ [k] | sri = x′}| ≤ δk

4
. (4)

Combining Equations (2) and (4), we get

|{i ∈ [k] | ŝri = x′}| ≤ δk

4
+

δk

16
=

5δk

16
<

3δk

8
.

Therefore, by step (d) of the algorithm, x′ /∈ Â holds. Thus we get Â ⊆ Aδ/8. By Lemma 4.3, we can
always find the correct x in step (d).

We have shown that whenever the algorithm reaches step (d), it always outputs x. Therefore to prove
Item 2 of the claim, it suffices to show that there exists some {wi,j}i∈[k],j∈[n] such that the algorithm reaches
step (c). In fact, since sri is the bitwise OR of all computation paths, there exists some {wi,j}i∈[k],j∈[n], such
that for all i ∈ [k] we have sri = ŝri , which implies dri = d̂ri . In this case, Item (iii) guarantees that our
algorithm reaches step (d). ⋄

Therefore the success probability is at least 1− ε by Claim 3.8, which finishes our proof.

28

Lemma 3.10. For every L ∈ NP, there is a a constant c > 0 such that for every t ∈ N, λ ∈ (0, 1), and
x, y ∈ {0, 1}∗,

rnKtc

λ/t(x | y) ≤ rK
t,∥L
λ (x | y) + c · log t.

Proof. Let x, y ∈ {0, 1}∗ and t ∈ N, and define k = rKt,∥A(x | y). Then there exists a program Π ∈ {0, 1}k
such that for a λ fraction of r ∈ {0, 1}t, Π, when run on (y; r) with non-adaptive oracle access to L, can
non-deterministically output x in time t.

Fix any good r such that the above holds. Then, as in the proof of Lemma 3.3, one can eliminate the
oracle access to L by hard-coding the number p of positive answers to the oracle queries made by Π, and
non-deterministically guessing witnesses (of length at most poly(t)) for each query. Simulate Π, attempting
to answer the queries using these witnesses: if a witness verifies, answer ”yes”; otherwise, answer ”no.” At
the end, verify that exactly p witnesses were accepted.

Note that in the above, the additional advice p depends on the randomness r, and therefore we cannot
have a single advice string that works for all good choices of r. However, such advice can be encoded using
at most log t bits. Then for any good r, if we uniformly pick an advice string from {0, 1}log t, the program
can successfully output x in a nondeterministic manner as described above. It follows that there exists a
program, which includes the description of Π and has size at most |Π|+O(log t), such that with probability
at least

λ · 1

2log t
= λ/t,

over r ∼ {0, 1}t and p ∼ {0, 1}log t, it outputs x non-deterministically in time poly(t). This concludes the
proof.

Lemma 3.11. There is a constant c > 0 such that the following holds. For any time-constructible, non-
decreasing T : N → N, T (n) ≥ n, and every L ∈ NTIME[T (n)] ∩ coNTIME[T (n)], x, y ∈ {0, 1}∗ and
t ∈ N,

rnKT (t)c(x | y) ≤ rnKt,L(x | y).

Specifically, restricting query length to at most ℓ ∈ N, there is a constant c > 0 such that for every x, y ∈
{0, 1}∗ and t ∈ N,

rnK(t+T (ℓ))c(x | y) ≤ rnKt,L≤ℓ(x | y).

Proof Sketch. The proof is similar to that of Lemma 3.5. It relies on the idea that, given a nondeterministic
program with oracle access to a language L ∈ AMTIME[T (n)] ∩ coAMTIME[T (n)], one can eliminate the
oracle by guessing an answer to a query along with a witness certifying that answer, and then verifying the
answer efficiently in time time poly(T (n)).

The main difference here is that L lies in L ∈ AMTIME[T (n)] ∩ coAMTIME[T (n)], so the verifiers
are randomized. However, using standard error reduction techniques, we can ensure that all the verifications
(of which there are at most t) have perfect completeness and soundness error at most O(t−2), within time
overhead of O(log t). Then, by union bound, the overall success probability of the simulated program is
at least 2/3 − O(t−1), which can be amplified back to 2/3 using Lemma 3.7 at the expense of constant
overhead.

Corollary 3.12. For every L ∈ AM ∩ coAM, there is a constant c > 0 such that for every x, y ∈ {0, 1}∗,

rnKt(x | y) ≤ c · rnKtL(x | y).

29

3.3 pnK

Lemma 3.13. There is a constant c > 0 such that the following holds. For any time-constructible, non-
decreasing T : N → N, T (n) ≥ n, and every L ∈ NTIME[T (n)] ∩ coNTIME[T (n)], x, y ∈ {0, 1}∗ and
t ∈ N,

pnKT (t)c(x | y) ≤ pnKt,L(x | y).

Specifically, restricting query length to at most ℓ ∈ N, there is a constant c > 0 such that for every x, y ∈
{0, 1}∗ and t ∈ N,

pnK(t+T (ℓ))c(x | y) ≤ pnKt,L≤ℓ(x | y).

Proof Sketch. The poof can be easily adapted from that of Lemmas 3.5 and 3.11. We omit the details
here.

Corollary 3.14. For every L ∈ AM ∩ coAM, there is a constant c > 0 such that for every x, y ∈ {0, 1}∗,

pnKt(x | y) ≤ c · pnKtL(x | y).

Lemma 3.15. For every oracleO and every language L that is hard for NPO under deterministic polynomial-
time reductions, there exists a constant c > 0 such that, for all x, y ∈ {0, 1}∗ and t ∈ N,

pKtc,L(x | y) ≤ pnKt,O(x | y) + c · log t.

Proof. The proof follows the same idea as Lemma 3.1. Let k = pnKt,O(x | y), and suppose that with
probability at least 2/3 over r ∼ {0, 1}t, there exist Π ∈ {0, 1}k such that, on input (y; r) and with oracle
access to O, Π non-deterministically outputs x within time t.

Let L0 ∈ NPO be the following language:

L0 =

{
(Π, y, r, i, 1t, 1n)

∣∣∣∣∣ ∃w ∈ {0, 1}t such that ΠO(y;w; r) outputs a string

x ∈ {0, 1}n within time t and the i-th bit of x is 1.

}
.

Then, with probability at least 2/3 over r ∼ {0, 1}t, given (Π, y, r, t, n) as above hard-coded, one can
recover the string x within time poly(t) given oracle access to L0. In particular, one can simply query
(Π, y, r, i, 1t, 1n) to L0 for every i ∈ [n] and return the concatenation of the answers from the oracle. By
definition of Π and t, this process is guaranteed to output x.

Lastly, for any NPO-complete language L, we may replace the L0-oracle with an L-oracle by simulating
the reduction from L0 to L. This increases the time to produce x by at most a factor of poly(t).

Overall, we have

pKpoly(t),L(x | y) ≤ |(Π, t, n)|+O(log t)

≤ |Π|+O(log t)

= pnKt,O(x | y)) +O(log t),

as desired.

Corollary 3.16. For every oracle O and every language L that is hard for NPO under deterministic c
polynomial-time reductions, there exists a constant c > 0 such that, for all x, y ∈ {0, 1}∗,

pKtL(x | y) ≤ c · pnKtO(x | y).

30

4 Unconditional Lower Bounds for Estimating Complexity

4.1 Hardness of MnKtP

In this section we prove the moreover part of Theorem 1.1, from which the main part follows directly.
We first define our technical tool: rK, but with restricted length of random bits.

Definition 4.1. For any oracle O, any time bound t ∈ N, any length r ∈ N, any real number δ ∈ [0, 1], and
any strings x, y ∈ {0, 1}∗, we define rK

(t;r),O
δ (x | y) as

rK
(t;r),O
δ (x | y) = min

M

{
|M |

∣∣∣∣ Pr
w∼{0,1}r

[
MO(y, w) = x in t steps

]
≥ δ

}
.

We use rK
(t;r),O≤l

δ (x | y) when M only make queries to O on strings of length at most l. We may omit the
conditional string y when it is empty, simplify (t; r) to t when r ≥ t, and omit δ when δ = 2/3.

4.1.1 Randomness Efficient Success Amplification for rK

In this section, we show how to amplify the success probability of rK with only 2 times randomness
used.

Lemma 4.2. For any oracleO, any time bound t ∈ N, any length n,m, r, l ∈ N, any real number δ ∈ [0, 1],
and any strings x ∈ {0, 1}n, y ∈ {0, 1}m satisfying n+m ≤ t, we have

rK
(poly(t/δ);2r),O≤l

2/3 (x | y) ≤ rK
(t;r),O≤l

δ (x | y) +O(log n/δ).

Our proof is similar to [LO21], but to save randomness, we use the pairwise independent sampling trick.
We then use the following string isolation lemma ([LO21, Lemma 15]), and save the correct hash value of
x.

Lemma 4.3 (String Isolation Lemma [LO21]). There is a deterministic algorithm A for which the following
holds. For any set W ⊆ {0, 1}n of size l, there exists a string u ∈ {0, 1}O(log(n·l)) such that A(1n, u) runs
in poly(n) time and outputs a Boolean circuit that computes a function H : {0, 1}n → {0, 1}O(log l) with
the following property:

H(w) ̸= H(w′) for every distinct pair w,w′ ∈W.

Moreover, the same guarantee is achieved by a random string u of the same length with probability at least
0.99.

Proof of Lemma 4.2. Let s = rK
(t;r),O≤l

δ (x | y), and let M be the corresponding program. Let A be the
algorithm of Lemma 4.3. For any set T ⊆ {0, 1}n, we define pT as

pT = Pr
w∼Ur

[
MO≤l(y, w) outputs some z ∈ T in t steps

]
.

And for any γ ∈ {0, 1}, we define Sγ as

Sγ =
{
z ∈ {0, 1}n

∣∣ p{z} ≥ γ
}
.

One can easily see that |Sp| ≤ 1/p. Now applying Lemma 4.3 to Sδ/8, there exists a string u ∈ {0, 1}O(logn/δ)

such that A(1n, u) runs in time poly(n) and outputs a Boolean circuit computing a function H : {0, 1}n →
{0, 1}O(log 1/δ), such that

H(z) ̸= H(z′) for every distinct pair z, z′ ∈ Sδ/8.

Our description is (M,A, u,H(x)). Our algorithm B that recovers x from the description runs as follows:

31

1. Set k = 256/δ2. Sample a, b ∼ Ur, and compute wi = a · i + b for i ∈ [k], where the addition and
multiplication are done in GF(2r).

2. For each i ∈ [k], we run MO≤l(y, wi) for t steps, and let xi be its output. (If it does not halt within t
steps or the output is not of length n, we set xi = ⊥.)

3. Let S′ be the set of strings appearing at least δ
2 · k times (ignoring ⊥) in {xi}i∈[k].

4. Run A(1n, u) to obtain the circuit C. Compute C(x′) for every string x′ ∈ S′. Output the first string
x′ such that C(x′) is equal to the stored H(x). (If no such string exists, output ⊥.)

Clearly the above algorithm runs in time poly(t/δ), and only uses 2r random bits when sampling a, b. It
remains to argue about the probability of outputting x. We will use the following claim.

Claim 4.4. With probability at least 2/3 over a, b ∼ Ur, we have

1. x ∈ S′, and

2. S′ ⊆ Sδ/8.

Proof of Claim 4.4. For every set of strings T ⊆ {0, 1}n and every i ∈ [k], we define a random variable
Vi,T ∈ {0, 1} such that Vi,T = 1 iff xi ∈ T . By properties of finite fields, {wi}i∈[k] (and hence {xi}i∈[k])
are identically distributed and pairwise independent. Therefore, for any fixed T , the random variables
{Vi,T }i∈[k] are also identically distributed and pairwise independent. From our assumptions on x, we have
p{x} ≥ δ, so the expected value of Vi,{x} is at least δ for every i ∈ [k]. By Chebyshev’s inequality, we get

Pr

[
k∑

i=1

Vi,{x} ≤
δ

2
· k

]
≤

Var[
∑k

i=1 Vi,{x}]

(kp{x} − δk/2)2
≤

kp{x}

k2p2{x}/4
≤ 4

kδ
≤ δ

64
. (5)

That is, the probability of x /∈ S′ is at most δ/64. Next, we need to argue that with constant probability,
S′ is contained in Sδ/8, i.e. S′ does not contain any string of Sδ/8. First, we divide Sδ/8 into d disjoint
buckets B1, . . . , Bd, such that pBi ∈ [δ/8, δ/4] holds for every i ∈ [d − 1]. This can be done by putting
the strings of Sδ/8 into buckets one by one, and whenever the total probability of the current bucket exceeds
δ/8, we add a new empty bucket. Since p{x′} ≤ δ/8 for any x′ ∈ Sδ/8, the total probability of each bucket
is in [δ/8, δ/4] except for the last one, which might be smaller than δ/8. Now for each bucket Bj , by
Chebyshev’s inequality, we have

Pr

[
k∑

i=1

Vi,Bj ≥
δ

2
· k

]
≤

Var[
∑k

i=1 Vi,Bj]

(kpBj − δk/2)2
≤

kpBj

k2δ2/16
≤ 4

kδ
≤ δ

64
. (6)

Since for each i ∈ [d − 1], pBi ≥ δ/8 holds, we have d ≤ 8/δ + 1 ≤ 16/δ. Applying union bound to
Equation (6), we get

Pr

[
∃j ∈ [d] s.t.

k∑
i=1

Vi,Bj ≥
δ

2
· k

]
≤ δ

64
· d ≤ 1

4
.

Since each string x′ in Sδ/8 belongs to some bucket Bj , if x′ appears more than δk/2 times, then Bj appears

32

more than δk/2 times. Hence we can estimate the probability of S′ ⊈ Sδ/8:

Pr
[
S′ ̸⊆ Sδ/8

]
= Pr

[
∃x′ ∈ Sδ/8 s.t.

k∑
i=1

Vi,{x′} ≥
δ

2
· k

]

≤ Pr

[
∃j ∈ [d] s.t.

k∑
i=1

Vi,Bj ≥
δ

2
· k

]

≤ 1

4
. (7)

Applying union bound to Equations (5) and (7), with probability at least 3/4− δ/64 ≥ 2/3 over a, b ∼ Ur,
both Item 1 and Item 2 are satisfied. ⋄

Now with probability at least 2/3 over a, b ∼ Ur, we have both x ∈ S′ and S′ ⊆ Sδ/8. Conditioning on
this, by Lemma 4.3, H(x) ̸= H(x′) for any x′ ∈ S′ \ {x}. Therefore, with probability 2/3, the algorithm
B can always find the correct x.

4.1.2 Reconstruction from Oracle Access to Dense Language

Lemma 4.5. There exists some constant C ∈ N such that the following holds. For any b ∈ N and any
language L satisfying |L∩ {0, 1}n| ≥ 2n/nb and any strings x, y ∈ {0, 1}∗, let n1 = |x| and n2 = |y|, and
n = n1 + n2. Then for any m1,m2 ∈ N satisfying

m1 ≤ rK(nC·b;C·n),L≤3n(x | y)− C · log3(nb),

m2 ≤ rK(nC·b;C·n),L≤3n(y)− C · log3(nb),

we define G1, G2 to be the PRG of Lemma 2.27, with parameter ε = 1/2nb:

G1 : {0, 1}n1 × {0, 1}d1 → {0, 1}m1 ,

G2 : {0, 1}n2 × {0, 1}d2 → {0, 1}m2 .

Then there exists z1 ∈ {0, 1}d1 , z2 ∈ {0, 1}d2 such that G1(x, z1) ◦G2(y, z2) ∈ L.

To prove this lemma, we need the following corollary regarding rK upper bound, which comes from the
reconstruction procedure of Lemma 2.27.

Corollary 4.6. For sufficiently large n,m ∈ N such that m ≤ 2n, and any ε ∈ (0, 1), let G be the generator
of Lemma 2.27. Consider any string x ∈ {0, 1}n, oracle O, parameters l, n′, t ∈ N, string y ∈ {0, 1}n′

,
and algorithm B(-) : {0, 1}m × {0, 1}n′ × {0, 1}r′ → {0, 1} running in time t. If it holds that

Pr
z∼Ud
w′∼Ur′

[
BO≤l(G(x; z), y, w′) = 1

]
− Pr

w∼Um
w′∼Ur′

[
BO≤l(w, y, w′) = 1

]
≥ 2ε,

then we have
rK(poly(n·t/ε);O(r′+m)),O≤l(x | y) ≤ m+ |B|+O(log3(n/ε)),

where |B| is the description length of B.

33

Proof. By Lemma 4.2, it suffices to show that rK(poly(t/ε);O(r′+m)),O≤l

1/poly(n/ε) (x | y) ≤ m+ |B|+O(log3(n/ε)).
By Markov’s inequality, we have

Pr
w′∼Ur′

[
Pr
z∼Ud

[
BO≤l(G(x; z), y, w′) = 1

]
− Pr

w∼Um

[
BO≤l(w, y, w′) = 1

]
≥ ε

]
≥ ε.

That is, with probability at least ε over w′ ∼ Ur′ , Dw′(-) := BO≤l(-, y, w′) is a ε-distinguisher for G.
Therefore by Lemma 2.27, we have

Pr
w′∼Ur′
w∼Ur
z∼Ud

[
RDw′ (A(x, z), z, w) = x

]
≥ 1

poly(n/ε)
.

By averaging, there exists some z ∈ {0, 1}d such that

Pr
w′∼Ur′
w∼Ur

[
RDw′ (A(x, z), z, w) = x

]
≥ 1

poly(n/ε)
.

Therefore, we can store z, A(x, z), as well as the description of R and B. Then given y and oracle access
to O≤l, by sampling w′ ∼ Ur′ and w ∼ Ur, we can simulate RDw′ (A(x, z), z, w) in time poly(t/ε) and
recover x with probability 1/poly(n · t/ε). Since r = O(m), this gives

rK
(poly(t/ε);O(r′+m)),O≤l

1/poly(n/ε) (x | y) ≤ m+ |B|+O(log3(n/ε)).

Applying Lemma 4.2 completes the proof.

Proof of Lemma 4.5. For the sake of contradiction, assume the contrary. Then we have

Pr
z1∼Ud1
z2∼Ud2

[G1(x; z1) ◦G2(y; z2) ∈ L] = 0.

Notice that when C is a large enough constant, m1 ≤ n1 and m2 ≤ n2 holds. Hence by our assumption on
L, we have

Pr
w1∼Um1
w2∼Um2

[w1 ◦ w2 ∈ L] ≥ 1

(m1 +m2)b
≥ 1

(n1 + n2)b
=

1

nb
.

Then by a hybrid argument, we either have

Pr
w1∼Um1
z2∼Ud2

[w1 ◦G2(y; z2) ∈ L]− Pr
z1∼Ud1
zy∼Ud2

[G1(x; z1) ◦G2(y; z2) ∈ L] ≥ 1

2nb
,

or
Pr

w1∼Um1
w2∼Um2

[w1 ◦ w2 ∈ L]− Pr
w1∼Um1
z2∼Ud2

[w1 ◦G2(y; z2) ∈ L] ≥ 1

2nb
.

For the former case, given y and oracle access to L, there exists a uniform algorithm that 1/2nb-distinguishes
G1(x;Ud1) from Um1 in linear time using linear randomness: given a string s ∈ {0, 1}m1 , it samples
z2 ∼ Ud2 , and accepts iff s ◦ G2(y; z2) ∈ L, which can be checked with oracle access to L on length
m1 +m2 ≤ 3n. Hence by Corollary 4.6, we have

rK(poly(nb);O(n)),L≤3n(x | y) ≤ m1 +O(log3(nb)).

34

But by definition, m1 = rK(nC·b;C·n),L≤3n(x | y)− C · log3(nb), hence when C is a large enough constant,
we have a contradiction.

Similarly, for the latter case, given oracle access to L, there exists a uniform algorithm that 1/2nb-
distinguishes G2(y;Ud2) from Um2 in linear time using linear randomness: given a string s ∈ {0, 1}m2 , it
samples w1 ∼ Um1 , and accepts iff w1 ◦ s ∈ L, which can be checked with oracle access to L on length
m1 +m2 ≤ 3n. Hence by Corollary 4.6, we have

rK(poly(nb);O(n)),L≤3n(y) ≤ m2 +O(log3(nb)).

But by definition, m2 = rK(nC·b;C·n),L≤3n(y)− C · log3(nb), hence when C is a large enough constant, we
have a contradiction.

4.1.3 Derandomizing rKL

Lemma 4.7. There exists some constant C such that the following holds. If there exists ε, γ ∈ (0, 1) such
that a language L satisfies the following three properties:

1. L ∈ NTIME[2εn] ∩ coNTIME[2εn],

2. ∀x ∈ L, nKt(x) ≥ γ · |x|,

3. ∀n ∈ N, L ∩ {0, 1}n ̸= ∅,

then for all large enough n,m ∈ N, any l, t, r ∈ N and any strings x ∈ {0, 1}n, y ∈ {0, 1}m, we have

nKt(x | y) ≤ rK(t;r),L≤l(x | y) + C · (ε · (n+m+ l + r + 1/γ)/γ + log3(nmlr/γ) + log t).

Proof of Lemma 4.7. Let n′ = C1(n+m+ l+r+⌈log t⌉+⌈1/γ⌉), where C1 is some constant whose value
will be determined later, and let N ′ = ⌈n′/γ⌉. Let G : {0, 1}N ′ × {0, 1}d → {0, 1}r be the pseudorandom
generator of Lemma 2.27, with ε = 1/6. Let M (-) be the program of rK(t;r),L≤l(x | y), such that

Pr
w∼Ur

[
ML≤l(y, w) = x in t steps

]
≥ 2

3
.

Then we claim that given a string with high nKt complexity, we can derandomize rKL:

Claim 4.8. If C1 is some large enough constant, then for any s ∈ {0, 1}N ′
satisfying nKt(s) ≥ n′, it holds

that
Pr
z∼Ud

[
ML≤l(y,G(s, z)) = x in t steps

]
>

1

2
.

Proof of Claim 4.8. Suppose the contrary. Then it is not hard to see that the following algorithm B(−) with
L≤l oracle 1/6-distinguishes G(s,Ud) from Ur, and runs in time poly(t):

• B is given as input u ∈ {0, 1}r along with x and y as above.

• B runs ML≤l(y, u) for t steps, and accepts iff it halts and outputs x.

Since B only need to store the description of M (-), by Corollary 4.6, we have

rK(poly(t·N ′);O(r)),L≤l(s | x, y) ≤ r + |M (-)|+O(log3N ′) +O(log t)

= r + rK(t;r),L≤l(x | y) +O(log3N ′) +O(log t)

≤ O(r + n+ log3N ′ + log t).

35

Because we can store x ∈ {0, 1}n, y ∈ {0, 1}m, and a “good” choice of O(r)-length randomness for rK, we
get that

Kpoly(t·N ′),L≤l(s) ≤ O(r + n+m+ log3N ′ + log t). (8)

Since L ∈ NTIME[2εn] ∩ coNTIME[2εn], we get

nKt(s) ≤ nKpoly(t·N ′·2εl)(s) +O(log t+ logN ′ + εl)

≤ nKpoly(t·N ′),L≤l(s) +O(log t+ logN ′ + εl) (by Lemma 3.5)

≤ Kpoly(t·N ′),L≤l(s) +O(log t+ logN ′ + εl)

≤ O(n+m+ l + r + log t+ log3N ′). (by Equation (8))

Notice that

log3N ′ ≤ O(log3C1 + log3(n+m+ l + r + log t+ 1/γ) + log3(1/γ))

≤ O(C1 + n+m+ l + r + log t+ 1/γ).

Hence we have nKt(s) ≤ O(C1 + n + m + l + r + log t + 1/γ). But by our assumption, nKt(s) ≥
n′ = C1 · (n + m + l + r + ⌈log t⌉ + ⌈1/γ⌉). Hence when C1 is some large enough constant, we get a
contradiction. ⋄

Now let C1 be a large enough constant such that Claim 4.8 holds. We define a non-deterministic algo-
rithm A(-) such that, when given the description of M (-) and y, as well as oracle access to L≤N ′ , recovers
x. AL≤N′ works as follows:

1. AL≤N′ non-deterministically guesses a string s ∈ {0, 1}N ′
.

2. AL≤N′ checks if s ∈ L, using its oracle access to L≤N ′ . If s /∈ L, then it outputs ⊥ and halts.

3. AL≤N′ enumerates over every z ∈ {0, 1}d, and simulates ML≤l(y,G(s, z)) for t steps. (Because
l ≤ N ′, AL≤N′ can answer the oracle queries by ML≤l .) Let {xz}z∈{0,1}d be the output of the
simulations. If there exists some string x̂ appearing more than 2d−1 times in {xz}z∈{0,1}d , then
AL≤N′ outputs x̂; otherwise it outputs ⊥.

By Claim 4.8, whenever nKt(s) ≥ n′, the majority of {xz}z∈{0,1}d is x. Since for any s ∈ L ∩ {0, 1}N ′
,

nKt(s) ≥ γ · N ′ ≥ n′, for any non-deterministic guess of s, A always outputs either x or ⊥. Because
L ∩ {0, 1}N ′ ̸= ∅ for any N ′, there always exists some non-deterministic guess of s such that A outputs x.
Hence by the definition of nK, we have

nKpoly(2d·t·N ′),L≤N′ (x | y) ≤ rKL≤l,(t;r)(x | y) +O(log(t ·N ′)). (9)

Therefore we have

nKt(x | y) ≤ nKpoly(2εN
′ ·2d·t)(x | y) +O(εN ′ + d+ log t)

≤ nKpoly(2d·t·N ′),L≤N′ (x | y) +O(εN ′ + d+ log t) (by Lemma 3.5)

≤ rK(t;r),L≤l(x | y) +O(εN ′ + d+ log t) (by Equation (9))

≤ rK(t;r),L≤l(x | y) +O(εN ′ + log3N ′ + log t) (Since d = O(log3N ′))

Replacing N ′ by ⌈C1(n+m+ l + r + ⌈log t⌉+ ⌈1/γ⌉)/γ⌉ finishes the proof.

36

4.1.4 Iterative Construction of High-Complexity Strings

Combining Lemma 4.5 and Lemma 4.7, we have the following lemma, which we will use to prove
Theorem 1.1.

Lemma 4.9. There exists some constant C ∈ N such that the following holds. If there exists ε, γ ∈ (0, 1)
and b ∈ N such that a language L satisfies the following three properties:

1. L ∈ NTIME[2εn] ∩ coNTIME[2εn],

2. ∀x ∈ L, nKt(x) ≥ γ · |x|,

3. ∀n ∈ N, |L ∩ {0, 1}n| ≥ 2n/nb,

and for any strings x, y ∈ {0, 1}∗, let n1 = |x| and n2 = |y|, and n = n1 + n2. Then for any m1,m2 ∈ N
satisfying

m1 ≤ nKt(x | y)− C · (ε · (n+ 1/γ)/γ + log3(nb/γ))

m2 ≤ nKt(y)− C · (ε · (n+ 1/γ)/γ + log3(nb/γ))

We define G1, G2 to be the PRG of Lemma 2.27, with parameter ε = 1/2nb:

G1 : {0, 1}n1 × {0, 1}d1 → {0, 1}m1 ,

G2 : {0, 1}n2 × {0, 1}d2 → {0, 1}m2 .

Then there exists z1 ∈ {0, 1}d1 , z2 ∈ {0, 1}d2 such that G1(x, z1) ◦G2(y, z2) ∈ L.

Proof. Follows from Lemma 4.5 and Lemma 4.7.

Proof of Theorem 1.1. We prove the “moreover” part of this theorem, of which the main part is an immediate
corollary. For the sake of contradiction, assume that there exists some language L satisfying the following
three properties:

1. L ∈ NTIME[2εn] ∩ coNTIME[2εn] for any ε > 0,

2. ∃γ ∈ (1/2, 1) such that ∀x ∈ L, nKt(x) ≥ γ · |x|,

3. ∃b ∈ N such that ∀n ∈ N, |L ∩ {0, 1}n| ≥ 2n/nb.

Then we use the following algorithm to explicitly construct a long string s ∈ L in short deterministic time
with oracle access to L.

37

Algorithm 1 Iterative construction of long string in L

1: procedure AL(γ, 1n)
2: s0 := ⊥, N1 := n, θ1 := γn.
3: for s′ ∈ {0, 1}n by lexicographical order do
4: if s′ ∈ L then
5: s1 ← s′.
6: break
7: γ′ := (γ + 1/2)/2.
8: for i = 2, 3, · · · do
9: mi,1 := ⌈γ′n/γ⌉,mi,2 := ⌈γ′θi−1/γ⌉.

10: Ni := mi,1 +mi,2, εi := (n+Ni−1)
−b/2.

11: θi := γNi.
12: Instantiate G1 : {0, 1}n × {0, 1}d1 → {0, 1}mi,1 in Lemma 2.27 with security parameter εi.
13: Instantiate G2 : {0, 1}Ni−1 × {0, 1}d2 → {0, 1}mi,2 in Lemma 2.27 with security parameter εi.
14: si := ⊥.
15: for x ∈ {0, 1}n, z1 ∈ {0, 1}d1 , z2 ∈ {0, 1}d2 by lexicographical order do
16: if G1(x; z1) ◦G2(si−1; z2) ∈ L then
17: si := G1(x; z1) ◦G2(si−1; z2).
18: break
19: if θi > n/(2− 2γ′) then
20: Output si.
21: return
22: Output ⊥.

Then we have the following claim for the above procedure AL:

Claim 4.10. For a fixed γ, if ε is small enough, then for all large enough n, there exists some integer
i0 ≤ logγ′(1− 1

2γ′) + 2 such that

1. For any i ≤ i0, si ∈ L, and

2. θi0 > n/(2− 2γ′).

Proof of Claim 4.10. We need to prove two things: first, for every i during the iteration, we can find some
si s.t. si ̸= ⊥, i.e. si ∈ L; second, our algorithm terminates at some i0, i.e. θi0 > n/(2− 2γ′).

To prove the first argument, we use induction on i. For i = 1, because L ∩ {0, 1}n ̸= ∅, we can always
find s′ ∈ L, so s1 ̸= ⊥. Then suppose si−1 ̸= ⊥ for some i ≥ 2. Since γ > 1/2, by Lemma 4.9, there
exists some universal constant C such that whenever mi,1 and mi,2 satisfy

mi,1 ≤ nKt(x | si−1)− C · (ε(n+Ni−1) + log3((n+Ni−1)
b))

mi,2 ≤ nKt(si−1)− C · (ε(n+Ni−1) + log3((n+Ni−1)
b),

there exists some z1 ∈ {0, 1}d1 , z2 ∈ {0, 1}d2 such that

G1(x, z1) ◦G2(si−1, z2) ∈ L.

By inductive hypothesis, si−1 ∈ L, hence nKt(si−1) ≥ γ|si−1| = θi−1. By a counting argument (Lemma 2.21),
there also exists some x ∈ {0, 1}n such that nKt(x | si−1) ≥ n. Therefore, it suffices to show that

mi,1 = ⌈γ′n/γ⌉ ≤ n− C · (ε(n+Ni−1) + log3((n+Ni−1)
b))

mi,2 = ⌈γ′θi−1/γ⌉ ≤ θi−1 − C · (ε(n+Ni−1) + log3((n+Ni−1)
b).

38

Since we did not terminate at i−1, we are guaranteed that θi−1 ≤ n/(2−2γ′), therefore Ni−1 ≤ n
γ·(2−2γ′) ≤

4n (By definition γ ≥ 1/2 and γ′ ≤ 3/4). Since γ′/γ < 1, if ε is small enough (i.e. ε < γ−γ′

6Cγ), then for
all large enough n, the above two inequalities holds, and we can find z1 ∈ {0, 1}d1 , z2 ∈ {0, 1}d2 such that
G1(x, z1) ◦G2(x, z2) ∈ L, in other words, si exists.

To prove the second argument, notice that |s1| = N1 = n, and Ni ≥ γ′ · (Ni−1 + n/γ). Expanding the
recursion, we get

Ni ≥
(
(γ′)1 + · · ·+ (γ′)i−1

)
· n
γ
+ (γ′)i−1 · n =

(
γ′

γ
· 1− (γ′)i−1

1− γ′
+ (γ′)i−1

)
· n.

Hence we have

θi ≥
γ′ · (1− (γ′)i−1)

1− γ′
· n

When i − 1 ≥ logγ′(1 − 1
2γ′), we have θi ≥ n

2−2γ′ . Hence the algorithm terminates when i ≤ logγ′(1 −
1
2γ′) + 2, i.e. i0 ≤ logγ′(1− 1

2γ′) + 2. ⋄

The running time of algorithm AL(γ, 1n) is bounded by 2n · poly(n) · 2O(log3 n) · i0, and we only need
to store n and γ. Without loss of generality, we may assume that γ = 1/2 + 1/2k for some k ∈ N, and we
can store k, which takes ⌈log log(1

γ−1/2)⌉ bits. Also since Ni0−1 ≤ 4n, we have Ni0 ≤ 5n, so A only need
to query L on inputs of length at most 5n. Therefore we have

K2n·poly(n)·2O(log3 n),·i0,L≤5n(si0) ≤ O

(
log n+ log log

(
1

γ − 1/2

))
. (10)

Then we have

nKt(si0) ≤ nK2n·poly(n)·2O(log3 n)·i0·2O(εn)
(si0) + n+O(εn+ log3 n+ log i0)

≤ K2n·poly(n)·2O(log3 n)·i0,L≤5n(si0) + n+O(εn+ log3 n+ log i0) (by Lemma 3.5)

≤ n+O

(
εn+ log3 n+ log i0 + log log

(
1

γ − 1/2

))
(by Equation (10))

≤ n+O

(
εn+ log3 n+ log log

(
1

γ − 1/2

))
. (11)

Where the last inequality is true because i0 ≤ O(log 1
γ−1/2), which follows from i0 ≤ logγ′(1 − 1

2γ′) + 2

(Claim 4.10), γ′ = (γ + 1/2)/2 and 1/2 < γ < 1. However, on the other hand, we know that si0 ∈ L,
hence we get

nKt(si0) ≥ γ · |si0 | = θi0 ≥ n/(2− 2γ′). (12)

Since 1/(2 − 2γ′) > 1 and i0 ≤ logγ′(1 − 1
2γ′) + 2, when ε is small enough (i.e. ε < 2γ′−1

2C1(2−2γ′) , where
C1 is the constant hidden by the big O of Equation (11)), for all large enough n, Equations (11) and (12)
contradicts each other.

4.1.5 Limitations of the Iterative Construction for γ ≤ 1/2

We believe the statement is also true for 0 < γ ≤ 1/2. However, our technique only works for γ > 1/2.
In order to see this, recall that we iteratively construct a string s in time 2(1+o(1))·n such that nKt(s) ≥
(1 + Ω(1)) · n, resulting in a contradiction. But by the iterative construction, we are only guaranteed that

39

nKt(s) ≥ (γ+γ2+γ3+ · · ·) ·n− o(n), which is upper bounded by γ
1−γ ·n− o(n). Hence when γ ≤ 1/2,

γ
1−γ ≤ 1, and we don’t have nKt(s) ≥ (1 + Ω(1)) · n, so the proof does not work here.

A more intuitive explanation to this barrier arises from the SoI intuition behind this technical iterative
construction (see Section 1.3). In the setting of a dense language L ⊆ RnKt[γ·n], we are able to prove that

nKt(x, y) ≥ γ(nKt(x | y) + nKt(y))− Cεn

by reconstruction (Lemma 4.5) and derandomization (Lemma 4.7). This degrades to a trivial inequality
when γ ≤ 1/2, since

nKt(x, y) ≥ max{nKt(x), nKt(y)} ≥ max{nKt(x | y), nKt(y)} ≥ 1

2
(nKt(x | y) + nKt(y))

holds unconditionally. Thus the derived SoI inequality does not seem helpful. On the other hand, the
statement is non-trivial when γ > 1/2, and it is strong enough for us to derive a contradiction from it.

4.2 Hardness of Gap-MrnKtP

In this section, we prove the “moreover” parts in Theorem 1.2. These parts are strengthened versions of
the plain complexity lower bounds for Gap-MrnKtP in Theorem 1.2. To see this, we observe the following
simple lemma.

Lemma 4.11. Let θ : N → N be such that θ(n) < n − 1 and C be a complexity class. Suppose for every
dense language L ⊆ RrnKt[θ(n)], it is the case that L ̸∈ C. Then Gap-MrKtP[θ(n), n− 1] ̸∈ co-C.

Proof. We prove the contrapositive. Suppose Gap-MrKtP[θ(n), n−1] ∈ co-C. Then there exists a language
L0 ∈ co-C that is consistent with Gap-MrKtP[θ(n), n − 1], in the sense that for every x ∈ {0, 1}n: if
rnKt(x) ≤ θ(n), then x ∈ L0, and if rnKt(x) ≥ n− 1, then x /∈ L0.

Let L be the complement of L0. Note that L ∈ C. Moreover, by construction, L ⊆ RrnKt[θ(n)]. Finally,
note that L is dense, since Ln contains the set {x | rnKt(x) ≥ n − 1}, whose size is at least 2n/2 by
Lemma 2.21.

4.2.1 Exponential AMTIME ∩ coAMTIME Lower Bound via Iterative Construction

In this subsection, we give proof to Theorem 1.2, Item 1. The plan is similar to the proof of Theorem 1.1,
where we break reconstructive black-box PRG (See Lemma 2.27) under easiness assumption of L, then
iteratively construct a long string in L to derive contradiction. It shares same technical barrier γ > 1/2 with
Theorem 1.1, as discussed in Section 4.1.5.

Lemma 4.12. Fix any c > 0, 1/2 < γ < 1, any L ⊆ RrnKt[γ·n] satisfying |Ln| ≥ 2n/nc, there exist
constant C1, C2 > 0 establishing the following.

For all sufficiently large n1, n2 ∈ N and any string x ∈ {0, 1}n1 , y ∈ {0, 1}n2 , we fix any m1,m2 ∈ Z
such that

m1 ≤ rK(n1+n2)C1 ,L≤2n1+2n2 (x | y)− C2 log
3(n1 + n2),

m2 ≤ rK(n1+n2)C1 ,L≤2n1+2n2 (y)− C2 log
3(n1 + n2).

Let m := m1+m2. If m1,m2 > 0, for any pseudorandom generators G1, G2 instantiated from Lemma 2.27
with parameters ε := m−c−1/2 and

G1 : {0, 1}n1 × {0, 1}d1 → {0, 1}m1 ,

G2 : {0, 1}n2 × {0, 1}d2 → {0, 1}m2 ,

40

there exist z1 ∈ {0, 1}d1 , z2 ∈ {0, 1}d2 such that

G1(x; z1) ◦G2(y; z2) ∈ L.

Proof. For the sake of contradiction, assume the contrary, i.e.,

Pr
z1∼Ud1
z2∼Ud2

[G1(x; z1) ◦G2(y; z2) ∈ L] = 0.

By density assumption on L, we have

Pr
w1∼Um1
w2∼Um2

[w1 ◦ w2 ∈ L] ≥ 1

mc
.

We consider two cases: either

Pr
w1∼Um1
z2∼Ud2

[w1 ◦G2(y; z2) ∈ L] ≤ 1

2mc
,

or
Pr

w1∼Um1
z2∼Ud2

[w1 ◦G2(y; z2) ∈ L] ≥ 1

2mc
.

For the former case, we design DL as follow: Given a string s ∈ {0, 1}m2 , it samples w1 ∼ Um1 and
returns whether w1 ◦ s ∈ L. Note that m1 ≤ 2n1,m2 ≤ 2n2, we have query length here bounded by
2n1 + 2n2, as well as m ≤ poly(n1 + n2), ε

−1 ≤ poly(n1 + n2).
We can easily see that DL ε-distinguishes G2(y;Ud2) from Um2 in O(m) time. Applying Corollary 4.6

on G2, we obtain

rKpoly(m/ε),L≤2n1+2n2 (y) ≤ m2 +O(log3(n2/ε)) = m2 +O(log3(n1 + n2)).

But by definition, m2 = rK(n1+n2)C1 ,L≤2n1+2n2 (x | y) − C2 log
3(n1 + n2), hence when C1, C2 are large

enough constants, we have a contradiction.
Similarly, for the later case, we design DL which ε-distinguishes G1(x;Ud1) from Um1 in polynomial

time: On s ∈ {0, 1}m1 , it samples z2 ∼ Ud2 , returns whether s ◦ G2(y; z2) ∈ L. Hence by Corollary 4.6,
we have

rKpoly(m/ε),L≤2n1+2n2 (x | y) ≤ m1 +O(log3(n1 + n2)).

But by definition, m2 = rK(n1+n2)C1 ,L≤2n1+2n2 (x | y) − C2 log
3(n1 + n2), we then obtain a contradiction

when C1, C2 are large enough.

We aim to derive contradiction from Lemma 4.12, as in the proof of Theorem 1.1, which finishes the
proof of Theorem 1.2, Item 1.

Proof of Theorem 1.2, Item 1. Fix c > 0, 1/2 < γ < 1 and L ⊆ RrnKt[γ·n] such that |Ln| ≥ 2n/nc. For
sake of contradiction we assume that

L ∈ AMTIME[2εn] ∩ coAMTIME[2εn]

for any ε > 0. Similar to Lemma 4.9, we use the following algorithm to explicitly construct a long string
s ∈ L in short deterministic time with oracle access to L.

41

Algorithm 2 Iterative construction of long string in L

1: procedure AL(γ, 1n)
2: s0 := ⊥, N1 := n, θ1 := γn.
3: for s′ ∈ {0, 1}n by lexicographical order do
4: if s′ ∈ L then
5: s1 ← s′.
6: break
7: γ′ := (γ + 1/2)/2.
8: for i = 2, 3, · · · do
9: mi,1 := ⌈γ′n/γ⌉,mi,2 := ⌈γ′θi−1/γ⌉.

10: Ni := mi,1 +mi,2, εi := N−c−1
i /2.

11: θi := γNi.
12: Instantiate G1 : {0, 1}n × {0, 1}d1 → {0, 1}mi,1 in Lemma 2.27 with security parameter εi.
13: Instantiate G2 : {0, 1}Ni−1 × {0, 1}d2 → {0, 1}mi,2 in Lemma 2.27 with security parameter εi.
14: si := ⊥.
15: for x ∈ {0, 1}n, z1 ∈ {0, 1}d1 , z2 ∈ {0, 1}d2 by lexicographical order do
16: if G1(x; z1) ◦G2(si−1; z2) ∈ L then
17: si := G1(x; z1) ◦G2(si−1; z2).
18: break
19: if θi > n/(2− 2γ′) then
20: Output si.
21: return
22: Output ⊥.

We hereby analyse behaviour of AL.

Claim 4.13. For any 1/2 < γ < 1, there exists i∗ ∈ N such that for all sufficiently large n ∈ N, AL(γ, 1n)

outputs in Oγ(2
n+O(log3 n)) time the string si∗ ̸= ⊥ with rnKt(s) > n/(2− 2γ′). Here, the constant factor

hidden in big-O notation depends on γ, but can be fixed when γ is fixed.

To prove Claim 4.13, we prove the following crucial statement.

Claim 4.14. Fix any 1/2 < γ < 1, for all sufficiently large n ∈ N, the following holds for all i ∈ N: On
input (γ, 1n), either si ̸= ⊥ is produced successfully, or the algorithm terminates with output sj for some
j < i.

Proof of Claim 4.14. We prove by induction. For i = 1, since L is dense, it is guaranteed that Ln ̸= ∅, and
s1 is the lexicographically smallest string in Ln.

Now assume for i ≥ 2, we have si ∈ L and θi ≤ n/(2 − 2γ′). We aim to prove that algorithm
successfully finds si+1 ∈ L. Since we are considering sufficiently large n, we omit some detailed discussion
on inequalities when they hold asymptotically with respect to n and Ni.

By induction assumption, rnKt(si) ≥ γNi = θi. Let C1, C2 > 0 be the constants from Lemma 4.12.
Applying Lemma 3.11, there exists c′ > 0 such that

rnKt(si) ≤ rnKO((n+Ni)
C1+1)·2c′ε(4n+4Ni)(si) + c′ε(4n+ 4Ni) +O(log(n+Ni))

≤ rK(n+Ni)
C1 ,L≤2n+2Ni (si) + c′ε(4n+ 4Ni) +O(log(n+Ni))

42

holds for any ε > 0. Therefore,

rK(n+Ni)
C1 ,L≤4n+4Ni (si) ≥ rnKt(si)− c′ε(4n+ 4Ni)−O(log(n+Ni))

≥ θi − c′ε(4n+ 4Ni)−O(log(n+Ni))

holds for any ε > 0. Note that, since γ > 1/2, γ′/γ = 1/2 + 1/4γ < 1, picking small enough ε > 0 gives

mi+1,2 =
γ′

γ
θi ≤ rK(n+Ni)

C1 ,L≤2n+2Ni (si)− C2 log
3(n+Ni). (13)

By standard counting argument of rK, there exists x ∈ {0, 1}n such that

rK(n+Ni)
C1 ,L≤2n+2Ni (x | si) ≥ n,

so there exists x ∈ {0, 1}n satisfying

mi+1,1 =
γ′

γ
n ≤ n− C2 log

3(n+Ni) ≤ rK(n+Ni)
C1 ,L≤2n+2Ni (x | si)− C2 log

3(n+Ni). (14)

Combining Equation (14) and Equation (13), we apply Lemma 4.12, which indicates for any sufficiently
large n, AL(γ, 1n) successfully produces si+1 ∈ L. ⋄

Proof of Claim 4.13. Fix any 1/2 < γ < 1. For any i ≥ 2, observe that if AL(γ, 1n) produces si ̸= ⊥, we
will have

θi = γ′n+ γ′θi−1,

and θ1 = γn holds. Simple telescoping gives

θi =

 i−1∑
j=1

γ′j + γ′i−1γ

n.

Applying γ′ < γ < 1, we have

θi >

 i∑
j=1

γ′j

n =
γ′(1− γ′i)n

1− γ′
, θi <

 i∑
j=1

γj

n <
γn

1− γ
, (15)

holding for every i. Note that γ′ = (1+2γ)/4 > 1/2, we always have γ′/(1−γ′) > 1/(2−2γ′), indicating
that there exists Iγ such that whenever i ≥ Iγ , θi > n/(2 − 2γ′). Combining this with Claim 4.14 we can
derive that AL(γ, 1n) terminates with output si∗ ∈ L for all sufficiently large n where i∗ ≤ Iγ . Given
L ⊆ RrnKt[γ·n], we have

rnKt(si∗) ≥ γ|si∗ | = θi∗ > n/(2− 2γ′).

The running time is bounded by

O(2n) +

i∗∑
i=2

O(2n+O(log3 n)+O(log3 Ni−1)) = O(2n) +

i∗∑
i=2

O(2n+O(log3 n)+O(log3(θi−1/γ)))

≤ O(2n) + Iγ ·O(2n+O(log3 n)+O(log3(n/(1−γ))))

Note that Iγ is independent from n, the running time is therefore bounded by Oγ(2
n+O(log3 n)). ⋄

43

Fix any 1/2 < γ < 1. For all sufficiently large n, by Claim 4.13, we compute si∗ := AL(γ, 1n). we
have rnKt(si∗) > n/(2− 2γ′); On the other hand, the running time bound given in Claim 4.13 indicates

rnKt(n),L≤max{N1,N2,··· ,Ni∗}(si∗) = O(1),

where t(n) = O(2n+O(log3 n)). By Equation (15), we have

max{N1, N2, · · · , Ni∗} =
1

γ
max{θ1, θ2, · · · , θi∗} <

n

1− γ
.

Therefore,
rnKt(n),L≤n/(1−γ)(si∗) = O(1).

Applying Lemma 3.11, we have

rnKt(si∗) ≤ rnKO(t(n) log t(n))·poly(22εn/(1−γ)) +
εn

1− γ
+ log t(n) +O(log log t(n))

≤ rnKt(n),L≤n/(1−γ)(si∗) +
εn

1− γ
+ log t(n) +O(log log t(n)) +O(log n).

Substituting t(n) = O(2n+O(log3 n)) gives rnKt(si∗) ≤ n + O(log3 n), which contradicts rnKt(si∗) >
n/(2− 2γ′) since γ′ > 1/2.

4.2.2 AMTIME Lower Bound via Explicit Constructions

We formally state the technical result from [CLL24], which is mentioned in Section 1.3. We begin with
a formal definition of single-valued Arthur-Merlin protocol, which is a natural interpretation from [CLL24].

Definition 4.15. A non-binary public coin protocol (P, V) is defined as follow: On any input x, V, P
interact by constantly many rounds; In the k-th round, V (the verifier) sends plain uniform randomness
rk ∈ {0, 1}nk to P ; P (the prover) then returns wk according to x, r1, w1, · · · , rk−1, wk−1, rk. After the
last round, V outputs some string y as answer, which deterministically depends on the whole interaction
transcript (all wi, ri’s) and input x.

Non-binary public coin protocol (P, V) is a single-valued Arthur-Merlin protocol computing {xn}n∈N,
if there exists l : N→ N such that the following holds for every n ∈ N:

• Conformity: There exists α ∈ {0, 1}l(n) such that (P, V)(1n, αn) = xn holds with probability 1
over randomness of V ;

• Resiliency: For every ζn ∈ {0, 1}l(n), there exists yn ∈ {0, 1}n such that, for every (possibly with
unbounded computational power) prover P ′, (P ′, V)(1n, ζn) ∈ {yn,⊥} with probability at least 2/3
over randomness of V .

We refer to l(n) as the advice complexity of (P, V).

Then we present below the main result from [CLL24] regarding explicit algorithms that hits any dense
language in coAM.

Lemma 4.16 (See [CLL24], Theorem 1.3). For every dense language L ∈ coAM and constant k ≥ 1, there
exists {xn}n∈N and single-valued Arthur-Merlin protocol (P, V) computing {xn}n∈N such that

• Advice efficiency: The advice complexity of (P, V) is l(n) = 2log
1/k n;

44

• Time efficiency: On input (1n, ζn) where |ζn| = l(n), V runs in time 2log
O(k) n;

• Hitting: For infinitely many n ∈ N, xn ∈ L.

Note that the original result in [CLL24] works for only languages with half density, i.e., |L∩{0, 1}n| ≥
1/2. However, it is easy to amplify the density by parallel repetition, sketched as follow: For language L
and some p : N→ N, define L′ as

L′
n = {x | x[1 : l] ∈ L, or · · · , or x[(p(n)−1)·l+1 : p(n)·l] ∈ L, where l = ⌊|x|/p(n)⌋}

we can show L ∈ coAM implies L′ ∈ coAM. Furthermore, if L only has inverse-polynomial density
(i.e., |L ∩ {0, 1}n| ≥ 2n/nc), when p(n) is some appropriately picked polynomial function, we can have
|L′ ∩ {0, 1}n| ≥ 2n−1, so the original explicit construction result can be applied to obtain single-valued
Arthur-Merlin protocol (P ′, V ′) hitting L′. Then we apply log p bits of additional advice to locate the
L-hitting subsection of an L′-hitting output from (P ′, V ′).

Then we show that this non-binary Arthur-Merlin algorithm hits coAM properties with strings of small
rnKt complexity.

Lemma 4.17. Let L ∈ coAM be a dense language, then for any k > 1, there exists infinitely many n ∈ N
and xn ∈ {0, 1}n, such that xn ∈ L ∩ {0, 1}n and rnKt(xn) < O(2log

1/k n).

Proof. Fix any k > 1, define T (n) = 2log
O(k) n, l(n) = 2log

1/k n. There exists s-round single-valued Arthur-
Merlin protocol (P, V) with running time T (n) and advice complexity l(n), as described in Lemma 4.16.
We may then assume that for each randomness ri and prover response wi there is |ri| = |wi| = T (n), and
the verifier only probe a prefix of each.

Define deterministic Turing machine V ′
n(w, r) : {0, 1}s·T (n)×{0, 1}s·T (n) → {0, 1}n as follow: With n

and αn embedded inside the machine description, V ′
n prints (1n, αn) on its tape first, parses r = r1 ◦ · · · ◦ rs

and w = w1 ◦ · · · ◦ws where ri, wi ∈ {0, 1}T (n), then simulates (P, V)(1n, αn). When V tosses its random
coin ri, V ′

n simulates by ri; When P needs to answer wi, V ′
n answers by wi.

We then prove that V ′
n satisfies definition of rnKt(xn). For any prover P and r1, · · · , rs ∈ {0, 1}T (n),

denote the output of (P, V) by (P, V)(1n, αn; r) when V has overall random coin r = r1◦· · ·◦rs. Regarding
conformity of (P, V), (P, V)(1n, αn; r) = xn holds for every r ∈ {0, 1}s·T (n). Let w(r) = w1 ◦ · · · ◦ ws,
where wi is the prover response in the i-th round during the execution of (P, V)(1n, αn; r). By definition of
V ′
n, V ′

n(w
(r), r) = (P, V)(1n, αn; r) holds for every r ∈ {0, 1}T , i.e.,

Pr
r∼Us·T (n)

[∃w ∈ {0, 1}s·T (n), V ′
n(w, r) outputs x in s · T (n) steps] = 1.

By resiliency of V , there exists yn ∈ {0, 1}n such that for any oracle P ′, Pr[(P ′, V)(1n, αn) ∈
{yn,⊥}] ≥ 2/3. Fixing P ′ to be P , we obtain xn ∈ {yn,⊥}, which indicates yn = xn. To prove by
contradiction, assume

Pr
r∼Us·T (n)

[∃w(r) ∈ {0, 1}s·T (n), V ′
n(wr, r) /∈ {xn,⊥}] ≥

1

3
.

We can then define prover P ′ that always answers w(r)
[(i−1)·T (n)+1: i·T (n)] in the i-th round if w(r) exists and

always answers 0T (n) otherwise. With probability at least 1/3 over r, V receives responses w
(r)
1 , · · ·w(r)

s

during execution of (P ′, V)(1n, αn; r) . By definition of V ′, V does not output xn or ⊥ given r and those
response. This contradicts the resiliency property and refutes the previous assumption. Therefore,

Pr
r∈Us·T (n)

[∀w ∈ {0, 1}s·T (n), V ′
n(w, r) outputs x or ⊥ in s · T (n) steps] ≥ 2

3
.

45

Since s is constant, we can verify that V ′
n witnesses rnKt(xn) < O(l) +O(log T (n)) = O(2log

1/k n) +

O(logO(k) n) = O(2log
1/k n). Recall the hitting property of (P, V), there exists infinitely many sufficiently

large n ∈ N and xn ∈ Ln such that, rnKt(xn) < O(2log
1/k n).

We are then ready to prove the central result of this subsection.

Proof of Theorem 1.2, Item 2. Towards contradiction we assume the contrary, i.e., there exists γ ∈ (0, 1), d >

1, L ⊆ RrnKt[2log
γ n] such that some algorithm A ∈ coAM[2log

d n] decides L, and L is dense.

Applying standard padding argument, we define l(n) = 2log
d n and

L′ = {x ◦ y | x ∈ L, ⌊l−1(|x|+ |y|)⌋ = |x|}.

To decide L′ on x ∈ {0, 1}n, we might first compute m = ⌊l−1(n)⌋, which can be done in poly(n) time
assuming that l is efficiently computable. Then L′ can be decided in coAM, just by truncating the input into
first m bits and run the coAM protocol in time 2log

d m = l(m) ≤ n.
By assumption, L is dense, which immediately gives L′ is dense. Applying Lemma 4.17, we can

conclude for any constant k > 1 that there exist infinitely many n ∈ N and zn ∈ L′
n such that rnKt(zn) <

O(2log
1/k n). For such zn, we decompose it into zn = xn ◦ yn such that |xn| = ⌊l−1(n)⌋, then

• By definition of L′, given that xn ◦ yn ∈ L′
n, we have xn ∈ L. Recall that L ⊆ RrnKt[2log

γ n], we have

rnKt(xn) ≥ 2log
γ/d n;

• By definition of rnKt, trivially, we have rnKt(xn) ≤ rnKt(xn ◦ yn) +O(1) < O(2log
1/k n).

This gives
2log

γ/d n < O(2log
1/k n).

Note the arbitrariness of k > 1, we take k = 2d/γ, then

O(2log
1/k n) = O(2log

γ/2d n) < 2log
γ/d n.

which contradicts the previous inequality.

4.2.3 Non-Uniform Lower Bound via Near-Maximum Circuit Lower Bounds

From now on we manage to prove Theorem 1.2, Item 3, which begins with some technical tools.

Lemma 4.18. For any languageO ∈ AM∩ coAM and any constant ε > 0, there exists a family of multisets
T = {Ts ⊆ {0, 1}s}s∈N such that each Ts satisfies |Ts| ≤ poly(s) and the following properties hold:

Efficiency: For all sufficiently large s, we have rnKt(Ts) ≤ 2log
ε s. Here, the multiset Ts with k elements

is represented as a binary string of the form e1 01 e2 01 . . . 01 ek, where each ei is a 2s-bit string encoding
an element of Ts, with each bit duplicated.

Pseudorandomness: For infinitely many s ∈ N, the following holds: for everyO-oracle circuit C : {0, 1}s →
{0, 1} of size at most s, ∣∣∣∣ Pr

x∼{0,1}s
[C(x) = 1]− Pr

x∼Ts

[C(x) = 1]

∣∣∣∣ ≤ 1

s
.

Next, we show Lemma 4.18. We need the following tools.

46

Lemma 4.19 ([CLL24, Theorem 1.2]). For any languageO ∈ AM∩coAM and any 0 < ε < 1, (AMEXP∩
coAMEXP)/2n

ε ⊈ SIZEL[2n/n].

The following lemma gives upper bound on rnKt complexity of truth table decidable in AMEXP ∩
coAMEXP with short advice.

Lemma 4.20. For sufficiently large n ∈ N and 0 < ε < 1, if f : {0, 1}∗ → {0, 1} is computable in
(AMEXP ∩ coAMEXP)/2n

ε
, then rnKt(tt(fn)) = O(2n

ε
).

Proof. We first state a extended version of Lemma 3.11, which handles oracle computed by non-uniform
Arthur-Merlin protocol.

Claim 4.21. For any T, α : N→ N, T (n) ≥ n, and everyO ∈ (AMTIME[T (n)]∩coAMTIME[T (n)])/α(n),
restricting query length to exactly l ∈ N, there is a constant c > 0 such that for every x, y ∈ {0, 1}∗ and
t ∈ N,

rnKO(t log t)·T (l)c(x | y) ≤ rnKt,O=l(x | y) + c · log l + α(l).

Proof Sketch of Claim 4.21. The proof is basically identical to the proof of Lemma 3.11, but the non-
uniform advice required to correctly simulate Arthur-Merlin protocols is fixed in the Turing machine de-
scription, resulting in α(l) extra bits. ⋄

The proof then is a straightforward application of Claim 4.21. Assume there exists k > 0 and 0 < ε < 1
such that f ∈ (AMTIME[2n

k
] ∩ coAMTIME[2n

k
])/2n

ε
. Hence there exists a uniform algorithm M (-) such

that, with access to oracle f on input length n, it outputs tt(fn) in time O(2n), so

rnK2n,f=n(tt(fn)) = O(1).

By Claim 4.21, we have

rnKt(tt(fn)) ≤ rnKO(2n·n)·2cnk

(tt(fn)) +O(nk) + 2n
ε
= O(2n

ε
),

as desired.

As an application of Lemmas 4.19 and 4.20, we get the following.

Lemma 4.22. For any language O ∈ AM ∩ coAM and any constant γ > 0, there exists a sequence
{xN}N∈N such that the following hold:

• For every large enough N , rnKt(xN) ≤ 2log
γ N .

• For infinitely many N that are powers of 2, the string xN , interpreted as the truth table of a function
f : {0, 1}logN → {0, 1}, has O-oracle-circuit complexity at least N/ logN .

Proof. Lemma 4.19 states that there exists a language in (AMEXP ∩ coAMEXP)/2n
γ

whose truth tables
have nearly maximal O-oracle circuit complexity. Lemma 4.20 then states that each such truth table has
rnKt-complexity at most O

(
2log

γ N
)
, where N denotes the length of the truth table.

We now present the proof of Lemma 4.18.

47

Proof of Lemma 4.18. The proof combines Lemma 4.22 and Theorem 2.26.
LetO ∈ AM∩ coAM. We start by applying Theorem 2.26 with ε := 1/2, and let c, d be the correspond-

ing constants from the lemma.
Consider Lemma 4.22 with γ := ε/2 and let {xN} be the corresponding sequence of strings.
Let s ∈ N. We call s good if there exists a number N such that N is the smallest integer satisfying

sc ≤ N < (s+1)c, and the string xN hasO-oracle-circuit complexity at least N/ logN . Observe that there
are infinitely many good s, and the corresponding N satisfies N ≤ (s+ 1)c.

For each good s, we will apply the function F from Theorem 2.26 to xN . Note that the output length of
F (xN ,−) is at least N1/c ≥ s. Finally, define

Ts :=
{
F (xN , z)[1:s] | z ∈ {0, 1}d logN

}
.

We first argue that Ts is satisfies the pseudorandom condition for good s. This follows from the fact
that if s is good, then the corresponding xN has high O-oracle-circuit complexity (as a truth table) and the
security guarantee provided by the pseudorandom generator F in Theorem 2.26.

Next, we address the efficiency condition. Note that for a (sufficiently large) good s, given the integer
s and the string xN , where N is the integer witnessing the goodness of s, we can construct Ts in time
poly(N) ≤ poly(s). By the efficiency condition stated in Lemma 4.22, we have

rnKt(xN) ≤ 2log
γ N .

It follows that

rnKt(Ts) ≤ 2log
γ N + log poly(s)

≤ 2O(log s)γ +O(log s)

≤ 2log
ε s,

as desired.

Putting it all together, we are now ready to show Theorem 1.2, Item 3.

Proof of Theorem 1.2, Item 3. Towards contradiction, we assume the contrary. That is, there exists γ >
0,O ∈ AM ∩ coAM, c > 1, d ≥ 1, L ⊆ RrnKt[2log

γ n] satisfying

• L can be decided by O-oracle circuit family {CO
n }n∈N of size 2log

d n;

• There exists N ∈ N such that |L ∩ {0, 1}n| ≥ 2n/nc for all n > N .

We instantiate Lemma 4.18 with ε := γ/2, obtain the corresponding family of multi-sets T = {Ts}s∈N.
Consider the following algorithm D : {0, 1}∗ → {0, 1} trying to break the pseudo-randomness:

48

Algorithm 3 A non-uniform algorithm for breaking pseudo-randomness
1: procedure D(x)
2: s := |x|.
3: m := 2(2/(c−1)·log s)1/(d+1)

.
4: if m ≤ N then
5: Output 0.
6: k := m(c−1)/2.
7: if km > s then
8: Output 0.
9: for i ∈ [k] do

10: Compute ai := CO
m(x[(i−1)m+1 : im]).

11: if ai = 1 then
12: Output 1.
13: Output 0.

Assume s0 ∈ N is large enough such that for every s ≥ s0, x ∈ Ts, rnKt(x) ≤ rnKt(Ts) ≤ 2log
γ/2 s,

whose existence is guaranteed by efficiency of T . Given that L ⊆ RrnKt[2log
γ n] ⊆ RrnKt[2log

γ/2 n]
, L∩ Ts =

∅. Since circuit family {CO
n }n∈N computes L, D(x) = 0 holds for any x ∈ Ts. This indicates that, for any

s ≥ s0,
Pr
x∼Ts

[D(x) = 1] = 0.

Pick s1 = 2c/2·log
d+1 N , we can verify that for any s ≥ s1,

m = 2(2/(c−1)·log s)1/(d+1) ≥ 2(c/(c−1))1/(d+1)·logN > N.

In this case, |L ∩ {0, 1}m| ≥ 2m/mc by our assumption on S. Furthermore, we have km = m(c+1)/2 =

2log
1/(d+1) s·F (c) where F (c) = (2/(c − 1))1/(d+1) · (c + 1)/2 is universally constant, so we pick s2 :=

max{16, 2F (c)4}, which gives

km = 2log
1/(d+1) s·F (c) ≤ 2log

1/(d+1) s·log1/4 s ≤ 2log
3/4 s <

s

2
.

for all s ≥ s2 (the second last inequality follows from d ≥ 1, while the last follows from s ≥ 16). Now for
all s ≥ max{s1, s2} and x ∈ {0, 1}s,

D(x) =
k∨

i=1

CO
m(x[(i−1)m+1 : im]).

Therefore,

Pr
x∼{0,1}s

[D(x) = 0] = Pr
x∼{0,1}s

[x[1 : m] /∈ L, · · · , x[(k−1)m+1 : km] /∈ L]

=

(
Pr

y∼{0,1}m
[y /∈ L]

)k

≤
(
1− 1

mc

)k

< exp

(
− k

mc

)
.

49

Given that k = m(c−1)/2, we have

k =
mc−1

k
> mc ln

(
1 +

1

km

)
,

immediately giving

exp

(
− k

mc

)
< exp

(
−mc ln

(
1 +

1

km

)
· 1

mc

)
= 1− 1

km+ 1
≤ 1− 2

s+ 2
< 1− 1

s
.

In conclusion, for all s ≥ max{s0, s1, s2}, we have

Pr
x∼{0,1}s

[D(x) = 1]− Pr
x∼Ts

[D(x) = 1] >
1

s
− 0 =

1

s
.

which contradicts the pseudo-randomness of T = {Ts}s∈N in Lemma 4.18.

5 Nondeterminism, Symmetry of Information, and Proof Complexity

In this section, we prove our results stated in Section 1.2.2.

Proof of Theorem 1.3. Theorem 5.2, stated and proved in Section 5.1, shows that average-case symmetry of
information holds for pnKt. Similarly, Theorem 5.10, proved in Section 5.3, establishes an analogous result
for rnKt.

Proof of Theorem 1.4. Theorem 5.3, stated and proved in Section 5.2, shows that if worst-case symmetry of
information holds for pnKt, then coNP ̸⊆ AM. Theorem 5.11 establishes an analogous result for rnKt and
is proved in Section 5.3.

5.1 Average-Case Symmetry of Information for pnKt

In this subsection, we show that Symmetry of Information holds for pnKt on average over efficiently
samplable distributions.

Toward proving the above, we observe that Symmetry of Information holds for pKpoly if one replaces
the term pKpoly(y | x) with its nondeterministic counterpart pnKpoly(y | x).

5.1.1 A Semi-Symmetry of Information Theorem for pnKt

We obtain a version of semi-SoI for pnKt via the worst-case conditional coding theorem of [HLO25].
The proof is similar to an argument from [HIL+23] used to conditionally show average-case SoI for pKt.
The statement slightly improves on the worst-case semi-SoI theorem of [HLO25], which would include a
term for pnKpoly(t)(y) rather than pKpoly(t)(y).

Theorem 5.1. There exists a polynomial p such that, for all sufficiently large n, t ∈ N with t ≥ 4n, the
following holds. For all x, y ∈ {0, 1}n,

pKt(x, y) ≥ pKp(t)(x) + pnKp(t)(y | x)− log p(t).

50

Proof. Let D ∈ PSAMP be a distribution family as in Lemma 36 of [LOZ22] that dominates the universal
distribution for pKt; that is, for some constant c ∈ N, for any n, t ∈ N and z ∈ {0, 1}2n,

Dn,t(z) ≥
1

2pK
t(z) · nc

. (16)

For n, t ∈ N, let D(2)
n,t denote the marginal distribution over the second half of the output of Dn,t, and note

that D(2) = {D(2)
n,t}n,t∈N ∈ PSAMP.

Now fix n, t ∈ N such that t ≥ 4n along with strings x, y ∈ {0, 1}n. By the worst-case conditional
coding theorem for pnKt with respect to D ([HLO25, Theorem 6]), for some polynomial q,

pnKq(t)(y | x) ≤ log
1

Dn,t(y | x)
+ log q(t)

= log
D(2)

n,t(x)

Dn,t(x, y)
+ log q(t)

= log
1

Dn,t(x, y)
− log

1

D(2)
n,t(x)

+ log q(t)

≤ pKt(x, y)− log
1

D(2)
n,t(x)

+ log q(t) + c log n. (by Equation (16))

Moreover, by the worst-case coding theorem for pKt complexity [LOZ22], for some polynomial q′,

pKq′(t)(x) ≤ log
1

D(2)
n,t(x)

+ log q′(t).

Combining this with the above,

pnKq(t)(y | x) + pKq′(t)(x) ≤ pKt(x, y) + log q(t) + c log n+ log q′(t).

Let the polynomial p be such that p(m) ≥ 4 ·max{q(m),mc, q′(m)} for all m ∈ N. It follows that

pnKp(t)(y | x) + pKp(t)(x) ≤ pKt(x, y) + log p(t).

This completes the proof.

5.1.2 From Semi-SoI for pnKt to Average-Case SoI for pnKt

Making use of the statement from the previous subsection, we prove that average-case Symmetry of
Information holds for pnKt. The proof is a simple adaptation of an argument from [HLO25]; we include the
details for completeness.

Below, we state Theorem 1.3 in a seemingly stronger form, with a term for pKt(x) on the right-hand
side rather than pnKt(x). However, we remark that this statement is actually essentially equivalent to The-
orem 1.3, since pKt(x) ≤ pnKt(x) +O(log n) with high probability over strings x sampled efficiently.

Theorem 5.2. For every polynomial-time samplable distribution family {Dn}n∈N supported over {0, 1}n×
{0, 1}n, there exists a constant c > 0 such that for all large enough n, k ∈ N,

Pr
(x,y)∼Dn

[pnKt(x, y) ≥ pKt(x) + pnKt(y | x)− c · log n− log k] ≥ 1− 1

k
.

51

Proof. The proof is following [HLO25, Theorem 8]. Let {Dn}n∈N be as in the statement of this theorem,
and let the polynomial p be as in Theorem 5.1. Fix any n ∈ N, and for a sufficiently large polynomial
q, let t = q(tD(n)), where tD(n) upper-bounds the time required to sample Dn. Observe that, for any
x, y ∈ {0, 1}n,

pnKt(y | x) ≤ pnKp(t)(y | x) +O(log p(t))

and
pKt(x) ≤ pKp(t)(x) +O(log p(t)).

By the coding theorem for pKt (Theorem 2.23) and Lemma 2.22, the following holds: for any k ∈ N, with
probability at least 1− k−1 over (x, y) ∼ Dn,

pKt(x, y) ≤ log
1

Dn(x, y)
+O(log n)

≤ K(x, y) +O(log n) + log k

≤ pnKt(x, y) +O(log n) + log k.

Combining the above with Theorem 5.1 and letting c ∈ N be a sufficiently large constant, we have that with
probability at least 1− k−1 over (x, y) ∼ Dn,

pnKt(x, y) ≥ pKt(x) + pnKt(y | x)− c log n− log k,

as desired.

5.2 Worst-Case Symmetry of Information for pnKt and coNP vs. AM

In this section, we prove Theorem 1.4 for the case of pnKt. Here, we will only present a proof
that, if worst-case symmetry of information for pnKt holds with an error term e = polylog(n), then
coNP ⊈ AMTIME[npolylog(n)]. The case with a smaller error term e = O(log n) — leading to coNP ⊈
AMTIME[2n

o(1)
], as stated in Theorem 1.4 — can be handled similarly by appropriately adjusting the pa-

rameters in the proof.

Theorem 5.3. Item 1 implies Item 2 in the following.

1. (Worst-Case Symmetry of Information for pnKt). There exists a constant c > 0 such that for all
large enough n ∈ N and x, y ∈ {0, 1}n,

pnKt(x, y) ≥ pnKt(x) + pnKt(y | x)− logc n.

2. UNSAT /∈ AMTIME
[
2log

d n
]

for any d ≥ 1.

We will need the following lemmas.

Lemma 5.4. There exists a probabilistic oracle algorithm B(−) such that, given inputs x ∈ {0, 1}m and
y ∈ {0, 1}≤2m·m, the algorithm BSAT(x, y) runs in time 2O(m) with access to a SAT-oracle, and

• if pnKt2/3(x | y) ≤ m/2, then BSAT(x, y) rejects with probability at least 2/3, and

• if pnKt1/3(x | y) > m/2, then BSAT(x, y) accepts with probability at least 2/3.

Proof. Consider the following algorithm: on input (x, y), where x ∈ {0, 1}m and y ∈ {0, 1}≤2m·m,

52

1. Sample r ∼ {0, 1}2
m/2

.

2. For all programs Π ∈ {0, 1}∗ and running times t ∈ N such that |Π| + ⌈log t⌉ ≤ m/2, use the SAT
oracle to answer the following two queries:

(a) Does there exist a w ∈ {0, 1}t such that Π(y;w; r) outputs x in t steps?

(b) Does there exist a w ∈ {0, 1}t such that Π(y;w; r) either fails to terminate within t steps or
outputs some x′ ̸∈ {x,⊥} within t steps?

3. Reject if and only if there exists a pair (Π, t) such that the answer to the first query is yes and the
answer to the second query is no.

It is clear that the running time of the above algorithm is 2O(m), and correctness follows directly from
the definition of pnKt. Indeed, if pnKt2/3(x | y) ≤ m/2, then the algorithm rejects with probability at least
2/3 (over the randomness r), and if pnKt1/3(x | y) > m/2, the algorithm rejects with probability at most
1/3.

Lemma 5.5. Suppose SAT ∈ coAMTIME[npolylog(n)]. Then for every constant d > 0, there are infinitely
many integers m such that for every ℓ ≤ 2m, there exist strings x1, . . . , xℓ ∈ {0, 1}m satisfying∑

i∈[ℓ]

pnKt(xi | x1, . . . , xi−1) ≥ ℓ · m
2

and
rnKt(x1, . . . , xℓ) ≤ 2m

1/d
.

Proof. Let B be the (probabilistic) algorithm from Lemma 5.4. We first observe the following.

Claim 5.6. There exists a constant c > 0 and a language L ∈ AM ∩ coAM such that the following holds.
Given any x ∈ {0, 1}m and y ∈ {0, 1}≤2m·m, one can construct, in deterministic time poly

(
2m

c)
, an L-

oracle circuit C(x,y) of size 2m
c

that treats its input as internal randomness used by the algorithm B and
computes BSAT(x, y); that is, C(x,y)(r) = BSAT(x, y; r) for every r.

Proof of Claim 5.6. By Lemma 5.4, for every x ∈ {0, 1}m and y ∈ {0, 1}≤2m·m, we can construct a SAT-
oracle circuit C0 of size s = 2O(m) that treats its input as internal randomness and computes BSAT(x, y).
Note that C0 makes queries to SAT of length at most s.

By assumption, SAT ∈ coAMTIME[t(n)], where t(n) = npolylog(n). Applying a standard padding
argument, we can define a language L ∈ AM ∩ coAM that is an appropriately padded version of SAT, such
that C0 can be simulated by an L-oracle circuit of size at most poly(t(s)) = 2poly(m). ⋄

Let c > 0 be the constant and L ∈ AM ∩ coAM be the language from Claim 5.6. Consider Lemma 4.18
with ε := 1/(4cd). We say that an integer m is good if there exists an s such that s is the smallest integer
that is at least ≥ 2m

c
and the multiset Ts from Lemma 4.18 is pseudorandom against L-oracle circuits of

size s. Note that there are infinitely many good values of m.
Fix any (sufficiently large) good m. Let s be the integer that witnesses the goodness of m, and let Ts be

the corresponding pseudorandom set.
Consider the following deterministic procedure A, with oracle access to L, which takes as input m, Ts,

and a string y ∈ {0, 1}≤2m·m, and proceeds as follows:

53

For each x ∈ {0, 1}m, compute

µx := Pr
z∼Ts

[
C(x,y)(z) = 1

]
,

where C(x,y) is the L-oracle circuit obtained using Claim 5.6. Output the first x such that
µx > 1

3 + 1
10 .

Claim 5.7. The procedure A, on input (m,Ts, y) with y ∈ {0, 1}≤2m·m, runs in deterministic time at most
2poly(m) when given oracle access to L and outputs an m-bit string x satisfying pnKt(x | y) ≥ m/2.

Proof of Claim 5.7. We first analyze the running time. Since |Ts| ≤ poly(s) and s ≤ 2(m+1)c , it follows
that the algorithm runs in time at most 2poly(m).

We now show correctness. Because Ts (1/10)-fools C(x,y) for every x ∈ {0, 1}m and y ∈ {0, 1}≤2m·m,
the value µx approximates PrB[B

SAT(x, y) = 1] within additive error 1/10. Thus, any output x cannot
satisfy pnKt2/3(x | y) ≤ m/2, as that would imply PrB[B

SAT(x, y) = 1] < 1/3 and hence µx <
1/3 + 1/10, contradicting the condition for output. Furthermore, since we enumerate all x ∈ {0, 1}m, at
least one of them satisfies pnKt1/3(x) > m/2. It follows that BSAT(−, y) accepts at least one such x.
Therefore, we are guaranteed to find one with µx ≥ 2/3− 1/10 ≥ 1/3 + 1/10. ⋄

Define x1, x2, . . . , xℓ ∈ {0, 1}m as follows:

• x1 is the output of A(m,Ts, ϵ).

• For i = 2, 3, . . . , ℓ, let xi be the output of A(m,Ts, x1, . . . , xi−1).

By correctness of A, for each i ∈ [ℓ], we have

pnKt(xi | x1, . . . , xi−1) ≥
m

2

It follows that ∑
i∈[ℓ]

pnKt(xi | x1, . . . , xi−1) ≥ ℓ ·m/2,

as desired.
To upper bound the rnKt-complexity, observe that we can first compute Ts and then run procedure A

repeatedly to obtain the sequence x1, . . . , xℓ.
From the efficiency guarantee in Lemma 4.18, we have:

rnKt(Ts) ≤ 2log
ε s ≤ 2m

1/3d
,

Given m and Ts, the sequence x1, . . . , xℓ can be computed via ℓ invocations of A, each running in time
2poly(m) given oracle access to L. This yields:

rnKtL(x1, . . . , xℓ) ≤ O
(
2m

1/3d
)
+ log

(
ℓ · 2poly(m)

)
≤ 2m

1/(2d)
. (17)

In the above we use the fact that m is sufficiently large.
Finally, since L ∈ AM ∩ coAM, we get

rnKt(x1, . . . , xℓ) ≤ O
(
rnKtL(x1, . . . , xℓ)

)
(by Corollary 3.12)

≤ O
(
2m

1/(2d)
)

(by Equation (17))

≤ 2m
1/d

.

This completes the proof.

54

We now proceed to prove Theorem 5.3.

Proof of Theorem 5.3. We show the contrapositive. Assume that UNSAT ∈ AMTIME[npolylog(n)]. Note
that this implies SAT ∈ coAMTIME[npolylog(n)]. Below, we show the failure of worst-case symmetry of
information for pnKt. That is, for every constant c > 0, there exist infinitely many n ∈ N and x, y ∈ {0, 1}n
such that

pnKt(x, y) < pnKt(x) + pnKt(y | x)− logc n.

Let c > 1 be any constant. We first establish the following claim.

Claim 5.8. The following holds for infinitely many values of m. There exist v ∈ {0, 1}m and u ∈ {0, 1}n,
where m ≤ n ≤ 2m

1/(2c)
, such that

pnKt(u, v) < pnKt(u) + pnKt(v | u)− m

4
,

Proof of Claim 5.8. Suppose, for the sake of contradiction, that for all but finitely many m, the following
holds: for all v ∈ {0, 1}m and u ∈ {0, 1}n satisfying m ≤ n ≤ 2m

1/(2c)
, we have

pnKt(u, v) ≥ pnKt(u) + pnKt(v | u)− m

4
.

Consider Lemma 5.5 with d := 3c. Let m be a sufficiently large “good” integer such that the statement
of Lemma 5.5 holds for ℓ := 2m

1/d
, and let x1, . . . , xℓ be the associated sequence of strings.

Observe that ℓ·m ≤ 2m
1/(2c)

. Therefore, we can apply the assumption to v = xℓ and u = (x1, . . . , xℓ−1),
which yields:

pnKt(x1, . . . , xℓ) ≥ pnKt(x1, . . . , xℓ−1) + pnKt(xℓ | x1, . . . , xℓ−1)−
m

4

Repeating this argument inductively gives:

pnKt(x1, . . . , xℓ) ≥
∑
i∈[ℓ]

pnKt(xi | x1, . . . , xi−1)− ℓ · m
4

≥ ℓ · m
2
− ℓ · m

4
(by Lemma 5.5)

= 2m
1/d · m

4
.

However, this contradicts the fact that

pnKt(x1, . . . , xℓ) ≤ 2m
1/d

.

This completes the proof of the claim. ⋄

By Claim 5.8, for infinitely many values of m, there exist v ∈ {0, 1}m and u ∈ {0, 1}n such that

m ≤ n ≤ 2m
1/(2c)

, (18)

and
pnKt(u, v) < pnKt(u) + pnKt(v | u)− m

4
. (19)

Define
x := u and y := v0n−m. (20)

55

Then we have:

pnKt(x, y) ≤ pnKt(u, v) +O(log n) (by Equation (20))

≤ pnKt(u) + pnKt(v | u)− m

4
+O(log n) (by Equation (19))

≤ pnKt(x) + pnKt(y | x) +O(log n)− m

4
+O(log n) (by Equation (20))

≤ pnKt(x) + pnKt(y | x) +O(log n)− log2c n

4
(by Equation (18))

< pnKt(x) + pnKt(y | x)− logc n,

as desired.

5.3 The Case of rnKt

We first show a version of semi-symmetry of information for rnKt, which is analogous to Theorem 5.1.

Theorem 5.9. There exists a polynomial p such that, for all sufficiently large n, t ∈ N with t ≥ 4n, the
following holds. For all x, y ∈ {0, 1}n,

pKt(x, y) ≥ rnKp(t)(x) + rnKp(t)(y | x)− log p(t)− log3 p(n).

Proof Sketch. The proof follows a similar approach to that used in [GK22, Hir22c] to establish time-
bounded versions of SoI under the assumption that MINKT is easy (see also [HKLO24, Appendix A]).
This approach employs the pseudorandom generator construction stated in Lemma 2.27 and its reconstruc-
tion property, while using MINKT (which is in NP) as a distinguisher. In fact, by adapting this approach
and using the fact that the reconstruction procedure makes only non-adaptive queries, one can show that for
any x, y ∈ {0, 1}n and sufficiently large t that is polynomial in n,

pKt(x, y) ≥ rK
poly(t),∥MINKT
1/poly(n) (x) + rK

poly(t),∥MINKT
1/poly(n) (y | x)−O(log3 n)−O(log t). (21)

We now upper-bound the right-hand side of the above. We have

rK
poly(t),∥MINKT
1/poly(n) (x) ≥ rnK

poly(t)
1/poly(n·t)(x)−O(log t) (by Lemma 3.10)

≥ rnKpoly(t)(x)−O(log t) (by Lemma 3.7)

By a similar argument, we have

rK
poly(t),∥MINKT
1/poly(n) (y | x) ≥ rnKpoly(t)(y | x)−O(log t).

Substituting the above two inequalities into Equation (21) yields the desired semi-symmetry of information
for rnKt.

The following corresponds to Theorem 1.3 for the case of rnKt

Theorem 5.10. For every polynomial-time samplable distribution family {Dn}n∈N supported over {0, 1}n×
{0, 1}n, there exists a constant c > 0 such that for all large enough n, k ∈ N,

Pr
(x,y)∼Dn

[
rnKt(x, y) ≥ rnKt(x) + rnKt(y | x)− c · log3 n− log k

]
≥ 1− 1

k
.

56

Proof Sketch. The proof can be easily adapted from that of Theorem 5.2, with Theorem 5.1 replaced by
Theorem 5.9. We omit the details.

The following corresponds to Theorem 1.4 for the case of rnKt.

Theorem 5.11. Item 1 implies Item 2 in the following.

1. (Worst-Case Symmetry of Information for rnKt). There exists a constant c > 0 such that for all
large enough n ∈ N and x, y ∈ {0, 1}n,

rnKt(x, y) ≥ rnKt(x) + rnKt(y | x)− logc n.

2. UNSAT /∈ AMTIME
[
2log

d n
]

for any d ≥ 1.

Proof Sketch. The proof is a easy adaption of that of Theorem 5.3, which employs Lemma 5.5. It suffices
to note that in Lemma 5.5, we can replace pnKt with rnKt, since for every x, y ∈ {0, 1}n, it holds that
pnKt(x | y) ≥ rnKt(x | y).

5.4 Relativization Barriers for Symmetry of Information

We will prove Theorem 1.5, restated here for convenience.

Theorem 5.12. There exist an oracle O and a constant ε > 0 as follows. For all sufficiently large n ∈ N,
there exist strings x, y ∈ {0, 1}n such that, for every complexity measure µ ∈ {rKt, pKt, nKt, rnKt, pnKt},

µO(x, y) < µO(x) + µO(y | x)− ε · n.

The proof is basically a relativizing version of the argument used in Theorem 5.3, adapted so that it works
for all measures µ ∈ {rKt, pKt, nKt, rnKt, pnKt} and gives a linear gap ε ·n instead of just polylogarithmic.

We will make use of the following lemmas.

Lemma 5.13 ([BGS75]). There exists an oracle O such that PHO ⊆ PO.

Lemma 5.14. There is a deterministic polynomial-time oracle machine M
(−)
0 as follows. Let O be any

oracle. There exists an oracle X ∈ ΣP,O
3 such that for any n ∈ N, MX

0 (1n) outputs a string x ∈ {0, 1}n
with NPO-oracle circuit complexity at least n1/2.

Proof. For a given oracle O, let X ∈ ΣP,O
3 be as follows.

X = {(1n, y) | y ∈ {0, 1}<n ; ∃x ∈ {0, 1}n and w ∈ {0, 1}n−|y|−1 such that x = y0w and

∀ oracle circuit C(−) of size at most n1/2, x is not the truth-table of CNPO
},

The machine M
(−)
0 is defined as follows.

On input 1n, start with y being the empty string. Repeat the following n times. Query (1n, y) to
the oracle X ; if X accepts, let y := y0, and if X rejects, let y := y1. After this is done, return
the string x := y ∈ {0, 1}n.

By a standard counting argument, there exists a string x ∈ {0, 1}n with NPO-oracle circuit complexity
greater than n1/2. (In fact, most strings have this property.) Therefore, it is clear that MX

0 will find such a
string in polynomial time, as desired.

57

Lemma 5.15. There exist an oracleO and a deterministic polynomial-time oracle machine M (−)
1 as follows.

For any n ∈ N, MO
1 (1n) outputs a string x ∈ {0, 1}n with NPO-oracle circuit complexity at least n1/2.

Moreover, PHO ⊆ PO.

Proof. Let O be the oracle of Lemma 5.13. Let M (−)
0 be the machine and X ∈ ΣP,O

3 the oracle of
Lemma 5.14 applied to A. Since PHO ⊆ PO, there exists a deterministic polynomial-time oracle ma-
chine N (−) such that NO decides X . Let MO

1 be the machine that simulates M (−)
0 and answers its oracle

queries with the machine NO. By Lemma 5.14, for any n ∈ N, MO
1 (1n) produces a string x ∈ {0, 1}n with

NPO-oracle circuit complexity at least n1/2. The lemma follows.

We will require the following lemma, which is similar to Lemma 5.4, but pertains to pKtO complexity
for arbitrary oracles O rather than pnKt complexity.

Lemma 5.16. There exists a probabilistic oracle algorithm B(−) such that, for any oracle O, given inputs
x ∈ {0, 1}m and y ∈ {0, 1}≤m2

, BO(x, y) runs in time 2O(m) with oracle access to O, and

• if pKtO2/3(x | y) ≤ m/2, then BO(x, y) rejects with probability at least 2/3, and

• if pKtO1/3(x | y) > m/2, then BO(x, y) accepts with probability at least 2/3.

Proof. The algorithm BO is as follows. Given (x, y),

1. Sample r ∼ {0, 1}2
m/2

.

2. For all programs Π and running times t ∈ N with |Π| + ⌈log t⌉ ≤ m/2, check if ΠO(y; r) outputs x
within t steps. Reject if so.

3. Accept if Step 2 did not reject.

It is easy to see that BO runs in time 2O(m) given oracle access to O. Correctness follows easily from
the definition of pKtO.

Lemma 5.17. There exist an oracle O and a constant a ∈ N such that, for every ℓ, n ∈ N with ℓ ≤ n, there
exist strings x1, ..., xℓ ∈ {0, 1}n satisfying∑

i∈[ℓ]

pnKtO(xi | x1, ..., xi−1) > ℓ · n
a

and
KtO(x1, ..., xℓ) < a · n.

Proof. We follow the proof technique of Lemma 5.5. Let B(−) be the randomized oracle algorithm of
Lemma 5.16. Recall that, on inputs x ∈ {0, 1}n and y ∈ {0, 1}≤n2

, B(−) runs in time at most 2O(n). For a
constant b ∈ N, x ∈ {0, 1}n, and y ∈ {0, 1}≤n2

, let C(−)
(x,y) : {0, 1}

2bn → {0, 1} be the oracle circuit of size

at most 2bn that treats its input as internal randomness and simulates B(−)(x, y).
Let O be the oracle and M1 the machine of Lemma 5.15. Let c, d ∈ N be as in Theorem 2.26 applied

with ε = 1/2, and let z ∈ {0, 1}2
bc·n

be the output of MO
1 (12

bc·n
). That is, z has NPO-oracle circuit

complexity greater than 2bc·n/2. Let Gz : {0, 1}bd·n → {0, 1}2
bn

be the PRG of Theorem 2.26. In particular,
Gz is computable in time at most poly(2bc·n, bd · n) = 2O(n) and (1/2bn)-fools CNPO

(x,y) .
Consider the following procedure A.

58

On input n ∈ N, y ∈ {0, 1}≤n2

, and z ∈ {0, 1}2
bc·n

, for each x ∈ {0, 1}n, compute

ρx = Pr
σ∼{0,1}bd·n

[CNPO

(x,y)(Gz(σ)) = 1].

Output the first x such that ρx > 1
3 + 1

10 .

It is easy to see that, with z as above, A(n, y, z) runs in time at most 2O(n), using an NPO oracle to simulate
CNPO

. Moreover, by the guarantee of Lemma 5.16, if pKtNP
O
(x | y) ≤ n/2, then BNPO

accepts with
probability at most 1/3. Therefore, A must output a string x ∈ {0, 1}n such that pKtNP

O
(x | y) > n/2.

Now, define

• x1 = A(n, ϵ, z), where ε is the empty string;

• xi = A(n, (x1, ..., xi−1), z) for i ∈ {2, ..., ℓ}.

We claim that the strings x1, ..., xℓ ∈ {0, 1}n have the properties stated in the lemma. Firstly, by the
correctness of A and Corollary 3.16, for some constant k ∈ N, for each i ∈ [ℓ], we have

pnKtO(xi | x1, ..., xi−1) ≥
1

k
· pKtNP

O
(xi | x1, ..., xi−1) ≥

n

2k
.

Thus, ∑
i∈[ℓ]

pnKtO(xi | x1, ..., xi−1) ≥ ℓ · n
2k

.

Secondly, we observe that x1, ..., xℓ can be produced uniformly by running MO
1 to produce a hard truth-

table z followed by ℓ ≤ n invocations of A. This takes deterministic time at most 2O(n) given an NPO

oracle. Thus,
KtNP

O
(x1, ..., xℓ) ≤ O(n).

Since PHO ⊆ PO, for any language L ∈ NPO, there exists a deterministic polynomial-time oracle machine
NO that decides L. Therefore, replacing oracle calls to L ∈ NPO by simulating NO, we obtain

KtO(x1, ..., xℓ) < 2a′ · (KtNP
O
(x1, ..., xℓ))

≤ O(n),

where a′ ∈ N is such that ta
′

upper-bounds the running time of N (−) on inputs of length t.
This completes the proof.

The following is immediate from the definitions of the complexity measures in question.

Corollary 5.18. There exist an oracle O and a constant d ∈ N as follows. For every ℓ, n ∈ N with ℓ ≤ n,
there exist strings x1, ..., xℓ ∈ {0, 1}n such that, for every complexity measure µ ∈ {rKt, pKt, nKt, rnKt, pnKt},∑

i∈[ℓ]

µO(xi | x1, ..., xi−1) > ℓ · n
d

and
µO(x1, ..., xℓ) < d · n.

Given the above, we are ready to prove Theorem 1.5 as stated at the beginning of this section. The
argument is quite similar to that of Theorem 5.3. We include a proof for completeness.

59

Proof of Theorem 1.5. We start with the following claim.

Claim 5.19. Let O be the oracle of Corollary 5.18. For some constant c ∈ N, for all sufficiently large
m ∈ N, there exist j ∈ N with m ≤ j ≤ c2 ·m and strings u ∈ {0, 1}j and v ∈ {0, 1}m such that

µO(u, v) < µO(u) + µO(v | u)− m

c
.

Proof of Claim 5.19. Toward a contradiction, suppose that for any constant c ∈ N, there exist infinitely
many m ∈ N such that for all j ∈ N with m ≤ j ≤ c2 ·m and all u ∈ {0, 1}j and v ∈ {0, 1}m, it holds that

µO(u, v) ≥ µO(u) + µO(v | u)− m

c
. (22)

Let d be the constant from Corollary 5.18, let c = 2d, and let m be as in Equation (22). Let ℓ := c2, and let
x1, ..., xℓ ∈ {0, 1}m be the strings guaranteed by Corollary 5.18. That is,∑

i∈[ℓ]

µO(xi | x1, ..., xi−1) > ℓ · m
d

=
(2d)2 ·m

d
= 4d ·m

and

µO(x1, ..., xℓ) < d ·m. (23)

Consider u = (x1, ..., xℓ−1) ∈ {0, 1}(ℓ−1)·m and v = xℓ ∈ {0, 1}m. By Equation (22), we have

µO(x1, ..., xℓ) ≥ µO(x1, ..., xℓ−1) + µO(xℓ | x1, ..., xℓ−1)−
m

c
.

Repeating inductively, we obtain

µO(x1, ..., xℓ) ≥
∑
i∈[ℓ]

µO(xi | x1, ..., xi−1)− ℓ · m
c

≥ 4d ·m− 2d ·m
= 2d ·m,

contradicting Equation (23).

Now, let the constant c be as in Claim 5.19. For any sufficiently large n ∈ N, let m = ⌊n/c4⌋. By
Claim 5.19, there exists j ∈ N with m ≤ j ≤ c2 ·m < n and strings u ∈ {0, 1}j and v ∈ {0, 1}m violating
SoI. Then, define n-length strings

x = u1n−j and y = v1n−m.

Observe that
µO(x, y) ≤ µO(u, v) +O(log n)

and similarly
µO(u) ≤ µO(x) +O(log n)

and
µO(v | u) ≤ µO(y | x) +O(log n).

60

It follows that

µO(x, y) ≤ µO(u, v) +O(log n)

< µO(u) + µO(v | u)− m

c
+O(log n)

≤ µO(x) + µO(y | x)− m

c
+O(log n)

≤ µO(x) + µO(y | x)− ε · n. (choosing ε := 1/c6)

This completes the proof of the theorem.

6 Average-Case Versus Worst-Case Complexity

In this section, we prove Theorem 1.6, which is restated below.

Theorem 1.6. The following statements are equivalent:

1. (Exclusion of PH-Heuristica). DistPH ⊆ AvgBPP =⇒ PH ⊆ BPP.

2. (Meta-Complexity of pKPH). Gap-MINpKTPH ∈ prBPP =⇒ Mild-Gap-MINpKTPH ∈ prBPP.

Theorem 1.6 follows directly from the following two theorems using that NP ⊆ BPP implies PH ⊆
BPP.

Theorem 6.1. The following holds.

NP ⊆ BPP ⇐⇒ Mild-Gap-MINpKTPH ∈ prBPP.

Theorem 6.2. The following holds.

DistPH ⊆ AvgBPP ⇐⇒ Gap-MINpKTPH ∈ prBPP.

In the remainder of this section, we show Theorem 6.1 and Theorem 6.2. We prove Theorem 6.1 in
Section 6.1. The forward direction of Theorem 6.1 is established by Lemma 6.11, which is proved in
Section 6.2. The backward direction follows from Lemma 6.13, with the proof provided in Section 6.3.

6.1 Characterizing Easiness of NP via Easiness of Mild-Gap-MINpKTPH

In this section, we prove Theorem 6.1. The theorem follows directly from Lemma 6.3 and Lemma 6.4,
which are proved in the subsections below.

6.1.1 The Easy Direction

Lemma 6.3. If NP ⊆ BPP, then Mild-Gap-MINpKTPH ∈ prBPP.

Proof. It is easy to see that, for any oracle O, we have Mild-Gap-MINpKTO ∈ prAMO.10 Also, if NP ⊆
BPP, then PH ⊆ BPP. It follows that prAMPH ⊆ prAMBPP = prAM ⊆ prBPPNP ⊆ prBPPBPP =
prBPP.

10This is true even for MINpKTO .

61

6.1.2 The Hard Direction

Lemma 6.4. If Mild-Gap-MINpKTSAT ∈ prBPP, then NP ⊆ BPP.

The proof of Lemma 6.4 follows the approach in [HLO25], which shows that if MINnKT ∈ BPP, then
NP ⊆ BPP. Here, we sketch the proof and highlight the key steps and modifications.

We begin by describing the approach at a high level. Let L ∈ NP, and let x ∈ {0, 1}n be an input
instance. Our goal is to find a witness for x. To this end, suppose x ∈ L, and let Ax denote the set of
L-witnesses for x. We aim to establish the following: for every y ∈ Ax,

pKpoly(n)(y | x) ≤ log |Ax|+O(log n). (24)

The above is a consequence of a result known as language compression (for pKt), which states that every
witness y ∈ Ax can be compressed to approximately log |Ax| bits.

Note that if pKpoly(n)(y | x) ≤ k, then by the definition of pKt, if we randomly sample a string
r ∼ {0, 1}poly(n) and a program Π ∼ {0, 1}≤k, and output Π(y; r), we obtain y with probability at least
1/(2k · O(n)). Then, by Equation (24), for every y ∈ Ax, the above procedure samples y with probability
at least 1/(|Ax| ·O(n)). Since this holds for each of the |Ax| elements in Ax, it follows that we obtain some
string in Ax with probability at least 1/O(n). By repeating this procedure, we can obtain a witness for x
with high probability.

It is not known whether pKt admits a language compression property as stated in Equation (24). How-
ever, it was shown in [HLO25] that its nondeterministic variant, pnKt, indeed admits such a property. Since
pKt,SAT is a more powerful notion than pnKt (Lemma 3.15), it follows that pKt,SAT also admits this lan-
guage compression property. Thus, it suffices to show that if Mild-Gap-MINpKTSAT ∈ prBPP, then for
every x, y ∈ {0, 1}n and every t that is a sufficiently large polynomial in n,

pKpoly(t)(y | x) ≤ pKpoly(n),SAT(y | x) +O(log t). (25)

We first note that, following previous work, one can establish a weaker form of Equation (25), which
states that

pKpoly(t)(y | x) ≤ pKpoly(n),SAT(y | x) + pKt,SAT((x)− pKpoly(t),SAT(x) +O(log t). (26)

Note that this weaker bound is not sufficient for our purposes, since the term pKt,SAT(x)−pKpoly(t),SAT(x),
known as the (time-bounded) computational depth, can be large for some x. Nevertheless, we sketch how
Equation (26) can be shown under the assumption that Mild-Gap-MINpKTSAT is easy.

The idea is to show both an upper bound and a lower bound for the quantity

pKt+poly(n),SAT(x, y).

Roughly speaking, we aim to show that:

• (Upper bound) pKt+poly(n),SAT(x, y) ≲ pKpoly(n),SAT(y | x) + pKt,SAT(x).

• (Lower bound) pKt+poly(n),SAT(x, y) ≳ pKpoly(t)(y | x) + pKpoly(t),SAT(x).

It is easy to combine the two inequalities above to obtain Equation (26).
The upper bound is straightforward. The lower bound can be established under the assumption that

Mild-Gap-MINpKTSAT is easy. For simplicity, let us assume that we have a deterministic polynomial-time
algorithm A that given (z, 1s, 1t) decides whether pKt,SAT(z) ≤ s.

Let DPk : {0, 1}n × {0, 1}nk → {0, 1}nk+k be the direct product generator defined in Definition 2.28,
where

k := pKtc(y | x)− c · log t,

62

for some large constant c > 1 to be specified later. We then consider the following two distributions:

D1 := (x,DPk(y,Unk)),
D2 := (x,Unk+k).

The goal is to show that D1 and D2 are indistinguishable under the algorithm A(−, 1s, 1t+nd
) for some s

and constant d to be specified later. The reason for doing this is that, assuming Mild-Gap-MINpKTSAT is
easy, one can show a weak time-bounded symmetry of information [Hir21] (see also [Ila23]), which states
that, with high probability over w ∼ {0, 1}nk+k, we have

pKt+nd,SAT(x,w) ≥ pK(t+nd)b,SAT(x) + nk + k − b log t,

where b ≥ 0 is a constant. Therefore, with high probability (over D2), A(D2, 1
s, 1t+nd

) = 0 for s :=

pK(t+nd)b,SAT(x) + nk + k − b log t.
Now if D1 is indeed indistinguishable from D2, then with high probability (over D1), we also have

A(D1, 1
s, 1t+nd

) = 0, which implies that there exists some z ∈ {0, 1}nk such that

pKt+nd,SAT(x,DPk(y, z)) ≥ s.

Also, since DPk(y, z) is efficiently computable given y and z, by letting d be a sufficiently large constant,
we have

pKt+nd,SAT(x,DPk(y, z)) ≤ pKt+poly(n),SAT(x, y) + nk +O(log t).

Combining the above two inequalities, we get

pKt+poly(n),SAT(x, y) ≥ s− nk + k −O(log t)

= pKpoly(t),SAT(x) + k −O(log t)

= pKpoly(t),SAT(x) + pKpoly(t)(y | x)−O(log t),

which gives the desired lower bound.
Now, let us explain why D1 and D2 are indistinguishable. Indeed, if A(−, 1s, 1t+nd

) could distinguish
D1 from D2, then by the fact that A is polynomial-time computable and by the reconstruction property of
DPk (Lemma 2.29), we would obtain

pKpoly(t)(y | x) ≤ k +O(log t),

which contradicts our choice of k be letting c be a sufficiently large constant.
Next, let us return to Equation (26). It turns out that if we could show a more fine-grained form:

pKpoly(t)(y | x) ≤ pKpoly(n),SAT(y | x) + pKt,SAT(x)− pKt+p(n),SAT(x) +O(log n), (27)

where p(n) is a polynomial independent of t, then we could aim to conclude the proof by showing that

pKt,SAT(x)− pKt+p(n),SAT(x) = O(log n).

While this may not hold for a particular value of t, one can argue, via a telescoping sum trick, that such a
bound holds for some t′ that is not too large. More concretely, for any fixed time bound t, let ti = t+ i ·p(n)
for i ∈ {0, 1, . . . , n}. Note that pKt0,SAT(x)− pKtn,SAT(x) ≤ 2n, since any n-bit string x can be described
using at most 2n bits. Therefore,

n−1∑
i=0

(
pKti,SAT(x)− pKti+1,SAT(x)

)
= pKt0,SAT(x)− pKtn,SAT(x) ≤ 2n,

63

which implies that there exists an index i such that pKti,SAT(x) − pKti+1,SAT(x) ≤ 2. In particular, for
some time bound t′ ≤ t + n · p(n), we have pKt′,SAT(x) − pKt′+p(n),SAT(x) = O(log n), which would be
sufficient for our purpose.

Unfortunately, it is not clear how to prove Equation (27) exactly. As illustrated earlier, a key difficulty
lies in the use of weak symmetry of information, which introduces a time overhead of the form poly(t)
rather than an additive overhead of the form t+ p(n).

Here, we follow the approach developed in [HLO25] which incorporates the ideas described above and
suffices to prove Lemma 6.4. A key ingredient is the following new notion of time-bounded Kolmogorov
complexity.

Definition 6.5 (ℓ-pKt
λ,γ). For any t, ℓ ∈ N, λ, γ ∈ (0, 1), oracle O, and string x ∈ {0, 1}∗, we define

ℓ-pKt,O
λ,γ(x) = min

{
s ∈ N

∣∣∣∣ Pr
r̂∼Uℓ

[
pKt,O

λ (x ◦ r̂) ≤ s+ ℓ
]
≥ γ

}
.

It can be shown that ℓ-pKt
λ,γ is a well-defined measure that satisfies several basic properties one would

expect from a Kolmogorov complexity measure; see [HLO25, Section 4.2.1]. Moreover, if the mild-gap
version of approximating pKt is easy, then so is approximating ℓ-pKt

λ,γ .

Definition 6.6 (Mild-Gap-MINℓ-pKT). For an oracle O and ρ : N → N, we define the promise language
Mild-Gapρ-MINℓ-pKTO = (YES,NO) asYES =

{
(x, 1s, 1t, 1ℓ, 1a, 1b, 1c, 1d) | pKt,O

b/a,d/c(x) ≤ s
}
,

NO =
{
(x, 1s, 1t, 1a, 1b) | pKt+ρ(|x|+a+b+c+d),O

(b−1)/a,(d−1)/c (x) ≥ s+ log ρ(t+ a+ b+ c+ d)
}
.

We say that Gapρ-MINℓ-pKTO ∈ prBPP if there exists a constant g > 0 such that Gapρ-MINℓ-pKTO ∈
prBPP with ρ(n) = ng.

Lemma 6.7. For any oracle O, if Mild-Gap-MINpKTO ∈ prBPP, then Mild-Gap-MINℓ-pKTO ∈ prBPP.

Proof. The proof is adapted from that of [HLO25, Lemma 69], which shows a similar result for the case of
pnKt and ℓ-pnKt without the mild gap. For simplicity, we assume O = ∅; it is straightforward to verify that
the proof also holds for any oracle O.

Let A be a probabilistic polynomial-time algorithm that decides Mild-Gapρ-MINpKT with error at most
1/3, for some polynomial ρ. Let Am denote the algorithm that runs A m times and returns the majority
vote. By the Chernoff bound, the error of Am is bounded by 2−m/18.

Suppose we are given an instance

z := (x ∈ {0, 1}n, 1s, 1t, 1ℓ, 1a, 1b, 1c, 1d)

of Mild-Gapρ-MINℓ-pKT.
On the one hand, if z is a yes-instance, then ℓ-pKt

b/a,d/c(x) ≤ s, and by the definition of ℓ-pK, we have

Pr
r̂∼Uℓ

[
pKt

b/a(x ◦ r̂) ≤ s+ ℓ
]
≥ d

c
.

Then by the correctness of A, we get

Pr
r̂∼Uℓ

[
Pr
A

[
A⌈54 log c⌉(x ◦ r̂, 1s+ℓ, 1t, 1a, 1b) = 1

]
≥ 1− 1

c3

]
≥ d

c
,

64

which, by a union bound, yields

Pr
r̂∼Uℓ,A

[
A⌈54 log c⌉(x ◦ r̂, 1s+ℓ, 1t, 1a, 1b) = 1

]
≥ d

c
− 1

c3
. (28)

On the other hand, if z is a no-instance, then

ℓ-pKt+ρ(n+ℓ+a+b+c+d)
(b−1)/a,(d−1)/c (x) > s+ log ρ

(
t+ ℓ+ a+ b+ c+ d

)
,

and hence

Pr
r̂∼Uℓ

[
pK

t+ρ(n+ℓ+a+b+c+d)
(b−1)/a (x ◦ r̂) ≤ s+ ℓ+ log ρ

(
t+ ℓ+ a+ b+ c+ d

)]
<

d

c
− 1

c
.

Note that the above implies

Pr
r̂∼Uℓ

[
pK

t+ρ(n+a+b)
(b−1)/a (x ◦ r̂) ≤ s+ ℓ+ log ρ(t+ a+ b)

]
<

d

c
− 1

c
.

Again, by the correctness of A, the above implies

Pr
r̂∼Uℓ

[
Pr
A

[
A⌈54 log c⌉(x ◦ r̂, 1s+ℓ, 1t, 1a, 1b) = 1

]
>

1

c3

]
<

d

c
− 1

c
,

which, by an averaging argument, gives

Pr
r̂∼Uℓ,A

[
A⌈54 log c⌉(x ◦ r̂, 1s+ℓ, 1t, 1a, 1b) = 1

]
<

d

c
− 1

c
+

1

c3
. (29)

Comparing Equation (28) and Equation (29), we obtain a polynomial-time algorithm that distinguishes
yes- and no-instances with a gap of at least 1/c− 2/c3 ≥ 1/(2c). Such a gap can be amplified by repeating
the algorithm poly(c) times.

Next, assume that Mild-Gap-MINℓ-pKTSAT ∈ prBPP. We will show a result that informally states the
following: for every x, y ∈ {0, 1}n and for appropriate settings of parameters ℓ and t, we have

pKpoly(t)(y | x) ≲ pKpoly(n),SAT(y | x) + ℓ-pKt,SAT(x)− (ℓ+ poly(n))-pKt+poly(n),SAT(x).

Observe the similarity between the above and Equation (27). The precise technical lemma is as follows:

Lemma 6.8. Suppose Mild-Gap-MINℓ-pKTSAT ∈ prBPP. Then there exists a polynomial p and an integer
N0 ∈ N+ such that the following holds. For any n,m, τ, ℓ, t, b, d ∈ N+ and any strings x ∈ {0, 1}n and
y ∈ {0, 1}m satisfying the following constraints:

• 2/3 < b/n3, d/n3 < 1,

• N0 ≤ n,m ≤ τ ,

• τ ≤ ℓ ≤ τ4,

• t ≥ 2p(τ),

we have

pKp(t)(y | x) ≤ pKτ,SAT
1−1/n3(y | x) + ℓ-pKt−p(τ),SAT

b/n3,(d+1)/n3(x)− (ℓ+ τ3)-pKt+p(τ),SAT
(b−1)/n3,(d−2)/n3(x) + log p(t).

Proof Sketch. The proof closely follows that of [HLO25, Lemma 74], which establishes a similar result for
the measure ℓ-pnK. The main difference is that the former assumes the easiness of the non-gap version,
whereas here we assume the easiness of the mild-gap version. We provide a proof sketch below.

Let x ∈ {0, 1}n and y ∈ {0, 1}m. Similar to the earlier discussion, the idea is to show both upper and
lower bounds for the quantity

ℓ-pKt,SAT
b/n3, d/n3(x, y).

65

Upper Bound.

Claim 6.9. There exists a polynomial p1 such that

ℓ-pKt,SAT
b/n3, d/n3(x, y) ≤ pKτ,SAT

1−1/n3(y | x) + ℓ-pKt−p1(τ)
b/n3, (d+1)/n3(x) + log p1(τ).

Proof Sketch of Claim 6.9. Intuitively, the claim states that if there is a program that outputs x in time t −
poly(τ), and a program that outputs y given x in time τ , then one can obtain a program that outputs (x, y)
in time t. This intuition was shown to hold for ℓ-pK in [HLO25]. See the proof of [HLO25, Lemma 72] for
details. ⋄

Lower Bound.

Claim 6.10. There exists a polynomial p2 such that

ℓ-pKt,SAT
b/n3, d/n3(x, y) ≥ (ℓ+ τ3)-pKt+p2(τ),SAT

(b−1)/n3, (d−2)/n3(x)− pKp2(t)(y | x)− log p2(t).

Proof of Claim 6.10. Let DPk : {0, 1}m × {0, 1}mk → {0, 1}mk+k be the direct product generator (Defini-
tion 2.28), where

k := pKq(t)(y | x)− log q(t),

and q is a sufficiently large polynomial specified later.
As in the previous case, we consider two distributions:

D1 :=
(
x,DPk(y,Umk)

)
,

D2 :=
(
x,Umk+k

)
.

We aim to show that D1 and D2 are indistinguishable, and that with high probability over an element from
D2, its complexity is large. To show the latter, we again use weak symmetry of information. However, the
key difference here is that we will be able to use a highly efficient weak symmetry of information for the
notion of ℓ-pK. More specifically, we have the following: For any n,m′, k, t′, ℓ ∈ N+, any λ, γ, α ∈ (0, 1)
satisfying α < γ, and any string x ∈ {0, 1}n, we have

Pr
z∼Um′

[
ℓ-pKt′,SAT

λ,γ (x ◦ z) ≥ (ℓ+m′)-pKt′,SAT
λ,γ−α(x) +m′

]
≥ α. (30)

The proof of this result appears in [HLO25, Lemma 71].
Now, for simplicity, let us assume that we have a deterministic polynomial-time algorithm A that solves

Mild-Gapρ-MINℓ-pKTSAT for some polynomial ρ. Let

t′ := t+ q(τ) + ρ(τ5).

and
s :=

(
(ℓ+mk + k)-pKt′,SAT

(b−1)/n3,(d−2)/n3(x) +mk + k
)
− log ρ(t4).

We get

Pr
w∼Umk+k

[
ℓ-pKt+q(τ)+ρ(n+ℓ+b+d+2n3),SAT

(b−1)/n3,(d−1)/n3 (x ◦ w) ≥ s+ log ρ(t+ q(τ) + ℓ+ b+ d+ 2n3)
]

≥ Pr
[
ℓ-pKt+q(τ)+ρ(τ5),SAT

(b−1)/n3,(d−1)/n3(x ◦ w) ≥ s+ log ρ(t4)
]

= Pr
[
ℓ-pKt′,SAT

(b−1)/n3,(d−1)/n3(x ◦ w) ≥ (ℓ+mk + k)-pKt′,SAT
(b−1)/n3,(d−2)/n3(x) +mk + k

]
≥ 1

n3
. (by Equation (30) with α = 1/n3 and λ = (b− 1)/n3)

66

In fact, for the first inequality, we need the notion ℓ-pKt to be monotone in t, meaning that ℓ-pKt decreases
as t increases (see [HLO25, Lemma 66]).

Note that the above implies that, with probability at least 1/n3 over D2,

A(D2, 1
s, 1t+q(τ), 1ℓ, 1n

3
, 1b, 1n

3
, 1d) = 0.

For the sake of contradiction, suppose the procedure A(−, 1s, 1t+q(τ), 1ℓ, 1n
3
, 1b, 1n

3
, 1d) can (1/n4)-

distinguish D1 and D2. Then, by the fact that A is a polynomial-time algorithm and by the reconstruction
property of DPk (Lemma 2.29), we would obtain

pKpoly(t)(y | x) ≤ k +O(log t),

which contradicts our choice of k, provided that q is chosen to be a sufficiently large polynomial.
In other words, we have that

A(D1, 1
s, 1t+q(τ), 1ℓ, 1n

3
, 1b, 1n

3
, 1d) = 0

with probability at least 1/n3 − 1/n4 > 0. It follows that there exists z ∈ {0, 1}mk such that

ℓ-pKt+q(τ),SAT
b/n3,d/n3 (x,DPk(y, z)) ≥ s. (31)

Moreover, it can also be shown (see [HLO25, Lemma 70]) that, for q a sufficiently large polynomial,

ℓ-pKt+q(τ),SAT
b/n3,d/n3 (x,DPk(y, z)) ≤ ℓ-pKt,SAT

b/n3,d/n3(x, y) +mk + log q(τ). (32)

Intuitively, this is because DPk(y, z) is efficiently computable given y and the seed z.
It follows from Equation (31) and Equation (32) that

ℓ-pKt,SAT
b/n3, d/n3(x, y) ≥ s−mk − log q(τ)

= (ℓ+mk + k)-pKt′,SAT
(b−1)/n3,(d−2)/n3(x) + k − log ρ(t4)− log q(τ)

= (ℓ+mk + k)-pKt+q(τ)+ρ(τ5),SAT
(b−1)/n3, (d−2)/n3(x) + pKq(t)(y | x)

− log q(t)− log ρ(t4)− log q(τ)

≥ (ℓ+ τ3)-pKt+q(τ5)+ρ(τ5),SAT
(b−1)/n3, (d−2)/n3(x) + pKq(t)(y | x)

− log q(t)− log ρ(t4)− log q(τ5),

where the last inequality uses the monotonicity of ℓ-pKt in ℓ (see [HLO25, Lemma 67]), which roughly
states that for any sufficiently large polynomial q, we have that for every ℓ < ℓ′, x ∈ {0, 1}∗ and t′ ∈ N,

ℓ′-pKt′+q(|x|+|y|+ℓ′),SAT(x) ≤ ℓ-pKt′,SAT(x) + log q(|x|+ |y|+ ℓ′).

Finally, we can conclude that there exists a polynomial p2 such that

ℓ-pKt,SAT
b/n3, d/n3(x, y) ≥ (ℓ+ τ3)-pKt+p2(τ),SAT

(b−1)/n3, (d−2)/n3(x) + pKp2(t)(y | x)− log p2(t).

This completes the proof of the lower bound. ⋄

67

Putting It All Together. By combining the upper and lower bounds (Claim 6.9 and Claim 6.10) and
rearranging, we obtain

pKp2(t)(y | x) ≤ pKτ,SAT
1−1/n3(y | x) + ℓ-pKt−p1(τ)

b/n3, (d+1)/n3(x)− (ℓ+ τ3)-pKt+p2(τ),SAT
(b−1)/n3, (d−2)/n3(x)

+ log p1(τ) + log p2(t),

which, by the monotonicity of ℓ-pKt with respect to t, implies the existence of a polynomial p such that

pKp(t)(y | x) ≤ pKτ,SAT
1−1/n3(y | x) + ℓ-pKt−p(τ)

b/n3, (d+1)/n3(x)− (ℓ+ τ3)-pKt+p(τ),SAT
(b−1)/n3, (d−2)/n3(x) + log p(t),

as desired.

Proof Sketch of Lemma 6.4. The proof is essentially the same as that of [HLO25, Lemma 75]. We sketch
the high-level ideas here and refer the reader to [HLO25] for full details.

Suppose Mild-Gap-MINpKTSAT ∈ prBPP, which, by Lemma 6.7, implies Mild-Gap-MINℓ-pKTSAT ∈
prBPP. Given Lemma 6.8, we can apply a slightly more sophisticated telescoping sum argument than
described earlier and show that for every x ∈ {0, 1}n and any τ that is a large enough polynomial in n, there
exist t, ℓ, b, d that are at most poly(n) such that

ℓ-pKt−p(τ),SAT
b/n3,(d+1)/n3(x)− (ℓ+ τ3)-pKt+p(τ),SAT

(b−1)/n3,(d−2)/n3(x) + log p(t)

is at most O(1). Again, this can be achieved because the increase in the time bounds between the two
quantities is only an additive poly(n) term. As a result, for every x and y, we obtain

pKpoly(n)(y | x) ≤ pKτ,SAT
1−1/n3(y | x) +O(log n). (33)

Also, as mentioned earlier, pKt,SAT admits the language compression property (see [HLO25, Theorem
4]), that is, for every set Ax whose membership can be decided in polynomial time given x, there exists
polynomial τ such that

pKτ,SAT
1−1/n3(y | x) ≤ log |Ax|+O(log n). (34)

Now let L ∈ NP and consider any x ∈ {0, 1}n that is a yes-instance of L. Let Ax be the set of
L-witnesses for x. Then Equations (33) and (34) imply that for every y ∈ Ax,

pKp(n)(y | x) ≤ log |Ax|+O(log n).

As described earlier, this enables an efficient sampling procedure which, given x, outputs some element
in Ax with non-trivial probability 1/O(n). Repeating this procedure sufficiently many times then yields a
witness for x with high probability.

6.2 Worst-Case Easiness of Gap-MINpKTPH from Average-Case Easiness of PH

Lemma 6.11. If DistPH ⊆ AvgBPP, then Gap-MINpKTPH ∈ prBPP.

To show Lemma 6.11, we need the following.

Lemma 6.12. For any oracle O, if (MINKTO,PSAMP) ⊆ AvgBPP, then Gap-MINpKTO ∈ prBPP.

Proof Sketch. The proof is similar to that of [HLO25, Proposition 58], using techniques from worst-case-
to-average-case reductions developed by [Hir18].

Proof of Lemma 6.11. Suppose DistPH ⊆ AvgBPP. Then for every oracleO ∈ PH, (MINKTO,PSAMP) ∈
AvgBPP, since MINKTO ∈ PH. This, by Lemma 6.12, implies that Gap-MINpKTO ∈ prBPP. It follows
that Gap-MINpKTPH ∈ prBPP.

68

6.3 Average-Case Easiness of PH from Worst-Case Easiness of Gap-MINpKTPH

In this subsection, we prove the following which shows the forward direction of Theorem 1.6.

Lemma 6.13. If Gap-MINpKTPH ∈ prBPP, then DistPH ⊆ AvgBPP.

We begin with some technical tools.

6.3.1 Technical Tools

The following is the main technical lemma for this subsection.

Lemma 6.14. Let k0 ∈ N and O be a ΣP
k0

-complete language. If there exist polynomials ρ and τ such that
Gapρ-MINpKTO ∈ prBPTIME[τ(n)], then for every k ≤ k0, L ∈ ΣP

k , and polynomial q, there exists a
randomized algorithm A such that for every ℓ ∈ N and x ∈ {0, 1}n, with probability at least 1− 2−ℓ (over
the internal randomness of A) both of the following hold.

1. A(x, 1ℓ) runs in time
2O(pK

q(n),O(x)−K(x)) · poly(n, ℓ),

where the constants hidden in O(·) and poly(·) depend only on O, ρ, τ , k, L, and q.

2. A(x, 1ℓ) = 1 if and only if x ∈ L.

The rest of this subsection is devoted to proving Lemma 6.14. For this, we need the following additional
tools.

Lemma 6.15 (Symmetry of Information for pKt; see, e.g., [HKLO24, Lemma 36]). Let O be any oracle.
If Gap-MINpKTO ∈ prBPP, then there exist polynomials p

SoI
and p0 such that for all sufficiently large

x, y ∈ {0, 1}∗ and every t ≥ p0(|x|+ |y|),

pKp
SoI

(t)(y | x) ≤ pKt(x, y)− pKp
SoI

(t)(x) + log p
SoI
(t).

Proof Sketch. To get the desired symmetry of information property, it suffices have an efficient algorithm
that accepts the set of strings with low Kpoly-complexity while rejecting a large fraction of random strings.
Note that such an algorithm follows from Gap-MINpKTO ∈ prBPP for any O.

Lemma 6.16. Let O be any oracle. If Gap-MINpKTO ∈ prBPP, then there exists a polynomial p1 such
that for all z ∈ {0, 1}∗ and t ∈ N,

pKp1(t)(z) ≤ pKt,O(z) + log p1(t).

Proof Sketch. The proof can be easily adapted from that of [HLO25, Lemma 56].

We are now ready to prove Lemma 6.14.

Proof of Lemma 6.14. Let k0 ∈ N and let O be a ΣP
k0

-complete language. Suppose Gapρ-MINpKTO ∈
prBPTIME[τ(n)] for some polynomials ρ and τ . The proof is by induction on k.

The base case for k = 0 is trivial.
For the induction step, suppose the claimed conclusion holds for k− 1, where 1 ≤ k < k0. Let L ∈ ΣP

k

and let V be a corresponding verifier. That is, for x ∈ {0, 1}n, x ∈ L if and only if

∃y1 ∈ {0, 1}v(n),∀y2 ∈ {0, 1}v(n), . . . , Qkyk ∈ {0, 1}v(n), V (x, y1, y2, . . . , yk) = 1,

69

where v is a polynomial Qk ∈ {∃,∀}. Let q be a polynomial.
To decide L, we aim to find a witness for a given instance, if one exists. Consider a yes-instance

x ∈ {0, 1}n of L. Let y∗1 be the lexicographically first witness for x, i.e., y∗1 is the lexicographically smallest
string in {0, 1}v(n) that satisfies

∀y2 ∈ {0, 1}v(n), . . . , Qkyk ∈ {0, 1}v(n), V (x, y1, y2, . . . , yk) = 1,

where Qk ∈ {∃, ∀}. Let t be a sufficiently large polynomial specified later. We first observe the following.

Claim 6.17. There exists a polynomial p such that

pKp(t(n))(y∗1 | x) ≤ pKt(n),O(x)− pKp(t(n))(x) + log p(t(n)).

Proof of Claim 6.17. Note that by Lemma 6.15 and the assumption that Gap-MINpKTO is easy, we get
symmetry of information for pKt. Now let p1 be the polynomial from Lemma 6.16 and let t := t(n). We
have

pKp
SoI

(p1(t+poly(n)))(y∗1 | x) ≤ pKp1(t+poly(n))(x, y∗1)− pKp
SoI

(p1(t+poly(n)))(x) + log p
SoI
(p1(t+ poly(n)))

≤ pKt+poly(n),O(x, y∗1)− pKp
SoI

(p1(t+poly(n)))(x) + log p
SoI
(p1(t+ poly(n)))

(by Lemma 6.16)

≤ pKpoly(n),O(y∗1 | x) + pKt,O(x)− pKp
SoI

(p1(t+poly(n)))(x) + log p
SoI
(p1(t+ poly(n)))

≤ pKpoly(n),O(y∗1 | x) + pKt(x)− pKp
SoI

(p1(t+poly(n)))(x) + log p
SoI
(p1(t+ poly(n))).

Let p2 be a sufficiently large polynomial, the above yields

pKp2(t)(y∗1 | x) ≤ pKpoly(n),O(y∗1 | x) + pKt(x)− pKp2(t)(x) + log p2(t),

Now note that pKpoly(n),O(y∗1 | x) ≤ O(1) since given x and oracle access to O, one can recover the
lexicographically first witness for x in time poly(n). Therefore, we get

pKp2(t)(y∗1 | x) ≤ O(1) + pKt,O(x)− pKp2(t)(x) + log p2(t).

The claims follows by choosing p to be a sufficiently large polynomial. ⋄

We will generate a set of candidate strings that is guaranteed to include a witness for x (specifically, y∗1)
if x ∈ L. Given this, it suffices to solve the task of checking whether a given string is a witness for x. This
is achieved using the language L′ ∈ ΣP

k−1 defined as follows.

(x, y1) ∈ L′ if and only if ∃y2, . . . , Qkyk, V (x, y1, y2, . . . , yk) = 0, where Qk ∈ {∃,∀}.

Let q′ > q be a sufficiently large polynomial specified later. We have the following.

Claim 6.18. There exists a randomized algorithm A′ such that every ℓ′ ∈ N, x ∈ {0, 1}n and y1 ∈
{0, 1}v(n), with probability at least 1−2−ℓ′ (over the internal randomness of A′) both of the following hold.

1. A′
(
(x, y1), 1

ℓ′
)

runs in time

2
O
(
pKq′(n+v(n)),O(x,y)−K(x,y)

)
· poly(ℓ′, n).

2. A′
(
(x, y1), 1

ℓ′
)
= 1 if and only if (x, y1) ∈ L′.

70

Proof of Claim 6.18. This follows directly from our induction hypothesis. ⋄

In order to generate a set of “good” candidate witnesses, we will also need the following subroutines.

Claim 6.19. There exists a randomized polynomial-time algorithm Approx-depth such that, for every x ∈
{0, 1}n and ℓ′ ∈ N, Approx-depth(x, ℓ′) outputs, with probability at least 1− 2−ℓ′ , an integer s satisfying

pKt(n),O(x)− pKp(t(n)),O(x) ≤ s ≤ pKρ−1(t(n)),O(x)− pKρ(p(t(n))),O(x) + log t(n) + log ρ(p(t(n))),

where p is the polynomial defined in Claim 6.17.

Proof of Claim 6.19. Let Approx be a randomized polynomial-time algorithm that satisfies the following:
Given z ∈ {0, 1}m, 1t

′
and 1κ, Approx(z, 1t

′
, 1κ) outputs, with probability at least 1 − 2−κ, an integer s0

such that
pKρ(t′)O(z)− log ρ(t′) ≤ s0 ≤ pKt′.O(z).

It is easy to see that such an algorithm Approx can be obtained from the assumption that Gapρ-MINpKTO ∈
prBPP and using success amplification techniques. (See, e.g., [GKLO22, Lemma 28].)

Let t := t(n). By running Approx(x, 1ρ
−1(t), 1ℓ

′+1), with probability at least 1 − 2−ℓ′/2, we get an
integer s1 such that

pKt,O(x)− log t ≤ s1 ≤ pKρ−1(t),O(x).

Similarly, by running Approx(x, 1p(t), 1ℓ+1), with probability at least 1 − 2−ℓ′/2, we get some integer s2
such that

pKρ(p(t)),O(x)− log ρ(p(t)) ≤ s2 ≤ pKp(t),O(x).

Then by a union bound, with probability at least 1− 2−ℓ′ , we have

s1 − s2 ≤ pKρ−1(t),O(x)−
(
pKρ(p(t)),O(x)− log ρ(p(t))

)
(35)

and
s1 − s2 ≥

(
pKt,O(x)− log(t)

)
− pKp(t),O(x). (36)

We can then output
s := s1 − s2 + log(t).

It is easy to verify that s satisfies the stated condition in the claim. ⋄

Claim 6.20. There exists a randomized polynomial-time algorithm Valid such that for every (x, y1, 1
ℓ′) ∈

{0, 1}n × {0, 1}v(n) × N, with probability at least 1− 2−ℓ′ (over the internal randomness of Valid) both of
the following hold:

1. If y1 = y∗1 , then Valid(x, y1, 1
ℓ′) = 1.

2. If Valid(x, y1, 1ℓ
′
) = 1, then it holds that

pKq′(n+v(n)),O(x, y1) ≤ pKq(n),O(x) + log q′(n+ v(n)) + log ρ(q(n)).

Proof of Claim 6.20. Again, let Approx be a randomized polynomial-time algorithm that satisfies the fol-
lowing: Given z ∈ {0, 1}m, 1t

′
and 1κ, Approx(z, 1t

′
, 1κ) outputs an integer s such that

pKρ(t′),O(z)− log ρ(t′) ≤ s ≤ pKt′.O(z),

with probability at least 1− 2−κ, where ρ is the polynomial such that Gapρ-MINpKTO ∈ prBPP.
Let Valid be the following algorithm.

71

Given (x, y1, 1
ℓ′), let

θ := Approx
(
x, 1q(n), 1ℓ

′+1)
)
,

and
µ := Approx

(
(x, y1), 1

ρ−1(q′(n+v(n))), 1ℓ
′+1)

)
.

We accept if and only if µ ≤ θ + log ρ(q(n)).

We argue that the above algorithm satisfies the two conditions stated in the claim. Indeed, by the correctness
of Approx and a union bound, we have that, with probability at least 1− 2−ℓ′ , both the following two hold.

pKρ(q(n)),O(x)− log ρ(q(n)) ≤ θ ≤ pKq(n),O(x),

and
pKq′(n+v(n)),O(x, y1)− log q′(n+ v(n)) ≤ µ ≤ pKρ−1(q′(n+v(n))).O(x, y1).

Now to see that Valid(x, y∗1, 1
ℓ) = 1, observe that in this case

µ ≤ pKρ−1(q′(n+v(n))),O(x, y∗1)

≤ pKρ(q(n)),O(x)

≤ θ + log ρ(q(n)),

where the second inequality uses the facts that q′ is a sufficiently large polynomial and that given oracle
access to O, one can recover y∗1 in polynomial time given x.

For the second condition, if Valid(x, y1, 1ℓ) = 1, then it implies that

pKq′(n+v(n)),O(x, y1)− log q′(n+ v(n)) ≤ µ

≤ θ + log ρ(q(n))

≤ pKq(n),O(x) + log ρ(q(n)).

This completes the proof. ⋄

We are now ready to describe our algorithm for deciding L.

Algorithm 4 An algorithm for deciding L

1: procedure A(x, 1ℓ)
2: n := |x|.
3: s := Approx-depth(x, 1ℓ+2).
4: s′ := s+ log p(t(n)).
5:

6: for i ∈ [ℓ] do
7: r := a uniformly random string in {0, 1}p(t(n)).
8: for Π ∈ {0, 1}≤s′ do
9: y1 := the output of Π(x; r) after running p(t(n)) steps.

10: if |y1| = v(n) and Valid
(
x, y1, 1

ℓ+log(ℓ)+s′+4
)
= 1 then

11: if A′
(
x, y1, 1

ℓ+log(ℓ)+s′+4
)
= 0 then

12: Output True.
13: Output False.

72

Correctness. We argue that the algorithm A correctly decides L. Fix x ∈ {0, 1}n and ℓ ∈ N.
First, we assume that the (randomized) algorithm Approx-depth outputs a correct answer for x—that is,

it satisfies the condition stated in Claim 6.19. Note that this occurs with probability at least 1−2−ℓ/4, due to
the choice of the second parameter in the invocation of Approx-depth. We also assume that both algorithms,
Valid and A′, succeed (meaning that the conditions in Claim 6.20 and Claim 6.18, respectively, are satisfied)
in all of their at most ℓ · 2s′+1 executions. By a union bound and the parameter choices in their invocations,
this occurs with probability at least 1− 2−ℓ/4.

Now consider a single execution of the for loop at Line 6 (i.e., Lines 7–12). Suppose x ̸∈ L. Note that,
in this case, by the definition of the language L′ and the fact that A′ correctly decides L′ (Claim 6.18), the
condition at Line 11 will not be satisfied for any y1. Therefore, Line 12 will never be reached in this case.

On the other hand, if x ∈ L, then by Claim 6.17, with probability at least 2/3 over r ∼ {0, 1}p(t(n)), the
set of candidate witnesses

S :=
{
y1 | y1 is the output of Π(x; r) after p(t) steps for some Π ∈ {0, 1}≤s

}
, (37)

generated by Line 9, contains y∗1 , which is the lexicographically first witness for x. To see this, observe that
if the algorithm Approx-depth outputs a correct answer s for x, then we have

pKp(t(n))(y∗1 | x) ≤ pKt,O(x)− pKp(t(n))(x) + log p(t(n)) (by Claim 6.17)

≤ s+ log p(t(n)) (by Claim 6.19)

≤ s′.

Consider the case when y1 = y∗1 . It follows from Claim 6.20 (Item 1) that the condition at Line 10 is
satisfied. Also, since y∗1 is a witness for x, by the definition of L′, we have (x, y∗1) ̸∈ L′, and hence, by
the fact that A′ decides L′ (Claim 6.18), the condition at Line 11 will be satisfied. Therefore, True will be
output in this case.

Since the above process is executed ℓ times in the for loop, the probability that it never outputs True
when x ∈ L is at most 1/3ℓ.

To conclude, with probability at least

1− 1

4 · 2ℓ
− 1

4 · 2ℓ
− 1

4 · 3ℓ
> 1− 1

2ℓ
,

the algorithm will correctly decide whether x ∈ L.

Running Time. We now analyze the running time of the algorithm. Again, we assume that the (random-
ized) algorithms Approx-depth, Valid, and A′ succeed in all their executions, which occurs with probability
at least 1− 2−ℓ.

Consider a single execution of the for loop at Line 6. Define the following subset of S (which is defined
in Equation (37)):

S ′ := {y1 ∈ S | y1 satisfies the condition at Line 12}.

Now, it is easy to see that a single execution (Lines 7–12) takes time at most

2s+1 · poly(t(n)) +
∑
y1∈S′

Runtime
(
A′(x, y1, 1

ℓ)
)
. (38)

Note that for every y1 ∈ S ′, it follows from Claim 6.20 (Item 2) that

pKq′(n+v(n)),O(x, y1) ≤ pKq(n),O(x) + log q′(n+ v(n)) + log ρ(q(n)). (39)

73

Therefore, for every such y1, we have

Runtime
(
A′(x, y1, 1

ℓ)
)

≤ exp
(
pKq′(n+v(n)),O(x, y1)− K(x, y1)

)
· poly(n, ℓ) (by Claim 6.18)

≤ exp
(
pKq(n),O(x) + log q′(n+ v(n)) + log ρ(q(n))− K(x, y1)

)
· poly(n, ℓ) (by Equation (39))

≤ exp
(
pKq(n),O(x)− K(x)

)
· poly(n, ℓ)

It follows that the quantity in Equation (38) is at most

2s
′+1 · poly(t(n)) + 2s

′+1 · exp
(
pKq(n),O(x)− K(x)

)
· poly(n, ℓ) (by |S ′| ≤ 2s

′+1)

≤ exp(s′) · exp
(
pKq(n),O(x)− K(x)

)
· poly(n, ℓ)

≤ exp
(
pKρ−1(t(n)),O(x)− pKρ(p(t(n))),O(x) + log t(n) + log ρ(p(t(n))) + log p(t(n))

)
(by Claim 6.19)

· exp
(
pKq(n),O(x)− K(x)

)
· poly(n, ℓ) · poly(n, ℓ)

≤ exp
(
pKρ−1(t(n)),O(x)− K(x)

)
· exp

(
pKq(n),O(x)− K(x)

)
· poly(n, ℓ) (by Lemma 2.24)

≤ exp
(
pKq(n),O(x)− K(x)

)
· exp

(
pKq(n),O(x)− K(x)

)
· poly(n, ℓ)

≤ exp
(
pKq(n),O(x)− K(x)

)
· poly(n, ℓ),

where the second last inequality holds by letting t(·) ≥ ρ(q(·)). This completes the proof.

6.3.2 Proof of Lemma 6.13

We are now ready to show Lemma 6.13.

Proof of Lemma 6.13. Assume Gap-MINpKTPH ∈ prBPP. Let k ∈ N and L ∈ ΣP
k .

Given Theorem 2.25, it suffices to show how to decide L on average over the uniform distribution. The
idea is to obtain a heuristic scheme by using the worst-case algorithm from Lemma 6.14 for deciding L,
along with the fact that pKt,PH(x)− K(x) is small for a uniformly random x ∈ {0, 1}n. Details follow.

Let O be a ΣP
k -complete language, and let A be the algorithm from Lemma 6.14 that satisfies the

following. Given ℓ ∈ N and x ∈ {0, 1}n, with probability at least 1− 2−ℓ, A(x, 1ℓ) runs in time

2O(pK
q(n),O(x)−K(x)) · poly(n, ℓ)

and decides whether x ∈ L, where q is a polynomial satisfying that for all x ∈ {0, 1}∗, pKq(|x|),O(x) ≤
|x|+O(log |x|).

We now describe a heuristic scheme for solving L over the uniform distribution. Let B be the following
algorithm:

On input (x, 1n, 1κ), where |x| = n, set cutoff := p(n, κ), where p is a polynomial specified
later. Run A(x, 1n+2) for cutoff steps. If it halts, output the returned answer; otherwise output
⊥.

74

We argue the correctness of B. By the fact that for every x ∈ {0, 1}n, A(x, 13) only errs with probability at
most 2−3 = 1/8 (over the internal randomness of A), we get that

Pr
B

[
B(x, 1n, 1k) ∈ {L(x),⊥}

]
≥ 4

5
.

It remains to show that

Pr
x∼{0,1}n

[
Pr
B
[B(x, 1n, 1κ) = ⊥] < 1

5

]
≥ 1− 1

κ
.

Note that by construction, it is sufficient to show that with probability at least 1− 1/κ over x ∼ {0, 1}n, we
have

Pr
A

[
Runtime

(
A(x, 13)

)
≤ cutoff

]
>

4

5
.

First of all, for every x ∈ {0, 1}n, we have that with probability at least 7/8 (which is greater than 4/5) over
its internal randomness, A(x, 13) runs in time

2O(pK
q(n),O(x)−K(x)) · poly(n). (40)

Firstly, for every x ∈ {0, 1}n, we have

pKq(n),O(x) ≤ n+O(log n).

Secondly, by Lemma 2.22, with probability at least 1− 1/κ over x ∼ {0, 1}n,

K(x) ≤ n−O(log n)− log κ.

It follows that with probability at least 1 − 1/κ over x ∼ {0, 1}n, the runtime given by Equation (40) is at
most

exp(n+O(log n))− n+O(log n) + log κ)) · poly(n) ≤ poly(n, κ).

By letting p be a sufficiently large polynomial, the above is at most cutoff. This completes the proof.

6.4 The Deterministic Case

Theorem 6.21. The following statements are equivalent:

1. (Exclusion of PH-Heuristica). DistPH ⊆ AvgP =⇒ PH = P.

2. (Meta-Complexity of KPH). Gap-MINKTPH ∈ P =⇒ Mild-Gap-MINKTPH ∈ P.

As in the proof of Theorem 1.6, Theorem 6.21 follows from the following results.

Theorem 6.22 ([Hir20]). The following holds:

DistPH ⊆ AvgP ⇐⇒ Gap-MINKTPH ∈ P.

Theorem 6.23. The following holds:

NP = P ⇐⇒ Mild-Gap-MINKTPH ∈ P.

To prove Theorem 6.22, we first establish the following.

75

Lemma 6.24. If Mild-Gap-MINKTSAT ∈ BPP, then NP ⊆ BPP.

Proof Sketch. The proof is essentially the same as that of Lemma 6.4. It suffices to consider the notion
ℓ-Kt,SAT in place of ℓ-pKt,SAT. See also the proof of [HLO25, Theorem 34] for details.

Proof of Theorem 6.23. The forward direction is immediate since Mild-Gap-MINKTPH lies in PH. Note
that PH = P if NP = P.

For the backward direction, first note that Lemma 6.24 implies the following.

Mild-Gap-MINKTPH ∈ P =⇒ NP ⊆ BPP.

Moreover, as mentioned in Section 1.3, [Hir20] shows that if Gap-MINKTPH ∈ P, then BPP = P (see
[Hir20, Theorem 1.17]). It follows that if Mild-Gap-MINKTPH ∈ P, then we have both NP ⊆ BPP and
BPP = P, which together imply NP = P, as desired.

6.5 A Relativization Barrier

In this section, we exhibit an oracle world where Gap-MINpKTPH is easy while Mild-Gap-MINpKTPH

is hard. To make the statement that we aim to prove precise, we first explain the relativization of these
computational problems. As usual, this is obtained by providing oracle access to all machines involved in
the computation.

Relativization. For a string x ∈ {0, 1}n, a time bound t, a parameter λ ∈ [0, 1], and languages L,O ⊆
{0, 1}∗, the (L,O)-oracle probabilistic t-time bounded Kolmogorov complexity of x is defines as

pKt,L,O
λ (x) ≜ min

{
s ∈ N

∣∣∣∣ Pr
r∼{0,1}t

[
Kt,L,O(x | r) ≤ s

]
≥ λ

}
,

where Kt,L,O(x | r) denotes the conditional t-time bounded Kolmogorov complexity of x with oracle access
to both L and O.

For a function ρ : N→ N and oracles L andO, let Gapρ-MINpKTL,O be the following promise problem:
Given (x, 1s, 1t), where x ∈ {0, 1}∗ and s, t ∈ N, decide whether pKt,L,O

2/3−1/100(x) ≤ s (“yes” case) or

pK
ρ(t),L,O
2/3 (x) > s+ log ρ(t) (“no” case).

LetO be an oracle. We say that Gap-MINpKTPHO,O ∈ prBPPO if for every language L ∈ PHO, there is
a polynomial ρ and an oracle probabilistic polynomial-time algorithm that solves Gapρ-MINpKTL,O when
given oracle access to O.

Analogously, we consider the collection of problems Mild-Gap-MINpKTPHO,O, for each L ∈ PHO.
Each problem Mild-Gapρ-MINpKTL,O is similar to Gapρ-MINpKTL,O except for that in the no case, we

have pK
t+ρ(|x|),L,O
2/3 (x) > s+ log ρ(t) instead of pKρ(t),L,O

2/3 (x) > s+ log ρ(t).

The statement Mild-Gap-MINpKTPHO,O ̸∈ prBPPO means that there is a language L ∈ PHO such that
for no constant c ≥ 1 and polynomial ρ(n) = c · nc we have Mild-Gapρ-MINpKTL,O ∈ prBPPO.

Theorem 6.25 (Oracle world where Gap-MINpKTPH is easy while Mild-Gap-MINpKTPH is hard).
There is an oracle O such that Gap-MINpKTPHO,O ∈ prBPPO but Mild-Gap-MINpKTPHO,O ̸∈ prBPPO.

Recall that, for an oracle O, DistPHO denotes the set of all distributional problems (L,D) where L ∈
PHO and D ∈ PSAMPO. The proof of Theorem 6.25 relies on the following oracle separation, which is an
immediate consequence of [Imp11, HN21].

76

Theorem 6.26 ([Imp11, HN21]). There is an oracle O ⊆ {0, 1}∗ such that DistPHO ⊆ AvgBPPO and
PHO ⊈ BPPO.

We are now ready to prove Theorem 6.25.

Proof Sketch of Theorem 6.25. Since the argument is straightforward given Theorem 6.26 and the proof of
Theorem 1.6, we only provide a sketch here. We consider the oracleO ⊆ {0, 1}∗ provided by Theorem 6.26,
and verify that it satisfies the required properties in Theorem 6.25.

1) Proof that Gap-MINpKTPHO,O ∈ prBPPO. By assumption, DistPHO ⊆ AvgBPPO. Let L ∈ PHO.
We need to prove that there is a polynomial ρ and an oracle probabilistic polynomial-time algorithm that
solves Gapρ-MINpKTL,O when given oracle access to O. We rely on the following lemma.11

Lemma 6.27 (Relativized form of Lemma 6.12). For oracles L1, L2 ⊆ {0, 1}∗, if (MINKTL1,L2 ,U) ∈
AvgBPPL2 , then Gapρ-MINpKTL1,L2 ∈ prBPPL2 for some polynomial ρ.

Assuming Lemma 6.27, we proceed as follows. We apply the lemma with L1 = L and L2 = O,
which simplifies the assumption to (MINKTL,O,PSAMPO) ⊆ AvgBPPO. Since it is not hard to see that
MINKTL,O ∈ PHO, the assumption of Lemma 6.27 holds (using that DistPHO ⊆ AvgBPPO). Therefore,
it follows that Gapρ-MINpKTL,O ∈ prBPPO for some polynomial ρ, as desired.

It remains to prove Lemma 6.27. The proof is a simple adaptation of that of [HLO25, Proposition 58] to
the relativized setting. Since it requires no new idea, we omit the details.

2) Proof that Mild-Gap-MINpKTPHO,O ̸∈ prBPPO. Recall that, by construction, PHO ⊈ BPPO. Next,
we use this separation to argue that Mild-Gap-MINpKTPHO,O ̸∈ prBPPO. In more detail, we establish the
contrapositive, i.e., if Mild-Gap-MINpKTPHO,O ∈ prBPPO then PHO ⊆ BPPO. Since NPO ⊆ BPPO

yields PHO ⊆ BPPO, it suffices to argue the assumption implies that NPO ⊆ BPPO.
To achieve this, it is sufficient to establish the following lemma.

Lemma 6.28 (Relativized form of Lemma 6.4). For any O ⊆ {0, 1}∗, if Mild-Gap-MINpKTPHO,O ∈
prBPPO, then NPO ⊆ BPPO.

It is straightforward to check that the proof of Lemma 6.4 extends to Lemma 6.28. The key point is that
all techniques employed in the proof relativize. We omit the details.

References

[AKRR03] Eric Allender, Michal Koucký, Detlef Ronneburger, and Sambuddha Roy. Derandomization and
distinguishing complexity. In Conference on Computational Complexity CCC, pages 209–220,
2003.

[AKRR11] Eric Allender, Michal Koucký, Detlef Ronneburger, and Sambuddha Roy. The pervasive reach
of resource-bounded Kolmogorov complexity in computational complexity theory. J. Comput.
Syst. Sci., 77(1):14–40, 2011.

[All10] Eric Allender. Avoiding simplicity is complex. In Programs, Proofs, Processes – Conference
on Computability in Europe (CiE), pages 1–10, 2010.

11Analogously to the definitions introduced above, the measure Kt,L1,L2(x) and the corresponding meta-computational problem
MINKTL1,L2 are defined in the natural way, i.e., by considering programs that have oracle access to both L1 and L2.

77

[BF95] Harry Buhrman and Lance Fortnow. Distinguishing complexity and symmetry of informa-
tion. Technical Report TR-95-11, Department of Computer Science, The University of Chicago,
1995.

[BGS75] Theodore P. Baker, John Gill, and Robert Solovay. Relativizations of the P =? NP question.
SIAM J. Comput., 4(4):431–442, 1975.

[BLvM05] Harry Buhrman, Troy Lee, and Dieter van Melkebeek. Language compression and pseudoran-
dom generators. Comput. Complex., 14(3):228–255, 2005.

[BT06] Andrej Bogdanov and Luca Trevisan. Average-case complexity. Found. Trends Theor. Comput.
Sci., 2(1), 2006.

[CIKK16] Marco L. Carmosino, Russell Impagliazzo, Valentine Kabanets, and Antonina Kolokolova.
Learning algorithms from natural proofs. In Conference on Computational Complexity (CCC),
pages 10:1–10:24, 2016.

[CLL24] Lijie Chen, Jiatu Li, and Jingxun Liang. Maximum circuit lower bounds for exponential-time
Arthur Merlin. Electron. Colloquium Comput. Complex., TR24-182, 2024.

[GK22] Halley Goldberg and Valentine Kabanets. A simpler proof of the worst-case to average-case re-
duction for polynomial hierarchy via symmetry of information. Electron. Colloquium Comput.
Complex., 7:1–14, 2022.

[GK23] Halley Goldberg and Valentine Kabanets. Improved learning from Kolmogorov complexity. In
Computational Complexity Conference (CCC), pages 12:1–12:29, 2023.

[GK24] Halley Goldberg and Valentine Kabanets. Consequences of randomized reductions from SAT to
time-bounded Kolmogorov complexity. In Approximation, Randomization, and Combinatorial
Optimization: Algorithms and Techniques (APPROX/RANDOM), pages 51:1–51:19, 2024.

[GKLO22] Halley Goldberg, Valentine Kabanets, Zhenjian Lu, and Igor C. Oliveira. Probabilistic Kol-
mogorov complexity with applications to average-case complexity. In Computational Com-
plexity Conference (CCC), pages 16:1–16:60, 2022.

[Gol97] Oded Goldreich. A sample of samplers - A computational perspective on sampling (survey).
Electron. Colloquium Comput. Complex., TR97-020, 1997.

[HIL+23] Shuichi Hirahara, Rahul Ilango, Zhenjian Lu, Mikito Nanashima, and Igor C. Oliveira. A
duality between one-way functions and average-case symmetry of information. In Symposium
on Theory of Computing (STOC), pages 1039–1050, 2023.

[Hir18] Shuichi Hirahara. Non-black-box worst-case to average-case reductions within NP. In Sympo-
sium on Foundations of Computer Science (FOCS), pages 247–258, 2018.

[Hir20] Shuichi Hirahara. Characterizing average-case complexity of PH by worst-case meta-
complexity. In Symposium on Foundations of Computer Science (FOCS), pages 50–60, 2020.

[Hir21] Shuichi Hirahara. Average-case hardness of NP from exponential worst-case hardness assump-
tions. In Symposium on Theory of Computing (STOC), pages 292–302, 2021.

[Hir22a] Shuichi Hirahara. Meta-computational average-case complexity: A new paradigm toward ex-
cluding Heuristica. Bull. EATCS, 136, 2022.

78

[Hir22b] Shuichi Hirahara. NP-hardness of learning programs and partial MCSP. In Symposium on
Foundations of Computer Science (FOCS), pages 968–979, 2022.

[Hir22c] Shuichi Hirahara. Symmetry of information from meta-complexity. In Computational Com-
plexity Conference (CCC), pages 26:1–26:41, 2022.

[Hir23] Shuichi Hirahara. Capturing one-way functions via NP-hardness of meta-complexity. In Sym-
posium on Theory of Computing (STOC), pages 1027–1038, 2023.

[HKLO24] Shuichi Hirahara, Valentine Kabanets, Zhenjian Lu, and Igor C. Oliveira. Exact search-to-
decision reductions for time-bounded Kolmogorov complexity. In Computational Complexity
Conference (CCC), pages 29:1–29:56, 2024.

[HLN24] Shuichi Hirahara, Zhenjian Lu, and Mikito Nanashima. Optimal coding for randomized kol-
mogorov complexity and its applications. In Symposium on Foundations of Computer Science
(FOCS), pages 369–378, 2024.

[HLO24] Shuichi Hirahara, Zhenjian Lu, and Igor C. Oliveira. One-way functions and pKt complexity.
In Theory of Cryptography (TCC), pages 253–286, 2024.

[HLO25] Jinqiao Hu, Zhenjian Lu, and Igor C. Oliveira. Hardness of computing nondeterministic Kol-
mogorov complexity. Electron. Colloquium Comput. Complex., TR25-203, 2025.

[HN21] Shuichi Hirahara and Mikito Nanashima. On worst-case learning in relativized Heuristica. In
Symposium on Foundations of Computer Science (FOCS), pages 751–758, 2021.

[HN23] Shuichi Hirahara and Mikito Nanashima. Learning in Pessiland via inductive inference. In
Symposium on Foundations of Computer Science, (FOCS), pages 447–457, 2023.

[HN25] Shuichi Hirahara and Mikito Nanashima. Complexity-theoretic inductive inference. Electron.
Colloquium Comput. Complex., TR25-92, 2025.

[IL90] Russell Impagliazzo and Leonid A. Levin. No better ways to generate hard NP instances than
picking uniformly at random. In Symposium on Theory of Computing (STOC), pages 812–821,
1990.

[Ila23] Rahul Ilango. SAT reduces to the minimum circuit size problem with a random oracle. In
Symposium on Foundations of Computer Science (FOCS), pages 733–742, 2023.

[Imp95] Russell Impagliazzo. A personal view of average-case complexity. In Proceedings of the Tenth
Annual Structure in Complexity Theory Conference, pages 134–147, 1995.

[Imp11] Russell Impagliazzo. Relativized separations of worst-case and average-case complexities for
NP. In Conference on Computational Complexity (CCC), pages 104–114, 2011.

[IW97] Russell Impagliazzo and Avi Wigderson. P = BPP if E requires exponential circuits: Deran-
domizing the XOR lemma. In Symposium on Theory of Computing (STOC), pages 220–229.
ACM, 1997.

[KK25] Valentine Kabanets and Antonina Kolokolova. Chain rules for time-bounded Kolmogorov com-
plexity. Electron. Colloquium Comput. Complex., TR25-89, 2025.

[Lee06] Troy Lee. Kolmogorov complexity and formula lower bounds. PhD thesis, University of Ams-
terdam, 2006.

79

[Lev84] Leonid A. Levin. Randomness conservation inequalities; information and independence in
mathematical theories. Information and Control, 61(1):15–37, 1984.

[LO21] Zhenjian Lu and Igor C. Oliveira. An efficient coding theorem via probabilistic representations
and its applications. In International Colloquium on Automata, Languages, and Programming
(ICALP), pages 94:1–94:20, 2021.

[LO22] Zhenjian Lu and Igor C. Oliveira. Theory and applications of probabilistic Kolmogorov com-
plexity. Bull. EATCS, 137, 2022.

[LORS24] Zhenjian Lu, Igor C. Oliveira, Hanlin Ren, and Rahul Santhanam. On the complexity of avoid-
ing heavy elements. In Symposium on Foundations of Computer Science (FOCS), pages 2403–
2412, 2024.

[LOZ22] Zhenjian Lu, Igor C. Oliveira, and Marius Zimand. Optimal coding theorems in time-bounded
Kolmogorov complexity. In International Colloquium on Automata, Languages, and Program-
ming (ICALP), pages 92:1–92:14, 2022.

[LP20] Yanyi Liu and Rafael Pass. On one-way functions and Kolmogorov complexity. In Symposium
on Foundations of Computer Science (FOCS), pages 1243–1254, 2020.

[LP23] Yanyi Liu and Rafael Pass. One-way functions and the hardness of (probabilistic) time-
bounded Kolmogorov complexity w.r.t. samplable distributions. In Annual Cryptology Con-
ference (CRYPTO), pages 645–673, 2023.

[LP25] Yanyi Liu and Rafael Pass. Hardness along the boundary towards one-way functions from the
worst-case hardness of time-bounded Kolmogorov complexity. In Annual Cryptology Confer-
ence (CRYPTO), 2025.

[LR05] Troy Lee and Andrei E. Romashchenko. Resource bounded symmetry of information revisited.
Theor. Comput. Sci., 345(2-3):386–405, 2005.

[LS24] Zhenjian Lu and Rahul Santhanam. Impagliazzo’s worlds through the lens of conditional Kol-
mogorov complexity. In International Colloquium on Automata, Languages, and Programming
(ICALP), pages 110:1–110:17, 2024.

[LV19] Ming Li and Paul M. B. Vitányi. An Introduction to Kolmogorov Complexity and Its Applica-
tions, 4th Edition. Texts in Computer Science. Springer, 2019.

[LW95] Luc Longpré and Osamu Watanabe. On symmetry of information and polynomial time invert-
ibility. Inf. Comput., 121(1):14–22, 1995.

[MP25] Noam Mazor and Rafael Pass. Guest column: On cryptography and meta-complexity. SIGACT
News, 56(2):63–101, June 2025.

[Ron04] Detlef Ronneburger. Kolmogorov Complexity and Derandomization. PhD thesis, Rutgers Uni-
versity, 2004.

[RRV02] Ran Raz, Omer Reingold, and Salil P. Vadhan. Extracting all the Randomness and Reducing
the Error in Trevisan’s Extractors. J. Comput. Syst. Sci., 65(1):97–128, 2002.

[San23] Rahul Santhanam. An algorithmic approach to uniform lower bounds. In Computational Com-
plexity Conference (CCC), pages 35:1–35:26, 2023.

80

[Sim23] Meta-Complexity. Research Program at the Simons Institute for the Theory of Com-
puting, UC Berkeley, Spring 2023. https://simons.berkeley.edu/programs/
Meta-Complexity2023.

[Sud97] Madhu Sudan. Decoding of reed solomon codes beyond the error-correction bound. J. Com-
plex., 13(1):180–193, 1997.

[SUV17] Alexander Shen, Vladimir A. Uspensky, and Nikolay Vereshchagin. Kolmogorov complexity
and algorithmic randomness. American Mathematical Society, 2017.

[ZL70] Alexander K. Zvonkin and Leonid A. Levin. The complexity of finite objects and the algorith-
mic concepts of randomness and information. UMN (Russian Math. Surveys), 25(6):83–124,
1970.

A On Symmetry of Information for nKt

[Ron04] showed that Symmetry of Information (SoI) does not hold for Kt. Since the argument rela-
tivizes, it follows that SoI does not hold for KtSAT either (where the queries are allowed to be adaptive).
Recall that nKt is related, within a constant, to Kt complexity with non-adaptive queries to a SAT oracle
(see Corollary 3.2 and Corollary 3.4). Nevertheless, the proof technique of [Ron04] does not seem to extend
to show failure of SoI for nKt.

To clarify why this technique falls short and to highlight the role of adaptivity, we present a proof that
SoI fails in a hybrid setting: the left-hand side uses Kt with access to a SAT oracle with up to two levels
of adaptivity, while the right-hand side terms employ nKt. Whether symmetry of information fails for nKt
remains an open problem.

Theorem A.1. There is a constant ε > 0 such that for every large enough n ∈ N, there exist strings
x, y,∈ {0, 1}n such that

Kt∥2SAT(x, y) < nKt(x) + nKt(y | x)− εn.

Here, for an oracle O and a constant d ∈ N, Kt∥dO refers to the complexity measure Kt wherein the
universal machine may make oracle calls to O with up to d levels of adaptivity.

We will need the following lemma.

Lemma A.2. For every n ∈ N, constant d ∈ N, and language A ∈ NP, there exist strings x1, ..., xd ∈
{0, 1}n satisfying ∑

i∈[d]

Kt∥A(xi | x1, ..., xi−1) > d · n
2

and
Kt∥dA(x1, ..., xd) ≤

n

2
+O(log n).

Proof. We employ an idea from [Ron04]. Fix n, d ∈ N, and for i ∈ [d], let xi be the lexicographically first
string of length n such that

Kt∥A(xi | x1, ..., xi−i) >
n

2
.

Note that ∑
i∈[d]

Kt∥A(xi | x1, ..., xi−1) > d · n
2
.

Now, consider the following brute-force algorithm to find xi given (x1, ..., xi−1).

81

https://simons.berkeley.edu/programs/Meta-Complexity2023
https://simons.berkeley.edu/programs/Meta-Complexity2023

Let S be an empty set at first. For every j ∈ [n/2], for every w ∈ {0, 1}j , letting t = 2n/2−j ,
let zw be the output of a universal non-adaptive A-oracle TM run on input (w, x1, ..., xi−1) for
t steps. (If the input does not encode a program making all of its oracle queries in parallel, do
not output anything.) Add the output zw to S.

Once the above is complete, sort S lexicographically, and let xi be the lexicographically small-
est string not in S.

We note that when simulating the procedure described above, we can collect the set of queries to
the SAT oracle requested by each machine and submit all queries simultaneously to the oracle.
For this reason, non-adaptive access to the SAT oracle is sufficient.

Observe that the algorithm described above runs in time at most

n

2
· 2j · 2n/2−j +O(|S| · log |S|) < n2 · 2n/2

and requires program size at most O(log n) provided non-adaptive access to an A oracle.
Moreover, repeating the above d times to produce all strings x1, ..., xd takes time at most d · n2 · 2n/2,

making queries to a A oracle with at most d levels of adaptivity. We obtain

Kt∥dA(x1, ..., xd) ≤ O(log n) + log(d · n2 · 2n/2)

≤ n

2
+O(log n).

This completes the proof of the lemma.

We are now ready to prove Theorem A.1.

Proof of Theorem A.1. Applying Lemma A.2 with d = 2 and A = SAT, for every n ∈ N, we obtain strings
x, y ∈ {0, 1}n such that

Kt∥2SAT(x, y) ≤ Kt∥SAT(x) + Kt∥SAT(y | x)− n

2
+O(log n).

Then, by Lemma 3.2,
Kt∥2SAT(x, y) < nKt(x) + nKt(y | x)− n

4
,

as desired.

82

	Introduction
	Overview
	Results
	Unconditional Complexity Lower Bounds for Estimating Complexity
	Proof Complexity and Symmetry of Information
	Average-Case vs. Worst-Case Complexity in the Polynomial Hierarchy

	Techniques

	Preliminaries
	Computational Models
	Kolmogorov Complexity
	Definitions
	Useful Tools

	Average-Case Complexity
	Pseudorandomness

	Useful Results About Nondeterministic Kolmogorov Complexity
	
	
	

	Unconditional Lower Bounds for Estimating Complexity
	Hardness of MnKtP
	Randomness Efficient Success Amplification for rK
	Reconstruction from Oracle Access to Dense Language
	Derandomizing rKL̂
	Iterative Construction of High-Complexity Strings
	Limitations of the Iterative Construction for

	Hardness of Gap-MrnKtP
	Exponential Lower Bound via Iterative Construction
	 Lower Bound via Explicit Constructions
	Non-Uniform Lower Bound via Near-Maximum Circuit Lower Bounds

	Nondeterminism, Symmetry of Information, and Proof Complexity
	Average-Case Symmetry of Information for
	A Semi-Symmetry of Information Theorem for
	From Semi-SoI for to Average-Case SoI for

	Worst-Case Symmetry of Information for and
	The Case of
	Relativization Barriers for Symmetry of Information

	Average-Case Versus Worst-Case Complexity
	Characterizing Easiness of via Easiness of
	The Easy Direction
	The Hard Direction

	Worst-Case Easiness of Gap-MINpKT-PH from Average-Case Easiness of PH
	Average-Case Easiness of PH from Worst-Case Easiness of Gap-MINpKT-PH
	Technical Tools
	Proof of

	The Deterministic Case
	A Relativization Barrier

	On Symmetry of Information for

