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Abstract

Meta-complexity investigates the complexity of computational problems and tasks that are them-
selves about computations and their complexity. Understanding whether such problems can capture the
hardness of NP is a central research direction. A longstanding open problem in this area is to establish
the NP-hardness of MINKT [Ko91], the problem of estimating time-bounded Kolmogorov complexity.

We contribute to this research direction by studying nKt, a natural variant of Kolmogorov complexity
that captures the complexity of representing a string using time-bounded nondeterministic computations
[BFL01]. Let MINnKT denote the task of estimating nKt(x) of a given input string x. We prove that
MINnKT ∈ BPP if and only if NP ⊆ BPP. In contrast with prior work, this result provides the
first non-conditional, non-oracle, non-partial version of a natural meta-computational problem whose
hardness characterizes NP ⊈ BPP.

Crucial to our result is the investigation of a new notion of probabilistic nondeterministic time-
bounded Kolmogorov complexity called pnKt. This measure can be seen as an extension of pKt com-
plexity [GKLO22a] obtained by replacing Kt with nKt. We establish unconditionally that pnKt has
nearly all key properties of (time-unbounded) Kolmogorov complexity, such as language compression,
conditional coding, and a form of symmetry of information. Finally, we show that the corresponding
meta-computational problem MINpnKT also captures the hardness of NP, and that extending this result
to the closely related problem Gap-MINpnKT would imply the exclusion of PH-Heuristica.
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1 Introduction

1.1 Overview

Meta-complexity investigates the complexity of computational problems and tasks that are themselves
about computations and their complexity. Two central problems in meta-complexity are MCSP [KC00], the
task of estimating the circuit complexity of a given function, and MINKT [Ko91], the task of estimating the
time-bounded Kolmogorov complexity of a given string. The study of the computational complexity of these
and related problems has had a significant impact in theoretical computer science over the last decade, with
influential developments in areas such as learning theory [CIKK16], cryptography [LP20], and average-case
complexity [Hir21].

A major open problem is to show the NP-hardness of MCSP and MINKT. Beyond the intrinsic in-
terest in establishing the hardness of natural problems, recent results have highlighted the broader signif-
icance of this research direction for algorithms and complexity theory. In particular, NP-hardness results
in meta-complexity offer a promising approach toward excluding Heuristica, i.e., the quest to establish an
equivalence between the worst-case and average-case complexities of NP (see [Hir22a]). In more detail,
under the average-case easiness of NP, certain “gap” versions of MINKT and MCSP admit worst-case to
average-case reductions. As a result, if solving Gap-MINKT in the worst case implies that NP is easy in the
worst case, then the average-case easiness of NP (which entails the average-case easiness of MINKT and,
via the worst-case to average-case reduction, the worst-case easiness of Gap-MINKT) would also lead to
the worst-case easiness of NP. Ruling out Heuristica would constitute a major breakthrough in complexity
theory and a crucial step toward basing cryptography on the worst-case assumption that NP ⊈ BPP.

In a celebrated result, Hirahara [Hir22b] established the NP-hardness of “partial” versions of MINKT
and MCSP, where the input string x ∈ {0, 1, ⋆}n is allowed to contain unspecified bits encoded by “⋆”.
Unfortunately, for such computational problems worst-case to average-case reductions remain unknown.
This further motivates the task of establishing the hardness of “total” meta-computational problems, such as
MINKT and its variants, which tend to be susceptible to worst-case to average-case reductions.

Summary of Contributions. We explore nKt complexity, a natural variant of Kolmogorov complexity
that considers the complexity of describing a string using time-bounded nondeterministic computations. We
employ this extension of time-bounded Kolmogorov complexity to develop the meta-complexity of nonde-
terministic Kolmogorov complexity. In more detail, our main contributions can be summarized as follows:

– We show that the task of computing nKt(x) of a given string x ∈ {0, 1}n captures the worst-case hardness
of NP. This hardness result holds for standard strings and does not rely on the use of “⋆”. In order to prove
this result, we introduce conceptual and technical ideas that are likely to find further applications.

– In particular, we introduce a useful notion of probabilistic nondeterministic Kolmogorov complexity called
pnKt, and establish that it has nearly all key properties of (time-unbounded) Kolmogorov complexity. This
means that in many applications we can replace Kolmogorov complexity by a time-bounded measure with
similar features, thereby retaining information about the complexity of computations.

– Finally, we describe a striking connection between the complexity of computing nKt(x) and its variants
and average-case complexity. More precisely, we show that a seemingly minor extension of our hardness
results would have a significant consequence to the average-case complexity of the polynomial hierarchy.

Next, we explain our results and contributions in detail.
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1.2 Results

1.2.1 Capturing the Hardness of NP via Nondeterministic Kolmogorov Complexity

For x ∈ {0, 1}∗ and t ∈ N, the t-time-bounded nondeterministic Kolmogorov complexity of x is defined
as

nKt(x) := min
program Π

{
|Π|

∣∣∣∣ • ∀w ∈ {0, 1}t, Π(w) outputs x or ⊥ in t steps
• ∃w ∈ {0, 1}t, Π(w) outputs x in t steps

}
.

We extend this definition to nKt(x | y), the conditional version of nKt, in the natural way (see Section 2.3).
The complexity measure nKt was studied under the name CNDt in [BFL01] and CNt in [BLvM05].1

Let MINnKT be the following problem: Given (x, 1s, 1t), where x ∈ {0, 1}∗ and s, t ∈ N, decide
whether nKt(x) ≤ s. Note that MINnKT ∈ Σp

2, the second level of the polynomial hierarchy.
Theorem 1 stated below requires a computational model that behaves well with respect to the time and

description length overhead of composing computations. We refer to Section 1.3 and Section 2 for more
details about the mild conditions imposed on the encodings of programs. (We note that the conditions we
need are often implicitly assumed in the literature on meta-complexity and time-bounded Kolmogorov com-
plexity.)

Main Contribution. We are ready to state the main result of this paper.

Theorem 1 (Characterizing NP ⊈ BPP by the Worst-Case Hardness of nKt).
The following equivalence holds.

MINnKT ∈ BPP ⇐⇒ NP ⊆ BPP.

Recall that it is a longstanding open problem to show the hardness of MINKT [Ko91]. Theorem 1 can
be interpreted as a solution to this problem in the setting of nondeterministic time-bounded Kolmogorov
complexity. In contrast with prior work, such as [Hir20c, ACM+21, Hir22b, Hir22c, LP22, HIR23, Ila23],
this result provides the first non-conditional, non-oracle, non-partial version of a natural meta-computational
problem whose hardness characterizes NP ⊈ BPP.

In order to establish Theorem 1, we rely on a new approach that explores a delicate regime of param-
eters of the MINnKT instances. We explain this in more detail in Section 1.2.3, where we also discuss
its relevance to average-case complexity. We note that, due to the use of non-black-box techniques from
meta-complexity, our result does not provide a Karp-reduction from an NP-complete problem to MINnKT.
In any case, the equivalence established in Theorem 1 is sufficient when exploring implications to average-
case complexity (see Section 1.2.3).

Related Results. Next, we show that if MINnKT is average-case easy under the uniform distribution (see
Section 2.7 for a precise statement), then NP can be solved in polynomial time in the average case.

Theorem 2 (Average-Case Hardness of nKt). The following holds.

(MINnKT,U) ∈ AvgBPP =⇒ DistNP ⊆ AvgBPP.

It is instructive to compare Theorem 1 and Theorem 2 with some related results from [Hir20a, Hir20c,
Hir22c, LP22, HIR23]. Let MINcKTSAT denote the SAT-oracle version of conditional MINKT. The follow-
ing results are known.

1While the definition of the measure presented in these papers is slightly different than the one given here, it is not hard to see
that they are equivalent.
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(i) Worst-Case Hardness: MINcKTSAT ∈ BPP ⇐⇒ NP ⊆ BPP [Hir20c].2 Moreover, computing
sublinear conditional time-bounded Kolmogorov complexity is NP-hard [Hir22c, LP22], while com-
puting conditional time-bounded Kolmogorov complexity is NP-hard under a strong cryptographic
assumption [HIR23].

(ii) Average-Case Hardness: MINKTSAT ∈ BPP =⇒ DistNP ⊆ HeurBPP [Hir20c, Theorem 3.5].

(iii) PH Average-Case Hardness: GapMINKTPH ∈ P =⇒ DistPH ⊆ AvgP [Hir20a].

In comparison with the results in Item (i), Theorem 1 exhibits the hardness of a non-conditional meta-
computational problem, i.e., for instances without a conditional string. On the other hand, in comparison
with Item (ii), our proof of Theorem 2 establishes a stronger conclusion under a weaker assumption, as
explained next. For the DistNP-hardness of MINKTSAT stated in Item (ii), it is enough to have an efficient
algorithm that accepts the set of strings with low Kpoly,NP-complexity while rejecting a large fraction of
random strings. In contrast, in Theorem 2 we only need an efficient algorithm that accepts strings with
low nKpoly-complexity while rejecting a large fraction of random strings. Since the set of strings with
low nKpoly-complexity is a subset of those with low Kpoly,NP-complexity, the actual assumption required
in Theorem 2 is implied by the one needed in Item (ii). Moreover, in Theorem 2 we obtain the stronger
consequence that NP is average-case easy in the errorless setting, rather than in the error-prone setting
considered in Item (ii). Finally, in Item (iii), [Hir20a] shows the DistPH-hardness of a generalization of
a gap formulation of MINKT that considers compression with access to a PH-oracle. While it is possible
to use a weaker assumption to derive the weaker conclusion DistNP ⊆ AvgP, similarly to the discussion
about Item (ii) the corresponding meta-computational problem is harder than the one in the assumption of
Theorem 2 (see [Hir20a, Theorem 1.16]).

In our next result, we show that if MINnKT is average-case easy under the uniform distribution, then
NP can be solved in sub-exponential time in the worst case.

Theorem 3 (Worst-Case to Average-Case Reduction). The following holds.

(MINnKT,U) ∈ AvgBPP =⇒ NP ⊆ RTIME
[
2O(n/ logn)

]
.

Previous works [Hir21, GKLO22a] have shown that if ΣP
2 is average-case easy, then NP can be solved

in time 2O(n/ logn). Theorem 3 obtains the same conclusion under the weaker assumption that MINnKT is
average-case easy. Indeed, MINnKT can be solved in NP using two non-adaptive calls to an NP oracle, so it
is in NPNP = ΣP

2 . Hence, if ΣP
2 is easy on average, so is MINnKT. However, the reverse direction remains

unclear. Also, note that if MINnKT is average-case easy, then by Theorem 2, the same holds for NP. Yet, it
is unknown if ΣP

2 is average-case easy under the assumption that NP is average-case easy.

1.2.2 Probabilistic Nondeterministic Kolmogorov Complexity Is (Essentially) All You Need

The proof of Theorem 1 relies on certain useful properties of a probabilistic variant of nKt called pnKt.
First, we review the following definition, which will be useful when comparing our results with prior work.
For x ∈ {0, 1}∗ and t ∈ N, the t-time-bounded randomized nondeterministic Kolmogorov complexity of x
is defined as

rnKt(x) := min
program Π

{
|Π|

∣∣∣∣∣ Pr
r∼{0,1}t

[
∀w ∈ {0, 1}t,Π(w; r) outputs x or ⊥ in t steps;

∃w ∈ {0, 1}t,Π(w; r) outputs x in t steps

]
≥ 2

3

}
.

The complexity measure rnKt was studied under the name CAMt in [BLvM05].
2In fact, [Hir20c] showed the stronger result that PNP reduces to MINcKTSAT under deterministic polynomial-time reductions.
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pnKt Complexity. Inspired by pKt complexity [GKLO22a] and its properties (see, e.g., [LO22]), we in-
troduce the following notion of probabilistic nondeterministic Kolmogorov complexity. For x ∈ {0, 1}∗ and
t ∈ N, the t-time-bounded probabilistic nondeterministic Kolmogorov complexity of x is defined as

pnKt(x) := min

k ∈ N

∣∣∣∣∣∣∣ Pr
r∼{0,1}t

∃ program Π of size at most k s.t. the following conditions hold:

∀w ∈ {0, 1}t,Π(w; r) outputs x or ⊥ in t steps;

∃w ∈ {0, 1}t,Π(w; r) outputs x in t steps

 ≥ 2

3

.

Equivalently,

pnKt(x) := min

{
k ∈ N

∣∣∣∣∣ Pr
r∼{0,1}t

[
nKt(x | r) ≤ k

]
≥ 2

3

}
.

In other words, while pKt corresponds to Kt complexity in the presence of a random string, analogously,
pnKt is simply nKt complexity in the presence of a random string.

We extend the definitions of rnKt and pnKt to their corresponding oracle versions in the natural way,
i.e., by giving to the program oracle access to the corresponding set O ⊆ {0, 1}∗. We write rnKt,O and
pnKt,O, respectively.

We show that pnKt admits nearly all key properties of (time-unbounded) Kolmogorov complexity, such
as a general form of language compression, (conditional) coding, and useful variants of symmetry of in-
formation. As a consequence, in many scenarios, pnKt can replace Kolmogorov complexity while still
providing useful bounds on the complexity of computations.

Below we discuss the properties of pnKt in more detail and contrast our results with prior work.

Language Compression for pnKt. As established by [Lee06, Theorem 4.1.4] (improving [BLvM05]),
nondeterminism allows us to get non-trivial language compression in the time-bounded setting. In other
words, there is a polynomial p(·) such that for every set A := {An ⊆ {0, 1}n}n∈N, and for all n ∈ N and
x ∈ An,

nKp(n),An(x) ≤ log |An|+O(
√

log |An| · log n).

[BLvM05] showed that an improved language compression theorem holds if we employ randomness in
addition to nondeterminism. More precisely, there is a polynomial p(·) such that for every set A := {An ⊆
{0, 1}n}n∈N, and for all n ∈ N and x ∈ An,

rnKp(n),An(x) ≤ log |An|+ log3 p(n).

This result is still suboptimal due to the additive O(log3 n) term. This super-logarithmic overhead can lead
to super-polynomial running times in applications.

In contrast to the aforementioned results, we observe that an optimal language compression theorem
holds for pnKt. This result plays a key role in the proof of Theorem 1.

Theorem 4 (Language Compression for pnKt). There is a polynomial p
LC
(·) such that for every set A :=

{An ⊆ {0, 1}n}n∈N, and for all n ∈ N and x ∈ An,

pnKp
LC(n),An(x) ≤ log |An|+ log p

LC
(n).

On the other hand, we provide evidence that nondeterminism is indeed crucial for language compression,
even when restricted to predicates in P.

Theorem 5. Item 1 implies Item 2 in the statements appearing below.
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(i) (Average-Case pKt Language Compression for P.) For any set A := {An ⊆ {0, 1}n}n∈N that is in
P, there exists a constant c > 0 such that for all n ∈ N

Pr
x∼An

[
pKnc

(x) ≤ log |An|+ c · log n
]
≥ 1

nc
.

(ii) Unary-NP ⊆ BPP.

Theorem 5 complements a result from [BLvM05] showing that for all n, t, k ∈ N such that k ≤ n, there
exists a set A such that log |An| = k and for every x ∈ An,

rKt,An(x) ≥ n− log |An| − log t−O(1).

This bound on rKt,An complexity rules out the possibility of getting a language compression theorem with-
out nondeterminism for every set A, while Theorem 5 rules out language compression without nondetermin-
ism (even on average) for sets decidable in polynomial time (under the assumption that Unary-NP ⊈ BPP).
The latter case is of interest in the proof of Theorem 1.

Conditional Coding for pnKt. Since pnKt is a more “powerful” notion than pKt, and the latter admits a
coding theorem [LOZ22], it follows that pnKt also has this property. Here, we show that pnKt possesses an
even stronger conditional coding property.

Theorem 6 (Conditional Coding for pnKt). For every polynomial-time samplable distribution family {Dn}n∈N
supported over {0, 1}n × {0, 1}n, there exists a polynomial p such that for all n ∈ N,

pnKp(n)(x | y) ≤ log
1

Dn(x | y)
+ log p(n).

In contrast, conditional coding does not hold for pKt under the assumption that NP ⊈ BPP [HIL+23].
This gives another natural setting where nondeterminism seems essential and leads to an advantage of pnKt

over pKt.

Symmetry of Information for pnKt. Finally, we show that non-trivial forms of the symmetry of informa-
tion principle hold for pnKt complexity. The results discussed below improve the parameters of analogous
results established for rnKt complexity in [LR05] (see also [Lee06, Theorem 6.3.3]).

Theorem 7 (Semi-Symmetry of Information for pnKt). There exist polynomials p
SoI
(·) and p0(·) such that

for all sufficiently large x, y ∈ {0, 1}∗ and every t ≥ p0(|x|+ |y|),

pKt(x, y) ≥ pnKp
SoI

(t)(y | x) + pnKp
SoI

(t)(x)− log p
SoI
(t).

The reason we call Theorem 7 semi-symmetry of information is because on the left-hand side of the
inequality we obtain pKt(x, y) as opposed to pnKt(x, y). We are able to overcome this limitation in the
average-case setting, which is sufficient in many applications.

Theorem 8 (Average-Case Symmetry of Information for pnKt). For every polynomial-time samplable dis-
tribution family {Dn}n∈N supported over {0, 1}n × {0, 1}n, and for every polynomial q, there exists a
polynomial p such that for every computable time bound t ≥ p(n) and for all large enough n,

Pr
(x,y)∼Dn

[
pnKt(x, y) ≥ pnKt(y | x) + pnKt(x)− c · log t

]
≥ 1− 1

q(n)
,

where c > 0 is a universal constant.

7



In contrast, average-case symmetry of information does not hold for pKt under the existence of one-way
functions [HIL+23].

To sum up, pnKt satisfies nearly all pillars of time-unbounded Kolmogorov complexity (as discussed
in [Lee06]), which makes the new measure attractive in applications of meta-complexity in time-bounded
settings. The only missing property is worst-case symmetry of information, which we leave as an interesting
open problem. It is worth pointing out that there is an oracle world where symmetry of information for nKt

does not hold (see [LR05, Corollary 1] and [Lee06, Corollary 6.5.2]).
Using a straightforward adaptation of the proof of Theorem 1, we also establish the hardness of MINpnKT,

the problem of computing pnKt complexity (we refer to Appendix C for the precise definition of this prob-
lem and the minor modifications needed in the proof).

Theorem 9 (Characterizing NP ⊈ BPP by the Worst-Case Hardness of pnKt). The following holds.

MINpnKT ∈ prBPP ⇐⇒ NP ⊆ BPP.

Similarly to Theorem 1, Theorem 9 requires the use of a computational model and encodings for which
the composition of programs does not yield a significant overhead in running time and program length, as
explained in Section 1.3 and Section 2.2.

1.2.3 Gap Problems in Meta-Complexity and Connections to Average-Case Complexity

In this section, we elaborate on some aspects of our hardness results and their connections to average-
case complexity. In more detail, we discuss a striking phenomenon where a mild extension of Theorem 9
would have a significant impact on our understanding of the computational complexity of the polynomial
hierarchy.

Related Work. [Hir22c] shows that if NP is average-case easy, then a specific gap version of computing
conditional Kt is also easy. More precisely, given (x, y, 1s, 1t), one can efficiently decide whether Kt(y |
x) ≤ s or Kpoly(t,|x|)(y | x) > s+O(log(t+ |x|))+Kt(x)−Kpoly(t,|x|)(x). Thus, proving the NP-hardness
of this problem would suffice to rule out Heuristica. However, the gap in this problem involves the quantity
Kt(x) − Kpoly(t,|x|)(x) (known as the computational depth of x), which can be large. This makes it more
challenging to establish the NP-hardness of this class of instances. In fact, there remains a significant gap
between existing NP-hardness results for computing conditional Kt and what is needed to exclude Heuristica
(see [HIR23] for a detailed discussion).

Shifting focus to the non-conditional case, if NP is average-case easy, then a simpler gap version
of computing Kt is worst-case easy: given (x, 1s, 1t), one can efficiently decide whether Kt(x) ≤ s or
Kpoly(t)(x) > s + O(log t) [Hir18, Hir20b]. Thus, showing that this “small-gap” version (known as Gap-
MINKT) is NP-hard would also rule out Heuristica. However, currently we do not know even if MINKT is
hard, let alone Gap-MINKT.

We also mention related results from [Hir22b], which show that obtaining a significantly better hardness
result for a meta-computational problem called MINLT is sufficient to rule out Heuristica.

Theorem 1 and Theorem 9 make progress on this front by presenting non-conditional meta-computational
problems whose hardness characterize NP ⊈ BPP. Furthermore, existing worst-case to average-case re-
duction techniques can be adapted to the setting of MINpnKT. As explained below, these results bear
an intriguing connection to the longstanding problem of excluding PH-Heuristica, i.e., showing that if
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DistPH ⊆ AvgBPP then PH ⊆ BPP (see, e.g., [Hir20a] for more information about this problem).3

Consider the following statements:

(i) If MINpnKT ∈ prBPP then NP ⊆ BPP (Theorem 9).

(ii) If (MINnKT,U) ∈ AvgBPP then Gap-MINpnKT ∈ prBPP (see Proposition 58 in Appendix B).

Recall that, as alluded to above, we have MINnKT ∈ ΣP
2 . As a consequence, under the assumption that

DistΣP
2 ⊆ AvgBPP, it follows from Item (ii) that Gap-MINpKT ∈ prBPP. Therefore, if we could re-

place MINpnKT with Gap-MINpnKT in Item (i) (or replace Gap-MINpnKT with MINpnKT in Item (ii)),
it would follow that NP ⊆ BPP (and consequently PH ⊆ BPP). In other words, the seemingly minor
distinction between MINpnKT and Gap-MINpnKT is currently the only issue preventing us from excluding
PH-Heuristica by showing that if DistΣP

2 ⊆ AvgBPP then PH ⊆ BPP (see Corollary 59 in Appendix B).

Interpretation. There are two ways of interpreting these results. An optimistic perspective on the scenario
described above is that we are close to excluding PH-Heuristica, since this merely requires the hardness
of Gap-MINpnKT. In other words, under this perspective, the hope is that MINpnKT might be similar to
Gap-MINpnKT, even if our current techniques distinguish these two problems. Moreover, a few existing
hardness results, such as [Hir22b], extend to the gap version of the problem, perhaps indicating that a new
idea or different proof of Theorem 9 might suffice to generalize the existing result. On the other hand, a pes-
simistic interpretation is that we remain far from excluding PH-Heuristica, and our results and techniques
simply suggest a fundamental distinction between establishing the hardness of MINnKT and MINpnKT
compared with the variants of these problems with a small gap. In particular, under this interpretation, our
hardness results shed light on why existing worst-case to average-case reductions in meta-complexity inher-
ently produce a gap between positive and negative instances.

While we are currently unable to exclude PH-Heuristica by establishing the hardness of computing non-
deterministic Kolmogorov complexity with a small gap, we make progress by showing that the conditional
version of Gap-MINnKT is hard. More precisely, for τ : N → N, let Gapτ -Cond-MINnKT be the following
promise problem: Given (x, y, 1s, 1t), where x, y ∈ {0, 1}∗ and s, t ∈ N, decide whether nKt(y | x) ≤ s or
nKτ(t,|x|)(y | x) > s+ log τ(t+ |x|). We say that Gap-Cond-MINnKT ∈ prBPP if there is a probabilistic
polynomial-time algorithm that solves Gapτ -Cond-MINnKT for some polynomial τ .

Theorem 10. The following holds.

Gap-Cond-MINnKT ∈ prBPP ⇐⇒ NP ⊆ BPP.

Thus, as a corollary of our results (Theorem 1 and Theorem 10), we relate the complexities of MINnKT
and Gap-Cond-MINnKT, exhibiting an interesting link between the non-conditional version and the condi-
tional version. Formally, it is possible to establish the following slightly more general equivalence.

Corollary 11. The following holds.

MINnKT ∈ BPP ⇐⇒ Cond-MINnKT ∈ BPP ⇐⇒ Gap-Cond-MINnKT ∈ prBPP.

3Recall that PH ⊆ BPP if and only if NP ⊆ BPP. Consequently, excluding PH-Heuristica is a necessary step toward excluding
Heuristica (i.e., proving that if DistNP ⊆ AvgBPP then NP ⊆ BPP).
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1.3 Techniques

In this section, we describe some ideas employed in the proof of our results. We primarily focus on the
proof that if MINnKT ∈ BPP then NP ⊆ BPP (Theorem 1). Beyond being our main contribution, its proof
provides insights into the techniques employed in other parts of the paper and highlights the usefulness of
pnKt complexity. (For technical reasons, we will introduce and use a further complexity measure in the
proof, as described later in this section.)

In order to establish the hardness of MINnKT, we explore different properties of nondeterminism Kol-
mogorov complexity and its probabilistic extension. The first component of the argument is the optimal
language compression theorem for pnKt (Theorem 4).

1. Language compression for pnKt. We provide two proofs that pnKt admits language compression with
optimal parameters. Our first discovered proof, which relies on techniques from [BLvM05] and [Hir21],
served as the inspiration for the definition of pnKt complexity. This proof appears in Section 3.2. Below
we present a different, simpler argument that nicely illustrates the benefits of combining randomness and
nondeterminism for string compression. A similar technique is used in [Sip83] and [BFL01].

Let An ⊆ {0, 1}n, x ∈ An, and set k = ⌈log |An|⌉ + 2. We employ an efficiently computable family
H ⊆ {0, 1}n → {0, 1}k of hash functions such that Prh∼H [h(x) = h(y)] ≤ 2−k for every y ∈ An \ {x}.
By a union bound and our choice of k,

Pr
h∼H

[∃y ∈ An \ {x} s.t. h(x) = h(y)] ≤ 2−k · |An| ≤
1

4
. (1)

The idea is that, for a randomly sampled h ∼ H (corresponding to the randomness in our pnKt description),
we can store the integers n and k and the value h(x) ∈ {0, 1}k in the program (which has access to h) using
k + O(log n) bits, then use nondeterminism to guess x. In more detail, let v be the hash value stored in the
description, and let x′ be a nondeterministic input string of length n. If h(x′) = v and x′ ∈ An, we output
x′; otherwise we output ⊥. By Equation (1), with probability at least 3/4, we sample a good h such that the
value h(x) is unique among the elements in An. This shows that, for a good choice of h, there is an efficient
nondeterministic program of length at most k + O(log n) = log |An| + O(log n) that (i) outputs x on at
least one computation path, and (ii) outputs either x or ⊥ on every computation path.

It follows from the argument described above that there is a polynomial p
LC
(·) such that, for every set

A := {An ⊆ {0, 1}n}n∈N and for every n ∈ N and w ∈ An,

pnKp
LC(n),An(w) ≤ log |An|+ log p

LC
(n), (2)

as desired.

Next, we explain the connection between language compression and the complexity of NP employed
in the proof of Theorem 1. The argument is inspired by ideas from [AFPS12] (see also [HIL+23] for an
equivalence between compression and the easiness of NP).

2. Compressing witnesses and the easiness of NP. Let L ∈ NP. Fix a verifier V (·, ·) for L. Let x ∈ L,
where |x| = n, and consider the set W x = {w ∈ {0, 1}m | V (x,w) = 1}, where m = poly(n). Note that,
by language compression (Equation (2)) applied to the set W x, for every w ∈ W x,

pnKpoly(n),Wx
(w) ≤ log |W x|+O(log n).

Moreover, since given x the set W x can be decided in polynomial time, we have

pnKpoly(n)(w | x) ≤ log |W x|+O(log n). (3)
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Due to the use of the nondeterministic measure pnKpoly(n), this bound is not yet sufficient to allow us to
efficiently find a witness w ∈ W x given x. However, let us suppose for a moment that, under the assumption
that MINnKT ∈ BPP, we could show that for every pair (y, x) of strings of length poly(n) the following
holds:

pKpoly(t)(y | x) ≤ pnKt(y | x) + λ(n), (4)

for some function λ(n).4 In other words, assume that conditional pnKt complexity collapses to conditional
pKpoly(t) with an additive overhead term λ(n).

Under the hypothesis that Equation (4) holds, we obtain together with Equation (3) that

pKpoly(n)(w | x) ≤ log |W x|+O(log n) + λ(n) (5)

for every w ∈ W x. Roughly speaking, this means that every witness w ∈ W x can be compressed to
just v(n) := log |W x| + O(log n) + λ(n) bits. Since each witness w ∈ W x admits its own compressed
representation of this length, it is not hard to show that given x one can find a witness w ∈ W x with
probability at least 1/(poly(n) ·2λ(n)) simply by running a randomly chosen program of length at most v(n)
for poly(n) steps (see Lemma 32). Consequently, repeating this procedure poly(n) · 2λ(n) times provides an
algorithm that finds a witness for x with high probability, whenever one exists. This shows that L ∈ BPP if
we can guarantee that λ(n) = O(log n).

Note that it is crucial for this argument to work that we obtain an upper bound on pKpoly(n) complexity
in Equation (5) instead of pnKpoly(n) complexity. The latter does not provide an efficient algorithm that
allows us to recover a string from its (nondeterministic) compressed representation.

Given the discussion above, in order to show that NP ⊆ BPP it is sufficient to establish Equation (4)
with λ(n) = O(log n), under the assumption that MINnKT ∈ BPP.

3. Easiness assumptions and collapses in time-bounded Kolmogorov complexity. It will be instructive
to compare how different easiness assumptions allow us to relate pK and pnK complexities. For any large
enough t = poly(n), the following implications can be established via a careful adaptation of existing
techniques from meta-complexity to the setting of nondeterministic Kolmogorov complexity (see Lemma 55
and Lemma 52):

Gap-Cond-MINnKT ∈ prBPP =⇒ pKpoly(t)(y | x) ≤ pnKt(y | x) +O(log n).

Gap-MINnKT ∈ prBPP =⇒ pKpoly(t)(y | x) ≤ pnKt(y | x) + pKt(x)− pKpoly(t)(x) +O(log n).

The conclusion in the first implication is precisely what we would like to show in Equation (4). However,
it assumes the easiness of the problem of estimating conditional nondeterministic Kolmogorov complexity.
On the other hand, while the assumption in the second implication is sufficient for our purposes (as it is
implied by MINnKT ∈ BPP), the inequality in the conclusion has the extra term pKt(x) − pKpoly(t)(x),
known as the time-bounded computational depth. This quantity might be significantly larger than O(log n)
for some strings x and choices of t. On the other hand, it is known to be at most O(log n) for an average
string x, and at most O(n/ log n) for every x for some moderately bounded choice of t. We remark that
this notion of computational depth, with a polynomial gap in the time bounds, appears in many prior works
in meta-complexity and has been an infamous obstacle that forces results to hold only in the average-case
setting or leads to suboptimal worst-case running times of the form 2O(n/ logn) rather than polynomial time
(see, e.g., [Hir21, CHV22, GKLO22b, HKLO24]).

4Recall that pKt(y) is the minimum k such that with probability at least 2/3 over the choice of a random string r ∈ {0, 1}t, we
have Kt(y | r) ≤ k [LO22].
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In order to achieve our goal, an important idea is to aim instead for an implication of the following form:

MINnKT ∈ BPP =⇒ pKpoly(t)(y | x) ≤ pnKt(y | x) + pnKt(x)− pnKt+p(n)(x) +O(log n), (6)

where p(n) is a polynomial independent of t. As before, assuming Equation (6), we can conclude the proof
if we could show that pnKt(x)−pnKt+p(n)(x) = O(log n). While this might not hold for a particular value
of t, it is possible to argue via a telescoping sum trick that this bound does hold for some t′ that is not too
large.5 In more detail, for any fixed time bound t, let ti = t+ i · p(n), where i ∈ {0, 1, . . . , n}. First, note
that pnKt0(x) − pnKtn(x) ≤ 2n, since any n-bit string x can be efficiently described with at most 2n bits.
Therefore,

n−1∑
i=0

(
pnKti(x)− pnKti+1(x)

)
= pnKt0(x)− pnKtn(x) ≤ 2n.

Consequently, there is an index i such that pnKti(x)− pnKti+1(x) ≤ 2. In particular, for some time bound
t′ ≤ t + n · p(n), we have pnKt′(x) − pnKt′+p(n)(x) = O(log n). It turns out that this is sufficient to
establish Equation (4) with λ(n) = O(log n) under the assumption that MINnKT ∈ BPP, as desired.6

Unfortunately, it is not clear how to prove Equation (6) exactly. A key difficulty is that in many ar-
guments involving meta-complexity, we typically make use of some form of time-bounded symmetry of
information (SoI). However, for the highly efficient bounds we aim to achieve, we need symmetry of infor-
mation with an additive polynomial overhead in the running time of the form t + p(n), as opposed to an
overhead of the form poly(t) (see, e.g., [Hir22c, GK22, HKLO24] and the weak symmetry of information
for pKt from [Ila23]). It is unclear to us how to establish such a result.

To illustrate the issue, let us briefly recall the approach of [Hir22c, GK22, HKLO24], which shows
symmetry of information for pKt under the assumption that MINKT is easy. Concretely,

pKt(x, y) ≳ pKpoly(t)(x) + pKpoly(t)(y | x).

Note the poly(t) time bound on the right-hand side of the inequality, particularly for the term pKpoly(t)(x).
The argument compares the following three distributions over strings:

D1 := DPk(x,Unk) ◦ DPk′(y,Unk′) ◦ Ut,

D2 := DPk(x,Unk) ◦ Unk′+k′ ◦ Ut,

D3 := Unk+k ◦ Unk′+k′ ◦ Ut,

where DPk : {0, 1}n × {0, 1}nk → {0, 1}nk+k is the (k-wise) direct product generator [Hir21] (see Def-
inition 21), and Um denotes the uniform distribution over {0, 1}m. One can then argue that if the Kt-
complexities of these distributions are close, it follows that

pKt(x, y) ≳ k + k′.

(We omit the details here; see [HKLO24, Appendix A] for a full exposition.)
A useful property of the direct product generator is that if one can distinguish its output instantiated with

a string x, namely DPk(x,Unk), from the uniform distribution Unk+k, then one can efficiently reconstruct
x with only k bits of advice. By choosing k ≈ pKpoly(t)(x) and k′ ≈ pKpoly(t)(y | x) for the above

5This idea is not new and a similar trick was employed by [Hir21] and subsequent papers. A key difference is that we are able
to explore additive overheads in the running time, as opposed to polynomial and quasi-linear overheads.

6The benefits of obtaining improved bounds on the running time in applications of time-bounded Kolmogorov complexity have
also been explored in [CHV22].
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distributions, one can argue that, with high probability, the Kt-complexities of these distributions are indeed
close. Otherwise, an efficient algorithm for MINKT would serve as a distinguisher, and the reconstruction
property of the direct product generator would yield either pKpoly(t)(x) ≲ k or pKpoly(t)(y | x) ≲ k′,
contradicting the definitions of k and k′. Note that, since the reconstruction takes time poly(t), the poly(t)
time bound in the choice k ≈ pKpoly(t)(x) seems unavoidable in this argument.

By adapting the above proof of symmetry of information with the assumption that MINnKT is easy, one
can show that pnKt(x, y) ≳ pKpoly(t)(x) + pKpoly(t)(y | x), which can then be used to obtain a weaker
version of Equation (6) (see also Lemma 52):

MINnKT ∈ BPP =⇒ pKpoly(t)(y | x) ≤ pnKt(y | x) + pKt(x)− pKpoly(t)(x) +O(log n).

However, the polynomial time overhead remains inherent.
A potentially useful observation in this context is that, instead of the standard formulation of SoI, it

is possible to work directly with a weaker variant—referred to as weak SoI—in which the SoI inequality
holds for most choices of one of the strings. This approach can be used to avoid the overhead associated
with the direct-product reconstruction of x. That said, existing proofs of weak SoI still seem to suffer
from essentially the same overhead issue, typically stemming from the use of coding theorems or related
arguments (see [Ila23]). Moreover, even an overhead of the form O(t) is insufficient in our setting, which
makes it particularly challenging.

Crucially, by defining a new notion of time-bounded Kolmogorov complexity, we manage to obtain an
SoI-style result without incurring a large overhead in the time bound, which suffices for our purpose.

4. A new measure of complexity that achieves additive time overhead. We now give a simplified
overview of our new approach, which overcomes this barrier and yields only an additive poly(n) overhead
in the time bound. The key idea is to introduce a new complexity measure called ℓ-nKt. Given a time bound
t and a parameter ℓ ∈ N, we define ℓ-nKt(x) as

ℓ-nKt(x) = min s s.t. Pr
r∼Uℓ

[
nKt(x ◦ r) ≤ s+ ℓ

]
≥ 2

3
,

where x ◦ r denotes the concatenation of the strings x and r. In a sense, ℓ-nKt(x) is related to pnKt(x):
while pnKt(x) captures the nKt-complexity of x conditioned on a random string, ℓ-nKt(x) captures the
nKt-complexity of x concatenated with a random string of length ℓ.

First, one aspect of our new approach that helps avoid the undesired polynomial overhead in the time
bound is that it avoids invoking the direct-product reconstruction of x. More specifically, we define two
distributions of strings:

D1 := x ◦ DPk(y,Unk) ◦ Uℓ,

D2 := x ◦ Unk+k ◦ Uℓ,

where ℓ ≥ poly(n) is a parameter smaller than t. Note that, unlike in the earlier approach, we do not apply
the direct product generator to x here.

Next, by unpacking the definition of ℓ-nK, we can upper bound the nKt-complexity of the first distribu-
tion as follows:

nKt(x ◦ DPk(y,Unk) ◦ Uℓ) ≲ (ℓ+ nk) -nK t−poly(n)(x ◦ y) + ℓ+ nk.

Moreover, for the second distribution, we are able to show that, with high probability,

nKt
(
x ◦ Unk+k ◦ Uℓ

)
≳ (ℓ+ nk + k) -nKt(x) + ℓ+ nk + k.
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(The formal statement appears in Lemma 43.7) Notably, the time bound appearing on the right-hand side
remains t. In particular, this inequality can be viewed as a form of weak SoI that incurs no overhead in the
time bound. This is essentially the key benefit of working with the more flexible notion of ℓ-nKt, which
allows us to avoid the large overhead present in traditional time-bounded SoI results.

Now, by choosing

k ≈ (ℓ+ nk)-nKt−poly(n)(x ◦ y)− (ℓ+ nk + k)-nKt(x),

the algorithm for MINnKT distinguishes between these two distributions.8 As a result, given x, we can
distinguish DPk(y,Unk) from Unk+k. Hence, by the reconstruction property of the direct product generator,
we obtain

pKpoly(t)(y | x) ≲ (ℓ+ nk)-nKt−poly(n)(x ◦ y)− (ℓ+ nk + k)-nKt(x)

≲ pnKpoly(n)(y | x) + (ℓ+ nk)-nKt−poly(n)(x)− (ℓ+ nk + k)-nKt(x),

where the second inequality uses the fact that, to print x, y, and a random string, it suffices to first print x
and the random string, and then print y given x and the random string; under our assumption on the com-
putation model (see the discussion below), these two programs can be composed efficiently. Note that the
difference between (ℓ+ nk)-nKt−poly(n)(x) and (ℓ+ nk + k)-nKt(x) is only additive poly(n), both in the
time bound and in the length of the random string.9 Thus, we can apply the telescoping trick to average out
their difference, as explained earlier.

Theorem 1 and Theorem 9 hold with respect to any computational model that behaves nicely with respect
to the composition of programs. This is sometimes implicitly assumed in the literature on (time-bounded)
Kolmogorov complexity. For instance, it is often used that if a function f on an input x is computed by a
program Πf in time tf , and a function g on an input y = f(x) is computed by a program Πg in time tg,
then g(f(x)) can be computed in time tf + tg+ “lower order terms” by a program of description length
|Πf | + |Πg|+“lower order terms”.10 Since our results explore a novel regime of parameters and depend in
an important way on claims of this form, for precision and clarity of the presentation, we explicitly postulate
in Section 2.2 the necessary properties of the computational model and encodings.

Acknowledgements. This work received support from the UKRI Frontier Research Guarantee Grant
EP/Y007999/1 and the Centre for Discrete Mathematics and its Applications (DIMAP) at the University
of Warwick.

2 Preliminaries

2.1 Basic Notation

We use ϵ to denote the empty string. The length of a string x is denoted |x|. Given strings x ∈ {0, 1}n
and y ∈ {0, 1}m, we let x ◦ y ∈ {0, 1}n+m denote their concatenation.

We write x ∼ D to denote that x is sampled according to the distribution D. For an element a in the
support of D, we let D(a) denote its probability. We use Uℓ to denote the uniform distribution over {0, 1}ℓ.

7Also, in the formal proof, ℓ-nK is defined using different probability parameters rather than the fixed value 2/3, which is
omitted here for simplicity. The probability parameters in the two bounds differ by 1/poly(n).

8For simplicity, k appears on the right-hand side of the definition here, so it is not immediately clear that such a k exists. In the
actual proof, by observing that ℓ-nKt is roughly non-increasing in ℓ, choosing k ≈ ℓ-nKt−poly(n)(x, y) − (ℓ + poly(n))-nKt(x)
suffices.

9Also the difference in the probability parameters is only 1/poly(n).
10As an illustrative example, think about the necessary properties required to establish the easy direction of symmetry informa-

tion, which states that Kt(x, y) ≤ Kt1(x) + Kt2(y | x) +O(log(|x|+ |y|)) for t ≈ t1 + t2.
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2.2 Strongly Efficient Computational Models

Even though all standard machine models (single-tape, multi-tape, random-access, etc.) are equivalent
up to a polynomial difference in running time, to prove Theorem 1 and Theorem 9 we require a compu-
tational model and a corresponding encoding of programs that behave well with respect to the time and
description length overhead when composing computations.

In this section, we introduce in a semi-formal way the notion of strongly efficient computational model.
This is sufficient for the purpose explained above. While the properties that we require are fairly natural and
intuitively should hold for any carefully designed computational model and encoding, for concreteness we
describe in Appendix A an explicit model that satisfies the relevant properties.

Strongly Efficient Computational Models. We assume an underlying machine model (e.g, Turing ma-
chines, RAM, etc.). A program Π is a partial function mapping three strings (corresponding to input,
non-determinism, and randomness, respectively) to another string. Unless stated otherwise, we use r to
denote the string corresponding to the randomness, and w to denote the string corresponding to the non-
determinism. A program has two attributes: a non-negative integer time (think of the program computing
over the empty string ϵ or over an explicitly described input), and a binary string description. The descrip-
tion of a program Π uniquely specifies the program. We abuse notation in that Π can refer to either the
function or the description depending on the context. We define the size of a program Π to be the length of
its description, written as |Π|.

We say that a program Π computes (x; r) → y non-deterministically in time t, if

• ∀w ∈ {0, 1}t, Π(x;w; r) outputs either y or ⊥ in time t, and

• ∃w ∈ {0, 1}t, Π(x;w; r) outputs y in time t.

If Π has size s, we say (x; r) → y can be computed non-deterministically in time t by a program of size s,
or in short, (x; r) → y in non-deterministic time t and size s. When r = ϵ, we may omit it and use x → y
as short for (x; ϵ) → y.11

We are ready to introduce the concept of strongly efficient computational model.

Definition 12 (Strongly Efficient Computational Model). We say that a computational model and corre-
sponding program encoding are strongly efficient if the following properties hold:12

(P1) Efficient Simulation: The computational model can be efficiently simulated by Turing machines.
More precisely, there exists a polynomial p and a Turing machine M with four input tapes and one
output tape, such that for any program Π, if Π(x;w; r) = y in time t, then M(Π;x;w; r) outputs y in
p(t+ |Π|) steps.

(P2) Efficient Universality: The computational model can efficiently simulate Turing machines. More
precisely, for every Turing machine M with four input tapes and one output tape, there is a polynomial
pM such that if M(α;x;w; r) outputs y in t steps, then there exists a program Π of size at most
|α|+ log pM (|α|) such that Π(x;w; r) = y in time pM (t).

(P3) Randomness and Non-Determinism Extension: For any program Π, suppose Π(x;w; r) = y in time
t. If |w| ≥ t, then for any w′ ∈ {0, 1}∗, Π(x;w ◦ w′; r) = y in time t. Similarly, if |r| ≥ t, then for
any r′ ∈ {0, 1}∗, Π(x;w; r ◦ r′) = y in time t.

11Note that, by design, the aforementioned notation using arrows coincide with the notion of conditional nK, which is formally
introduced in Section 2.3.

12In fact, our results only need relaxed forms of these properties. However, we describe the properties in this way because they
are natural and simplify the presentation.
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(P4) Efficient Composition: There exists a polynomial p such that the following holds. For any x, y, z, r ∈
{0, 1}∗, if (x; r) → y can be computed non-deterministically in time t1 by a program of size s1, and
y → z can be computed non-deterministically in time t2 by a program of size s2, then (x; r) → z
can be computed non-deterministically in time t1 + p(t2) + p(|x| + |y| + |z|) by a program of size
s1 + s2 + log p(|x|+ |y|+ |z|).

As alluded to above, for completeness, in Appendix A we provide an example of a computational model
that satisfies the aforementioned properties.

How is this different from other papers in meta-complexity/time-bounded Kolmogorov complexity?
First, we stress that properties (P1), (P2), (P3), and (P4) stated above are not stringent. This seems clear in
the case of (P1), (P2), and (P3), so we comment on the case of (P4). In all our proofs, we have |x|, |y|, |z| ≤
poly(n) and t1, t2 ≤ 2n (indeed t1 and t2 are large enough polynomials in n in our arguments), where n is
the relevant input length. Moreover, since under our definition the time-bounded Kolmogorov complexity
of every string of length n is at most n + O(log n),13 (P4) is actually weaker than the requirement that
under composition the final running time is at most t1 + t2 + poly(|x|+ |y|+ |z|+ log t1 + log t2) and the
final encoding length is at most s1 + s2 + O(log(|x| + |y| + |z| + s1 + s2)). We believe these are widely
adopted conventions in the literature (even if implicit in proofs), which we make explicit in our exposition.
(Formally, in (P4) we even allow the second computation to run in time poly(t2) after composition, which is
sufficient in our proofs. For this reason, one can think of it as a “weak” form of efficient composition with
respect to the running time.)

The main difference in our case compared with some other works is that in order to have precise control
over running times, we measure time complexity as the number of steps in the execution of a program Π, as
opposed to the number of steps that a universal machine U takes to simulate Π for t steps (which could be
for instance of order t · poly(log t)). This distinction is almost always irrelevant, and perhaps for this reason
it is often not explicitly noted in the literature,14 but it is relevant in our arguments.

Of course, if a program Π expects a description of a program Π′ as an input string, and Π′ runs in time
t′, then there is a time overhead during the simulation of Π′ by Π. This is also the reason why we developed
the notion of ℓ-nKt(x) complexity discussed in Section 1.3, as it avoids the use of weak symmetry of
information for the standard formulation of time-bounded Kolmogorov complexity, whose known proofs
lead to a simulation overhead. (Note that, under (P4), there will be almost no overhead when composing
two explicit programs, since in this case the programs are directly executed instead of simulated.)

Finally, we are not aware of results from the literature that would not remain valid under the conventions
adopted above.

2.3 Time-Bounded Kolmogorov Complexity

Definition 13 (Kt). For x, y ∈ {0, 1}∗, t ∈ N, and an oracle O, we define the t-time-bounded Kolmogorov
complexity of x conditioning on y and given oracle O as

Kt,O(x | y) := min
Π∈{0,1}∗

{
|Π|

∣∣ ΠO(y; ϵ; ϵ) outputs x within t steps
}
.

We can consider the case where the oracle calls are non-adaptive. In this case, we will write Kt,∥O(x | y).
Next, we will define other variants of the time-bounded Kolmogorov complexity measure. For simplic-

ity, we will define only the basic versions without oracles. These can easily be generalized to settings where
an oracle is present.

13This bound easily follows from (P2).
14We observe that some references do adopt a similar convention when defining time-bounded Kolmogorov complexity by using

“time” as the number of steps of the program instead of the universal machine, such as [LP22, Section 2.3].
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Definition 14 (pKt). For x, y ∈ {0, 1}∗, λ ∈ [0, 1], t ∈ N, the probabilistic t-time-bounded Kolmogorov
complexity of x conditioning on y is defined as

pKt
λ(x | y) := min

{
s ∈ N

∣∣∣∣∣ Pr
r∼{0,1}t

[∃Π ∈ {0, 1}s s.t. Π(y; ϵ; r) outputs x within t steps] ≥ λ

}
.

We define pKt
λ(x) as pKt

λ(x | ϵ). We omit the subscript λ when λ = 2/3.

Definition 15 (nKt). For x, y, r ∈ {0, 1}∗ and t ∈ N, the nondeterministic t-time-bounded Kolmogorov
complexity of x conditioning on (y; r) is defined as

nKt(x | y; r) : min
Π∈{0,1}∗

{
|Π|

∣∣∣∣∣ ∀w ∈ {0, 1}t,Π(y;w; r) outputs x or ⊥ in t steps;

∃w ∈ {0, 1}t,Π(y;w; r) outputs x in t steps

}
.

We define nKt(x | y) as nKt(x | y; ϵ), and nKt(x) as nKt(x | ϵ).

Definition 16 (rnKt). For x, y ∈ {0, 1}∗, λ ∈ [0, 1] and t ∈ N, the randomized nondeterministic t-time-
bounded time-bounded Kolmogorov complexity of x conditioning on y is defined as

rnKt
λ(x | y) : min

Π∈{0,1}∗

{
|Π|

∣∣∣∣∣ Pr
r∼{0,1}t

[
∀w ∈ {0, 1}t,Π(y;w; r) outputs x or ⊥ in t steps;

∃w ∈ {0, 1}t,Π(y;w; r) outputs x in t steps

]
≥ λ

}
.

We define rnKt
λ(x) as rnKt

λ(x | ϵ). We omit the subscript λ when λ = 2/3.

Definition 17 (pnKt). For x, y ∈ {0, 1}∗, λ ∈ [0, 1] and t ∈ N, the probabilistic nondeterministic t-time-
bounded time-bounded Kolmogorov complexity of x conditioning on y is defined as

pnKt
λ(x | y) := min

s ∈ N

∣∣∣∣∣∣∣ Pr
r∼{0,1}t

∃Π ∈ {0, 1}≤s such that the following conditions hold:

∀w ∈ {0, 1}t,Π(y;w; r) outputs x or ⊥ in t steps;

∃w ∈ {0, 1}t,Π(y;w; r) outputs x in t steps

 ≥ λ

.

Equivalently,

pnKt
λ(x | y) := min

{
s ∈ N

∣∣∣∣ Pr
r∼{0,1}t

[
nKt(x | y; r) ≤ s

]
≥ λ

}
.

We define pnKt
λ(x) as pnKt

λ(x | ϵ). We omit the subscript λ when λ = 2/3.

In the remainder of this subsection, we state some useful tools about Kolmogorov complexity.

Lemma 18 (Following [GKLO22a, Lemma 18]). There exists a universal constant c > 0 such that for any
x ∈ {0, 1}∗ and time bound t ∈ N, the following hold.

• K(x) ≤ pKt(x) + c · log t.

• K(x) ≤ pnKt(x) + c · log t.

Lemma 19 (See [HIL+23, Lemma 9]). There exists a universal constant b > 0 such that for any distribution
family {Dn}n∈N, where each Dn is over {0, 1}n, and γ ∈ N,

Pr
x∼Dn

[
K(x) < log

1

Dn(x)
− γ

]
<

nb

2γ
.

Theorem 20 (Efficient Coding Theorem [LOZ22]). For every polynomial-time samplable distribution fam-
ily {Dn}n∈N, where each Dn is supported over {0, 1}n, there exists a polynomial p such that for every
x ∈ Support(Dn),

pKp(n)(x) ≤ log
1

Dn(x)
+ log p(n).

17



2.4 Direct Product Generator

For x, y ∈ {0, 1}n, we denote their inner product by x · y =
⊕n

i=1 xiyi.

Definition 21 (Direct Product Generator (DPG) [Hir21]). For n, k ∈ N, the k-wise direct product generator
is the function

DPk : {0, 1}n × {0, 1}nk → {0, 1}nk+k,

defined by
DPk(x, z1 ◦ · · · ◦ zk) = (z1 ◦ · · · ◦ zk ◦ x · z1 ◦ · · · ◦ x · zk).

The reconstruction lemma for the direct product generator states that, given access to an oracle distin-
guishing between DPk(x,Unk) and Unk+k, along with k bits of advice, we can recover x with 1/poly(n)
probability.

Lemma 22 (DPG Reconstruction [Hir21]). There exists a pair of algorithms ReconO and Ad, and a poly-
nomial p, such that for any n,m, k ∈ N+, we have the following.

1. For any r ∈ {0, 1}p(nmk), any a ∈ {0, 1}k, and any D : {0, 1}nk+k → {0, 1}, ReconD(1n, 1m, 1k, r, a)
runs in at most p(nmk) steps, makes at most p(nmk) queries to D, and outputs a string x ∈ {0, 1}n.
Furthermore, the queries to D are non-adaptive; that is, Recon generates the full list of positions to
query before receiving any answers.

2. For any x ∈ {0, 1}n and any r ∈ {0, 1}p(nmk), Ad(1n, 1m, 1k, x, r) runs in at most p(nmk) steps
and outputs a string a ∈ {0, 1}k.

3. For any x ∈ {0, 1}n and any function D that (1/m)-distinguishes between DPk(x,Unk) and Unk+k,
we have

Pr
r∼Up(nmk)

[
ReconD(1n, 1m, 1k, r,Ad(1n, 1m, 1k, x, r)) = x

]
≥ 1

p(nmk)
.

Proof Sketch. The proof works by first converting the distinguisher into a next-bit predictor using Yao’s hy-
brid argument [Yao82]. It then employs the Goldreich–Levin local list-decoding algorithm for the Hadamard
code to obtain a polynomial-sized list containing x. We observe that both Yao’s argument and the Goldre-
ich–Levin algorithm can be implemented using only non-adaptive queries (see, e.g., [AB09, Sections 9.3.1
and 9.3.2]). Consequently, our final reconstruction algorithm also relies solely on non-adaptive queries.

Lemma 23 (pKt Reconstruction Lemma). There is a polynomial p
DP

such that the following holds. For
every n,m, k ∈ N+, x ∈ {0, 1}n, let D be a function that (1/m)-distinguishes DPk(x;Unk) from Unk+k.
Then

pKp
DP

(nmk),∥D(x) ≤ k + log p
DP
(nmk).

Proof. The lemma follows easily from the reconstruction property of the direct product generator (Lemma 22)
and the success amplification property of pKt (Lemma 29).

Corollary 24 (pKt Reconstruction with a Randomized Distinguisher). There is a polynomial p such that the
following holds. For every n,m, k, t ∈ N+, and any string x ∈ {0, 1}n, let D be a function D : {0, 1}t ×
{0, 1}nk+k → {0, 1} satisfying

E
w∼Ut
r∼Unk

r′∼Unk+k

[
D(w,DPk(x; r))−D(w, r′)

]
≥ 1

m
.

Then we have
pKp(nmkt),∥D(x) ≤ k + log p(nmkt).
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Proof. Using Markov’s inequality, one can argue that with probability at least 1
2m over the w ∼ Ut, D(w, ·)

1
2m -distinguishes DPk(x;Unk) from Unk+k. Therefore, we can first sample w ∼ Ut, then make all queries
to D(w, ·). By Lemma 23, there exists some large enough polynomial p0 such that

pK
p0(nmkt),∥D
1/(3m) (x) ≤ k + log p0(nmkt).

By Lemma 29, we can then amplify the success probability to be 2/3. Thus, when p is a large enough
polynomial, we obtain

pKp(nmkt),∥D(x) ≤ k + log p(nmkt),

as desired.

2.5 Universal Time-Bounded Sampler

Definition 25 (Universal Time-Bounded Sampler). Let m, t ∈ N and x ∈ {0, 1}∗. The universal sampler
USamp(1m, 1t, x) does the following.

1. Pick a uniformly random k ∼ [O(m)].

2. Pick a uniformly random r ∼ {0, 1}t.

3. Pick a uniformly random Π ∼ {0, 1}k.

4. Let y be the output of Π(x; r) after running for t steps.

5. Output y.

Note that USamp runs in polynomial time. The following proposition follows easily from the definitions
of pKt and USamp.

Proposition 26. For every m, t, k ∈ N, y ∈ {0, 1}m and x ∈ {0, 1}∗, if pKt(y | x) ≤ k, then USamp(1m, 1t, x)
outputs y with probability Ω

(
1/(m · 2k)

)
, where USamp is the universal sampler defined in Definition 25.

2.6 Hash Functions

Definition 27 (Pairwise-Independent Hash Family). For any n,m ∈ N, a set of functions H ⊆ {0, 1}n →
{0, 1}m is called a pairwise-independent hash family if for any x, y ∈ {0, 1}n such that x ̸= y and any
r, s ∈ {0, 1}m,

Pr
h∼H

[h(x) = r ∧ h(y) = s] = 2−2m.

Proposition 28. There exists a polynomial p and a randomized algorithm A such that, for every n,m ∈ N
and every random string r ∈ {0, 1}p(nm), A(1n, 1m, r, ·) computes a function {0, 1}n → {0, 1}m in time
p(nm). Furthermore, H :=

{
A(1n, 1m, r, ·) | r ∈ {0, 1}p(nm)

}
is a pairwise-independent hash family.

Proof. We can construct pairwise-independent hash families using finite fields GF(2n). When n = m, for
any x ∈ {0, 1}n, we sample a, b ∼ Un, and compute ha,b(x) = a · x+ b, where addition and multiplication
are done over GF(2n). Such a computation can be done in time poly(n), see e.g. [AB09, Appendix A.4].
Then for every y ∈ {0, 1}n \ {x} and any r, s ∈ {0, 1}n, there exists exactly one pair of strings (a, b)
satisfying a · x+ b = r and a · y + b = s. In other words, {ha,b | a, b ∈ {0, 1}n} is a pairwise-independent
hash family. For m < n, we can simply discard the first (n−m) bits of ha,b(x). For m > n, we can define
h′a,b(x) = a · (0m−n ◦ x) + b.
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2.7 Average-Case Complexity

Recall that a pair (L,D) is a distributional problem if L ⊆ {0, 1}∗ and D = {Dn}n∈N is a distribution
family, where each Dn is a distribution over {0, 1}∗.

We let DistNP denote the set of distributional problems (L,D) such that L ∈ NP and D is polynomial-
time samplable. Here, a distribution family D = {Dn}n∈N is polynomial-time samplable if there exists
a randomized polynomial-time algorithm A such that for every n ≥ 1, the output of A(1n) is distributed
according to Dn.

A distributional problem (L,D) is said to admit a (errorless) heuristic scheme if there exists a proba-
bilistic polynomial-time algorithm A such that the following holds for every n, k ∈ N:

1. For every x ∈ Support(Dn),

Pr
A

[
A(x, 1n, 1k) ∈ {L(x),⊥}

]
≥ 4

5
,

2. and

Pr
x∼Dn

[
Pr
A
[A(x, 1n, 1k) = ⊥] <

1

5

]
≥ 1− 1

k
.

We let AvgBPP denote the set of distributional problems that admit a heuristic scheme. For more
information about average-case complexity, we refer to [BT06].

Also, by slightly abusing notation, we say that MINnKT is average-case easy under the uniform distri-
bution, or (MINnKT,U) ∈ AvgBPP, if the following holds.

There exist a polynomial-time algorithm A and a polynomial ρ such that the following holds
for all n, s, k ∈ N, and all t ≥ ρ(n).

1. For all x ∈ {0, 1}n,

Pr
A

[
A(x, 1s, 1t, 1k) ∈ {MINnKT(x, 1s, 1t),⊥}

]
≥ 4

5
,

2. and

Pr
x∼{0,1}n

[
Pr
A
[A(x, 1s, 1t, 1k) = ⊥] < 1/5

]
≥ 1− 1

k
.

3 Properties of pnKt

3.1 Basic Properties of pnKt

Lemma 29 (Success Amplification). For any string x ∈ {0, 1}n, time bound t ∈ N, any 0 < α < β < 1
and any oracle O, we have

pnK
O(kt),O
β (x) ≤ pnKt,O

α (x) +O(log k),

where k :=
⌈
log(1−β)
log(1−α)

⌉
. Moreover, the above also holds in the setting where the oracle access is non-

adaptive. That is,
pnK

O(kt),∥O
β (x) ≤ pnKt,∥O

α (x) +O(log k).

Proof. Let l := pnKt,O
α (x). We say that a string r ∈ {0, 1}t is good if there exists a program Π ∈ {0, 1}l

such that

20



• For every w ∈ {0, 1}t, ΠO(w; r) outputs either x or ⊥ in t steps;

• There exists some w ∈ {0, 1}t such that ΠO(w; r) outputs x in t steps.

By the definition of pnK and l, we have

Pr
r∼{0,1}t

[r is good] ≥ α.

We can then take k =
⌈
log(1−β)
log(1−α)

⌉
independent samples r1, . . . , rk from Ut. The probability of getting at

least one good sample among r1, . . . , rk is at least 1− (1−α)k ≥ β. If we have a good sample, then we can
store the index i such that ri is good using ⌈log k⌉ bits, and there exists a program Π such that ΠO(w; ri)

outputs x. Hence, we conclude that pnKO(kt),O
β (x) ≤ l + O(log k). Notice that if the original program

makes parallel queries to O, then so does the new program.
The above proof can be easily extended to the setting of non-adaptive oracle access, which shows the

“moreover” part of the lemma.

Since for any 0 < α < 1, −1/ log(1− α) ≤ 1/α holds, we have the following corollary:

Corollary 30. For any string x ∈ {0, 1}n, time bound t ∈ N, any 0 < α < 1 and any oracle O, we have

pnKO(2t/α),O(x) ≤ pnKt,O
α (x) +O(log(1/α)).

Moreover, the above also holds in the setting where the oracle access is non-adaptive, i.e.

pnKO(2t/α),∥O(x) ≤ pnKt,∥O
α (x) +O(log(1/α)).

Lemma 31. For any string x, y ∈ {0, 1}∗, time bound t ∈ N, any oracle O, we have

pnKpoly(t),O(x | y) ≤ pKt,∥NPO
(x | y) +O(log t).

Proof. Suppose pKt,∥NPO
(x | y) = s. Then, with probability at least 2/3 over the randomness r ∼ {0, 1}t,

there exists a program of size s that, given r, y and non-adaptive access to some oracle A ∈ NPO, runs in t
steps and outputs x. Suppose A is the following oracle:

A(q) = 1 ⇐⇒ ∃y ∈ {0, 1}poly(|q|) such that V O(q, w) = 1,

where V is some polynomial-time verifier. We will replace oracle access to A with access only to O by
guessing the answers to the (non-adaptive) queries to A and verifying them using O, with the help of an
additional small amount of advice.

More specifically, fix a randomness r and a program Π (which may depend on r). Let q1, q2, . . . , qℓ,
where ℓ ≤ t, be the (non-adaptive) queries made by Π(r) to the oracle A. Also, let p be the number of
positive answers to these queries, i.e., p :=

∑ℓ
i=1A(qi). We then non-deterministically guess ℓ witnesses

(w1, w2, . . . , wℓ) =: y and count the number of indices i for which V O(qi, wi) = 1. Denote this number
by uw. If uw is not equal to p, we output ⊥. Otherwise, for each wi that satisfies the verifier V , we set the
answer to the query qi to be 1, and we let the rest of the answers be 0. We then run ΠA(r) while simulating
the oracle A using the answers obtained as described above.

Note that, given the number p, which can be specified using ⌈log ℓ⌉ ≤ ⌈log t⌉ bits, the above procedure
can be implemented to run in time poly(t) with only oracle access to O. Also, it is easy to observe that there
exists some guess of w = (w1, w2, . . . , wℓ) that satisfies uw = p. Moreover, for any guess of w that satisfies
uw = p, the answers obtained are the correct answers to the queries (q1, q2, . . . , qℓ) for A. It follows that,
with high probability, there exists a program of size at most s + O(log t) that, given y and oracle access to
O, runs in time poly(t) and outputs x non-deterministically.
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3.2 Language Compression for pnKt

3.2.1 Proof of Theorem 4

We provide two different proofs for the optimal language compression property of pnKt. The first
proof, given below, is based on an approach from [BLvM05] and relies on the direct product generator
(Definition 21).

First Proof of Theorem 4. Let An be any non-empty subset of {0, 1}n. We set k := ⌈log |An|⌉ + 1. We
define

Bn :=
{
y ∈ {0, 1}nk+k | ∃x ∈ An, z ∈ {0, 1}nk such that y = DPk(x, z)

}
.

By a simple counting argument, we have that |Bn| ≤ |An| · 2nk. Also, by our definition of k, |An| ≤ 2k−1,
and hence |Bn| ≤ 1

2 · 2nk+k. By viewing Bn : {0, 1}nk+k → {0, 1} as the characteristic function of the set
Bn, we have

Pr[Bn(Unk+k) = 1] ≤ 1

2
.

On the other hand, from the definition of Bn, we have that for any x ∈ An,

Pr[Bn(DPk(x,Unk)) = 1] = 1.

Therefore, Bn
1
2 -distinguishes DPk(x,Unk) and Unk+k.

By the pKt reconstruction lemma (Lemma 23), we get that there exists some polynomial p such that

pKp(n),∥Bn(x) ≤ k + log p(n). (7)

Now, observe that the membership of Bn can be decided in NPAn . Indeed, given y ∈ {0, 1}nk+k, we
can guess x ∈ {0, 1}n, z ∈ {0, 1}nk, and then check whether both x ∈ An and y = DPk(x, z). 15 Now, by
applying Lemma 31 to Equation (7), we get that

pnKpoly(n),An(x) ≤ k +O(log n) = ⌈log |An|⌉+ 1 +O(log n).

It follows that there exists a polynomial p
LC

such that

pnKp
LC

(n),An(x) ≤ log |An|+ log p
LC
(n),

as desired.

Next, we give a second proof that relies on hash functions.

Second Proof of Theorem 4. Let An be any non-empty subset of {0, 1}n, and let x be any string in An. We
set k := ⌈log |An|⌉ + 2. Let H ⊆ {0, 1}n → {0, 1}k be a family of pairwise-independent hash functions.
Since H is pairwise-independent, we have

Pr
h∼H

[h(x) = h(y)] = 2−k

15Strictly speaking, we cannot say that Bn is decided in NPAn since checking the membership of a given string
in Bn requires knowing the numbers n and k. One way to address this issue is to consider the set B :={
(y, n′, k′) | |y| = n′k′ + k′ and ∃x ∈ {0, 1}n

′
, z ∈ {0, 1}n

′k′
s.t. x ∈ An and y = DPk′(x, z)

}
. We can then replace the or-

acle Bn with B while replacing every query y with (y, n, k), where n and k are fixed integers as specified in the proof and can be
hardcoded in the description. For simplicity of presentation, we ignore this technicality.
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for any y ∈ An \ {x}. Thus, by a union bound, we obtain

Pr
h∼H

[∃y ∈ An \ {x} such that h(x) = h(y)] ≤ 2−k · |An| ≤
1

4
. (8)

For h ∼ H , we include v := h(x) as part of the description used to output x non-deterministically. Note
that v can be specified using log |An|+2 bits. We can then guess x′ ∈ {0, 1}n and check whether h(x′) = v
and x′ ∈ An. If so, we output x′; otherwise, we output ⊥.

By Equation (8), with probability at least 3/4, we sample a good h such that h(x) is unique in An,
ensuring that the above procedure outputs x non-deterministically. It follows that

pnKp
LC

(n),An(x) ≤ log |An|+ log p
LC
(n)

for a sufficiently large polynomial p
LC

.

3.2.2 Proof of Theorem 5

Before presenting the proof of Theorem 5, we need the following lemma.

Lemma 32. Let m, t, θ ∈ N, A ⊆ {0, 1}m, and x ∈ {0, 1}∗. Suppose for every y ∈ A, it holds that

pKt(y | x) ≤ log |A|+ θ.

Then USamp(1m, 1t, x) outputs some string in A with probability at least 1
poly(m)·2θ .

Proof. By Proposition 26, for each y ∈ A, USamp(1m, 1t, x) outputs y with probability at least

1

O(m) · 2log |A|+θ
=

1

O(m) · |A| · 2θ
.

Hence the probability that USamp(1m, 1t, x) outputs some y ∈ A is at least

|A| · 1

O(m) · |A| · 2θ
≥ 1

O(m) · 2θ
,

as desired.

Proof of Theorem 5. Suppose we have average-case pKt language compression for P. We show how to
solve any unary NP problem in randomized polynomial time.

Let L ∈ Unary-NP. Without loss of generality, we assume that for every instance 1n, the set of L-
witnesses of 1n (with respect to some fixed verifier) has a length of exactly m, where m := m(n) = poly(n).
Let A denote the set of L-witnesses. Note that the membership of A is decidable in polynomial time. Then
by assumption on average-case pKt language compression, it holds that for every m, with probability at
least 1/mc over y ∼ Am,

pKmc
(x) ≤ log |Am|+ c · logm.

Let A′
m be the set of strings in Am for which the above condition holds. Note that

|A′
m| ≥ |Am|/mc.

Then for each y ∈ A′
m, we have

pKnc
(y) ≤ log |Am|+ c · logm

≤ log |A′
m|+ c · logm+ c · logm

= log |A′
m|+ 2c · logm.
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Now consider the algorithm that, given as input 1n, simply runs USamp
(
1m(n), 1m(n)c , ϵ

)
. By Lemma 32,

this algorithm outputs some string in A′
m, which consists of L-witnesses and is non-empty if 1n ∈ L, with

probability at least 1/poly(n). By standard amplification, this yields an efficient randomized algorithm for
solving L with high probability.

3.3 Conditional Coding for pnKt: Proof of Theorem 6

Proof of Theorem 6. Let {Dn} be a polynomial-time samplable distribution family. Fix n ∈ N and (x, y) ∈
Support(Dn).

Let E := Dn(x | y). Define

B :=

{
z ∈ {0, 1}n : Dn(z | y) ≥ E

16

}
.

Note that |B| ≤ 16/E . Now consider a family of pairwise-independent hash functions H ⊆ {0, 1}n →
{0, 1}k, where k := ⌈log 1

E ⌉ + 7. By a union bound, with probability at least 7/8 over h ∼ H , we have
h(x) ̸= h(z) for any z ∈ B \ {x}. Hence, we can try to include v := h(x) in our description for outputting
x. Then we guess x′ and output it if and only if h(x′) = v.

In order for the above to work, we also need to make sure that the guessed string x′ is not in B, since
otherwise we could have h(x′) = h(x) but x′ ̸= x. Next, we describe how to exclude strings outside of B.
The argument is similar to a construction from [GS86].

Let A be a sampler for {Dn} that has a running time q(n), where q is some polynomial. For any
a, b ∈ {0, 1}n, define Ra,b := {r ∈ {0, 1}q(n) : A(1n; r) = (a, b)}. Now let k′ = ⌊log |Rx,y|⌋ − 1. Then
we define another pairwise-independent hash family H ′ ⊆ {0, 1}q(n) → {0, 1}k′ . Then by Chebyshev’s
inequality,

Pr
h′∼H′

[
∃r ∈ Rx,y such that h′(r) = 0k

′
]
≥ 1

2
.

However, for any z /∈ B, by definition, we have |Rz,y| ≤ |Rx,y|/16, implying that |Rz,y| ≤ 2k
′
/4. There-

fore, by a union bound, we have

Pr
h′∼H′

[
∃r ∈ Rz,y such that h′(r) = 0k

′
]
≤ 1

4
.

We can see that there is a gap between the cases of z = x and of z /∈ B, so our next step is to amplify this
gap: We set l = C · n for some large enough constant C, and take l = C · n samples from H ′ to obtain
h′1, . . . , h

′
l, and use non-determinism to guess r1, . . . , rl ∈ {0, 1}q(n). We also use non-determinism to guess

z ∈ {0, 1}n. Then we do the following checks. If any of these checks fail, halt and output ⊥; otherwise,
output z:

1. A(1n; r1) = A(1n; r2) = · · · = A(1n; rl) = (z, y).

2. The number of i ∈ [l] such that h′i(ri) = 0k
′

is at least l/3.

3. h(z) is the same as the string v := h(x) specified in the description.

By the Chernoff bound and a union bound, when C is a large enough constant, with probability at least 7/8
over h′1, . . . , h

′
l, for any z /∈ B, no sequence of r1, . . . , rl can pass the first and second checks. While with

probability at least 1 − 2−n, there exists some sequence of r1, . . . , rl such that x can pass the check. Also,
with probability at least 7/8 over h, any z ∈ B \ {x} cannot pass the third check. Therefore, by a union
bound, with probability at least 1− 1/8− 1/8− 2−n ≥ 2/3, only x can pass the three checks. It is not hard
to see that the entire reconstruction procedure runs in time polynomial in n, and we only need to specify
h(x) in this reconstruction algorithm, as well as the description of the sampler A. Hence, we conclude that
there exists some polynomial p such that pnKp(n)(x | y) ≤ log 1

Dn(x|y) + log p(n).
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3.4 Symmetry of Information for pnKt: Proofs of Theorem 7 and Theorem 8

In this section, we prove the results related to symmetry of information for pnKt (Theorem 7 and Theo-
rem 8).

Proof Sketch of Theorem 7. The proof follows a similar approach to that used in [GK22, Hir22c] to establish
symmetry of information for pKt under the assumption that MINKT is easy (see also [HKLO24, Appendix
A]). This approach employs the direct product generator and its reconstruction property (Lemmas 22 and 23)
while using MINKT (which is in NP) as a distinguisher. In fact, by adapting this approach and using the
fact that the reconstruction procedure of the direct product generator makes only non-adapative queries, one
can show that

pKt(x, y) ≥ pKpoly(t),∥NP(y | x) + pKpoly(t),∥NP(x) +O(log t).

Now note that the semi-symmetry of information property for pnKt follows by combining the above with
Lemma 31.

Proof of Theorem 8. Let D = {Dn} be any polynomial-time samplable distribution family and q be any
polynomial. Let pand r be sufficiently large polynomials specified later. Fix n ∈ N and t ≥ p(n).

By Theorem 7, we have that for every x, y ∈ {0, 1}n, we have

pKr(n)(x, y) ≥ pnKp
SoI

(r(n))(y | x) + pnKp
SoI

(r(n))(x)− log p
SoI
(r(n)), (9)

where p
SoI

is the polynomial in Theorem 7.
First, by the coding theorem for pKt (Theorem 20) and by letting r be a sufficiently large polynomial,

we have
pKr(n)(x, y) ≤ log

1

Dn(x, y)
+ log r(n). (10)

On the other hand, by Lemma 19, we have

Pr
x∼Dn

[
K(x) ≥ log

1

Dn(x)
−O(log n)− log q(n)

]
≥ 1− 1

q(n)
. (11)

It follows that with probability at least 1− 1/q(n) over (x, y) ∼ Dn, we get

pKr(n)(x, y) ≤ log
1

Dn(x, y)
+ log r(n) (by Equation (10))

≤ K(x, y) +O(log n) + log q(n) + log r(n) (by Equation (11))

≤ pnKt(x, y) +O(log n) + log q(n) + c′ · log t, (by Lemma 18)

where c′ > 0 is a universal constant. Combining the above with Equation (9), we get

pnKt(x, y) ≥ pnKp
SoI

(r(n))(y | x) + pnKp
SoI

(r(n))(x)− log p
SoI
(r(n))−O(log n)− log q(n)− c′ · log t.

By letting p be a sufficiently large polynomial, the above yields

pnKt(x, y) ≥ pnKt(y | x) + pnKt(x)− c · log t,

for some universal constant c > 0.

4 Worst-Case Hardness of MINnKT: Proof of Theorem 1

In this section we prove Theorem 1.

Proof of Theorem 1. The theorem follows directly from Theorem 33 and Theorem 34, stated and proved in
Section 4.1 and Section 4.2, respectively.
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4.1 The Easy Direction

Here we prove the following.

Theorem 33. If NP ⊆ BPP, then MINnKT ∈ BPP.

Proof. By [Ko82], we know that NP ⊆ BPP implies PH ⊆ BPP. Therefore, it suffices to prove that
MINnKT ∈ PH. By definition, we have

(x, 1s, 1t) ∈ MINnKT ⇐⇒ nKt(x) ≤ s

⇐⇒ ∃Π, |Π| ≤ s,

{
∀w ∈ {0, 1}t,Π(ϵ;w; ϵ) outputs x or ⊥ in t steps,
∃w ∈ {0, 1}t,Π(ϵ;w; ϵ) outputs x in t steps.

The last condition can be checked by a Σp
2-machine in time poly(s, t). Therefore, MINnKT ∈ Σp

2 ⊆ PH ⊆
BPP.

4.2 The Hard Direction

Throughout this subsection, we will assume that the underlying computational model is strongly effi-
cient, as defined in Section 2.2. We will prove the hard direction of Theorem 1.

Theorem 34. If MINnKT ∈ BPP, then NP ⊆ BPP.

We will first define a technical measure of Kolmogorov complexity, namely ℓ-nK. We then prove several
properties of ℓ-nK. Finally, we use the measure and its properties to establish Theorem 34.

4.2.1 Technical Tool: ℓ-nKt
γ

Definition 35 (ℓ-nKt
γ). For any t, ℓ ∈ N, any γ ∈ (0, 1), and any string x ∈ {0, 1}∗, we define ℓ-nKt

γ(x) as

ℓ-nKt
γ(x) = min

{
s ∈ Z

∣∣∣ Pr
r∼Uℓ

[
nKt(x ◦ r) ≤ s+ ℓ

]
≥ γ

}
.

From the definition, it is not immediately clear whether ℓ-nKt
γ(x) is non-negative.16 Using a simple

counting argument, we can bound its value from below by (−1 − ⌈log 1/γ⌉), as stated in the following
lemma.17

Lemma 36 (Lower bound for ℓ-nKt
γ). For any ℓ, t ∈ N, any string x ∈ {0, 1}∗ and any γ ∈ (0, 1), we have

ℓ-nKt
γ(x) ≥ −

⌈
log

1

γ

⌉
− 1.

Proof. For the sake of contradiction, suppose that ℓ-nKt
γ(x) ≤ −⌈log 1/γ⌉ − 2. By the definition of ℓ-nK,

we have

Pr
r∼Uℓ

[
nKt(x ◦ r) ≤ ℓ−

⌈
log

1

γ

⌉
− 2

]
≥ γ.

16Consider for instance this definition when γ is exponentially small.
17Jumping ahead, in the proof of Theorem 34 we only need to consider ℓ-nKt

γ(x) for γ = Ω(1), and additive constants do not
affect the argument.
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Now define the set A as

A =
{
x ◦ r

∣∣∣ r ∈ {0, 1}ℓ, nKt(x ◦ r) ≤ ℓ− ⌈log 1/γ⌉ − 2
}
.

Then |A| ≥ γ · 2ℓ. However, the number of programs of length at most (ℓ − ⌈log 1/γ⌉ − 2) is bounded by
20 + · · · + 2ℓ−⌈log 1/γ⌉−2 ≤ 2ℓ−⌈log 1/γ⌉−1 ≤ γ · 2ℓ−1. Since |A| ≥ γ · 2ℓ > γ · 2ℓ−1, by the pigeonhole
principle, there must be a program computing two strings in A, which is a contradiction.

Lemma 37 (Upper Bound for ℓ-nKt
γ). There exists a polynomial p such that the following holds. For any

ℓ ∈ N, any string x ∈ {0, 1}∗ and any γ ∈ (0, 1), we have

ℓ-nKp(|x|+ℓ)
γ (x) ≤ |x|+ log p(|x|+ ℓ).

Proof. Let M be the Turing machine satisfying the following.

For any strings y, w ∈ {0, 1}∗, M(y; ϵ;w; ϵ) = y in O(|y|) steps.

Hence by efficient universality (Definition 12), when p is a large enough polynomial, for any r ∈ {0, 1}ℓ,
ϵ → (x ◦ r) is in time p(|x|+ ℓ) and size (|x|+ ℓ+ log p(|x|+ ℓ)). Therefore, we get

Pr
r∼Uℓ

[
nKp(|x|+ℓ)(x ◦ r) ≤ |x|+ ℓ+ log p(|x|+ ℓ)

]
= 1.

By the definition of ℓ-nK, we conclude that for any γ ∈ (0, 1),

ℓ-nKp(|x|+ℓ)
γ (x) ≤ |x|+ log p(|x|+ ℓ).

This completes the proof.

Lemma 38 (Monotonicity of ℓ-nKt
γ(x) on γ and t). For any γ1, γ2 ∈ (0, 1) satisfying γ1 ≤ γ2, any

ℓ, t1, t2 ∈ N+ satisfying t1 ≥ t2, and any string x ∈ {0, 1}∗, we have

ℓ-nKt1
γ1(x) ≤ ℓ-nKt2

γ2(x).

Proof. Let s = ℓ-nKt2
γ2(x). Then we have

Pr
r∼Uℓ

[
nKt2(x ◦ r) ≤ s

]
≥ γ2.

By non-determinism extension (Definition 12), for any r ∈ {0, 1}ℓ, we have nKt1(x ◦ r) ≤ nKt2(x ◦ r).
Hence we get

Pr
r∼Uℓ

[
nKt1(x ◦ r) ≤ s

]
≥ γ2 ≥ γ1.

Hence by the definition of ℓ-nK, ℓ-nKt1
γ1(x) ≤ s. Substituting s by ℓ-nKt2

γ2(x) finishes the proof.

Lemma 39 (Monotonicity of ℓ-nKt
γ(x) on ℓ and x). There exists a polynomial p such that the following

holds. For any ℓ, ℓ′ ∈ N with ℓ ≤ ℓ′, any γ ∈ (0, 1), any strings x, y ∈ {0, 1}∗, and any t ∈ N, we have

ℓ′-nKt+p(|x|+|y|+ℓ′)
γ (x) ≤ ℓ-nKt

γ(x ◦ y) + log p(|x|+ |y|+ ℓ′)

Proof. Let s = ℓ-nKt
γ(x ◦ y). For a string r ∈ {0, 1}ℓ, we say r is good if nKt(x ◦ y ◦ r) ≤ s+ ℓ. Then by

the definition of ℓ-nK, with probability at least γ over r ∼ Uℓ, r is good. For such a good r, ϵ → (x ◦ y ◦ r)
can be non-deterministically computed in time t and size s + ℓ. For any integer i, let ĩ denote the binary
encoding of i with each bit duplicated, concatenated with 01. Let M be the Turing machine satisfying the
following property.
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For strings x, y, r, r′, w ∈ {0, 1}∗,

M(|̃x| ◦ |̃y| ◦ r′;x ◦ y ◦ r;w; ϵ) = x ◦ r ◦ r′

in poly(|x|, |y|, |r|, |r′|) steps.

Hence by efficient universality (Definition 12), for any r′ ∈ {0, 1}ℓ′−ℓ, (x ◦ y ◦ r) → (x ◦ r ◦ r′) is
in non-deterministic time poly(|x| + |y| + ℓ′) and size (ℓ′ − ℓ + O(log(|x| + |y| + ℓ′))). By efficient
composition (Definition 12), when p is some large enough polynomial, for any good r, ϵ → (x ◦ r ◦ r′) is in
non-deterministic time t+ p(|x|+ |y|+ ℓ′) and size (s+ ℓ′ + log p(|x|+ |y|+ ℓ′)). Therefore, we have

Pr
r∼Uℓ

r′∼Uℓ′−ℓ

[
nKt+p(|x|+|y|+ℓ′)(x ◦ r ◦ r′) ≤ s+ ℓ′ + log p(|x|+ |y|+ ℓ′)

]
≥ Pr

r∼Uℓ

[r is good] ≥ γ

In other words, ℓ′-nKt+p(|x|+|y|+ℓ′)
γ (x) ≤ s + log p(|x| + |y| + ℓ′). Substituting s by ℓ-nKt

γ(x ◦ y) finishes
the proof.

Similarly to MINnKT, we can define the MINℓ-nKT problem for ℓ-nK.

Definition 40 (MINℓ-nKT). We define MINℓ-nKT as the promise problem (YES,NO) such that{
ℓ-nKt

b/a(x) ≤ s =⇒ (x, 1s, 1t, 1ℓ, 1a, 1b) ∈ YES,
ℓ-nKt

(b−1)/a(x) > s =⇒ (x, 1s, 1t, 1ℓ, 1a, 1b) ∈ NO.

A basic property of MINℓ-nKT is that its easiness follows from the easiness of MINnKT.

Lemma 41. If MINnKT ∈ BPP, then MINℓ-nKT ∈ prBPP.

Proof. Suppose we are given an instance (x, 1s, 1t, 1ℓ, 1a, 1b) that is in the promised set of inputs for
MINℓ-nKT, and we want to decide whether it is in YES or NO. If it is in YES, then we have ℓ-nKt

b/a(x) ≤
s, and by the definition of ℓ-nK, we get

Pr
r∼Uℓ

[
nKt(x ◦ r) ≤ s+ ℓ

]
≥ b

a
.

On the other hand, if the instance is in NO, then we have ℓ-nKt
(b−1)/a(x) > s, and by the definition of ℓ-nK,

we get

Pr
r∼Uℓ

[
nKt(x ◦ r) ≤ s+ ℓ

]
<

b− 1

a
.

Therefore, in order to solve MINℓ-nKT it suffices to use an algorithm for MINnKT to distinguish the two
cases described above. While this is a standard argument, for completeness, we describe the reduction and
its analysis below.

Let A be a probabilistic polynomial-time algorithm that decides MINnKT with error 1/3. Let Am

denote the algorithm that runs A for m times and takes a majority vote. By Chernoff bound, the error of
Am on any given input is bounded by 2−m/18. Our algorithm B for deciding MINℓ-nKT works as follows:
it first defines k = 18a2, then it takes k independent samples R1, . . . , Rk ∼ Uℓ. Next, for each i ∈ [k], it
computes Xi = A⌈36 log k⌉(x ◦ Ri, 1

s, 1t). Finally, it computes V = (
∑k

i=1Xi)/k, and accepts if and only
if V ≥ (b− 1/2)/a.

It is not hard to see that B runs in time poly(|x|, t, s, ℓ, a). We claim that B computes MINℓ-nKT with
error at most 1/3. Let Yi = MINnKT(x ◦Ri, 1

s, 1t). First, since the error of Am is bounded by 2m/18, by a
union bound, we have

Pr[∃i ∈ [k], Xi ̸= Yi] ≤ k · 2−36 log k/18 =
1

k
. (12)
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That is, with probability (1− 1/k), all MINnKT(x ◦Ri, 1
s, 1t) are computed correctly by A⌈36 log k⌉. Next,

if the input is in YES, then by the definition of MINℓ-nKT, we have E[
∑k

i=1 Yi] ≥ k · b/a. Also, Yi are
independent identically distributed random variables in {0, 1}. Therefore, using Chernoff bound, we get

Pr

[
k∑

i=1

Yi < k · b− 1/3

a

]
≤ exp

(
−2 · 1

9a2
· k

)
= e−4. (13)

Combining Equations (12) and (13) with a union bound, we have

Pr

[
k∑

i=1

Xi < k · b− 1/3

a

]
≤ e−4 +

1

k
≤ 1

3
.

That is, the probability of B rejecting an input from YES is at most 1/3. Similarly, one can show that
the probability of B accepting an input from NO is at most 1/3. Hence we conclude that MINℓ-nKT =
(YES,NO) ∈ prBPP.

4.2.2 Useful Bounds for ℓ-nKt
γ

In this section, we state and prove the following lemmas for ℓ-nK, which are important ingredients in
the proof of the hard direction of Theorem 1.

Lemma 42 (DP computation overhead). There exists a polynomial p such that the following holds. For any
n,m, k, t, ℓ ∈ N+, any γ ∈ (0, 1) and any strings x ∈ {0, 1}n, y ∈ {0, 1}m, z ∈ {0, 1}mk, we have

ℓ-nKt+p(nmkℓ)
γ (x ◦ DPk(y; z)) ≤ ℓ-nKt

γ(x ◦ y) +mk + log p(nmkℓ).

Proof. Let s = ℓ-nKt
γ(x ◦ y). We say that a given r ∈ {0, 1}ℓ is good if nKt(x ◦ y ◦ r) ≤ s + ℓ. Then by

the definition of ℓ-nK, with probability at least γ over r ∼ Ul, r is good. For a good r, ϵ → (x ◦ y ◦ r) is in
non-deterministic time t and size (s + ℓ). For any integer i, let ĩ denote the binary encoding of i with each
bit duplicated, concatenated with 01. Let M be the Turing machine satisfying the following.

For any n,m, k, ℓ ∈ N+, and for any strings x ∈ {0, 1}n, y ∈ {0, 1}m, z ∈ {0, 1}mk, r ∈
{0, 1}ℓ, w ∈ {0, 1}∗,

M(ñ ◦ m̃ ◦ k̃ ◦ ℓ̃ ◦ z;x ◦ y ◦ r;w; ϵ) = (x ◦ DPk(y; z) ◦ r)

in poly(nmkℓ) steps.

By efficient universality (Definition 12), (x ◦ y ◦ r) → (x ◦ DPk(y; a) ◦ r) is in non-deterministic time
poly(nmkℓ) and size (mk + O(log(nmkℓ))). Then by efficient composition (Definition 12), when p is
some large enough polynomial, ϵ → (x ◦ DPk(y; a) ◦ r) is in non-deterministic time (t + p(nmkℓ)) and
size (s+ ℓ+mk + log p(nmkℓ)). Therefore, for any good r ∈ {0, 1}ℓ, we have

nKt+p(nmkℓ)(x ◦ DPk(y; a) ◦ r) ≤ s+ ℓ+mk + log p(nmkℓ).

Because the fraction of good r ∼ Uℓ is at least γ, we conclude that

ℓ-nKt+p(nmkℓ)
γ (x ◦ DPk(y; a)) ≤ s+mk + log p(nmkℓ).

Substituting s by ℓ-nKt
γ(x ◦ y) completes the proof.
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Lemma 43 (Highly efficient weak symmetry of information surrogate for ℓ-nK). For any n,m, t, ℓ ∈ N+,
any 0 < α < γ < 1, and any string x ∈ {0, 1}n, we have

Pr
w∼Um

[
ℓ-nKt

γ(x ◦ w) ≥ (ℓ+m)-nKt
γ−α(x) +m

]
≥ α.

Proof. Let s be the smallest integer satisfying

Pr
w∼Um

[
ℓ-nKt

γ(x ◦ w) ≤ s
]
≥ 1− α.

Then by the definition of ℓ-nK, we have

Pr
w∼Um

[
Pr
r∼Uℓ

[
nKt(x ◦ w ◦ r) ≤ s+ ℓ

]
≥ γ

]
≥ 1− α.

Therefore, we have
Pr

w∼Um
r∼Uℓ

[
nKt(x ◦ w ◦ r) ≤ s+ ℓ

]
≥ γ(1− α) ≥ γ − α.

By the definition of ℓ-nK, we get
(ℓ+m)-nKt

γ−α(x) ≤ s−m.

In other words, s ≥ (ℓ+m)-nKt
γ−α(x) +m. Now by minimality of s, we get

Pr
w∼Um

[
ℓ-nKt

γ(x ◦ w) ≤ s− 1
]
< 1− α.

In other words, Prw∼Um [ℓ-nK
t
γ(x ◦ w) ≥ s] > α. Substituting s, we get

Pr
w∼Um

[
ℓ-nKt

γ(x ◦ w) ≥ (ℓ+m)-nKt
γ−α(x) +m

]
≥ α.

This completes the proof.

Lemma 44 (Chain-rule style relation between ℓ-nK and pnK). There exists a polynomial p such that the
following holds. For strings x, y ∈ {0, 1}∗ and parameters ℓ, t, t1, t2 ∈ N+ and γ, γ′, λ ∈ (0, 1) satisfying
the following constraints:

• t2 ≤ ℓ,

• t ≥ t1 + p(|x|+ |y|+ ℓ),

• (1− γ) ≥ (1− γ′) + (1− λ),

we have
ℓ-nKt

γ(x ◦ y) ≤ ℓ-nKt1
γ′(x) + pnKt2

λ (y | x) + log p(|x|+ |y|+ ℓ).

Proof. The general idea is that, if t2 ≤ ℓ, then to non-deterministically compute x◦y we can use the random
ℓ-bit string generated along with x via ℓ-nKt1

γ′(x) to obtain y from pnKℓ
λ(y | x). Let ℓ-nKt1

γ′(x) = s1, and
pnKℓ

λ(y | x) = s2. Without loss of generality, we assume that s2 ≤ |x| + |y|, because otherwise, by
Lemma 37, when p is a large enough polynomial, we have ℓ-nKp(|x|+|y|+ℓ)

γ (x ◦ y) ≤ |x|+ |y|+ log p(|x|+
|y|+ ℓ), which finishes the proof. Now for any string r ∈ {0, 1}ℓ, we define the following conditions:

(C1) r satisfies nKt1(x ◦ r) ≤ s1 + ℓ.

(C2) r satisfies nKℓ(y | x; r) ≤ s2.
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Then we have the following claim:

Claim 45. If r satisfies both (C1) and (C2), then for a large enough polynomial p, we have nKt(x ◦ y ◦ r) ≤
s1 + s2 + ℓ+ log p(|x|+ |y|+ ℓ).

Proof of Claim 45. By (C1), we have

ϵ → (x ◦ r) in non-deterministic time t1 and size s1 + ℓ. (14)

By (C2), we have
(x; r) → y in non-deterministic time ℓ and size s2. (15)

Let Π be the program of Equation (15). Let M be the Turing machine which gives efficient simulation for
the computational model (Definition 12). Then, for a large enough polynomial p0, since s2 ≤ |x|+ |y|, we
have

• ∀w ∈ {0, 1}ℓ, M(Π;x;w; r) outputs either y or ⊥ in p0(|x|+ |y|+ ℓ) steps,

• ∃w ∈ {0, 1}ℓ, M(Π;x;w; r) outputs y in p0(|x|+ |y|+ ℓ) steps.

For any integer i, let ĩ denote the binary encoding of i with each bit duplicated, concatenated with 01. Let
M ′ be the Turing machine satisfying the following condition.

For any Π, x, w, r ∈ {0, 1}∗ and any ℓ ∈ N satisfying ℓ ≤ |w|, on input (|̃x| ◦ ℓ̃ ◦Π;x ◦ r;w; ϵ),
M ′ runs M(Π;x;wℓ; r) to obtain y, where wℓ denotes the length-ℓ prefix of w. If y ̸= ⊥, it
outputs x ◦ y ◦ r; otherwise it outputs ⊥.

Then for a large enough polynomial p1, for any t′ ≥ t we have

• ∀w ∈ {0, 1}t′ , M ′(|̃x| ◦ ℓ̃ ◦Π;x ◦ r;w; ϵ) outputs either (x ◦ y ◦ r) or ⊥ in p1(|x|+ |y|+ ℓ) steps,

• ∃w ∈ {0, 1}t′ , M ′(|̃x| ◦ ℓ̃ ◦Π;x ◦ r;w; ϵ) outputs (x ◦ y ◦ r) in p1(|x|+ |y|+ ℓ) steps.

By efficient universality (Definition 12), when p2 is a large enough polynomial, we get

(x ◦ r) → (x ◦ y ◦ r) in non-deterministic time p2(|x|+ |y|+ ℓ)

and size (s2 + log p2(|x|+ |y|+ ℓ)). (16)

By applying efficient composition (Definition 12) to Equations 14 and 16, when p is a large enough polyno-
mial, we get

ϵ → (x ◦ y ◦ r) in non-deterministic time (t1 + p(|x|+ |y|+ ℓ))

and size (s1 + s2 + ℓ+ log p(|x|+ |y|+ ℓ)).

Since t ≥ t1 + p(|x|+ |y|+ ℓ), we have

nKt(x ◦ y ◦ r) ≤ s1 + s2 + ℓ+ log p(|x|+ |y|+ ℓ).

This completes the proof of the claim. ⋄
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By the definition of ℓ-nKγ′ and pnKλ, for r ∼ Uℓ, r satisfies (C1) with probability at least γ′, and r
satisfies (C2) with probability at least λ. By a union bound, with probability at least 1−(1−γ′)−(1−λ) ≥ γ,
r satisfies both (C1) and (C2). Hence by the definition of ℓ-nK and Claim 45, we have

ℓ-nKt
γ(x ◦ y) ≤ ℓ-nKt1

γ′(x) + pnKℓ
λ(y | x) + log p(|x|+ |y|+ ℓ).

Since t2 ≤ ℓ, by randomness and non-determinism extension (Definition 12), we have pnKℓ
λ(x) ≤ pnKt2

λ (x).
Hence we get

ℓ-nKt
γ(x ◦ y) ≤ ℓ-nKt1

γ′(x) + pnKt2
λ (y | x) + log p(|x|+ |y|+ ℓ),

as desired.

4.2.3 Main Lemma: Bounding Conditional pK

Lemma 46 (Main Lemma). Suppose MINnKT ∈ BPP. Then there exists a polynomial p and an integer
N0 ∈ N+ such that the following holds. For any n,m, τ, ℓ, t, b ∈ N+ and any string x ∈ {0, 1}n, y ∈
{0, 1}m satisfying the following constraints:

• 2/3 < b/n3 < 1,

• N0 ≤ n ≤ m ≤ τ .

• τ ≤ ℓ ≤ τ4,

• t ≥ 2p(τ),

we have

pKp(t)(y | x) ≤ pnKτ
1−1/n3(y | x) + ℓ-nKt−p(τ)

(b+1)/n3(x)− (ℓ+ τ3)-nKt+p(τ)
(b−2)/n3(x) + log p(t).

Proof. Let p1, p2, p3, p4 be the polynomials defined in Lemmas 37, 39, 42 and 44 respectively. Without loss
of generality, we assume they are all monotone. We define k as

k := ℓ-nKt−p3(τ8)
b/n3 (x ◦ y)− (ℓ+ τ3)-nKt+p2(τ6)

(b−2)/n3(x) + ⌈log p3(τ8)⌉+ ⌈log p2(τ6)⌉+ 1. (17)

First, we argue that k is a positive integer. By our assumptions on the parameters, when N0 is large enough,
we have n+m+ ℓ+ τ3 ≤ τ6. Hence we have

k ≥ ℓ-nKt−p3(τ8)
b/n3 (x ◦ y)− (ℓ+ τ3)-nKt+p2(τ6)

(b−2)/n3(x) + log p2(τ
6) + 1

≥ ℓ-nKt−p3(τ8)
b/n3 (x ◦ y)− ℓ-nKt

(b−2)/n3(x ◦ y) + 1 (By Lemma 39)

≥ ℓ-nKt−p3(τ8)
b/n3 (x ◦ y)− ℓ-nKt−p3(τ8)

b/n3 (x ◦ y) + 1 (By Lemma 38)

= 1. (18)

Next, we upper bound and lower bound the value of k. We will then use the DPG reconstruction lemma to
finish the proof.
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Upper Bound for k. Since n ≤ m ≤ τ ≤ ℓ, by Lemma 44, we get

ℓ-nKt−p3(τ8)
b/n3 (x ◦ y) ≤ pnKτ

1−1/n3(y | x) + ℓ-nKt−p3(τ8)−p4(τ6)
(b+1)/n3 (x) + log p4(τ

6). (19)

Therefore, by combining Equations (17) and (19), we have

k ≤ pnKτ
1−1/n3(y | x) + ℓ-nKt−p3(τ8)−p4(τ6)

(b+1)/n3 (x)− (ℓ+ τ3)-nKt+p2(τ6)
(b−2)/n3(x)

+ log p3(τ
8) + log p2(τ

6) + log p4(τ
6) + 3.

Therefore, when q1 is a large enough polynomial, we get

k ≤ pnKτ
1−1/n3(y | x) + ℓ-nKt−q1(τ)

(b+1)/n3(x)− (ℓ+ τ3)-nKt+q1(τ)
(b−2)/n3(x) + log q1(τ). (20)

Lower Bound for k. We first show a loose upper bound on k when p and N0 are large enough. Based on
this, we give a lower bound for k. When p is a large enough polynomial such that p(z) ≥ p3(z

8) + p1(z
6),

t ≥ p(τ) ≥ p3(τ
8) + p1(τ

6). By Lemma 37, ℓ-nKt−p3(τ8)
b/n3 (x ◦ y) ≤ n + m + log p1(n + m + ℓ) ≤

2τ + log p1(τ
6). By Lemma 36, we also have (ℓ + τ3)-nKt+p2(τ6)

(b−2)/n3(x) ≥ −2. Therefore, we have a loose
upper bound for k:

k ≤ 2τ + log p1(τ
6) + log p3(τ

8) + log p2(τ
6) + 5.

Since τ ≥ N0, when N0 is a large enough constant, we have k ≤ 3τ . Therefore, we get mk + k ≤ τ3, and
τ6 ≥ ℓ+ τ3 + n. By Lemma 39, we get

(ℓ+ τ3)-nKt+p2(τ6)
(b−2)/n3(x)− log p2(τ

6) ≤ (ℓ+ τ3)-nKt+p2(ℓ+τ3+n)
(b−2)/n3 (x)− log p2(ℓ+ τ3 + n)

≤ (ℓ+mk + k)-nKt
(b−2)/n3(x).

We also have τ8 ≥ nmkℓ, which gives us

ℓ-nKt−p3(τ8)
b/n3 (x ◦ y) + log p3(τ

8) ≥ ℓ-nKt−p3(nmkℓ)
b/n3 (x ◦ y) + log p3(nmkℓ).

Therefore, we can now lower bound k:

k = ℓ-nKt−p3(τ8)
b/n3 (x ◦ y)− (ℓ+ τ3)-nKt+p2(τ6)

(b−2)/n3(x) + ⌈log p3(τ8)⌉+ ⌈log p2(τ6)⌉+ 1

≥ ℓ-nKt−p3(nmkℓ)
b/n3 (x ◦ y) + log p3(nmkℓ)− (ℓ+mk + k)-nKt

(b−2)/n3(x) + 1. (21)

Distinguisher for the Direct Product Generator. By Equation (18), when N0 is large enough, k ≥ 1
always holds. Here we define an algorithm D to distinguish DPk(y;Umk) from Umk+k. We set the threshold

s = ℓ-nKt−p3(nmkℓ)
b/n3 (x ◦ y) +mk + ⌊log p3(nmkℓ)⌋. (22)

By Lemma 41, MINnKT ∈ BPP implies MINℓ-nKT ∈ prBPP. Let B be the polynomial-time algorithm
that decides MINℓ-nKT with error 1/n4. We define the distinguisher D, which depends on x, as follows:

1. D gets input z ∈ {0, 1}mk+k.

2. D outputs B(x ◦ z, 1s, 1t, 1ℓ, 1n3
, 1b).
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In fact, if z ∼ DPk(y;Umk), then by Lemma 42 and Equation (22), we get

Pr
w∼Umk

[
ℓ-nKt

b/n3(x ◦ DPk(y;w)) ≤ s
]
= 1.

Therefore, we have

Pr
w∼Umk

Randomness of D

[D(DPk(y;w)) = 1] ≥ 1− 1

n4
. (23)

On the other hand, if z ∼ Umk+k, then by Lemma 43, we get

Pr
w∼Umk+k

[
ℓ-nKt

(b−1)/n3(x ◦ w) ≥ (ℓ+mk + k)-nKt
(b−2)/n3(x) +mk + k

]
≥ 1

n3
.

But by Equation (21) and Equation (22), we have

(ℓ+mk + k)-nKt
(b−2)/n3(x) +mk + k ≥ s+ 1.

Combining these two inequalities, we get

Pr
w∼Umk+k

[
ℓ-nKt

(b−1)/n3(x ◦ w) ≥ s+ 1
]
≥ 1

n3
.

Therefore, we have

Pr
w∼Umk+k

Randomness of D

[D(w) = 1] ≤ 1− 1

n3
+

1

n4
. (24)

By comparing Equation (23) and Equation (24), we see that D distinguishes DPk(y;Umk) from Umk+k with
probability 1/n3 − 2/n4 ≥ 1/n4. Then by Corollary 24, there exists some polynomial p

DP
such that

pKp
DP

(t),∥D(y) ≤ k + log p
DP
(t).

We can store the program of D in the description, as well as t, n, m, k, s, ℓ, b, which takes no more than
O(log t) bits in total. If we have x, then we can simulate D, which runs in time poly(t), and answer the
oracle queries. Therefore, when q2 is a large enough polynomial, we have

pKq2(t)(y | x) ≤ k + log q2(t). (25)

Putting It All Together. To summarize the previous paragraphs, when p is a large enough polynomial and
N0 is a large enough constant, by Equation (20) there exists some polynomial q1 such that

k ≤ pnKτ
1−1/n3(y | x) + ℓ-nKt−q1(τ)

(b+1)/n3(x)− (ℓ+ τ3)-nKt+q1(τ)
(b−2)/n3(x) + log q1(τ).

Also, by Equation (25), there exists some polynomial q2 such that

k ≥ pKq2(t)(y | x)− log q2(t).

Combining these two inequalities, we get

pKq2(t)(y | x) ≤ pnKτ
1−1/n3(y | x) + ℓ-nKt−q1(τ)

(b+1)/n3(x)− (ℓ+ τ3)-nKt+q1(τ)
(b−2)/n3(x) + log q1(τ) + log q2(t).

Therefore, when p is a large enough polynomial, we get

pKp(t)(y | x) ≤ pnKτ
1−1/n3(y | x) + ℓ-nKt−p(τ)

(b+1)/n3(x)− (ℓ+ τ3)-nKt+p(τ)
(b−2)/n3(x) + log p(t),

as desired.
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4.2.4 Proof of Theorem 34

We first state and prove the following lemma, which is then used to establish Theorem 34.

Lemma 47 (Witness compression). Let L = SAT, and define Ln = L∩{0, 1}n. Suppose L ∈ NTIME[nc].
For a given x ∈ {0, 1}n, define Ax ⊆ {0, 1}nc

to be the set of witnesses for x. If MINnKT ∈ BPP, then
there exists a polynomial p such that for any n, any x ∈ Ln and any y ∈ Ax, we have

pKp(n)(y | x) ≤ log |Ax|+ log p(n).

Proof. If x ∈ Ln, then by Theorem 4, there exists some polynomial p
LC

such that for any y ∈ Ax,
pnKp

LC
(nc),Ax(y | x) ≤ log |Ax|+ log p

LC
(nc). Since Ax is decidable in time nc given x, and by Lemma 29

we can amplify the success probability, we get that there exists some polynomial p1 such that p1(z) ≥ zd,
for a large enough constant d > 0, and

pnK
p1(n)
1−1/n3(y | x) ≤ log |Ax|+ log p1(n). (26)

Let p2 be the polynomial stated in Lemma 46. Let m = nc, τ = p1(n). Then by Lemma 46, when n is large
enough, for any ℓ, t, b ∈ N+ satisfying 2/3 < b/n3 < 1, τ ≤ ℓ ≤ τ4, t ≥ p2(τ), and any string x ∈ {0, 1}n,
y ∈ {0, 1}nc

, we have

pKp2(t)(y | x) ≤ pnKτ
1−1/n3(y | x) + ℓ-nKt−p2(τ)

(b+1)/n3(x)− (ℓ+ τ3)-nKt+p2(τ)
(b−2)/n3(x) + log p2(t).

Now, setting t to be some polynomial of n, if we could bound
(
ℓ-nKt−p2(τ)

(b+1)/n3(x)−(ℓ+τ3)-nKt+p2(τ)
(b−2)/n3(x)

)
by

a constant, then using Equation (26) we would be done. Even though we don’t know how to do this directly,
we can use a telescoping sum trick. More specifically, let p3 be the polynomial stated in Lemma 37. We
define three sequences {ℓi}ni=0, {ti}ni=0 and {bi}ni=0 recursively:

• ℓ0 = τ3; ℓi = ℓi−1 + τ3, ∀i ∈ [n].

• t0 = 2p2(τ) + p3(τ
6); ti = ti−1 + 2p2(τ), ∀i ∈ [n].

• b0 = ⌊3n3/4⌋; bi = bi−1 − 3, ∀i ∈ [n].

It is not hard to verify that for any i ∈ {0, . . . , n}, ℓi, ti, bi satisfy the conditions of Lemma 46. Hence we
get

pKp2(ti)(y | x) ≤ pnKτ
1−1/n3(y | x) + ℓi-nK

ti−p2(τ)
(bi+1)/n3(x)− (ℓi + τ3)-nKti+p2(τ)

(bi−2)/n3(x) + log p2(ti). (27)

Now using a telescoping argument, we get

ℓ0-nKt0−p2(τ)
(b0+1)/n3(x)− ℓn-nKtn−p2(τ)

(bn+1)/n3(x) =

n−1∑
i=0

(
ℓi-nK

ti−p2(τ)
(bi+1)/n3(x)− ℓi+1-nKti+1−p2(τ)

(bi+1+1)/n3(x)
)

=

n−1∑
i=0

(
ℓi-nK

ti−p2(τ)
(bi+1)/n3(x)− (ℓi + τ3)-nKti+p2(τ)

(bi−2)/n3(x)
)

By Lemma 37, we have

ℓ0-nKt0−p2(τ)
(b0+1)/n3(x) ≤ (τ3)-nKp3(τ6)

(b0+1)/n(x) ≤ n+ log p3(τ
6),
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which is at most 1.5n for all large enough n. On the other hand, it follows from Lemma 36 and the definition
of bn that −ℓn-nKtn−p2(τ)

(bn+1)/n3(x) = O(1). This implies that

ℓ0-nKt0−p2(τ)
(b0+1)/n3(x)− ℓn-nKtn−p2(τ)

(bn+1)/n3(x) ≤ 2n,

provided that n is large enough. By averaging, there must be some i ∈ {0, . . . , n− 1} such that(
ℓi-nK

ti−p2(τ)
(bi+1)/n3(x)− (ℓi + τ3)-nKti+p2(τ)

(bi−2)/n3(x)
)
≤ 2.

For such an i, by Equation (27) we have

pKp2(ti)(y | x) ≤ pnKτ
1−1/n3(y | x) + log p2(ti) + 2.

Note that ti ≤ tn. Then the above yields

pKp2(tn)(y | x) ≤ pnKτ
1−1/n3(y | x) + log p2(tn) + 2.

Combining this with Equation (26) and using that τ = p1(n), we get that for all large enough n, for any
x ∈ Ln and y ∈ Ax,

pKp2(tn)(y | x) ≤ log |Ax|+ log p1(n) + log p2(tn) + 2.

Notice that tn ≤ (2n+2)p2(τ)+p3(τ
6) = (2n+2)p2(p1(n))+p3(p

6
1(n)), which is polynomially bounded

by n. Hence for a large enough polynomial p, we have

pKp(n)(y | x) ≤ log |Ax|+ log p(n),

which concludes the proof.

Proof of Theorem 34 from Lemma 47. Our randomized polynomial-time algorithm B for deciding L =
SAT works as follows:

1. B gets x ∈ {0, 1}n as input.

2. B takes a sample y from USamp(1n
c
, 1p(n), x).

3. B checks if y is a witness for x.

4. B repeats steps 2 and 3 for O(nc ·p(n)) rounds. If at any round, y is indeed a witness for x, B accepts;
otherwise B rejects.

If x ̸∈ Ln, then Ax = ∅, so B never accepts x. If x ∈ Ln, then by Lemma 47 and Proposition 26, for any
y ∈ Ax, the probability that USamp(1n

c
, 1p(n), x) = y is at least Ω(1/(nc · p(n) · |Ax|)). Adding up the

probabilities for each y ∈ Ax, we get

Pr
y∼USamp(1nc ,1p(n),x)

[y ∈ Ax] ≥ Ω

(
1

nc · p(n)

)
.

Therefore, if we sample O(nc · p(n)) times, we can obtain some y ∈ Ax with probability Ω(1). Hence B
accepts x with probability Ω(1). Since this probability can be easily amplified, we conclude that L ∈ BPP.
Finally, since L = SAT is NP-complete, we conclude that NP ⊆ BPP.
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5 Average-Case Hardness of MINnKT

In this section, we show Theorem 2 and Theorem 3. We begin with some useful tools.

5.1 Technical Tools

We will in fact consider an assumption that is weaker than MINnKT being average-case easy. More
specifically, let “(coMINnKT,U) ∈ Avg1BPP” denote the following statement.

There exists a constant c > 0, a polynomial ρ, and a probabilistic polynomial-time algorithm A
such that the following hold for all sufficiently large n, all t ≥ ρ(n), and all s ≤ n− c · log t:

1. For every x ∈ {0, 1}n with nKt(x) ≤ s, we have PrA[A(x, 1s, 1t) = 1] ≥ 2
3 .

2. With probability at least 1− 1/t over x ∼ {0, 1}n, we have PrA[A(x, 1s, 1t) = 0] ≥ 2
3 .

Also, let “(coMINKT,U) ∈ Avg1BPP” denote the analogous statement where nKt is replaced by Kt.
We first state some results that are implicit in prior work, e.g., [Hir18, Hir20b, GK22, Hir22c, HKLO24].

We omit the details of the proofs since no new ideas are needed.

Lemma 48. The following holds.

(MINnKT,U) ∈ AvgBPP =⇒ (coMINnKT,U) ∈ Avg1BPP =⇒ (coMINKT,U) ∈ Avg1BPP.

Proof Sketch. The proof of the first implication can be easily adapted from that of [HKLO24, Proposition
11]. The high-level idea is that if there exists an errorless heuristic scheme that computes MINnKT, then
we can replace ⊥ with 1 to obtain an algorithm that still accepts all strings with small nKt-complexity
while rejecting a large fraction of random strings. This follows from the fact that a random string has large
nKt-complexity, and the new algorithm will only err on a small fraction of these strings.

The second implication follows from the fact that nKt(x) ≤ Kt(x) for every x and t.

Lemma 49 (Symmetry of Information for pKt; See, e.g., [HKLO24, Lemma 36]). If (coMINKT,U) ∈
Avg1BPP, then there exist polynomials p

SoI
and p0 such that for all sufficiently large x, y ∈ {0, 1}∗ and

every t ≥ p0(|x|+ |y|),

pKp
SoI

(t)(y | x) ≤ pKt(x, y)− pKp
SoI

(t)(x) + log p
SoI
(t).

Lemma 50. If (coMINKT,U) ∈ Avg1BPP, then there exist a constant c > 0, a polynomial p
dth

and an
algorithm Approx-depth that, on input (x, 1t1 , 1t2 , 1k), where x ∈ {0, 1}n, t1, t2, k ∈ N with t1, t2 ≥ cn,
runs in time poly(n, t1, t2, k) and with probability 1− 2−k outputs an integer s such that

pKp
dth

(t1)(x)− pKt2(x) ≤ s ≤ pKt1(x)− pKp
dth

(t2)(x) + log p
dth
(t1) + log p

dth
(t2).

Proof Sketch. The proof ideas are similar to those in [HKLO24, Lemma 47]. The main difference is that, in-
stead of using a generator with a rKt-style reconstruction and sub-optimal advice complexity as in the proof
of [HKLO24, Lemma 47], we employ the direct product generator, which has a pKt-style reconstruction
and optimal advice complexity.

Lemma 51. If (coMINnKT,U) ∈ Avg1BPP, then there exists a polynomial p1 such that for all z ∈ {0, 1}∗
and t ∈ N,

pKp1(t)(z) ≤ pnKt(z) + log p1(t).
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Proof Sketch. The proof can be easily adapted from that of Lemma 56, by considering x to be the empty
string in the statement of Lemma 56.

The following is the main technical lemma for this section.

Lemma 52. If (coMINnKT,U) ∈ Avg1BPP, then there exist polynomials p and q such that for all x, y ∈
{0, 1}∗ and all t ≥ q(|x|, |y|),

pKp(t)(y | x) ≤ pnKt(y | x) + pKt(x)− pKp(t)(x) + log p(t).

Proof. Assume (coMINnKT,U) ∈ Avg1BPP. Fix x, y ∈ {0, 1}∗ and t ≥ q(|x|, |y|), where q is a suffi-
ciently large polynomial.

First of all, note that by Lemma 48 and Lemma 49, we get symmetry of information for pKt. Now let
p1 be the polynomial from Lemma 51. We have

pKp
SoI

(p1(2t))(y | x) ≤ pKp1(2t)(x, y)− pKp
SoI

(p1(2t))(x) + log p
SoI
(p1(2t))

≤ pnK2t(x, y)− pKp
SoI

(p1(2t))(x) + log p
SoI
(p1(2t)) (by Lemma 51)

≤ pnKt(y | x) + pnKt(x)− pKp
SoI

(p1(2t))(x) + log p
SoI
(p1(2t))

≤ pnKt(y | x) + pKt(x)− pKp
SoI

(p1(2t))(x) + log p
SoI
(p1(2t)).

Let p be a sufficiently large polynomial, the above yields

pKp(t)(y | x) ≤ pnKt(y | x) + pKt(x)− pKp(t)(x) + log p(t),

as desired.

5.2 Proof of Theorem 2

In this subsection, we prove Theorem 2.

Proof of Theorem 2. Let L ∈ NP. For an instance x ∈ {0, 1}n, let Ax denote the set of witnesses of x (with
respect to some fixed verifier). Without loss of generality, we assume that every string in Ax has a length of
exactly m, where m = poly(n). Let D := {Dn}n∈N be a polynomial-time samplable distribution family.

Assuming (MINnKT,U) ∈ AvgBPP, we show an errorless heuristic scheme for solving L over D. The
idea is to employ Lemma 52 and show that pKp(t)(y | x) ≤ pnKt(y | x) + O(log n) for most instances
x ∼ D. Then we can use language compression for pnKt (Theorem 4) and follow the argument as shown in
the proof of Theorem 10 to obtain an witness for those instances, using the universal sampler. For this, we
show that computational depth, pKt(x)− pKp(t)(x) as appear in Lemma 52, is small for most x. Moreover,
in order to make the algorithm errorless, we need to be able to recognize the “bad” x’s whose computational
depth is not small. More specifically, we need the following depth certifying algorithm.

Claim 53. Let p be the polynomial in Lemma 52. There exists a probabilistic polynomial-time algorithm
Certify, a polynomial p1, and a constant d > 0 such that for every n, k ∈ N and t ≥ p1(n), the following
holds with probability 1− 2−k over the internal randomness of Certify:

1. For every x ∈ {0, 1}n, if pKt(x)− pKp(t)(x) > d · log t+ log k, then Certify(x, 1t, 1k) = 0.

2. Also,

Pr
x∼Dn

[Certify(x, 1t, 1k) = 1] ≥ 1− 1

2k
.
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Proof of Claim 53. Let Approx-depth be the algorithm in Lemma 50, and let d > 0 be a constant specified
later. We define Certify as follows.

On input (x, 1t, 1k), compute s := Approx-depth(x, 1p
−1
dth

(t), 1p(t), 1n+k). If s ≤ d·log t+log k,
accept; otherwise, reject.

By the correctness of the algorithm Approx-depth (Lemma 50) and a union bound over the set of n-bit
strings, it is easy to see that with probability at least 1− 2−k, it holds that

pKt(x)− pKp(t)(x) ≤ s ≤ pKp−1
dth

(t)(x)− pKp
dth

(p(t))(x) + log(t) + log p
dth
(p(t)).

The first property of Certify stated in the claim follows directly from the lower bound of s above.
For the second property, we use the upper bound of s and show that with probability at least 1 − 1/k

over x ∼ Dn, it holds that the quantify

pKp−1
dth

(t)(x)− pKp
dth

(p(t))(x) + log(t) + log p
dth
(p(t)) (28)

is at most ≤ d · log t+ log k.
First of all, by the coding theorem for pKt (Theorem 20), we have for every x ∈ Support(Dn)

pKp−1
dth

(t)(x) ≤ log
1

Dn(x)
+O(log n), (29)

provided that t ≥ p1(n) for some sufficiently large polynomial p1.
On the other hand, by Lemma 19, we have

Pr
x∼Dn

[
K(x) ≥ log

1

Dn(x)
−O(log n)− log 2k

]
≥ 1− 1

2k
. (30)

It follows that with probability at least 1− 1/(2k) over x ∼ Dn, we get

pKp−1
dth

(t)(x)− pKp
dth

(p(t))(x)

≤ pKp−1
dth

(t)(x)− K(x) +O(log p
dth
(p(t))) (by Lemma 18)

≤
(
log

1

Dn
+O(log n)

)
−
(
log

1

Dn(x)
−O(log n)− log 2k

)
+O(log p

dth
(p(t)))

(by Equations (29) and (30))

≤ (d/2) · log t+ log k,

provided that d is sufficiently large. Finally, by plugging the above into Equation (28), we get that Equa-
tion (28) (and hence s) is upper bounded by d · log t+log k. This completes the proof of the second property
of Certify and hence the claim. ⋄

Before describing our final heuristic scheme for solving L, we show how we can solve L for those x
whose computational depth is small. Define the following procedure B.

On input x, run USamp(1m, 1p(p2(n)), x), where p2 ≥ max{p
LC
, q}, p

LC
is the polynomial in

Theorem 4 and p, q are the polynomials in Lemma 52. Let y be the output of USamp, if y is an
L-witness of x, accept. Otherwise, reject.
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Consider the case when the following condition holds:

pKp2(n)(x)− pKp1(p2(n))(x) + log p(t) ≤ d · log p2(n) + log k. (31)

Then we have

pKp(p2(n))(y | x) ≤ pnKp2(n)(y | x) + pKp2(n)(x)− pKp(p2(n))(x) + log p(p2(n)) (by Lemma 52)

≤ log |Ax|+ log p2(n) + pKp2(n)(x)− pKp(p2(n))(x) + log p(p2(n)) (by Theorem 4)

≤ log |Ax|+ log p2(n) + d · log p2(n) + log k + log p(p2(n)) (by Equation (31))

≤ log |Ax|+ d′ · log n+ log k,

where d′ > 0 is a sufficiently large constant. Then by Lemma 32, we get that A solves L on x with
probability at least 1/poly(n). Using standard techniques, we can amply the success probability of B to be
at least 9/10.

We now describe an errorless average-case algorithm for solving L. Let A be the following algorithm.

On input (x, 1n, 1k), we first run Certify(x, 1p2(n), 1k). If it rejects, we output ⊥. Otherwise,
we run B(x) and output its returned answer.

To see that the above algorithm is heuristic scheme for solving L, first note that with probability at least
1− 2−k over the internal randomness of Certify, we either have that Certify rejects, in which case we output
⊥, or Certify accepts and in the latter case, by the first property of Certify stated in Claim 53, the condition
as specified in Equation (31) holds, and the algorithm B will correct decide L on x with probability at least
9/10. It follows that with probability at least 4/5, the above algorithm A outputs either ⊥ or the L(x).

Secondly, by the second property of Certify stated in Claim 53, with probability at least 1−2−k over the
internal randomness of the our algorithm, we output a value that is not ⊥ with probability at least 1−1/(2k)
over x ∼ Dn. By a simple averaging argument, we get that

Pr
x∼Dn

[
Pr
A
[A(x, 1n, 1k) = ⊥] < 1/5

]
≥ 1− 1/k.

This completes the proof of Theorem 2.

5.3 Proof of Theorem 3

In this subsection, we show Theorem 3.

Proof of Theorem 3. Let L ∈ NP. For an instance x ∈ {0, 1}n, let Ax denote the set of witnesses of x (with
respect to some fixed verifier). Without loss of generality, we assume that every string in Ax has a length of
exactly m, where m = poly(n). Let D : {Dn}n∈N be a polynomial-time samplable distribution family.

Assuming MINnKT,U ∈ AvgBPP, we show an randomized algorithm for solving L in time 2O(n/ logn).
The idea is to employ Lemma 52 and show that for every instance x, pKp(t)(y | x) ≤ pnKt(y | x) +
O(n/ log n) for some t ≤ 2O(n/ logn). Then we can use language compression pnKt (Theorem 4) and
follow the argument as shown in the proof of Theorem 10 to obtain an witness within the claimed time.

Claim 54 ([Hir21]). For every ε > 0, every non-decreasing polynomials β and p, and every large enough
x ∈ {0, 1}n, there exists a time bound t such that β(n) ≤ t ≤ 2n

ε
and

pKt(x)− pKp(t)(x) ≤ O

(
n

log n

)
.
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Proof Sketch of Claim 54. The proof can be easily adapted from that of [HKLO24, Lemma 12], which fol-
lows from a simple argument using telescoping sum. ⋄

Consider the following algorithm A for solving L.

On input x ∈ {0, 1}n, run USamp(1m, 12
c·n/ logn

, x), where c > 0 is a constant specified later.
Let y be the output of USamp, if y is an L-witness of x, accept. Otherwise, reject.

It is easy to see that the above algorithm runs in time 2O(n/ logn). Next, we argue its correctness.
Let p

LC
be the polynomial in Theorem 4 and p, q be the polynomials in Lemma 52. By Claim 54, there

exists some max{p
LC
(n), q(n,m)} ≤ t ≤ 2

√
n such that

pKt(x)− pKp(t)(x) ≤ O

(
n

log n

)
. (32)

In this case, we have

pKp(t)(y | x) ≤ pnKt(y | x) + pKt(x)− pKp(t)(x) + log p(t) (by Lemma 52)

≤ log |Ax|+ log t+ pKt(x)− pKp(t)(x) + log p(t) (by Theorem 4)

≤ log |Ax|+ log t+O

(
n

log n

)
+ log p(t) (by Equation (32))

≤ log |Ax|+
d′ · n
log n

,

where d′ > 0 is a sufficiently large constant. Then by Lemma 32 and letting c be a sufficiently large
constant, we get that USamp(1m, 12

c·n/ logn
, x) outputs a L-witness of x (if exists) with probability at least

1/2O(n/ logn). It follows the algorithm A will reject with probability 1 on a no-instance and accept with
probability at least 1/2O(n/ logn) on a yes-instance. Using standard techniques, we can amply the success
probability of such an algorithm to be at least 2/3.

6 Worst-Case Hardness of Gap-Cond-MINnKT: Proofs of Theorem 10 and
Corollary 11

In this section, we prove Theorem 10 and Corollary 11. We first need the following lemma.

Lemma 55. If Gap-Cond-MINnKT ∈ prBPP, then there exists a polynomial p(·) such that for all x, y ∈
{0, 1}∗ and t ∈ N,

pKp(t+|x|)(y | x) ≤ pnKt(y | x) + log p(t+ |x|).

For the convenience of presenting the proofs in some later results, we will prove the following stronger
lemma.

Lemma 56. Assume there exists a constant c > 0, a polynomial ρ, and a probabilistic polynomial-time
algorithm A such that the following hold for all sufficiently large n,m′ ∈ N, all x ∈ {0, 1}n, all t′ ≥
ρ(n+m′), and all s′ ≤ m′ − c · log(t′ + n):

1. For every y′ ∈ {0, 1}m′
with nKt(y′ | x) ≤ s′, we have PrA[A(x, y′, 1s

′
, 1t

′
) = 1] ≥ 2

3 .

2. With probability at least 1− 1/t′ over y′ ∼ {0, 1}m
′
, we have PrA[A(x, y′, 1s

′
, 1t

′
) = 0] ≥ 2

3 .
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Then there exists a polynomial p(·) such that for all x, y ∈ {0, 1}∗ and t ∈ N,

pKp(t+|x|)(y | x) ≤ pnKt(y | x) + log p(t+ |x|).

Proof. Fix x ∈ {0, 1}n, y ∈ {0, 1}m and t ∈ N. Without loss generality, we assume that t ≥ |y|. Let DPk

be the direct generator, where k > 0 is specified later.
Let c > 0 be a constant, ρ be a polynomial and A be an algorithm as stated in the assumption of the

lemma.
Let s := pnKt(y | x) and k := s+ d · log t for a sufficiently large constant d > c. Then with probability

at least 2/3 over r ∼ {0, 1}t, there is a program Π ∈ {0, 1}s such that

• ∀w ∈ {0, 1}t, Π(x;w; r) outputs y or ⊥ in t steps, and

• ∃w ∈ {0, 1}t, Π(x;w; r) outputs y in t steps.

Note that the above implies that with probability at least 2/3 over r ∼ {0, 1}t,

nKpoly(t)(y ◦ r | x) ≤ s+ |r|+O(log t).

Also, for every z ∈ {0, 1}mk, DPk(y; z) is computable in time poly(m) given x. It follows that with
probability at least 2/3 over r ∼ {0, 1}t,

nKt′(DPk(y; z) ◦ r | x) ≤ s+mk + t+O(log t) := s′,

where t′ := max{ρ(n +m′), poly(t)} and m′ := mk + k. By the property of the algorithm A (Item 1 in
the lemma), the above implies that for any choice of z ∈ {0, 1}mk,

Pr
r∼{0,1}t

A

[
A
(
DPk(y; z) ◦ r, x, 1s

′
, 1t

′
)
= 1

]
≥ 2

3
· 2
3
=

4

9
. (33)

On the other hand, by the property of the algorithm A (Item 2 in the lemma), we get that

Pr
u∼{0,1}nk+k

r∼{0,1}t
A

[
A
(
u ◦ r, x, 1s

′
, 1t

′
)
= 0

]
>

2

3
· (1− 1/t′) >

4

9
. (34)

Comparing Equation (33) and Equation (34), we get a randomized distinguisher for DPk(y;Unk) with ad-
vantage 1/12, defined by sampling r ∼ {0, 1}t, and outputting A(− ◦ r, x, 1s

′
, 1t

′
). By the reconstruction

property of DPk (Lemma 23), there exists some polynomial q such that

pKq(t′+|x|)(y | x) ≤ k + log q(t′ + |x|).

Recall that k = pnKt(y | x) +O(log t). It follows that

pKp(t+|x|)(y | x) ≤ pnKt(y | x) + log p(t+ |x|),

where p is some polynomial.

Proof of Lemma 55. Given Lemma 56, it suffices to show that if Gap-Cond-MINnKT ∈ prBPP, then the
assumption in Lemma 56 is true.

Assuming Cond-MINnKT ∈ prBPP, let B be a probabilistic polynomial-time algorithm and τ be a
polynomial such that, given (x, y′, 1s

′
, 1t

′
), B accepts with probability at least 2/3 if nKt(y′ | x) ≤ s′ and

rejects with probability at least 2/3 if nKτ(t+|x|)(y′ | x) > s′ + log τ(t′ + |x|).
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We claim that B satisfies the conditions of an algorithm in Lemma 56. The first condition is immediate.
For the second condition, note that by a simple counting argument, we have that with probability at least
1− 1/t′ over y′ ∼ {0, 1}m

′
,

nKτ(t′)(y′ | x) ≥ K(y′ | x)
≥ m′ −O(log t′)

> s′ + log τ(t′ + |x|),

where the last inequality holds as long as s′ ≤ m′ − c · log t′ for some sufficiently large constant c. In this
case, we have that B rejects with probability at least 2/3.

We are now ready to prove Theorem 10.

Proof of Theorem 10. It is easy to see that Cond-MINnKT can be solved in NP using two (non-adaptive)
calls to an NP oracle. Therefore, if NP ⊆ BPP, then PH ⊆ BPP [Ko82], which implies Cond-MINnKT ∈
BPP. This also implies Gap-Cond-MINnKT ∈ prBPP.

Next, we show that if Gap-Cond-MINnKT ∈ prBPP, then NP ⊆ BPP. Let L ∈ NP. For an instance
x ∈ {0, 1}n, let Ax denote the set of L-witnesses of x (with respect to some fixed verifier). Without loss of
generality, we assume that every string in Ax has a length of exactly m, where m = poly(n).

By language compression for pnKt (Theorem 4), we get that there is a polynomial p
LC

such that for
every string y ∈ Ax,

pnKp
LC

(n),Ax(y) ≤ log |Ax|+ log p
LC
(n).

Note that given x, the membership of Ax is decidable in polynomial time. Hence, we can efficiently answer
oracle calls to Ax given x. This implies that there exists some polynomial p1 such that for every y ∈ Ax,

pnKp1(n)(y | x) ≤ pnKp
LC

(n),Ax(y).

Furthermore, by Lemma 55, we have

pKp(n)(y | x) ≤ pnKp1(n)(y | x)

for some polynomial p. It follows that

pKp(n)(y | x) ≤ log |Ax|+ log p(n). (35)

By Lemma 32, USamp(1m, 1p(n), x) outputs a L-witness of x with probability at least 1/poly(n). By
standard amplification, this yields an efficient randomized algorithm for solving L with high probability.

Proof of Corollary 11. First, by Theorem 1 and Theorem 10, the two statements “MINnKT ∈ BPP” and
“Gap-Cond-MINnKT ∈ prBPP” are equivalent to “NP ⊆ BPP”. To include “Cond-MINnKT ∈ prBPP” in
this equivalence, observe that Cond-MINnKT ∈ ΣP

2 . Since NP ⊆ BPP implies ΣP
2 ⊆ BPP, it follows from

the easiness of Gap-Cond-MINnKT that Cond-MINnKT ∈ BPP. Finally, if Cond-MINnKT ∈ BPP, then it
trivially follows that Gap-Cond-MINnKT ∈ prBPP.
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A An Explicit Computational Model

In this section, we describe one possible way of defining a computational model and a modified encoding
of programs that satisfy the properties stated in Section 2.2.

We consider multi-tape Turing machines over the alphabet Σ = {0, 1,⊥}. In addition to the usual input
tape and work tapes, we allow a machine to access three additional tapes: one holding an auxiliary string,
one holding a non-deterministic guess, and one holding the randomness. We assume that the machine has
sequential access (i.e., no random access) to the randomness tape and the non-deterministic tape.18 This
assumption will be useful to guarantee “Randomness and Non-Determinism Extension”. The remaining
details of the model can be arbitrary.

We also assume an encoding function ⟨·⟩ for machines (which we omit for simplicity of notation) such
that there is a time-efficient universal machine U which, given (the encoding of) a machine M , an input
α, an auxiliary string x, a non-deterministic guess w, and the random string r, runs in time poly(|M |, t)
and outputs the string produced by M(α;x;w; r), where |M | denote the encoding length of M and t is the
running time of M on (α;x;w; r). This assumption will be useful to guarantee “Efficient Simulation”.

In several previous papers, a program is defined as a pair (M,α), where M is a machine and α ∈ {0, 1}∗
is an “advice” string. However, this definition of programs alone, which does not provide further details
about the encoding of programs, might not satisfy the conditions for being “strongly efficient”, as stated in
Section 2.2. Instead, we present a generic way of obtaining the desired properties given an existing encoding,
which will be useful to guarantee “Efficient Composition”. We consider a sequence of machine-advice pairs.
More formally, a program Π is defined as

Π := ((M1, α1), . . . , (Mℓ, αℓ)) ,

where each Mi is a valid encoding of a machine and αi ∈ {0, 1}∗. The output of Π on (x;w; r) (which
corresponds to the auxiliary input, the non-deterministic guess, and the randomness), denoted as Π(x;w; r),
is obtained as follows:19

• Let y1 be the output of M1(α1;x;w; r). Also, let t1 be the number of steps M1(α1;x;w; r) takes to
produce y1.

• Let y2 be the output of M2

(
α2;x ◦ y1;w[t1+1:|w|]; r[t1+1:|r|]

)
and t2 be the corresponding running

time.

...

• Let yℓ be the output of Mℓ

(
αℓ;x ◦ yℓ−1;w[tℓ−1+1:|w|]; r[tℓ−1+1:|r|]

)
and tℓ be the corresponding run-

ning time.

• Output yℓ.
18In order to avoid confusion, sequential access means that the tape head can remain at a given tape cell or move left or right in

each time step of the computation. In particular, we do not require read-only access or one-way access to the tape.
19For a string z of length ℓ and a subset S ⊆ [ℓ], where [ℓ] = {1, 2, . . . , ℓ}, we let wS denote the substring of z obtained by

concatenating the bits of z corresponding to indexes in S. For a < b, we let [a : b] denote the set {a, a+ 1, . . . , b}.
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Additionally, in each of the above steps, if ⊥ is produced, Π outputs ⊥ and halts.
The running time of the program Π on input (x,w, r) is given by

∑ℓ
i=1 ti.

We now describe how the program Π is encoded. To encode a machine-advice pair (M,α), we use the
following format:

s1 01 ⟨M⟩ s2 01α,

where ⟨M⟩ is an encoding of the machine M ,20 and s1 is (resp. s2) the binary representation of the integer
specifying the length of ⟨M⟩ (resp. α), with each bit duplicated. The full description of Π is obtained by
concatenating the encodings of all pairs (Mi, αi) for i ∈ [ℓ]. The size of Π, denoted |Π|, is the total bit
length of this description.

Proposition 57. The computational model described above is strongly efficient, as specified by Definition 12.

Proof. The “Efficient Simulation” property follows from the fact that we use a time-efficient universal ma-
chine U that can simulate any machine with only a polynomial overhead.

The “Randomness Extension” property follows from the fact that a machine only has sequential access
to the randomness tape. Indeed, if a program has a running time of at most t on a random string r with
|r| ≥ t, then since it only has sequential access to r, it will never reach the end of r during its execution, and
appending any string to r will result in exactly the same output behavior. Similarly, the model also admits
“Non-Determinism Extension”.

For the “Efficient Universality” property, suppose we have a machine M and α0, x, w, r ∈ {0, 1}∗ such
that M(α0;x;w; r) outputs y in t steps. Consider the program Π := (M ′, α), where M ′ and α are defined
as follows:

α := (M,α0), and M ′ is a machine that performs the following operation: on input (α =
(M,α0);x;w; r), it simulates M(α0;x;w; r).

It is straightforward to verify that the description length of Π is at most |α0| + cM · log |α0| for some
constant cM > 0 that depends only on M . Moreover, it follows from the construction that Π(x;w; r)
outputs M(α0;x;w; r) = y in time tcM , provided that cM is chosen to be sufficiently large.

Finally, we argue that the “Efficient Composition” property also holds. Let x, y, z, r ∈ {0, 1}∗. Suppose
there is a program Π1 = ((M1, α1), . . . , (Mℓ, αℓ)) of size s1 that computes (x; r) → y non-deterministically
in time t1, and a program Π2 of size s2 that computes y → z non-deterministically in time t2. We first define
the following machine-advice pair (M,α):

α := (Π2,m), where m ∈ N is the length of y, and M is a machine that does the following:
given (α;x ◦ y;w′; r′), simulate Π2(y;w

′; ϵ).

Our final program Π for computing (x; r) → z is defined as Π1 extended by (M,α), i.e.,

Π := ((M1, α1), . . . , (Mℓ, αℓ), (M,α)) .

First of all, it is easy to verify that the description of Π has length at most s1 + s2 + log p(|y| + |z|)
for some sufficiently large polynomial p. To see that Π computes (x; r) → z, note that after the execution
of Π1 on (x; r), we have non-deterministically computed y, and the running time up to this point is at most
t1. After that, M(α, x ◦ y;w′; r′) will be run, where w′ is the remaining part of the string on the non-
deterministic tape and r′ is the remaining part on the randomness tape. By construction, the (sub-)program
(M,α) on x ◦ y will (non-deterministically) output z, as desired. Also, note that due to efficient simulation,
M(α, x◦y;w′; r′) runs in time at most p(t2)+p(|x|+ |y|+ |z|). Therefore, the running time of the program
Π on (x; r) is at most t1 + p(t2) + p(|x|+ |y|+ |z|).

20As noted above, we assume a fixed standard encoding for Turing machines.

47



B Worst-Case to Average-Case Reductions and Gap-MINpnKT

For τ : N → N, let Gapτ–MINpnKT be the following problem: Given (x, 1s, 1t), where x ∈ {0, 1}∗ and
s, t ∈ N, decide whether pnKt(x) ≤ s or pnKτ(t)(x) > s+ log τ(t). We say that Gap-MINpnKT ∈ prBPP
if there is a probabilistic polynomial-time algorithm that solves Gapτ -MINpnKT for some polynomial τ .

Proposition 58. The following holds.

(MINnKT,U) ∈ AvgBPP =⇒ Gap-MINpnKT ∈ prBPP.

Proof. First of all, suppose (MINnKT,U) ∈ AvgBPP. Then by Lemma 48, we have that (coMINnKT,U) ∈
Avg1BPP. In other words, there exist a constant c > 0, a polynomial ρ, and a probabilistic polynomial-time
algorithm A such that the following hold for all sufficiently large n′, all t′ ≥ ρ(n′), and all s′ ≤ n′−c · log t′:

1. For every x ∈ {0, 1}n′
with nKt(x) ≤ s′, we have PrA[A(x, 1s

′
, 1t

′
) = 1] ≥ 1− 1

10t′ .

2. With probability at least 1− 1/t′ over x ∼ {0, 1}n
′
, we have PrA[A(x, 1s

′
, 1t

′
) = 0] ≥ 1− 1

10t′ .

Let d > 0 be a sufficiently large constant and consider the following parameters.

• k := s+ d3 · log t.

• n′ := k + td.

• t′ := t2d.

• s′ := s+O(log log t′) + td + nk + d2 log t.

Define an algorithm A′ as follows:

On input (x, 1s, 1t) with x ∈ {0, 1}n, sample z ∼ {0, 1}nk and w ∼ {0, 1}t
d

, and then output
A
(
DPk(x; z) ◦ w, 1s

′
, 1t

′
)

.

Below, we show that A′ solves Gapτ -MINpnKT correctly with high probability, where τ is a polynomial
specified later.

First, consider the case that (x, 1s, 1t) is a yes-instance of Gapτ -MINpnKT, i.e., pnKt(x) ≤ s. By
success amplification (Lemma 29), we get that

pnKtd

1−1/10n′(x) ≤ s+O(log log t′).

In other words, for at least 1 − 1/(10n′) of the randomness w ∈ {0, 1}t
d

, there exists a non-deterministic
program M of length at most s+O(log log t′) that outputs x within td steps. Note that this implies that for
any choice of z ∈ {0, 1}nk,

Pr
w∼{0,1}td

[
nKt2d(DPk(y; z) ◦ w) ≤ s+O(log log t′) + td + nk +O(d log t)

]
≥ 1− 1

10n′ . (36)

Also, note that by letting d be a sufficiently large constant, we have

s+O(log log t′) + td + nk +O(d log t) ≤ s′. (37)

Equation (36) and Equation (37) together imply that

Pr
w∼{0,1}td

[
nKt2d(DPk(y; z) ◦ w | x) ≤ s′

]
≥ 1− 1

10t′
.
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Then by the property of A and a union bound, we have

Pr
w,z,A

[
A(DPk(x; z) ◦ w, 1s

′
, 1t

′
) = 1

]
≥ 1− 1

5t′
,

and so

Pr
A′

[
A′(x, 1s, 1t) = 1

]
≥ 1− 1

5t′
. (38)

Now consider any (x, 1s, 1t) that is a no-instance of Gapτ -MINpnKT, i.e., pKτ(t)(X) > s + log τ(t).
We will show that

Pr
A′

[
A′(x, 1s, 1t) = 1

]
≤ 1− 2

5t′
. (39)

Note that by combining Equation (38) and Equation (39), A′ yields a polynomial-time algorithm for solving
Gapτ -MINpnKT via standard success amplification techniques.

Suppose, for the sake of contradiction, Equation (39) is not true. Then by the definition of A′, we have

Pr
w,z,A

[
A(DPk(x; z) ◦ w, x, 1s

′
, 1t

′
) = 1

]
> 1− 2

5t′
. (40)

On the other hand, by the property of A, we get

Pr
u,w,A

[
A(u ◦ w, 1s

′
, 1t

′
) = 0

]
≥ 1− 1

2t′
. (41)

Comparing Equation (40) and Equation (41), we get a randomized procedure defined as B(− ◦ Utd , 1
s′ , 1t

′
)

that distinguishes DPk(x;UO(nk)) from Um with advantage 1/(10t′). By Lemma 23 and by letting τ be a
sufficiently large polynomial, we get

pKτ(t)(x) ≤ k +O(log t′)

≤ s+ d3 · log t+O(d log t)

≤ s+ log τ(t).

This means (x, 1s, 1t) is not a no-instance of Gapτ -MINpnKT, which gives the desired contradiction.

Corollary 59. Suppose
Gap-MINpnKT ∈ prBPP =⇒ NP ⊆ BPP.

Then
DistΣP

2 ⊆ AvgBPP =⇒ NP ⊆ BPP.

Proof. If DistΣP
2 ⊆ AvgBPP, then (MINnKT,U) ∈ AvgBPP, since MINnKT ∈ Σp

2. By Proposition 58,
we get Gap-MINpnKT ∈ prBPP. Finally, by the assumption, we get NP ⊆ BPP.

Consequently, if Gap-MINpnKT also captures the hardness of NP (extending Theorem 9), a break-
through result relating the average-case and worst-case complexities of the polynomial hierarchy would
follow.
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C Worst-Case Hardness of MINpnKT: Proof of Theorem 9

Definition 60 (MINpnKT). We define MINpnKT as a promise problem (YES,NO), where

pnKt
b/a(x) ≤ s =⇒ (x, 1s, 1t, 1a, 1b) ∈ YES,

pnKt
(b−1)/a(x) > s =⇒ (x, 1s, 1t, 1a, 1b) ∈ NO.

In this section we prove Theorem 9.

Proof of Theorem 9. The theorem follows directly from Theorem 61 and Theorem 62, stated and proved in
Appendix C.1 and Appendix C.2 respectively.

C.1 The Easy Direction

Here we prove the following.

Theorem 61. If NP ⊆ BPP, then MINpnKT ∈ BPP.

Proof. By [Ko82], we know that NP ⊆ BPP implies PH ⊆ BPP. We define a partial function f such that
for z = r1 ◦ · · · ◦ rk where each fi ∈ {0, 1}t, f(x, 1s, 1t, 1k, z) is defined as the number of i ∈ [k] such that
nKt(x | ϵ; ri) ≤ s. We also define a language L, such that (x, 1s, 1t, 1k, 1v, z) ∈ L iff f(x, 1s, 1t, 1k, z) ≥ v.
It is not hard to see that L ∈ PH, because we can use alternation of quantifiers to simulate every non-
deterministic program of bounded length, and count the number of “good” ri in z. By our assumption,
L ∈ BPP, and by a simple search-to-decision reduction, f ∈ FBPP. Let A be the randomized polynomial-
time algorithm computing f with 1/10 error.

Now suppose we are given (x, 1s, 1t, 1a, 1b) which is in the promised inputs of MINpnKT. Our random-
ized algorithm for deciding (x, 1s, 1t, 1a, 1b) works as follows: we set k = 18a2, and we take k independent
samples r1, . . . , rk ∼ Ut. Then we compute ṽ = A(x, 1s, 1t, 1k, r1 ◦ · · · ◦ rk). We accept iff ṽ ≥ b−1/2

a k.
Clearly this algorithm runs in polynomial time, so we only need to bound its error. In fact, by the definition
of MINpnKT and pnK, if the input is in YES, then we have

Pr
r∼Ut

[
nKt(x | ϵ; r) ≤ s

]
≥ b

a
.

On the other hand, if the input is in NO, then we have

Pr
r∼Ut

[
nKt(x | ϵ; r) ≤ s

]
<

b− 1

a
.

Let v = f(x, 1s, 1t, 1k, r1 ◦ · · · ◦ rk). By Chernoff bound, when input is in YES, with probability at least
(1 − e−4), v ≥ b−1/3

a k; and when the input is in NO, with probability at least (1 − e−4), v ≤ b−2/3
a k.

Since the error probability of A is bounded by 1/10, we have Pr[v ̸= ṽ] ≤ 1/10. Hence by union bound,
the probability of our algorithm making an error on promised inputs is at most e−4 + 1/10 ≤ 1/3.

C.2 The Hard Direction

Throughout this subsection, we will assume that the underlying computational model is strongly effi-
cient, as defined in Section 2.2. We establish the hard direction of Theorem 9.

Theorem 62. If MINpnKT ∈ prBPP, then NP ⊆ BPP.
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Comparison with the proof of Theorem 34 in Section 4.2. The proof of Theorem 62 has the same
structure as that of Theorem 34, and requires essentially no new ideas. In this paragraph, we sketch the
modifications needed for the proof of Theorem 62. (Given the relevance of this result for the discussion in
Section 1.2.3, for completeness and convenience of the reader, below we also include a detailed proof of
Theorem 62.) First, analogously to Definition 35, we define a technical variant of Kolmogorov complexity
called ℓ-pnK (see Definition 63). Then, similarly to Lemma 36, we prove a lower bound for ℓ-pnK by
a counting argument in Lemma 64, but now we also take into account the randomness of pnK. From
Definition 40 and Lemma 41, we get Definition 68 and Lemma 69 by changing nK into pnK. In order to
adapt Lemmas 37 to 39 and 42 to 44, in addition to changing nK into pnK, we need to change the arguments
“ϵ → x ◦ r in non-deterministic time t and size s” into “(ϵ; r) → x ◦ r̂ in non-deterministic time t and size
s”, and we also need to use randomness extension (Definition 12) to extend the length of the random string
w. These modifications give Lemmas 65 to 67 and 70 to 72. Finally, with respect to Lemmas 46 and 47, we
just change nK into pnK to get Lemmas 47 and 74. The remaining steps of the proof are unchanged.

C.2.1 Technical Tool: ℓ-pnKt
λ,γ

Definition 63 (ℓ-pnKt
λ,γ). For any t, ℓ ∈ N, any λ, γ ∈ (0, 1), and any string x ∈ {0, 1}∗, we define

ℓ-pnKt
λ,γ(x) as

ℓ-pnKt
λ,γ(x) = min

{
s ∈ N

∣∣∣∣ Pr
r̂∼Uℓ

[
pnKt

λ(x ◦ r̂) ≤ s+ ℓ
]
≥ γ

}
.

As before, from the definition, it is not immediately clear that ℓ-pnKt
λ,γ(x) is non-negative. However,

we can bound its value from below by (−1− ⌈log 1/(λγ)⌉), as stated in the following lemma:

Lemma 64 (Lower bound for ℓ-pnKt
λ,γ). For any ℓ, t ∈ N, any string x ∈ {0, 1}∗ and any λ, γ ∈ (0, 1), we

have

ℓ-pnKt
λ,γ(x) ≥ −

⌈
log

1

λγ

⌉
− 1.

Proof. For the sake of contradiction, suppose that ℓ-pnKt
λ,γ(x) ≤ −⌈log 1/(λγ)⌉ − 2. By the definitions of

ℓ-pnK and pnK, we have

Pr
r̂∼Uℓ

[
pnKt

λ(x ◦ r̂) ≤ ℓ−
⌈
log

1

λγ

⌉
− 2

]
≥ γ

=⇒ Pr
r̂∼Uℓ

[
Pr
r∼Ut

[
nKt(x ◦ r̂ | ϵ; r) ≤ ℓ−

⌈
log

1

λγ

⌉
− 2

]
≥ λ

]
≥ γ

=⇒ Pr
r̂∼Uℓ
r∼Ut

[
nKt(x ◦ r̂ | ϵ; r) ≤ ℓ−

⌈
log

1

λγ

⌉
− 2

]
≥ λγ.

Now define the set A as

A =

{
(r̂, r) ∈ {0, 1}ℓ × {0, 1}t

∣∣∣∣ nKt(x ◦ r̂ | ϵ; r) ≤ ℓ−
⌈
log

1

λγ

⌉
− 2

}
.

Then |A| ≥ λγ ·2ℓ+t. However, the number of programs of length at most (ℓ−⌈log 1/(λγ)⌉−2) is bounded
by 20 + · · · + 2ℓ−⌈log 1/(λγ)⌉−2 ≤ 2ℓ−⌈log 1/(λγ)⌉−1 ≤ λγ · 2ℓ−1. Therefore, there are at most λγ · 2ℓ+t−1

pairs (Π, r) where |Π| ≤ ℓ− ⌈log 1/(λγ)⌉ − 2 and |r| = t. Since |A| ≥ λγ · 2ℓ+t > λγ · 2ℓ+t−1, by pigeon
hole principle, there must exists a pair (Π, w) and two strings r̂1 ̸= r̂2, such that Π non-deterministically
computes both (ϵ; r) → (x ◦ r̂1) and (ϵ; r) → (x ◦ r̂2), a contradiction.
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Lemma 65 (Upper Bound for ℓ-pnKt
λ,γ). There exists a polynomial p such that the following holds. For any

ℓ ∈ N, any string x ∈ {0, 1}∗ and any λ, γ ∈ (0, 1), we have

ℓ-pnKp(|x|+ℓ)
λ,γ (x) ≤ |x|+ log p(|x|+ ℓ).

Proof. Let M be the Turing machine satisfying the following.

For any strings x,w, r ∈ {0, 1}∗, M(x; ϵ;w; r) = x in O(|x|) steps.

Hence by efficient universality (Definition 12), when p is a large enough polynomial, for any string r ∈
{0, 1}p(|x|+ℓ) and r̂ ∈ {0, 1}ℓ, (ϵ; r) → (x ◦ r̂) is in non-deterministic time p(|x| + ℓ) and size (|x| + ℓ +
log p(|x|+ ℓ)). Therefore, for any r̂ ∈ {0, 1}ℓ, we have

Pr
r∼Up(|x|+ℓ)

[
nKp(|x|+ℓ)(x ◦ r̂ | ϵ; r) ≤ |x|+ ℓ+ log p(|x|+ ℓ)

]
= 1.

Which gives us pnKp(|x|+ℓ)
λ (x ◦ r̂) ≤ |x|+ ℓ+ log p(|x|+ ℓ) for any λ ∈ (0, 1). Since this holds for any r̂,

we get
Pr
r̂∼Uℓ

[
pnK

p(|x|+ℓ)
λ (x ◦ r̂) ≤ |x|+ ℓ+ log p(|x|+ ℓ)

]
= 1.

By the definition of ℓ-pnK, we conclude that for any γ ∈ (0, 1),

ℓ-pnKp(|x|+ℓ)
λ,γ (x) ≤ |x|+ log p(|x|+ ℓ),

which completes the proof.

Lemma 66 (Monotonicity of ℓ-pnKt
λ,γ(x) on λ, γ, t). For any ℓ, t1, t2 ∈ N+ satisfying t1 ≥ t2, any

λ1, λ2, γ1, γ2 satisfying λ1 ≤ λ2 and γ1 ≤ γ2, and any string x ∈ {0, 1}∗, we have

ℓ-pnKt1
λ1,γ1

(x) ≤ ℓ-pnKt2
λ2,γ2

(x).

Proof. Let s = ℓ-pnKt2
λ2,γ2

(x). Then we have

Pr
r̂∼Uℓ

[
pnKt2

λ2
(x ◦ r̂) ≤ s

]
≥ γ2.

By randomness & non-determinism extension (Definition 12), for any r̂ ∈ {0, 1}ℓ, we have pnKt1
λ1
(x ◦ r̂) ≤

pnKt2
λ2
(x ◦ r̂). Hence we get

Pr
r̂∼Uℓ

[
pnKt1

λ1
(x ◦ r̂) ≤ s

]
≥ γ2 ≥ γ1.

Hence by the definition of ℓ-pnK, we have ℓ-pnKt1
λ1,γ1

(x) ≤ s. Substituting s by ℓ-pnKt2
λ2,γ2

(x) finishes the
proof.

Lemma 67 (Monotonicity of ℓ-pnKt
λ,γ(x) on ℓ, x). There exists a polynomial p such that the following

holds. For any ℓ, ℓ′ ∈ N with ℓ < ℓ′, any λ, γ ∈ (0, 1), any strings x, y ∈ {0, 1}∗ and any t ∈ N, we have

ℓ′-pnKt+p(|x|+|y|+ℓ′)
λ,γ (x) ≤ ℓ-pnKt

λ,γ(x ◦ y) + log p(|x|+ |y|+ ℓ′)
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Proof. Let s = ℓ-pnKt
λ,γ(x ◦ y). For some string r̂ ∈ {0, 1}ℓ, we say r̂ is good if pnKt

λ(x ◦ y ◦ r̂) ≤ s+ ℓ.
Then by the definition of ℓ-pnK, with probability at least γ over r̂ ∼ Uℓ, r is good. For such a good r̂, by
the definition of pnK, we have

Pr
r∼Ut

[
nKt(x ◦ y ◦ r̂ | ϵ; r) ≤ s+ ℓ

]
≥ λ.

By randomness extension (Definition 12), for any t′ ≥ t, we have

Pr
r′∼Ut′

[
nKt(x ◦ y ◦ r̂ | ϵ; r′) ≤ s+ ℓ

]
≥ λ.

In other words, with probability λ over r′ ∼ Ut′ , (ϵ; r′) → (x ◦ y ◦ r̂) is in non-deterministic time t and size
(s + ℓ). Now for any integer i, let ĩ denote the binary encoding of i with each bit duplicated, concatenated
with 01. Let M be the Turing machine satisfying the following.

For any strings x, y, r̂, r̂′, w ∈ {0, 1}∗,

M(|̃x| ◦ |̃y| ◦ r̂′;x ◦ y ◦ r̂;w; ϵ) = x ◦ r̂ ◦ r̂′

in poly(|x|, |y|, |r̂|, |r̂′|) steps.

Hence by efficient universality (Definition 12), for any r̂′ ∈ {0, 1}ℓ′−ℓ, (x ◦ y ◦ r̂) → (x ◦ r̂ ◦ r̂′) is in
non-deterministic time poly(|x| + |y| + ℓ′) and size (ℓ′ − ℓ + O(log(|x| + |y| + ℓ′))). Applying efficient
composition (Definition 12), when p is some large enough polynomial,

Pr
r′∼Ut+p(|x|+|y|+ℓ′)

[
nKt+p(|x|+ℓ′)(x ◦ r̂ ◦ r̂′ | ϵ; r′) ≤ s+ ℓ′ + log p(|x|+ |y|+ ℓ′)

]
≥ λ.

By the definition of pnK, this is equivalent to

pnK
t+p(|x|+ℓ′)
λ (x ◦ r̂ ◦ r̂′) ≤ s+ ℓ′ + log p(|x|+ |y|+ ℓ′).

Since the above inequality works for any good r̂ ∼ Uℓ and any r̂′ ∈ {0, 1}ℓ′−ℓ, we get

Pr
r̂∼Uℓ

r̂′∼Uℓ′−ℓ

[
pnK

t+p(|x|+ℓ′)
λ (x ◦ r̂ ◦ r̂′) ≤ s+ ℓ′ + log p(|x|+ |y|+ ℓ′)

]
≥ γ.

In other words, ℓ′-pnKt+p(|x|+ℓ′)
λ,γ (x) ≤ s+ log p(|x|+ |y|+ ℓ′). Substituting s by ℓ-pnKt

λ,γ(x ◦ y) finishes
the proof.

Similar to MINℓ-nKT, we can define the MINℓ-pnKT problem for ℓ-pnK.

Definition 68 (MINℓ-pnKT). We define MINℓ-pnKT as the promise problem (YES,NO) such that{
ℓ-pnKt

b/a,d/c(x) ≤ s =⇒ (x, 1s, 1t, 1ℓ, 1a, 1b, 1c, 1d) ∈ YES,
ℓ-pnKt

(b−1)/a,(d−1)/c(x) > s =⇒ (x, 1s, 1t, 1ℓ, 1a, 1b, 1c, 1d) ∈ NO.

A basic property of MINℓ-pnKT is that its easiness follows from the easiness of MINpnKT.

Lemma 69. If MINpnKT ∈ prBPP, then MINℓ-pnKT ∈ prBPP.
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Proof. Suppose we are given an instance (x, 1s, 1t, 1ℓ, 1a, 1b, 1c, 1d) that is in the promised inputs of MINℓ-pnKT,
and we want to decide whether it is in YES or NO. If it is in YES, then we have ℓ-pnKt

b/a,d/c(x) ≤ s, and
by the definition of ℓ-pnK, we get

Pr
r̂∼Uℓ

[
pnKt

b/a(x ◦ r̂) ≤ s+ ℓ
]
≥ d

c
.

On the other hand, if the instance is in NO, then we have ℓ-pnKt
(b−1)/a,(d−1)/c(x) > s, and by the definition

of ℓ-pnK, we get

Pr
r̂∼Uℓ

[
pnKt

(b−1)/a(x ◦ r̂) ≤ s+ ℓ
]
<

d− 1

c
.

Now let A be the probabilistic polynomial-time algorithm that decides MINpnKT with error 1/3. Let Am

denote the algorithm that runs A for m times and takes the majority. By Chernoff bound, the error of
Am is bounded by 2−m/18. Our algorithm B for deciding MINℓ-pnKT works as follows: it first defines
k = 18c2, then it takes k independent samples R̂1, . . . , R̂k ∼ Uℓ. Then for each i ∈ [k], it computes Xi =
A⌈36 log k⌉(x ◦ R̂i, 1

s, 1t, 1a, 1b). Finally, it computes V = (
∑k

i=1Xi)/k, and accepts iff V ≥ (d− 1/2)/c.
It is not hard to see that B runs in time poly(|x|, t, s, ℓ, a, c). We claim that B computes MINℓ-pnKT

with error at most 1/3. Let Yi = MINpnKT(x ◦ R̂i, 1
s, 1t, 1a, 1b). First, since the error of Am is bounded

by 2−m/18, by a union bound, we have

Pr[∃i ∈ [k], Xi ̸= Yi] ≤ k · 2−36 log k/18 =
1

k
. (42)

That is, with probability (1−1/k), all MINpnKT(x◦R̂i, 1
s, 1t, 1a, 1b) are computed correctly by A⌈36 log k⌉.

Next, if the input is in YES, then by the definition of MINℓ-pnKT, we have E[
∑k

i=1 Yi] ≥ k · d/c. Also, Yi
are independent identically distributed random variables in {0, 1}. Therefore, using Chernoff bound, we get

Pr

[
k∑

i=1

Yi < k · d− 1/3

c

]
≤ exp

(
−2 · 1

9c2
· k

)
= e−4. (43)

Combining Equations (42) and (43) with union bound, we have

Pr

[
k∑

i=1

Xi < k · d− 1/3

c

]
≤ e−4 +

1

k
≤ 1

3

That is, the probability of B rejecting an input from YES is at most 1/3. Similarly, one can show that
the probability of B accepting an input from NO is at most 1/3. Hence we conclude that MINℓ-pnKT =
(YES,NO) ∈ prBPP.

C.2.2 Useful Bounds for ℓ-pnKt
λ,γ

In this section, we state and prove the following lemmas for ℓ-pnK. They are important ingredients in
the proof of the hard direction of Theorem 9.

Lemma 70. There exists a polynomial p such that the following holds. For any n,m, k, t, ℓ ∈ N+, any
λ, γ ∈ (0, 1) and any string x ∈ {0, 1}n, y ∈ {0, 1}m, z ∈ {0, 1}mk, we have

ℓ-pnKt+p(nmkℓ)
λ,γ (x ◦ DPk(y; z)) ≤ ℓ-pnKt

λ,γ(x ◦ y) +mk + log p(nmkℓ).
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Proof. Let s = ℓ-pnKt
λ,γ(x ◦ y). We say that r̂ ∈ {0, 1}ℓ is good, if pnKt

λ(x ◦ y ◦ r̂) ≤ s + ℓ. Then by
the definition of ℓ-pnK, with probability at least γ over r̂ ∼ Uℓ, r̂ is good. For a good r̂, by the definition of
pnK, we have

Pr
r∼Ut

[
nKt(x ◦ y ◦ r̂ | ϵ; r) ≤ s+ ℓ

]
≥ λ.

By randomness extension (Definition 12), for any t′ ≥ t we have

Pr
r′∼Ut′

[
nKt(x ◦ y ◦ r̂ | ϵ; r′) ≤ s+ ℓ

]
≥ λ.

For any integer i, let ĩ denote the binary encoding of i with each bit duplicated, concatenated with 01. Let
M be the Turing machine satisfying the following.

For any n,m, k, ℓ ∈ N+, for any strings x ∈ {0, 1}n, y ∈ {0, 1}m, z ∈ {0, 1}mk, r̂ ∈
{0, 1}ℓ, w ∈ {0, 1}∗,

M(ñ ◦ m̃ ◦ k̃ ◦ ℓ̃ ◦ z;x ◦ y ◦ r̂;w; ϵ) = (x ◦ DPk(y; z) ◦ r̂)

in poly(nmkℓ) steps.

By efficient universality (Definition 12), (x ◦ y ◦ r̂) → (x ◦ DPk(y; z) ◦ r̂) is in non-deterministic time
poly(nmkℓ) and size (mk + O(log(nmkℓ))). Then by efficient composition (Definition 12), for a large
enough polynomial p, for any good r̂, we get

Pr
r′∼Ut+p(nmkℓ)

[
nKt+p(nmkℓ)(x ◦ DPk(y; z) ◦ r̂ | ϵ; r′) ≤ s+ ℓ+mk + log p(nmkℓ)

]
≥ λ.

In other words, pnKt+p(nmkℓ)
λ (x ◦ DPk(y; z) ◦ r̂) ≤ s + ℓ + mk + log p(nmkℓ). Because the fraction of

good r̂ ∼ Uℓ is at least γ, we conclude that

ℓ-pnKt
λ,γ(x ◦ DPk(y; z)) ≤ s+mk + log p(nmkℓ),

Substituting s by ℓ-pnKt
λ,γ(x ◦ y) finishes the proof.

Lemma 71. For any n,m, k, t, ℓ ∈ N+, any λ, γ, α ∈ (0, 1) satisfying α < γ, and any string x ∈ {0, 1}n,
we have

Pr
z∼Um

[
ℓ-pnKt

λ,γ(x ◦ z) ≥ (ℓ+m)-pnKt
λ,γ−α(x) +m

]
≥ α.

Proof. Let s be the smallest integer satisfying

Pr
z∼Um

[
ℓ-pnKt

λ,γ(x ◦ z) ≤ s
]
≥ 1− α.

Then by the definition of ℓ-pnK, we have

Pr
z∼Um

[
Pr
r̂∼Uℓ

[
pnKt

λ(x ◦ z ◦ r̂) ≤ s+ ℓ
]
≥ γ

]
≥ 1− α.

Therefore, we have
Pr

z∼Um
r̂∼Uℓ

[
pnKt

λ(x ◦ z ◦ r̂) ≤ s+ ℓ
]
≥ γ(1− α) ≥ γ − α.

By the definition of ℓ-pnK, we get

(ℓ+m)-pnKt
λ,γ−α(x) ≤ s−m.
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In other words, s ≥ (ℓ+m)-pnKt
λ,γ−α(x) +m. Now by minimality of s, we get

Pr
z∼Um

[
ℓ-pnKt

λ,γ(x ◦ z) ≤ s− 1
]
< 1− α.

In other words, Prw∼Um [ℓ-pnK
t
λ,γ(x ◦ w) ≥ s] > α. Substituting s, we get

Pr
z∼Um

[
ℓ-pnKt

λ,γ(x ◦ z) ≥ (ℓ+m)-pnKt
λ,γ−α(x) +m

]
≥ α.

This completes the proof.

Lemma 72. There exists a polynomial p, such that the following holds. For any string x, y ∈ {0, 1}∗ and
any parameters ℓ, t, t1, t2 ∈ N+ and γ, γ′, λ, λ′ ∈ (0, 1) satisfying the following constraints:

• t2 ≤ ℓ,

• t ≥ t1 + p(|x|+ |y|+ ℓ),

• (1− γ) ≥ (1− γ′) + (1− λ′),

we have
ℓ-pnKt

λ,γ(x ◦ y) ≤ ℓ-pnKt1
λ,γ′(x) + pnKt2

λ′(y | x) + log p(|x|+ |y|+ ℓ).

Proof. The idea is, if t2 ≤ ℓ, then we can use the random string generated along with x for pnKt2
λ′(y | x).

Let ℓ-pnKt1
λ,γ′(x) = s1, and pnKℓ

λ′(y | x) = s2. Without loss of generality, we assume that s2 ≤ |x| + |y|,
because otherwise, by Lemma 65, when p is a large enough polynomial, we have ℓ-pnKp(|x|+|y|+ℓ)

λ,γ (x ◦ y) ≤
|x|+ |y|+ log p(|x|+ |y|+ ℓ), which finishes the proof. For any string r̂ ∈ {0, 1}ℓ, we define the following
conditions:

(C1) r̂ satisfies pnKt1
λ (x ◦ r̂) ≤ s1 + ℓ.

(C2) r̂ satisfies nKℓ(y | x; r̂) ≤ s2.

Then we have the following claim:

Claim 73. If r̂ satisfies both (C1) and (C2), then for large enough polynomial p, we have pnKt
λ(x ◦ y ◦ r̂) ≤

s1 + s2 + ℓ+ log p(|x|+ |y|+ ℓ).

Proof of Claim 73. By (C1), we have

Pr
r∼Ut1

[
nKt1(x ◦ r̂ | ϵ; r) ≤ s1 + ℓ

]
≥ λ.

By randomness extension (Definition 12), for any t′ ≥ t1, we get

Pr
r′∼Ut′

[
nKt1(x ◦ r̂ | ϵ; r′) ≤ s1 + ℓ

]
≥ λ. (44)

By (C2), we have
(x; r̂) → y in time ℓ and size s2. (45)

Let Π be the program of Equation (45). Let M be the Turing machine which gives efficient simulation for
the computational model (Definition 12), then for a large enough polynomial p0, since s2 ≤ |x| + |y|, we
have
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• ∀w ∈ {0, 1}ℓ, M(Π;x;u; r̂) outputs either y or ⊥ in p0(|x|+ |y|+ ℓ) steps,

• ∃w ∈ {0, 1}ℓ, M(Π;x;u; r̂) outputs y in p0(|x|+ |y|+ ℓ) steps.

For any integer i, let ĩ denote the binary encoding of i with each bit duplicated, concatenated with 01. Let
M ′ be the Turing machine satisfying the following.

For any Π, x, w, r̂ ∈ {0, 1}∗ and any ℓ ∈ N satisfying ℓ ≤ |u|, on input (|̃x| ◦ ℓ̃ ◦Π;x ◦ r̂;w; ϵ),
M ′ runs M(Π;x;wℓ; r̂) to obtain y, where wℓ denotes the length-ℓ prefix of w. If y ̸= ⊥, it
outputs x ◦ y ◦ r̂; otherwise it outputs ⊥.

Then for a large enough polynomial p1, for any t′ ≥ t we have

• ∀w ∈ {0, 1}t′ , M ′(|̃x| ◦ ℓ̃ ◦Π;x ◦ r̂;w; ϵ) outputs either (x ◦ y ◦ r̂) or ⊥ in p1(|x|+ |y|+ ℓ) steps,

• ∃w ∈ {0, 1}t′ , M ′(|̃x| ◦ ℓ̃ ◦Π;x ◦ r̂;w; ϵ) outputs (x ◦ y ◦ r̂) in p1(|x|+ |y|+ ℓ) steps.

By efficient universality (Definition 12), when p2 is a large enough polynomial, we get

(x ◦ r̂) → (x ◦ y ◦ r̂) in non-deterministic time p2(|x|+ |y|+ ℓ)

and size (s2 + log p2(|x|+ |y|+ ℓ)). (46)

By apply efficient composition (Definition 12) to Equations (44) and (46), when p is a large enough
polynomial, we get

Pr
r′∼Ut1+p(|x|+|y|+ℓ)

[
nKt1+p(|x|+|y|+ℓ)(x ◦ y ◦ r̂ | ϵ; r′) ≤ s1 + s2 + ℓ+ log p(|x|+ |y|+ ℓ)

]
≥ λ.

Since t ≥ t1 + p(|x|+ |y|+ ℓ), we get

pnKt
λ(x ◦ y ◦ r̂) ≤ s1 + s2 + ℓ+ log p(|x|+ |y|+ ℓ).

This completes the proof of the claim. ⋄

By the definitions of ℓ-pnK and pnK, for r̂ ∼ Uℓ, r̂ satisfies (C1) with probability at least γ′, and r̂
satisfies (C2) with probability at least λ′. By union bound, with probability at least 1−(1−γ′)−(1−λ′) ≥ γ,
r̂ satisfies both (C1) and (C2). Hence by the definition of ℓ-pnK and Claim 73, we have

ℓ-pnKt
λ,γ(x ◦ y) ≤ ℓ-pnKt1

λ,γ′(x) + pnKℓ
λ′(y | x) + log p(|x|+ |y|+ ℓ).

Since t2 ≤ ℓ, by randomness & non-determinism extension (Definition 12), we have pnKℓ
λ′(x) ≤ pnKt2

λ′(x).
Hence we get

ℓ-pnKt
λ,γ(x ◦ y) ≤ ℓ-pnKt1

λ,γ′(x) + pnKt2
λ′(y | x) + log p(|x|+ |y|+ ℓ).

as desired.
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C.2.3 Main Lemma: Bounding Conditional pK

Lemma 74. Suppose MINpnKT ∈ prBPP. Then there exists a polynomial p and an integer N0 ∈ N+ such
that the following holds. For any n,m, τ, ℓ, t, b, d ∈ N+ and any string x ∈ {0, 1}n, y ∈ {0, 1}m satisfying
the following constraints:

• 2/3 < b/n3, d/n3 < 1,

• N0 ≤ n ≤ m ≤ τ .

• τ ≤ ℓ ≤ τ4,

• t ≥ 2p(τ),

we have

pKp(t)(y | x) ≤ pnKτ
1−1/n3(y | x) + ℓ-pnKt−p(τ)

b/n3,(d+1)/n3(x)− (ℓ+ τ3)-pnKt+p(τ)
(b−1)/n3,(d−2)/n3(x) + log p(t).

Proof. Let p1, p2, p3, p4 be the polynomials defined in Lemmas 65, 67, 70 and 72 respectively. Without loss
of generality, we assume they are all monotone. We define k as

k := ℓ-pnKt−p3(τ8)
b/n3,d/n3(x ◦ y)− (ℓ+ τ3)-pnKt+p2(τ6)

(b−1)/n3,(d−2)/n3(x) + ⌈log p3(τ8)⌉+ ⌈log p2(τ6)⌉+ 1. (47)

By our assumptions on the parameters, when N0 is large enough, we have n+m+ ℓ+ τ3 ≤ τ6. Hence we
have

k ≥ ℓ-pnKt−p3(τ8)
b/n3,d/n3(x ◦ y)− (ℓ+ τ3)-pnKt+p2(τ6)

(b−1)/n3,(d−2)/n3(x) + log p2(τ
6) + 1

≥ ℓ-pnKt−p3(τ8)
b/n3,d/n3(x ◦ y)− ℓ-pnKt

(b−1)/n3,(d−2)/n3(x ◦ y) + 1 (By Lemma 67)

≥ ℓ-pnKt−p3(τ8)
b/n3,d/n3(x ◦ y)− ℓ-pnKt−p3(τ8)

b/n3,d/n3(x ◦ y) + 1 (By Lemma 66)

= 1. (48)

Next, we upper bound and lower bound the value of k, and use DPG reconstruction lemma to finish the
proof.

Upper Bound for k. Since n ≤ m ≤ τ , by Lemma 72, we get

ℓ-pnKt−p3(τ8)
b/n3,d/n3(x ◦ y) ≤ pnKτ

1−1/n3(y | x) + ℓ-pnKt−p3(τ8)−p4(τ6)
b/n3,(d+1)/n3 (x) + log p4(τ

6). (49)

Therefore, by combining Equations (47) and (49), we have

k ≤ pnKτ
1−1/n3(y | x) + ℓ-pnKt−p3(τ8)−p4(τ6)

b/n3,(d+1)/n3 (x)− (ℓ+ τ3)-pnKt+p2(τ6)
(b−1)/n3,(d−2)/n3(x)

+ log p3(τ
8) + log p2(τ

6) + log p4(τ
6) + 3.

Therefore, when q1 is a large enough polynomial, we get

k ≤ pnKτ
1−1/n3(y | x) + ℓ-pnKt−q1(τ)

b/n3,(d+1)/n3(x)− (ℓ+ τ3)-pnKt+q1(τ)
(b−1)/n3,(d−2)/n3(x) + log q1(τ). (50)
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Lower Bound for k. We first show a loose upper bound on k when p and N0 are large enough. Based on
this, we give a lower bound for k. When p is a large enough polynomial such that p(z) ≥ p3(z

8) + p1(z
6),

t ≥ p(τ) ≥ p3(τ
8) + p1(τ

6). By Lemma 65, ℓ-pnKt−p3(τ8)
b/n3,d/n3(x ◦ y) ≤ n + m + log p1(n + m + ℓ) ≤

2τ + log p1(τ
6). By Lemma 64, we also have (ℓ+ τ3)-pnKt+p2(τ6)

(b−1)/n3,(d−2)/n3(x) ≥ −3. Therefore, we have
a loose upper bound for k:

k ≤ 2τ + log p1(τ
6) + log p3(τ

8) + log p2(τ
6) + 6.

Since τ ≥ N0, when N0 is a large enough constant, we have k ≤ 3τ . Therefore, we get mk + k ≤ τ3, and
τ6 ≥ ℓ+ τ3 + n. By Lemma 67, we get

(ℓ+ τ3)-pnKt+p2(τ6)
(b−1)/n3,(d−2)/n3(x)− log p2(τ

6) ≤ (ℓ+ τ3)-pnKt+p2(ℓ+τ3+n)
(b−1)/n3,(d−2)/n3(x)− log p2(ℓ+ τ3 + n)

≤ (ℓ+mk + k)-pnKt
(b−1)/n3,(d−2)/n3(x).

We also have τ8 ≥ nmkℓ, which gives us

ℓ-pnKt−p3(τ8)
b/n3,d/n3(x ◦ y) + log p3(τ

8) ≥ ℓ-pnKt−p3(nmkℓ)
b/n3,d/n3 (x ◦ y) + log p3(nmkℓ).

Therefore, we can now lower bound k:

k = ℓ-pnKt−p3(τ8)
b/n3,d/n3(x ◦ y)− (ℓ+ τ3)-pnKt+p2(τ6)

(b−1)/n3,(d−2)/n3(x) + ⌈log p3(τ8)⌉+ ⌈log p2(τ6)⌉+ 1

≥ ℓ-pnKt−p3(nmkℓ)
b/n3,d/n3 (x ◦ y) + log p3(nmkℓ)− (ℓ+mk + k)-pnKt

(b−1)/n3,(d−2)/n3(x) + 1. (51)

Distinguisher for the Direct Product Generator. By Equation (18), when N0 is large enough, k ≥ 1
always holds. Here we define an algorithm D to distinguish DPk(y;Umk) from Umk+k. We set the threshold

s = ℓ-pnKt−p3(nmkℓ)
b/n3,d/n3 (x ◦ y) +mk + ⌊log p3(nmkℓ)⌋. (52)

By Lemma 69, MINpnKT ∈ BPP implies MINℓ-pnKT ∈ prBPP. Let B be the polynomial-time algorithm
that decides MINℓ-pnKT with error 1/n4. We define the distinguisher D as follows:

1. D gets input z ∈ {0, 1}mk+k.

2. D outputs B(x ◦ z, 1s, 1t, 1ℓ, 1n3
, 1b, 1n

3
, 1d).

In fact, if z ∼ DPk(y;Umk), then by Lemma 70 and eq. (52), we get

Pr
w∼Umk

[
ℓ-pnKt

b/n3,d/n3(x ◦ DPk(y;w)) ≤ s
]
= 1.

Therefore, we have

Pr
w∼Umk

Randomness of D

[D(DPk(y;w)) = 1] ≥ 1− 1

n4
. (53)

On the other hand, if z ∼ Umk+k, then by Lemma 71, we get

Pr
w∼Umk+k

[
ℓ-pnKt

(b−1)/n3,(d−1)/n3(x ◦ w) ≥ (ℓ+mk + k)-pnKt
(b−1)/n3,(d−2)/n3(x) +mk + k

]
≥ 1

n3
.

But by Equations (51) and (52), we have

(ℓ+mk + k)-pnKt
(b−1)/n3,(d−2)/n3(x) +mk + k ≥ s+ 1.
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Combining these two inequalities, we get

Pr
w∼Umk+k

[
ℓ-pnKt

(b−1)/n3,(d−1)/n3(x ◦ w) ≥ s+ 1
]
≥ 1

n3
.

Therefore, we have

Pr
w∼Umk+k

Randomness of D

[D(w) = 1] ≤ 1− 1

n3
+

1

n4
. (54)

By comparing Equation (53) and Equation (54), we see that D distinguishes DPk(y;Umk) from Umk+k with
probability 1/n3 − 2/n4 ≥ 1/n4. Then by Corollary 24, there exists some polynomial p

DP
such that

pKp
DP

(t),∥D(y) ≤ k + log p
DP
(t).

We can store the program of D in the description, as well as t, s, ℓ, which takes no more than O(log t) bits.
If we have x, then we can simulate D in time poly(t), and answer the oracle queries. Therefore, when q2 is
a large enough polynomial, we have

pKq2(t)(y | x) ≤ k + log q2(t). (55)

Putting It All Together. To summarize the previous paragraphs, when p is a large enough polynomial and
N0 is a large enough constant, by Equation (50) there exists some polynomial q1 such that

k ≤ pnKτ
1−1/n3(y | x) + ℓ-pnKt−q1(τ)

b/n3,(d+1)/n3(x)− (ℓ+ τ3)-pnKt+q1(τ)
(b−1)/n3,(d−2)/n3(x) + log q1(τ).

Also, by Equation (55), there exists some polynomial q2 such that

k ≥ pKq2(t)(y | x)− log q2(t).

Combining these two inequalities, we get

pKq2(t)(y | x) ≤ pnKτ
1−1/n3(y | x) + ℓ-pnKt−q1(τ)

b/n3,(d+1)/n3(x)

− (ℓ+ τ3)-pnKt+q1(τ)
(b−1)/n3,(d−2)/n3(x) + log q1(τ) + log q2(t).

Therefore, when p is a large enough polynomial, we get

pKp(t)(y | x) ≤ pnKτ
1−1/n3(y | x) + ℓ-pnKt−p(τ)

b/n3,(d+1)/n3(x)− (ℓ+ τ3)-pnKt+p(τ)
(b−1)/n3,(d−2)/n3(x) + log p(t).

This concludes the proof.

C.2.4 Proof of Theorem 62

We first state and prove the following lemma, then we prove Theorem 62 using this lemma.

Lemma 75. Let L = SAT, and define Ln = L∩{0, 1}n. Suppose L ∈ NTIME[nc]. For a given x ∈ {0, 1}n,
define Ax ⊆ {0, 1}nc

to be the set of witnesses for x. If MINpnKT ∈ prBPP, then there exists a polynomial
p such that for any n, any x ∈ Ln and any y ∈ Ax, we have

pKp(n)(y | x) ≤ log |Ax|+ log p(n).
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Proof. If x ∈ Ln, then by Theorem 4, there exists some polynomial p
LC

such that for any y ∈ Ax,
pnKp

LC
(nc),Ax(y) ≤ log |Ax|+ log p

LC
(nc). Since Ax is decidable in time nc given x, and by Lemma 29 we

can amplify the success probability, we get that there exists some polynomial p1 such that p1(z) ≥ zd, and

pnK
p1(n)
1−1/n3(y | x) ≤ log |Ax|+ log p1(n). (56)

Let p2 be the polynomial stated in Lemma 74. Let m = nc, τ = p1(n). Then by Lemma 74, when n is large
enough, for any ℓ, t, b, d ∈ N+ satisfying 2/3 < b/n3, d/n3 < 1, τ ≤ ℓ ≤ τ4, t ≥ p2(τ), and any string
x ∈ {0, 1}n, y ∈ {0, 1}nc

, we have

pKp2(t)(y | x) ≤ pnKτ
1−1/n3(y | x)+ℓ-pnKt−p2(τ)

b/n3,(d+1)/n3(x)−(ℓ+τ3)-pnKt+p2(τ)
(b−1)/n3,(d−2)/n3(x)+log p2(t).

Now, setting t to be some polynomial of n, if we can bound

ℓ-pnKt−p(τ)
b/n3,(d+1)/n3(x)− (ℓ+ τ3)-pnKt+p(τ)

(b−1)/n3,(d−2)/n3(x)

by a constant, then using Equation (56), we are done. Even though we don’t know how to do this directly,
we can use the telescoping trick. More specifically, let p3 be the polynomial stated in Lemma 65. We define
four sequences {ℓi}ni=0, {ti}ni=0, {bi}ni=0 and {di}ni=0 inductively:

• ℓ0 = τ3; ℓi = ℓi−1 + τ3, ∀i ∈ [n].

• t0 = 2p2(τ) + p3(τ
6); ti = ti−1 + 2p2(τ), ∀i ∈ [n].

• b0 = ⌊3n3/4⌋; bi = bi−1 − 1, ∀i ∈ [n].

• d0 = ⌊3n3/4⌋; di = di−1 − 3, ∀i ∈ [n].

It is not hard to verify that for any i ∈ {0, . . . , n}, ℓi, ti, bi, di satisfies the conditions of Lemma 74. Hence
we get

pKp2(ti)(y | x) ≤ pnKτ
1−1/n3(y | x)+ℓi-pnK

ti−p2(τ)
bi/n3,(di+1)/n3(x)−(ℓi+τ3)-pnKti+p2(τ)

(bi−1)/n3,(di−2)/n3(x)+log p2(ti).
(57)

Now using a telescoping argument, we get

ℓ0-pnKt0−p2(τ)
b0/n3,(d0+1)/n3(x)− ℓn-pnKtn−p2(τ)

bn/n3,(dn+1)/n3(x)

=

n−1∑
i=0

(
ℓi-pnK

ti−p2(τ)
bi/n3,(di+1)/n3(x)− ℓi+1-pnKti+1−p2(τ)

bi+1/n3,(di+1+1)/n3(x)
)

=

n−1∑
i=0

(
ℓi-pnK

ti−p2(τ)
bi/n3,(di+1)/n3(x)− (ℓi + τ3)-pnKti+p2(τ)

(bi−1)/n3,(di−2)/n3(x)
)

By Lemma 65, we have

ℓ0-pnKt0−p2(τ)
b0/n3,(d0+1)/n3(x) ≤ τ3-pnKp3(τ6)

b0/n3,(d0+1)/n3(x) ≤ n+ log p3(τ
6),

which is at most 2n for all large enough n. By averaging, there must be some i ∈ {0, . . . , n− 1} such that(
ℓi-pnK

ti−p2(τ)
bi/n3,(di+1)/n3(x)− (ℓi + τ3)-pnKti+p2(τ)

(bi−1)/n3,(di−2)/n3(x)
)
≤ 2. For such an i, by Equation (57) we

have
pKp2(ti)(y | x) ≤ pnKτ

1−1/n3(y | x) + log p2(ti) + 2.
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Note that ti ≤ tn. Then the above yields

pKp2(tn)(y | x) ≤ pnKτ
1−1/n3(y | x) + log p2(tn) + 2.

Combining this with Equation (56), we get that for all large enough n, for any x ∈ Ln

pKp2(tn)(y | x) ≤ log |Ax|+ log p1(n) + log p2(tn) + 2.

Notice that tn ≤ (2n+2)p2(τ)+p3(τ
6) = (2n+2)p2(p1(n))+p3(p

6
1(n)), which is polynomially bounded

by n. Hence for a large enough polynomial p, we have

pKp(n)(y | x) ≤ log |Ax|+ log p(n),

as desired.

Proof of Theorem 62 from Lemma 75. Our randomized polynomial-time algorithm B for deciding L =
SAT works as follows:

1. B gets x ∈ {0, 1}n as input.

2. B takes a sample y from USamp(1n
c
, 1p(n), x).

3. B checks if y is a witness for x.

4. B repeats step 2 and 3 for O(nc ·p(n)) rounds. If at any round, y is indeed a witness for x, B accepts;
otherwise B rejects.

If x ̸∈ Ln, then Ax = ∅, so B never accepts x. If x ∈ Ln, then by Lemma 75 and Proposition 26, for any
y ∈ Ax, the probability that USamp(1n

c
, 1p(n), x) = y is at least Ω(1/(nc · p(n) · |Ax|)). Summing the

probability, we get

Pr
y∼USamp(1nc ,1p(n),x)

[y ∈ Ax] ≥ Ω

(
1

nc · p(n)

)
.

Therefore, if we sample for O(nc · p(n)) times, we can obtain some y ∈ Ax with probability Ω(1). Hence
B accepts x with probability Ω(1). Hence we get L ∈ BPP. Since L = SAT is NP-complete, we conclude
that NP ⊆ BPP.
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