
SIGACT News Complexity Theory Column (DRAFT1)1

Meta-Mathematics of Computational Complexity Theory2

Igor C. Oliveira2
3

4

Abstract5

We survey results on the formalization and independence of mathematical statements related to major6

open problems in computational complexity theory. Our primary focus is on recent findings concerning7

the (un)provability of complexity bounds within theories of bounded arithmetic. This includes the tech-8

niques employed and related open problems, such as the (non)existence of a feasible proof that P = NP.9

Contents10

1 Introduction 211

2 Preliminaries 312

2.1 Complexity Theory . 313

2.2 Theories of Bounded Arithmetic . 314

2.2.1 PV1 . 415

2.2.2 S12, T1
2, and Beyond . 416

2.2.3 APC1 . 617

3 Auxiliary Definitions and Results 618

3.1 Witnessing Theorems . 619

3.2 Bounded Arithmetic and Propositional Proofs . 720

3.3 Cuts of Models of Bounded Arithmetic . 821

4 The Strength of Bounded Arithmetic 922

4.1 Formalization of Results from Algorithms and Complexity . 923

4.2 Concrete Example: Subbotovskaya’s Formula Lower Bound in PV1 1024

5 Unprovability of Complexity Bounds 1425

5.1 Unprovability of Upper Bounds . 1426

5.1.1 LEARN-Uniform Circuits and Unprovability . 1427

5.1.2 P = NP and Propositional Proof Complexity . 1728

5.2 Unprovability of Lower Bounds . 1829

5.2.1 Average-Case Circuit Lower Bounds . 1830

5.2.2 Extended Frege Lower Bounds . 2031

5.3 Connection Between Upper Bounds and Lower Bounds . 2232

6 Additional Recent Developments 2333

1Latest Update: July 10, 2024. Comments are welcome and would be appreciated.
2Department of Computer Science, University of Warwick, UK. Email: igor.oliveira@warwick.ac.uk.

1

1 Introduction34

The investigation of the inherent complexity of computational tasks is a central research direction in35

theoretical computer science. While unconditional results are known in a variety of restricted contexts36

(i.e., with respect to weak models of computation), despite significant efforts, several central questions of37

the field remain wide open. Prominent examples include the relation between complexity classes P and NP,38

understanding the power of non-uniform Boolean circuits, and bounding the length of proofs in propositional39

proof systems such as Frege and extended Frege.40

The investigation of the difficulty of settling these problems has long been an important and influential41

area of research by itself (e.g., barrier results such as [BGS75, RR97, AW09, CHO+22]). Unfortunately,42

these results tend to be ad-hoc and do not consider a standard and robust notion of proof. In order to build43

a general theory, several works have considered provability in the usual sense of mathematical logic. Most44

importantly, this enables a deeper investigation of complexity theory that considers not only the running45

time of a program or the size of a circuit but also the feasibility of proving their existence and correctness.46

In particular, we can explore the fundamental question of what can and cannot be feasibly computed, along47

with the meta-question of what lower and upper bounds can and cannot be feasibly proven.48

A fundamental goal of this research is to49

50
(⋆) identify a suitable logical theory capable of formalizing most, if not all, known results in algorithms and51

complexity, and determine whether the major open problems mentioned above are provable or unprovable52

within this theory.353

54
Although we are still far from reaching this goal, progress has been made in understanding the55

(un)provability of statements concerning the complexity of computations within certain fragments of Peano56

Arithmetic, collectively known as Bounded Arithmetic. These theories are designed to capture proofs that57

manipulate and reason with concepts from a specified complexity class. For instance, a proof by induction58

whose inductive hypothesis can be expressed as an NP predicate is one such example. The earliest theory59

of this kind was I∆0, introduced by Parikh [Par71], who explored the intuitive concept of feasibility in60

arithmetic and addressed the infeasibility of exponentiation. The relationship between Parikh’s theory and61

computational complexity was fully recognized and advanced by Paris and Wilkie in a series of influential62

papers during the 1980s (see [WP87]). Other significant theories include Cook’s theory PV1 [Coo75], which63

formalizes polynomial-time reasoning; Jeřábek’s theory APC1 [Jeř04, Jeř05, Jeř07], which extends PV1 by64

incorporating the dual weak pigeonhole principle for polynomial-time functions and formalizes probabilis-65

tic polynomial-time reasoning; and Buss’s theories Si2 and Ti
2 [Bus86], which include induction principles66

corresponding to various levels of the polynomial-time hierarchy.67

These theories are capable of formalizing advanced results. For instance, it is known that PV1 can prove68

the PCP Theorem [Pic15b], while APC1 can establish several significant circuit lower bounds [MP20],69

including monotone circuit lower bounds for k-Clique and bounded-depth circuit lower bounds for the70

Parity function. Further examples include the explicit construction of expander graphs [BKKK20] and the71

correctness of randomized polynomial-time matching algorithms [LC11], among many others.72

Given the expressive power of these theories, even if we are not yet able to establish a breakthrough73

result of the magnitude of (⋆), determining the (un)provability of complexity bounds of interest in theories74

of bounded arithmetic still represents significant progress towards our understanding of the power and limits75

of feasible computations and proofs. This survey aims to provide an introduction to some of these results,76

3As we elaborate in Section 5, the unprovability of a statement is equivalent to the consistency of its negation, which can be at
least as important.

2

the underlying techniques, and related open problems. While our primary focus is on recent developments,77

in order to provide a broader perspective we also cover some classical results. Due to space limitations, the78

survey is not exhaustive, and several references had to be omitted (although some recent developments are79

mentioned in Section 6).80

2 Preliminaries81

2.1 Complexity Theory82

We will rely on a few additional standard definitions from complexity theory, such as basic complexity83

classes, Boolean circuits and formulas, and propositional proof systems. These can be found in textbooks84

such as [AB09] and [Kra19]. Below we only establish notation and review a classical result that offers a85

convenient way to talk about polynomial-time computations in some logical theories.86

We use SIZE[s] to denote the set of languages computed by Boolean circuits of size s(n).87

In theoretical computer science, one typically considers functions and predicates that operate over binary
strings. This is equivalent to operations on integers, by identifying each non-negative integer with its binary
representation. Let N denote the set of non-negative integers. For a ∈ N, we let |a| ≜ ⌈log2(a+ 1)⌉ denote
the length of the binary representation of a. For a constant k ≥ 1, we say that a function f : Nk → N
is computable in polynomial time if f(x1, . . . , xk) can be computed in time polynomial in |x1|, . . . , |xk|.
(For convenience, we might write |x⃗| ≜ |x1|, . . . , |xk|.) Recall that FP denotes the set of polynomial time
functions. While the definition of polynomial time refers to a machine model, FP can also be introduced in
a machine independent way as the closure of a set of base functions under composition and limited recursion
on notation. In more detail, we can consider the following class F of base functions:

c(x) ≜ 0, s(x) ≜ x+ 1, a(x) ≜ ⌊x/2⌋, d(x) ≜ 2 · x, πiℓ(x1, . . . , xℓ) ≜ xi, x#y ≜ 2|x|·|y|,

88
x ≤ y ≜

{
1 if x ≤ y

0 otherwise,
Choice(x, y, z) ≜

{
y if x > 0

z otherwise.

We say that a function f(x⃗, y) is defined from functions g(x⃗), h(x⃗, y, z), and k(x⃗, y) by limited recursion89

on notation if90

f(x⃗, 0) = g(x⃗)

f(x⃗, y) = h(x⃗, y, f(x⃗, ⌊y/2⌋))
f(x⃗, y) ≤ k(x⃗, y)

for every sequence (x⃗, y) of natural numbers. Cobham [Cob65] proved that FP is the least class of functions91

that contains F and is closed under composition and limited recursion on notation.92

2.2 Theories of Bounded Arithmetic93

Bounded arithmetic has a long and rich history (see [Bus97] for an introduction, and [HP93, Kra95,94

CN10] for a detailed treatment). The correspondence between the theories and complexity classes mani-95

fests in multiple ways. For instance, witnessing results show that every provably total function in a given96

theory TC (i.e., when ∀x ∃!y ψ(x, y) is provable, for certain formulas ψ) is computable within the corre-97

sponding complexity class C (i.e., the function y = f(x) is in C). There is also a close connection between98

3

theories of bounded arithmetic and propositional proof systems, e.g., propositional translations between99

proofs of certain sentences in PV1 or S12 and polynomial-size proofs in the extended Frege proof system of100

the corresponding propositional formulas. We review some related results in Section 3.1 and Section 3.2,101

respectively. In this section, we provide an overview of some widely investigated theories of bounded arith-102

metic: PV1, S12, T1
2, and APC1. We assume basic familiarity with first-order logic. Results claimed below103

without reference can be found in [Kra95].104

2.2.1 PV1105

PV1 [Coo75] (see also [KPT91]) is a first-order theory whose intended model is the set N of natural106

numbers, together with the standard interpretation for constants and functions symbols such as 0,+,×, etc.107

The vocabulary (language) of PV1, denoted LPV1 , contains a function symbol for each polynomial-time108

algorithm f : Nk → N (where k is any constant). These function symbols, and the axioms defining them,109

are obtained through Cobham’s characterization of polynomial-time functions discussed in Section 2.1.110

PV1 also postulates an induction axiom scheme that simulates binary search, and one can show that111

it admits induction over quantifier-free formulas (i.e., polynomial-time predicates). We discuss induction112

axioms in more detail in Section 2.2.2.113

We will use later in the text that PV1 admits a formulation where all axioms are universal formulas114

(i.e., ∀x⃗ ϕ(x⃗), where ϕ is free of quantifiers). In other words, PV1 is a universal theory.115

While the details of the definition of PV1 are fairly technical (see, e.g., the longer overview in [CLO24b]116

or the exposition in [Kra95]), such details are often not needed. In particular, PV1 has an equivalent formal-117

ization that does not require Cobham’s result [Jeř06].118

2.2.2 S12, T1
2, and Beyond119

While PV1 can be related to polynomial-time computations and feasible proofs, Buss [Bus86] intro-120

duced a hierarchy of theories with close ties to the different levels of the polynomial hierarchy. To specify121

the theories, we will need a few definitions.122

The language LB of these theories contains the predicate symbols = and ≤, the constant symbols 0 and123

1, and function symbols S (successor), +, ·, ⌊x/2⌋, |x| (interpreted as the length of x as in Section 2.1), and124

(“smash”; interpreted as x#y = 2|x|·|y|).125

A bounded quantifier is a quantifier of the form Qy ≤ t, where Q ∈ {∃, ∀} and t is a term not involving126

y. Similarly, a sharply bounded quantifier is one of the formQy ≤ |t|. Formally, such quantifiers are simply127

abbreviations. For instance,128

∀y ≤ t(x⃗) φ(x⃗, y) ≜ ∀y (y ≤ t(x⃗) → φ(x⃗, y)), and

∃y ≤ t(x⃗) φ(x⃗, y) ≜ ∃y (y ≤ t(x⃗) ∧ φ(x⃗, y)) .

A formula where each quantifier appears bounded (resp., sharply bounded) is said to be a bounded129

(resp., sharply bounded) formula. It is not hard to show that every sharply bounded formula defines a130

polynomial-time predicate over the standard model N under its usual operations. On the other hand, bounded131

quantifiers allow us to define predicates in NP, coNP, and beyond.132

We can introduce a hierarchy of formulas by counting alternations of bounded quantifiers. The class133

Πb
0 = Σb

0 contains the sharply bounded formulas. We then recursively define, for each i ≥ 1, the classes134

Σb
i and Πb

i according to the quantifier structure of the sentence, ignoring the appearance of sharply bounded135

quantifiers. For instance, if φ ∈ Σb
0 and ψ ≜ ∃y ≤ t(x⃗) φ(y, x⃗), then ψ ∈ Σb

1 (see, e.g., [Kra95] for the136

4

technical details in the general case). As alluded to above, it is known that, for each i ≥ 1, a predicate P (x⃗)137

is in Σp
i (the i-th level of the polynomial hierarchy) if and only if there is a Σb

i -formula that agrees with it138

over N.139

The theories introduced by Buss share a common set BASIC of finitely many axioms postulating the140

expected arithmetic behavior of the constants, predicates, and function symbols, e.g., x + y = y + x and141

|1| = 1 (see, e.g., [Kra95, Page 68] for the complete list). The only difference among the theories is the kind142

of induction axiom scheme that each of them postulates.143

Theory T1
2. This is a theory in the language LB extending BASIC by the induction axiom IND

φ(0) ∧ ∀x (φ(x) → φ(x+ 1)) → ∀xφ(x)

for all Σb
1-formulas φ(a). The formula φ(a) may contain other free variables in addition to a.144

145

Informally, we say that T1
2 admits induction for NP predicates. This definition can be extended to a146

theory that postulates induction for Σb
i -formulas, which gives rise to the theory Ti

2.147

Theory S12. This is a theory in the language LB extending BASIC by the polynomial induction axiom
PIND

φ(0) ∧ ∀x (φ(⌊x/2⌋) → φ(x)) → ∀xφ(x)

for all Σb
1-formulas φ(a). The formula φ(a) may contain other free variables in addition to a.148

149

Analogously to Ti
2, we can define the theories Si2 via polynomial induction for Σb

i -formulas. It is known150

that PV1 is essentially equivalent to T0
2 under an appropriate vocabulary and axioms [Jeř06], and that Si2 ⊆151

Ti
2 ⊆ Si+1

2 for every i ≥ 1.152

When stating and proving results in S12, it is convenient to employ a more expressive vocabulary under153

which any polynomial-time function can be easily described. Moreover, it is possible to achieve this in a154

conservative way, i.e., without increasing the power of the theory. In more detail, let Γ be a set of LB-155

formulas. We say that a polynomial-time function f : Nk → N is Γ-definable in S12 if there is a formula156

ψ(x⃗, y) ∈ Γ for which the following conditions hold:157

(i) For every a ∈ Nk, f (⃗a) = b if and only if N |= φ(⃗a, b).158

(ii) S12 ⊢ ∀x⃗ (∃y (φ(x⃗, y) ∧ ∀z (φ(x⃗, z) → y = z)) .159

Every function f ∈ FP is Σb
1-definable in S12. By adding all functions in FP to the vocabulary of S12 and160

by extending the axioms of S12 with their defining equations, we obtain a theory S12(LPV) that can refer161

to polynomial-time predicates using quantifier-free formulas. S12(LPV) proves the polynomial induction162

scheme for both Σb
1-formulas and Πb

1-formulas in the extended vocabulary. S12(LPV) is conservative over163

S12, in the sense that any LB-sentence provable in S12(LPV) is also provable in S12.164

A ∀Σb
i -sentence is simply a sentence ψ = ∀x⃗ φ(x⃗) where φ ∈ Σb

i . Every ∀Σb
1-sentence provable in165

S12(LPV) is also provable in PV1. In other words, S12(LPV) is ∀Σb
1-conservative over PV1. On the other166

hand, it is known that if S12(LPV) = PV1, then the polynomial-time hierarchy collapses.167

5

2.2.3 APC1168

In order to formalize probabilistic methods and randomized algorithms, Jeřábek [Jeř04, Jeř05, Jeř07]
formulated the theory APC1 (this terminology is from [BKT14]) by extending PV1 with the dual Weak
Pigeonhole Principle (dWPHP) for PV1 functions:4

APC1 ≜ PV1 ∪ {dWPHP(f) | f ∈ LPV}.

Informally, each sentence dWPHP(f) postulates that, for every length n = |N |, there is y < (1 + 1/n) · 2n169

such that f(x) ̸= y for every x < 2n.170

It is known that the dual Weak Pigeonhole Principle for polynomial-time predicates can be proved in T2
2171

[MPW02], and consequently APC1 ⊆ T2
2(LPV).172

3 Auxiliary Definitions and Results173

3.1 Witnessing Theorems174

Suppose a sentence ψ of a certain syntactic form admits a proof in a theory T over a vocabulary L. A175

witnessing theorem allows us to extract computational information from any such proof, by showing that an176

existential quantifier in ψ can be witnessed by L-terms. The simplest example of such a result is stated next.177

Theorem 3.1 (Herbrand’s Theorem (see, e.g., [Bus94, McK10])). Let T be a universal theory over a vo-
cabulary L. Let φ(x, y) be a quantifier-free L-formula, and suppose that T ⊢ ∀x ∃y φ(x, y) . There is a
constant k ≥ 1 and L-terms t1(x), . . . , tk(x) such that

T ⊢ φ(x, t1(x)) ∨ φ(x, t2(x)) ∨ . . . ∨ φ(x, tk(x)) .

As an immediate consequence, if we apply Theorem 3.1 to T ≜ PV1, we obtain LPV-terms (correspond-178

ing to polynomial-time functions over N) such that, given a ∈ N, at least one of them produces a witness179

b ∈ N such that N |= φ(a, b).180

Next, we consider the provability of more complex sentences in a universal theory.181

Theorem 3.2 (KPT Theorem [KPT91]). Let T be a universal theory with vocabulary L, ϕ be an open
L-formula, and suppose that T ⊢ ∀w ∃u∀v ϕ(w, u, v). Then there exist a constant k ≥ 1 and L-terms
t1, . . . , tk such that

T ⊢ ϕ(w, t1(w), v1) ∨ ϕ(w, t2(w, v1), v2) ∨ . . . ∨ ϕ(w, tk(w, v1, . . . , vk−1), vk) ,

where the notation ti(w, v1, . . . , vi−1) indicates that these are the only variables occurring in ti.182

Theorem 3.2 has a natural interpretation as an interactive game with finitely many rounds, which we183

revisit in Section 5.1.1 in the context of the provability of circuit upper bounds.184

A similar form of Theorem 3.2 holds under the provability of a ∀∃∀∃-sentence (see, e.g., [CKK+24]185

for a concrete application in the context of circuit lower bounds). In contrast, there is no straightforward186

analogue of the KPT Theorem for a larger number of quantifier alternations. In this case, more general187

formulations are needed, such as the ones considered in [Pud06, BKT14, LO23].188

4The dWPHP axiom scheme is also referred to as the surjective Weak Pigeonhole Principle in some references.

6

It is also possible to establish witnessing theorems for theories that are not universal. This can be done189

either by first transforming the theory into a universal theory through the inclusion of new function symbols190

and quantifier elimination, or via direct approaches (see, e.g., [Kra95, Section 7.3]). Another example is191

Buss’s Theorem for S12, which can be used to show that every ∀Σb
1-sentence provable in S12(LPV) is also192

provable in PV1. This has two implications. First, we can combine this result with Theorem 3.1, which193

yields polynomial-time algorithms from proofs of ∀Σb
1-sentences in S12(LPV). Second, this means that in194

some situations we can establish the provability of a sentence in PV1 using the more convenient theory195

S12(LPV) (see Section 4.2 for an example).196

3.2 Bounded Arithmetic and Propositional Proofs197

In this section, we explain a connection between PV1 and the extended Frege proof system discovered198

by [Coo75]. In short, it says that if a universal LPV-sentence ϕ(x) is provable in PV1, then there is a199

translation of ϕ(x) into a sequence {Gn}n≥1 of propositional formulas Gn(p1, . . . , pn) such that each Gn200

has an extended Frege proof πn of size polynomial in n.5201

First, we review some concepts and fix notation, deferring the details to a standard textbook202

(e.g., [Kra19]). Recall that a propositional formula G(p1, . . . , pn) is formed using variables p1, . . . , pn,203

constants 0 and 1, and logical connectives ∧, ∨, and ¬. A Frege (F) proof system is a “textbook” style204

proof system for propositional logic. It can be formulated as a finite set of axiom schemes together with the205

modus ponens rule. F is known to be sound and complete. We measure the size of a Frege proof in terms206

of the number of symbols occurring in the proof. In the extended Frege (eF) proof system, we also allow207

repeated subformulas appearing in a proof to be abbreviated via new symbols.208

Cook’s Translation [Coo75]. Let φ be a universal LPV-sentence of the form φ ≜ ∀xψ(x), where ψ(x) is209

free of quantifiers. Cook [Coo75] established that if φ is provable in PV1, then there is a sequence {Gn}n≥1210

of propositional tautologies such that211

– Each Gn(p1, . . . , pn) is a polynomial-size formula.212

– Gn encodes that ψ(x) is true whenever |x| ≤ n, i.e., over all integers encoded as n-bit strings.213

– Gn admits polynomial-size eF-proofs.214

– Moreover, the existence of polynomial-size eF-proofs for each Gn is provable in PV1. (We will need215

this additional property of the translation in Section 5.2.2.)216

For a formula ψ(x) as above, we write ||ψ||n to denote the corresponding propositional formula over inputs217

of length n.218

219

For more information about the relation between proofs in bounded arithmetic and propositional proofs,220

including additional examples of propositional translations, we refer to [Bey09, Kra19].221

5Conceptually, this is analogous to the translation of a polynomial-time Turing machine M into a sequence {Cn}n≥1 of
polynomial-size Boolean circuits, one for each input length n.

7

3.3 Cuts of Models of Bounded Arithmetic222

Many fundamental results in bounded arithmetic are established using model-theoretic techniques (see,223

e.g., the exposition of Parikh’s Theorem in [Kra95]). We will provide an example in Section 5.2.2. In this224

section, we include the required background for the result. We assume basic familiarity with model theory.225

While the definitions and results presented below can be adapted to other theories of bounded arithmetic,226

we focus on the theory S12 for concreteness.227

Definition 3.3 (Cut in a Model of Arithmetic). A cut in a model M of S12 is a nonempty set I ⊆ M such228

that:229

1. For every a, b ∈M , if b ∈ I and a < b then a ∈ I .230

2. For every a ∈M , if a ∈ I then a+ 1 ∈ I .231

In this case, we write I ⊆e M .232

Note that a cut is not necessarily closed under operations such as addition and multiplication.233

Claim 3.4. Let M be a model of S12, and let I ⊆e M . Moreover, assume that I is closed under +, ·, and
operations. Let φ(a, b⃗) be a bounded formula with all free variables displayed. Let v⃗ be elements of I .
Then for every u ∈ I ,

I |= φ(u, v⃗) ⇐⇒ M |= φ(u, v⃗).

Claim 3.4 can be proved by induction on the complexity of φ. Using the claim, one can establish the234

following lemma.235

Lemma 3.5. Let M be a model of S12, and let I ⊆e M . Moreover, assume that I is closed under +, ·, and236

operations. Then I is a model of S12.237

Since it is not hard to check that a cut I as above satisfies the BASIC axioms of S12, the proof of238

Lemma 3.5 essentially amounts to verifying that I satisfies the corresponding induction principle (see,239

e.g., [Kra95, Lemma 5.1.3] for a similar argument).240

For a model M , we say that n ∈M is a length if there is N ∈M such that n = |N |.241

Lemma 3.6. LetM0 be a nonstandard countable model of S12. Then there is a (countable) cutM ofM0 that242

is a model of S12 and a length n ∈ M for which the following holds. For every b ∈ M there is a standard243

number k such that M |= |b| ≤ nk.244

Proof. Let e ∈M0 be nonstandard, and let n ≜ |e|. Consider the set

Ie ≜ {a ∈M | a ≤ t(e) for some LB-term t}.

Note that Ie is a cut of M0. Moreover, it is not hard to check that it is closed under addition, multiplication,245

and smash operations. By Lemma 3.5, Ie is a model of S12. Finally, by construction, for every b ∈ Ie we246

have b ≤ t(e) for some LB-term t. A simple induction on the structure of t shows the existence of a standard247

number k such that |b| ≤ nk in M .248

Finally, we will need the following definition.249

Definition 3.7 (Cofinal extension). An extension M ′ of a model M is cofinal if for every a ∈ M ′ there is250

b ∈M such that a ≤ b in M ′. If this is the case, we write M ′ ⊇cf M .251

8

4 The Strength of Bounded Arithmetic252

In connection with the fundamental research goal mentioned in Section 1, research on the provability253

of complexity bounds has achieved significant progress on two complementary fronts: the formalization of254

several established results from algorithms and complexity within theories of bounded arithmetic, and the255

unprovability of complexity bounds in the same theories, often conditional on a computational assumption.256

In Section 4.1, we explore what it means to formalize results from algorithms and complexity theory257

within the framework of bounded arithmetic, highlighting some of the nuances involved. In Section 4.2, we258

present some concrete details of the formalization of a formula lower bound in PV1.259

4.1 Formalization of Results from Algorithms and Complexity260

Several central theorems from mathematics and computer science can be proved in bounded arithmetic.261

They include results from number theory [Woo81, PWW88], graph theory and extremal combinatorics262

[Oja04], randomized algorithms and probabilistic arguments [Jeř05, LC11, Lê14], probabilistic checkable263

proofs [Pic15b], circuit lower bounds [MP20], expander graphs [BKKK20], linear algebra [TC21], Zhuk’s264

CSP algorithm [Gay23, Gay24], etc. The reader can find numerous other examples in [CN10, Kra19, MP20]265

and references therein.266

In some cases, the formalization of an existing result in bounded arithmetic is straightforward, specially267

once an appropriate framework has been developed (e.g., the approximate counting framework of [Jeř07],268

which enables the use of tools from probability theory in APC1). However, sometimes one needs to discover269

a new proof whose concepts can be defined in the theory and their associated properties established using270

the available inductive axioms (e.g., Razborov’s formalization of the Switching Lemma [Raz95a]).271

We provide two instructive examples below. The first is a consequence of the formalization of the PCP272

Theorem in PV1, while the second concerns different ways of formulating a circuit lower bound statement273

in bounded arithmetic.274

The PCP Theorem in PV1. Pich [Pic15b] proved the PCP Theorem in PV1 by formalizing Dinur’s proof275

[Din07]. Exploiting the standard connection between PCPs and hardness of approximation, Pich’s result276

can be used to show that PV1 establishes the NP-hardness of approximating the value of a k-SAT instance.277

This means in particular that, for a suitable LPV-function symbol f obtained from Dinur’s argument, PV1278

proves that f is a gap-inducing reduction from the Boolean Formula Satisfiability Problem to k-SAT (for a279

sufficiently large k):280

PV1 ⊢ ∀φ
(
Valid-Fla(φ) ∧ ∃y Sat(φ, y) → Valid-k-CNF(f(φ)) ∧ ∃z Sat(f(φ), z)

)
PV1 ⊢ ∀φ

(
Valid-Fla(φ) ∧ ∀y ¬Sat(φ, y) → Valid-k-CNF(f(φ)) ∧ ∀z Value≤1−δ(f(φ), z)

)
where all the expressions are quantifier-free LPV-formulas: Valid-Fla(x) checks if x is a valid Boolean281

formula, Valid-k-CNF(x) checks if x is a valid k-CNF, Sat(u, v) checks if v is a satisfying assignment for282

u, and Value≤1−δ(u, v) holds if v satisfies at most a (1− δ)-fraction of the clauses in u (with δ > 0 being a283

universal constant from the formalized Dinur’s proof).284

In the formalization the key point is that PV1 proves that the function symbol f behaves as expected.285

In practice, in order to achieve this, a typical formalization is presented in a semi-formal way, and might286

claim on a few occasions that some algorithm f1 constructed in a particular way from another algorithm287

f2 can be defined in PV1. This means that PV1 proves that f1 behaves as described in the definition.288

9

This is possible thanks to Cobham’s characterization of FP and the axioms of PV1, which ensure that289

the theory “understands” how different algorithms are constructed from one another. In many cases, the290

verification that PV1 proves the desired properties is straightforward but tedious, requiring some initial setup291

of basic capabilities of PV1 (often referred to as “bootstrapping”) which is part of the standard background292

in bounded arithmetic.293

Circuit Lower Bound Statements. We discuss two ways of formalizing a complexity lower bound. In294

this example, for a given size bound s(n) (e.g., s(n) = n2), we consider an LPV-sentence FLBs stating that295

Boolean formulas for the parity function on n bits require at least s(n) leaves:296

∀N ∀n ∀F (n = |N | ∧ n ≥ 1 ∧ Valid-Fla(F) ∧ Size(F) < s(n) → ∃x (|x| ≤ n ∧ Eval(F, x) ̸= ⊕(x)) ,

where we identify n-bit strings with natural numbers of length at most n, and employ a well-behaved LPV-297

function symbol ⊕ such that PV1 proves the basic properties of the parity function, e.g., PV1 ⊢ ⊕(x1) =298

1−⊕(x).6299

Note that FLBs is a ∀Σb
1-sentence. Consequently, if PV1 ⊢ FLBs, we obtain via Herbrand’s Theorem300

(Theorem 3.1) a polynomial-time algorithm A that, when given N of length n and the description of an301

n-bit formula F of size < s(n), A(N,F) outputs a string x ∈ {0, 1}n such that F (x) ̸= ⊕(x). In other302

words, circuit lower bounds provable in PV1 are constructive in the sense that they also provide an efficient303

refuter witnessing that F does not compute parity (see [CJSW21] for more on this topic).304

The aforementioned formalization is informally referred to as a “Log” formalization of circuit lower305

bounds. This is because the main parameter n is the length of a variable N and all objects quantified over306

are of length polynomial in n. It is also possible to consider a formalization where n = ||N || (n is the307

length of the length of N), which is known as a “LogLog” formalization. This allows us to quantify over308

exponentially larger objects, e.g., under such a formalization the entire truth-table of a formula F has length309

polynomial in the length of N .310

Obtaining a Log formalization (e.g., [MP20]) is a stronger result than obtaining a LogLog formalization311

(e.g., [Raz95a]). In particular, in contrast to the discussion above, a witnessing theorem applied to a LogLog312

formalization provides a refuter with access toN and thus running in time poly(N) = poly(2n). Conversely,313

the unprovability of a LogLog circuit lower bound statement (e.g., [PS21, LO23]) is a stronger result than314

the unprovability of a Log statement. We refer to the introduction of [MP20] for a more extensive discussion315

on this matter.316

4.2 Concrete Example: Subbotovskaya’s Formula Lower Bound in PV1317

In this section, we explore some details of a formalization in PV1 that the parity function ⊕ on n bits318

requires Boolean formulas of size ≥ n3/2 [Sub61]. We follow the notation introduced in Section 4.1.319

Theorem 4.1 ([CKK+24]). Let s(n) ≜ n3/2. Then PV1 ⊢ FLBs.320

The formalization is an adaptation of the argument presented in [Juk12, Section 6.3], which proceeds as321

follows:322

1. [Juk12, Lemma 6.8]: For any formula F on n-bit inputs, it is possible to fix one of its variables so323

that the resulting formula F1 satisfies Size(F1) ≤ (1− 1/n)3/2 · Size(F).324

6We often abuse notation and treat x as a string in semi-formal discussions.

10

2. [Juk12, Theorem 6.10]: If we apply this result ℓ ≜ n−k times, we obtain a formula Fℓ on k-bit inputs
such that

Size(Fℓ) ≤ Size(F) · (1− 1/n)3/2 · (1− 1/(n− 1))3/2 . . . (1− 1/(k+1))3/2 = Size(F) · (k/n)3/2.

3. [Juk12, Example 6.11]: Finally, if the initial formula F computes the parity function, by setting325

ℓ = n− 1 we get 1 ≤ Size(Fℓ) ≤ (1/n)3/2 · Size(F), and consequently Size(F) ≥ n3/2.326

We present the argument in a more constructive way when formalizing the result in PV1. In more detail,327

given a small formula F , we recursively construct (and establish correctness by induction) an n-bit input y328

witnessing that F does not compute the parity function.7329

Proof. We follow closely the presentation from [CKK+24]. For brevity, we only discuss the formalization330

of the main inductive argument. More details can be found in [CKK+24]. Given b ∈ {0, 1}, we introduce the331

function ⊕b(x) ≜ ⊕(x) + b (mod 2). In order to prove FLBs in PV1, we explicitly consider a polynomial-332

time function R(1n, F, b) with the following property:8333

If Size(F) < s(n) then R(1n, F, b) outputs an n-bit string ybn such that Eval(F, ybn) ̸= ⊕b(ybn).334

In other words,R(1n, F, b) witnesses that the formula F does not compute the function ⊕b over n-bit strings.335

Note that the correctness of R is captured by a sentence RefR,s described as follows:336

∀1n ∀F (Valid-Fla(F) ∧ Size(F) < s(n) → |y0n|ℓ = |y1n|ℓ = n ∧ F (y0n) ̸= ⊕0(y0n) ∧ F (y1n) ̸= ⊕1(y1n)) ,

where we employ the abbreviations y0n ≜ R(1n, F, 0) and y1n ≜ R(1n, F, 1), and for convenience use |z|ℓ to337

denote the bitlength of z. Our plan is to define R and show that PV1 ⊢ RefR,s. Note that this implies FLBs338

in PV1 by standard first-order logic reasoning.339

The correctness of R(1n, F, b) will be established by polynomial induction on N (equivalently, induc-340

tion on n = |N |). Since RefR,s is a universal sentence and S12(LPV) is ∀Σb
1-conservative over PV1 (i.e.,341

provability of such a sentence in S12(LPV) implies its provability in PV1), it is sufficient to describe a for-342

malization in the more convenient theory S12(LPV). For this reason, polynomial induction for NP and coNP343

predicates (admissible in S12(LPV); see, e.g., [Kra95, Section 5.2]) is available during the formalization.344

More details follow.345

The procedure R(1n, F, b) makes use of a few polynomial-time sub-routines (briefly discussed in the346

comments in the pseudocode below) and is defined in the following way:347

348

7Actuallly, for technical reasons related to the induction step, we will simultaneously construct an n-bit input y0
n witnessing

that F does not compute the parity function and an n-bit input y1
n witnessing that F does not compute the negation of the parity

function.
8For convenience, we often write 1n instead of explicitly considering parameters N and n = |N |. We might also write just

F (x) instead of Eval(F, x).

11

Input: 1n for some n ≥ 1, formula F over n-bit inputs, b ∈ {0, 1}.
1 Let s(n) ≜ n3/2. If Size(F) ≥ s(n) or ¬Valid-Fla(F) return “error”;
2 If Size(F) = 0, F computes a constant function bF ∈ {0, 1}. In this case, return the n-bit string

ybn ≜ yb10
n−1 such that ⊕b(yb10

n−1) ̸= bF ;
3 Let F̃ ≜ Normalize(1n, F);
// F̃ satisfies the conditions in the proof of [Juk12, Claim 6.9],

Size(F̃) ≤ Size(F), ∀x ∈ {0, 1}n F (x) = F̃ (x).

4 Let ρ ≜ Find-Restriction(1n, F̃), where ρ : [n] → {0, 1, ⋆} and |ρ−1(⋆)| = n− 1;
// ρ restricts a suitable variable xi to a bit ci, as in [Juk12,

Lemma 6.8].

5 Let F ′ ≜ Apply-Restriction(1n, F̃ , ρ). Moreover, let b′ ≜ b⊕ ci and n′ ≜ n− 1;
// F ′ is an n′-bit formula; ∀z ∈ {0, 1}ρ−1(⋆) F ′(z) = F̃ (z ∪ xi 7→ ci).

6 Let yb
′

n′ ≜ R(1n
′
, F ′, b′) and return the n-bit string ybn ≜ yb

′
n′ ∪ yi 7→ ci;

Algorithm 1: Refuter Algorithm R(1n, F, b) [CKK+24].

349

(The pseudocode presented above is only an informal specification of R(1n, F, b). As mentioned in Sec-350

tion 4.1, a completely formal proof in PV1 would employ Cobham’s formalism and would specify how351

R(1n, F, b) can be defined from previously defined algorithms (e.g., Apply-Restriction) via the allowed352

operations.)353

We note thatR(1n, F, b) runs in time polynomial in n+|F |+|b| and that it is definable in S12(LPV). Next,354

as an instructive example, we establish the correctness R(1n, F, b) in S12(LPV) by polynomial induction355

(PIND) for Πb
1-formulas, assuming that the subroutines appearing in the pseudocode of R(1n, F, b) satisfy356

the necessary properties (provably in S12(LPV)).357

Lemma 4.2. Let s(n) ≜ n3/2. Then S12(LPV) ⊢ RefR,s.358

Proof. We consider the formula φ(N) defined as

∀F ∀n (n = |N | ∧ n ≥ 1 ∧ Valid-Fla(F) ∧ Size(F) < s(n)) →

(|y0n|ℓ = |y1n|ℓ = n ∧ F (y0n) ̸= ⊕0(y0n) ∧ F (y1n) ̸= ⊕1(y1n)) ,

where as before we use y0n ≜ R(1n, F, 0) and y1n ≜ R(1n, F, 1). Note that φ(N) is a Πb
1-formula. Below,

we argue that
S12(LPV) ⊢ φ(1) and S12(LPV) ⊢ ∀N φ(⌊N/2⌋) → φ(N) .

Then, by polynomial induction for Πb
1-formulas (available in S12(LPV)) and using that φ(0) trivially holds,359

it follows that S12(LPV) ⊢ ∀N φ(N). In turn, this yields S12(LPV) ⊢ RefR,s.360

Base Case: S12(LPV) ⊢ φ(1) . In this case, for a given formula F and length n, the hypothesis of φ(1) is
satisfied only if n = 1, F is a valid description of a formula, and Size(F) = 0. Let y01 ≜ R(1, F, 0) and
y11 ≜ R(1, F, 1). We need to prove that

|y01|ℓ = |y11|ℓ = 1 ∧ F (y01) ̸= ⊕0(y01) ∧ F (y11) ̸= ⊕1(y11) .

Since n = 1 and Size(F) = 0, F evaluates to a constant bF on every input bit. The statement above is361

implied by Line 2 in the definition of R(n, F, b).362

12

(Polynomial) Induction Step: S12(LPV) ⊢ ∀N φ(⌊N/2⌋) → φ(N) . Fix an arbitrary N , let n ≜ |N |, and363

assume thatφ(⌊N/2⌋) holds. By the induction hypothesis, for every valid formulaF ′ with Size(F ′) < n′3/2,364

where n′ ≜ n− 1, we have365

|y0n′ |ℓ = |y1n′ |ℓ = n′ ∧ F ′(y0n′) ̸= ⊕0(y0n′) ∧ F ′(y1n′) ̸= ⊕1(y1n′) , (1)

where y0n′ ≜ R(1n
′
, F ′, 0) and y1n′ ≜ R(1n

′
, F ′, 1).366

Now let n ≥ 2, and let F be a valid description of a formula over n-bit inputs with Size(F) < n3/2. By367

the size bound on F , R(1n, F, b) ignores Line 1. If Size(F) = 0, then similarly to the base case it is trivial368

to check that the conclusion of φ(N) holds. Therefore, we assume that Size(F) ≥ 1 and R(1n, F, b) does369

not stop at Line 2.370

Consider the following definitions:371

1. F̃ ≜ Normalize(1n, F) (Line 3),372

2. ρ ≜ Find-Restriction(1n, F̃) (Line 4),373

3. F ′ ≜ Apply-Restriction(1n, F̃ , ρ) (Line 5),374

4. n′ ≜ n− 1 (Line 5),375

5. b′ ≜ b⊕ ci (Line 5), where ρ restricts xi to ci,376

6. yb
′

n′ ≜ R(1n
′
, F ′, b′) (Line 6),377

7. ybn ≜ yb
′

n′ ∪ yi 7→ ci (Line 6),378

8. s ≜ Size(F), s̃ ≜ Size(F̃), and s′ ≜ Size(F ′).379

We rely on the provability in S12(LPV) of the following statements about the subroutines of R(1n, F, b) (see380

[CKK+24]):381

(i) s̃ ≤ s ,382

(ii) s′ ≤ s̃ · (1− 1/n)3/2 ,383

(iii) ∀x ∈ {0, 1}n F̃ (x) = F (x) ,384

(iv) ∀z ∈ {0, 1}ρ−1(⋆) F ′(z) = F̃ (z ∪ xi 7→ ci) .385

By Items (i) and (ii) together with the bound s < n3/2,

S12(LPV) ⊢ s′ ≤ s̃ · (1− 1/n)3/2 ≤ s · (1− 1/n)3/2 < n3/2 · (1− 1/n)3/2 = (n− 1)3/2 .

Thus F ′ is a valid formula on n′-bit inputs of size < n′3/2. By the first condition in the induction hypothesis386

(Equation (1)) and the definition of each ybn, we have |y0n|ℓ = |y1n|ℓ = n. Using the definitions listed above,387

the last two conditions in the induction hypothesis (Equation (1)), and Items (iii) and (iv), we derive in388

S12(LPV) the following statements for each b ∈ {0, 1}:389

F ′(yb
′

n′) ̸= ⊕b′(yb
′

n′) ,

F (ybn) = F ′(yb
′

n′) ,

F (ybn) ̸= ⊕b′(yb
′

n′) .

Therefore, using basic facts about the function symbols ⊕0 and ⊕1,

⊕b′(yb
′

n′) = ⊕b⊕ci(yb
′

n′) = ci ⊕ (⊕b(yb
′

n′)) = ci ⊕ (⊕b(ybn)⊕ ci) = ⊕b(ybn) .

These statements imply that, for each b ∈ {0, 1}, F (ybn) ̸= ⊕b(ybn). In other words, the conclusion of φ(N)390

holds. This completes the proof of the induction step.391

As explained above, the provability of RefR,s in S12(LPV) implies its provability in PV1. Since PV1 ⊢392

RefR,s → FLBs, this completes the proof of Theorem 4.1.393

13

We have seen that a non-trivial formula size lower bound can be established in PV1. More advanced394

circuit lower bounds are known to be provable assuming additional axioms extending PV1 (e.g., [Kra95,395

Section 15.2] and [MP20]), but their provability in PV1 (or equivalently, in S12(LPV)) is less clear.396

Open Problem 4.3. For each d ≥ 1 and ℓ ≥ 1, can PV1 prove that the parity function on n bits cannot be397

computed by depth-d circuits of size nℓ?398

Open Problem 4.4. For each ℓ ≥ 1, is there a constant k = k(ℓ) such that PV1 proves that every monotone399

circuit for the k-clique problem on n-vertex graphs must be of size at least nℓ?400

5 Unprovability of Complexity Bounds401

The investigation of the unprovability of complexity bounds within theories of bounded arithmetic has402

a long and rich history. Much of the early work took place in the nineties, with significant results obtained403

by Razborov [Raz95a, Raz95b], Krajı́ček [Kra97], and other researchers. Since then, and in particular over404

the last decade, there has been renewed interest and progress in establishing unprovability results (see, e.g.,405

[CK07, PS21, CKKO21, LO23, ABM23] and references therein).406

In Section 5.1, we consider the unprovability of complexity upper bounds. The unprovability of an407

inclusion such as NP ⊆ SIZE[nk] is equivalent to the consistency of NP ⊈ SIZE[nk] with the corresponding408

theory. Such a consistency result establishes that, while we cannot confirm the separation is true in the409

standard model of natural numbers, we know it holds in a non-standard model of a theory so strong that410

complexity theory appears almost indistinguishable from the standard one. We stress that establishing the411

consistency of a lower bound is a necessary step towards showing that the lower bound is true. For this412

reason, the unprovability of upper bounds can be formally seen as progress towards showing unconditional413

complexity lower bounds.414

In Section 5.2, we turn our attention to the unprovability of complexity lower bounds. This direction415

is partly driven by the desire to formally understand why proving complexity lower bounds is challenging,416

and to explore the possibility of a more fundamental underlying reason for this difficulty. Moreover, it417

might provide examples of hard sentences for logical theories and of hard propositional tautologies for proof418

systems. The investigation of the meta-mathematics of lower bounds has also found unexpected applications419

in algorithms and complexity (e.g., [CIKK16]).420

Finally, in Section 5.3 we connect the two directions and explain how the unprovability of circuit lower421

bounds in PV1 yields the unprovability of P = NP in PV1. The latter can be seen as a weakening of the P422

versus NP problem that considers the existence of feasible proofs that P = NP. This further motivates the423

investigation of the unprovability of lower bounds.424

5.1 Unprovability of Upper Bounds425

5.1.1 LEARN-Uniform Circuits and Unprovability426

Cook and Krajı́ček [CK07] considered the provability of NP ⊆ SIZE[poly] in bounded arithmetic and427

obtained a number of conditional negative results. [KO17], building on techniques from [CK07], showed428

that for no integer k ≥ 1 the theory PV1 proves that P ⊆ SIZE[nk]. Note that this is an unconditional429

result. Thus, for a natural theory capable of formalizing advanced results from complexity theory, such as430

the PCP Theorem, we can unconditionally rule out the provability of P ⊆ SIZE[nk]. A slightly stronger431

model-theoretic formulation of the result of [KO17] appears in [BM20].432

14

[BKO20] obtained results for stronger theories and ruled out the provability of infinitely often inclusions.433

In more detail, for an LPV-function symbol h, consider the sentence434

UBi.o.
k (h) ≜ ∀1m ∃1n ∃Cn ∀x

(
n ≥ m ∧ |Cn| ≤ nk ∧ (|x| ≤ n→ ψ(n,Cn, x, h))

)
, 9

where ψ is an open LPV-formula stating that h(x) ̸= 0 if and only if the evaluation of the circuit Cn on435

x (viewed as an n-bit string) is 1. In other words, UBi.o.
k (h) states that the language defined by h (which436

is in P) admits circuits of size at most nk on infinitely many input lengths n. [BKO20] showed that for437

each k ≥ 1, there is an LPV-function symbol h such that PV1 does not prove UBi.o.
k (h). Similarly, they438

established that S12 ⊬ NP ⊆ i.o.SIZE[nk] and T1
2 ⊬ PNP ⊆ i.o.SIZE[nk].439

Building on these results, [CKKO21] introduced a modular framework to establish the unprovability of440

circuit upper bounds in bounded arithmetic using a learning-theoretic perspective. Next, we describe how441

their approach can be used to show a slightly weaker form of the result from [BKO20] described above. For442

an LPV-function symbol h, we consider a sentence UBc,k(h) stating that Lh ∈ SIZE[c · nk], where x ∈ Lh443

if and only if h(x) ̸= 0, i.e.,444

UBc,k(h) ≜ ∀1n ∃Cn ∀x
(
|Cn| ≤ c · nk ∧ (|x| ≤ n→ (Eval(Cn, x, n) = 1 ↔ h(x) ̸= 0))

)
. (2)

Our goal is to show that there is a function symbol h such that, for no choice of c ≥ 1, PV1 proves445

UBc,k(h). (Note that in all results discussed in this section, we consider Log formalizations, as explained in446

Section 4.1.)447

448

Overview of the Approach. Note that UBc,k(h) claims the existence of circuits for Lh, i.e., it states a449

non-uniform upper bound. We explore the constructive aspect of PV1 proofs, by extracting computational450

information from a PV1-proof that such circuits exist. The argument has a logical component, where we451

extract from a proof of UBc,k(h) a “LEARN-uniform” construction of a sequence {Cn}n of circuits for Lh,452

and a complexity-theoretic component, where we unconditionally establish that for each k LEARN-uniform453

circuits of this form do not exist for some h. Altogether, we get that for some h theory PV1 does not prove454

UBc,k(h) (no matter the choice of c).455

456

LEARN-uniform circuits. We will be interested in languages that can be efficiently learned with a bounded457

number of equivalence queries, in the following sense. For functions s, q : N → N, we say that a language458

L ⊆ {0, 1}∗ is in LEARN-uniformEQ[q] SIZE[s] if there is a polynomial-time algorithm AEQ(Ln)(1n) that459

outputs a circuit of size at most s(n) for Ln after making at most q(n) equivalence queries to Ln, where460

Ln = L ∩ {0, 1}n. The equivalence query oracle, given the description of an n-bit circuit D of size a most461

s(n), replies “yes” if D computes Ln, or provides some counter-example w such that D(w) ̸= Ln(w).462

463

Extracting LEARN-uniform circuits from PV1 proofs. For convenience, write UBc,k(h) =464

∀1n ∃Cn ∀x ϕ(1n, Cn, x) in Equation (2), where ϕ(1n, Cn, x) is free of quantifiers. Since PV1 is a uni-465

versal theory, under the assumption that PV1 ⊢ UBc,k(h), we can apply Theorem 3.2 (KPT Witnessing466

Theorem) to obtain the provability in PV1 of the disjunction467

∀1n ∀x1 . . . ∀xk
(
ϕ(1n, t1(1

n), x1) ∨ ϕ(1n, t2(1n, x1), x2) ∨ · · · ∨ ϕ(1n, tk(1n, x1, . . . , xk−1), xk)
)
, (3)

where t1, . . . , tk are LPV-terms and k = O(1). Most importantly, due to the soundness of PV1, this state-468

ment is true over the standard model N. Additionally, the terms in PV1 correspond to polynomial-time469

9Recall that 1n is simply a convenient notation to refer to a variable n that is set to |N | for some variable N .

15

algorithms. Next, we will discuss how to interpret Equation (3) over N as an interactive protocol and how470

this perspective leads to a LEARN-uniform construction.471

The KPT Witnessing Theorem can be intuitively understood as follows [KPS90]. Consider a search472

problem Q(1n), where given the input 1n, we need to find D such that ∀xϕ(1n, D, x). The problem473

Q(1n) can be solved using a k-round Student-Teacher protocol. In the first round, the student proposes474

D1 = t1(1
n) as a solution to the search problem Q(1n). This solution is either correct, or there exists a475

counterexample w1 such that ¬ϕ(1n, t1(1n), w1). The teacher then provides this counterexample value w1,476

and the protocol moves to the next round. In each subsequent round 1 ≤ i < k, the student computes477

Di = ti(1
n, w1, . . . , wi−1) based on the counterexamples w1, . . . , wi−1 received in the previous rounds.478

This Di is either a correct solution for Q(1n), in which case the problem is solved, or there is another coun-479

terexample wi provided by the teacher such that ¬ϕ(1n, ti(1n, w1, . . . , wi−1), wi). If the latter is the case,480

the protocol continues to the next round i + 1. The theorem guarantees that for every input 1n, the student481

will successfully solve the search problem Q(1n) within some round 1 ≤ i ≤ k.482

From a PV1 proof of a circuit upper bound for a language L, we can derive a Student-Teacher protocol483

for the search problem Q(1n) corresponding to Equation (3). In this protocol, the student proposes a484

candidate circuitD, and the teacher provides a counterexamplew toD (an inputw such thatD(w) ̸= L(w))485

if one exists. (Note that ϕ(1n, D, x) might not be true for other reasons, e.g., if |D| > c · nk, but in such486

cases there is no need to invoke the equivalence query oracle and we can proceed in the Student-Teacher487

protocol with, say, w = 0n.) The student is guaranteed to succeed after at most k queries, regardless of the488

counterexamples provided by the teacher. Finally, for every input n, the student computes according to a489

constant number of fixed PV1 terms t1, . . . , tk. Since a PV1 term is merely a composition of a finite number490

of PV1 function symbols (polynomial-time algorithms), the student’s computation runs in polynomial time.491

Therefore, from the provability in PV1 of a non-uniform circuit upper bound for a language in P, we can492

extract a LEARN-uniform family of circuits for L.493

494

Unconditional lower bound against LEARN-uniform circuits. The argument described above re-495

duces the unprovability of upper bounds to a complexity-theoretic question with no reference to logic.496

To complete the proof, it is enough to show that for each k there is a language L ∈ P such that497

L /∈ LEARN-uniformEQ[O(1)] SIZE[O(nk)]. This unconditional lower bound against LEARN-uniform498

circuits is established in [CKKO21] by generalizing a lower bound from [SW14] against P-uniform499

circuits, which can be interpreted as LEARN-uniform constructions with q = 0 queries. Roughly speaking,500

[CKKO21] shows that one can eliminate each equivalence query using a small amount of non-uniform501

advice, and that the base case where no queries are present (as in [SW14]) can be extended to a lower bound502

against a bounded amount of advice.503

504

This completes the sketch of the argument. The approach is fairly general and can be adapted to other505

theories. The strength of the theory affects the learning model against which one needs to obtain lower506

bounds (e.g., by increasing the number of queries or allowing randomized learners).507

Open Problem 5.1. Show that S12 does not prove that P ⊆ SIZE[nk].508

In order to solve Open Problem 5.1, using the connection from [CKKO21] it is sufficient to show that509

P ⊈ LEARN-uniformEQ[q] SIZE[O(nk)] for q = poly(n). In other words, this amounts to understanding510

the class of languages that admit circuits that can be produced with a polynomial number of equivalence511

queries.512

Open Problem 5.2. Show that T1
2 does not prove that NP ⊆ SIZE[nk].513

16

5.1.2 P = NP and Propositional Proof Complexity514

Suppose that P is actually equal to NP. In this scenario, there exists a polynomial-time algorithm g (i.e.,515

a PV1 function symbol) that can find a satisfying assignment for any given satisfiable formula. In other516

words, if Formula(F, 1n) denotes an LPV-formula that checks if F is a valid description of a formula over n517

input bits, and Sat(F, x) is an LPV-formula that checks if x satisfies the formula encoded by F , the sentence518

φP=NP(g) ≜ ∀1n ∀F ∀x
(
(Formula(F, 1n) ∧ Sat(F, x)) → Sat(F, g(F))

)
(4)

is true in the standard model N.519

Open Problem 5.3. Show that for no polynomial-time function symbol g theory PV1 proves the sentence520

φP=NP(g).521

Equivalently, Open Problem 5.3 states that PV1 (and by standard conservation results S12) is consistent522

with P ̸= NP. This means that either P ̸= NP, as is commonly assumed, making the conjecture trivially523

true, or P = NP, but this cannot be proven using only polynomial-time concepts and reasoning. Therefore,524

Open Problem 5.3 represents a formal weakening of the conjecture that P ̸= NP. The statement is known to525

follow from the purely combinatorial conjecture that the extended Frege propositional proof system is not526

polynomially bounded, which is a major open problem in proof complexity.527

Theorem 5.4 ([Coo75]). Suppose that there is a sequence {Fn}n≥1 of propositional tautologies of size528

polynomial in n that require eF proofs of size nω(1). Then there is no function symbol g such that PV1529

proves φP=NP(g).530

Proof. Here we only provide a sketch of the proof. More details and extensions of the result can be found531

in the textbooks [Kra95, Kra19]. We establish that if PV1 ⊢ φP=NP(g) for some g, then every tautology has532

a polynomial size eF proof.533

Recall the definitions and results from Section 3.2. For a propositional proof system P (described by an
LPV function symbol), we consider an LPV-sentence stating the soundness of P :

SoundP ≜ ∀1n ∀F ∃π (Formula(F, 1n) ∧ ProofP (F, π)) → ∀x (|x| ≤ n→ Sat(F, x)) ,

where ProofP (F, π) states that π is a valid P -proof of F . Given g, we consider a proof system Pg defined as
follows: Given a valid description of an n-bit propositional formula F and a candidate proof π̃, Pg accepts
π̃ as a proof of F if and only if

g(¬F) = π̃ and ¬Sat(¬F, π̃) ,

where ¬F represents the negation of F . Observe that for any tautology F , πF ≜ g(¬F) is a valid Pg-proof534

of F .535

Note that PV1 ⊢ SoundPg , which follows from the provability of Equation (4) and the definition of Pg

using g. Now consider the quantifier-free LPV-formula

ψ ≜ ¬Formula(F, 1n) ∨ ¬ProofPg(F, π) ∨ |x| > n ∨ Sat(F, x).

The provability of ∀1n ∀F ∀π ψ in PV1 follows from the provability of SoundPg .536

Using Cook’s translation (Section 3.2), the sequence of propositional formulas ||ψ||m admits eF-proofs537

of polynomial size. Moreover, given an actual n-bit propositional formula F of polynomial size and the cor-538

responding Pg-proof πF (represented by fixed strings ⟨F ⟩ and ⟨πF ⟩), one can show that there are polynomial539

17

size eF proofs of both ||Formula(⟨F ⟩, 1n)||poly(n) and ||ProofPg(⟨F ⟩, ⟨πF ⟩)||poly(n). (Intuitively, this fol-540

lows by an evaluation of the expressions on these fixed inputs.) Since eF is closed under substitution, we541

can derive in eF with a polynomial size proof the formula ||Sat(⟨F ⟩, x)||poly(n).542

Finally, for every propositional formula F (x) on n-bit inputs, it is possible to efficiently prove in eF the543

propositional formula ||Sat(⟨F ⟩, x)||poly(n) → F (x). (This can be established by a slightly more general544

structural induction on formulas F using information about || · || and ⟨·⟩.) Overall, since eF is closed under545

implication, it follows from these derivations that there is a polynomial size eF proof of F . This completes546

the sketch of the proof of the result.547

Open Problem 5.3 would also follow from a proof that Buss’s hierarchy of theories Ti
2 does not collapse548

[KPT91], another central problem in bounded arithmetic. More precisely, it is enough to obtain the following549

separation.550

Open Problem 5.5. Show that for some i > j ≥ 1 we have Ti
2 ̸= Tj

2.551

It is known that PV1 proves that P = NP if and only if it proves that NP = coNP. Consequently, a552

super-polynomial lower bound on the length of eF proofs also yields the consistency of NP ̸= coNP with553

PV1.554

Finally, we remark that the use of witnessing theorems alone (as done in Section 5.1.1) is probably not555

sufficient to settle Open Problem 5.3. This is because these theorems typically also hold when we extend the556

theory with all true universal statements. Thus an unprovability argument that only employs the witnessing557

theorem would establish unconditionally that each sentence φP=NP(g) is false and therefore P ̸= NP.558

Some researchers interpret this as evidence that the investigation of propositional proof complexity might559

be unavoidable. Another approach to Open Problem 5.3 is discussed in Section 5.3.560

5.2 Unprovability of Lower Bounds561

5.2.1 Average-Case Circuit Lower Bounds562

In this section, we discuss the unprovability of strong average-case lower bounds in PV1. We focus on563

an unprovability result from [PS21], stated and proved in a slightly stronger form in [LO23]. The proof is564

based on a technique introduced by [Kra11] and further explored in [Pic15a].565

We consider an average-case separation of co-nondeterministic circuits against non-deterministic cir-
cuits of subexponential size. In more detail, we investigate the provability of a sentence LB1(s1, s2,m, n0)
stating that, for every input length n ≥ n0, there is a co-nondeterministic circuit C of size ≤ s1(n) such
that, for every nondeterministic circuit D of size ≤ s2(n), we have

Pr
x∼{0,1}n

[
C(x) = D(x)

]
≤ 1− m(n)

2n
.

Let coNSIZE[s(n)] and NSIZE[s(n)] refer to co-nondeterministic circuits and nondeterministic circuits of566

size s(n), respectively. More formally, LB1(s1, s2,m, n0) is an LPV-sentence capturing the following lower567

bound statement:568

∀n ∈ LogLog with n ≥ n0 ∃C ∈ coNSIZE[s1(n)] ∀D ∈ NSIZE[s2(n)]

∃m = m(n) distinct n-bit strings x1, . . . , xm s.t. Error(C,D, xi) for all i ∈ [m],

where Error(C,D, x) means that the circuits C and D disagree on the input x. This statement can be seen569

as an average-case form of the coNP ⊈ NP/poly conjecture if we let s1(n) = nO(1), s2(n) = nω(1), and570

18

m(n) = 2n/n. (Note that we consider in this section a LogLog formalization, according to the notation571

explained in Section 4.1.)572

Theorem 5.6 ([PS21, LO23]). Let d ≥ 1, δ > 0, and n0 ≥ 1 be arbitrary parameters, and let s1(n) = nd,573

s2(n) = 2n
δ
, and m(n) = 2n/n. Then PV1 does not prove the sentence LB1(s1, s2,m, n0).574

In the remainder of this section, we provide some intuition about the proof of this result.575

576

Overview of the Argument. Suppose, towards a contradiction, that PV1 ⊢ LB1(s1, s2,m, n0) with param-577

eters as above. The central idea of the argument is that establishing a strong complexity lower bound within578

bounded arithmetic leads to a corresponding complexity upper bound. These lower and upper bounds con-579

tradict each other. Consequently, this contradiction implies the unprovability of the lower bound statement.580

In a bit more detail, the argument proceeds as follows:581

(i) The provability of the average-case lower bound sentence LB1(s1, s2,m, n0) implies the provability of582

a worst-case lower bound for coNSIZE[nd] against NSIZE[2n
δ
]. We formalize the latter by a sentence583

LB1
wst(s1, s2, n0).584

(ii) Given any proof of LB1
wst(s1, s2, n0) in PV1, we extract a complexity upper bound for an arbi-585

trary co-nondeterministic circuit Em(x) over an input x of length m and of size at most poly(m).586

More precisely, we show that there is a deterministic circuit Bm of size ≤ 2m
o(1)

such that587

Prx∼{0,1}m [Em(x) = Bm(x)] ≥ 1/2 + 2−mo(1)
.588

(iii) We invoke an existing hardness amplification result to conclude that, on any large enough input length589

n, every co-nondeterministic circuit Cn of size ≤ nd agrees with some nondeterministic circuit Dn of590

size ≤ 2n
δ

on more than a 1− 1/n fraction of the inputs.591

Since PV1 is a sound theory, i.e., every theorem of PV1 is a true sentence, Item (iii) is in contradiction with592

the complexity lower bound stated in LB1(s1, s2,m, n0). Consequently, PV1 does not prove this sentence.593

594

The most interesting step of the argument is the proof of Item (ii). The key point is that the proof of595

a lower bound in PV1 must be somewhat constructive, in the sense that it not only shows that every small596

circuitD fails to solve the problem but also produces a string w witnessing this fact. Below we give a simple597

example of its usefulness, showing a setting where a constructive lower bound yields an upper bound. Note598

that the application of a witnessing theorem to a LogLog formalization provides algorithms running in time599

poly(2n). The example provided next shows that this is still useful.600

Lemma 5.7 ([CLO24a]). Let L ∈ NP. Suppose that there is a uniform algorithm R(1n, D) such that, for601

every co-nondeterministic circuit D on n input variables and of size at most nlogn, R(1n, D) runs in time602

2O(n) and outputs a string w ∈ {0, 1}n such that D(w) ̸= L(w). Then, for every language L′ ∈ NP and603

for every constant ε > 0, we have L′ ∈ DTIME[2n
ε
].604

Proof. Suppose that L ∈ NTIME[nd] for some d ∈ N. Let M ′ be a nondeterministic machine that decides605

L′ and runs in time at most nc
′
, where c′ ∈ N. Let ε > 0 be an arbitrary constant. Let γ = γ(d, ε) > 0 be a606

small enough constant to be defined later. Finally, let R be the algorithm provided by the hypothesis of the607

lemma. We show that the following deterministic algorithm Bγ(x) decides L′ in time O(2n
ε
):608

609

19

Input: x ∈ {0, 1}n for some n ≥ 1.
1 Compute the description of a co-nondeterministic circuit E′ of size at most n2c

′
that decides the

complement of L′;
// In other words, E′(u) = 1− L′(u) for every string u ∈ {0, 1}n.

2 Produce the description of a co-nondeterministic circuit Dx(y), where y ∈ {0, 1}nγ
, such that

Dx(y) ignores its input y and computes according to E′(x);
// While the length of y is smaller than the length of u, Dx and

E′ share the same nondeterministic input string, and E′ sets u
to be the fixed string x.

3 Compute w = R(1n
γ
, Dx) ∈ {0, 1}nγ

;
4 Determine the bit b = L(w) by a brute force computation, then return b;

Algorithm 2: Algorithm Bγ(x) for deciding language L′.

610

First, we argue that Bγ decides L′. Since Dx is a co-nondeterministic circuit over inputs of length
m ≜ nγ and has size at most n2c

′
= m2c′/γ ≤ mlogm (for a large enough m), R(1n

γ
, Dx) outputs a string

w ∈ {0, 1}nγ
such that L(w) = 1−Dx(w). Consequently,

b = L(w) = 1−Dx(w) = 1− E′(x) = 1− (1− L′(x)) = L′(x) ,

i.e., the output bit of Bγ(x) is correct.611

Next, we argue that Bγ runs in time at most O(2n
ε
). Clearly, Steps 1–2 run in poly(n) time. Moreover,612

Step 3 runs in time 2O(nγ) under the assumption on the running time of R(1n
γ
, Dx). This is at most 2n

ε
if613

we set γ ≤ ε/2. Finally, since L ∈ NTIME[nd], the brute force computation in Step 4 can be performed in614

deterministic time 2O(ℓd) over an input of length ℓ. Since ℓ = nγ = |w| in our case, if γ ≤ ε/2d we get that615

Step 4 runs in time at most 2n
ε
. Overall, if we set γ ≜ ε/2d, it follows that Bγ runs in time at most O(2n

ε
).616

This completes the proof that L′ ∈ DTIME[2n
ε
].617

The proof of Item (ii) is significantly more sophisticated, since one does not get an algorithmR as above618

from a PV1 proof of the lower bound sentence LB1(s1, s2,m, n0). The argument combines a witnessing619

theorem for sentences with more than four quantifier alternations and an ingenious technique from [Kra11]620

that relies on ideas from the theory of computational pseudorandomness.621

Open Problem 5.8. Strengthen the unprovability result from Theorem 5.6 in the following directions:622

(a) show that it holds in the polynomial size regime, i.e., with s1(n) = na and for some s2(n) = nb;623

(b) establish the unprovability of worst-case lower bounds against nondeterministic circuits;624

(c) show the unprovability of average-case lower bounds against deterministic circuits;625

(d) establish the same result with respect to a stronger theory.626

We refer to [LO23, CLO24a, CLO24b] for some related results and partial progress.627

5.2.2 Extended Frege Lower Bounds628

This section covers a result on the unprovability of super-polynomial size extended Frege (eF) lower629

bounds in PV1 [KP89] (see also [CU93, Bus90]). We refer to Section 3.2 for the necessary background. We630

will also need the definitions and results from Section 3.3.631

20

We adapt the presentation from [Kra19]. Consider the theory PV1 and its language LPV. We shall use632

the following LPV formulas:633

• Sat(x, y): a quantifier-free formula formalizing that y is a satisfying assignment of the Boolean for-634

mula x;635

• Taut(x) ≜ ∀y ≤ x Sat(x, y);636

• ProofP (x, z): a quantifier-free formula formalizing that z is a P -proof of x.637

The following lemma is central to the unprovability result.638

Lemma 5.9. Let M |= PV1, and assume that ϕ ∈ M is a propositional formula. The following statements639

are equivalent:640

(i) There is no eF-proof of ϕ in M :

M |= ∀z ¬ProofeF (ϕ, z) .

(ii) There is an extension M ′ ⊇M (also a model of PV1) in which ϕ is falsified:

M ′ |= ∃y Sat(¬ϕ, y) .

The proof of Lemma 5.9 proceeds by compactness and uses that the correctness of the propositional641

translation from PV1 to eF (Section 3.2) is also provable in PV1.642

Lemma 5.10. Let M be a nonstandard countable model of PV1. Then it has a cofinal extension M ′ ⊇cf M643

(also a model of PV1) such that every tautology in M ′ has an eF-proof in M ′.644

The proof of Lemma 5.10 iterates Lemma 5.9 while taking cuts to ensure that the limit extension M ′ =645 ⋃
iMi (where M0 = M) is cofinal in M . Since each Mi |= PV1 and PV1 is universal, we also have646

M ′ |= PV1.647

We will need the following analogue of Lemma 3.6 for PV1.648

Fact 5.11. Let M0 be a nonstandard countable model of PV1. Then there is a (countable) cut M of M0 that649

is a model of PV1 and a length n ∈M such that for every b ∈M we have M |= |b| ≤ nk for some standard650

number k.651

The next result is a consequence of Lemma 5.10 and Fact 5.11.652

Corollary 5.12. Let M be a nonstandard countable model of PV1. There is a model M∗ of PV1 such that653

the following properties hold:654

(i) Any tautology in M∗ has an eF-proof in M∗.655

(ii) There is a nonstandard element a ∈M of length n ≜ |a| such that for any element b ∈M∗ there is a656

standard number k such that M∗ |= |b| ≤ nk.657

Theorem 5.13 (Unprovability of super-polynomial size eF lower bounds in PV1 [KP89]). Consider the
sentence

ΨeF ≜ ∀x ∃ϕ ≥ x [Taut(ϕ) ∧ ∀π (|π| ≤ |ϕ|log |ϕ| → ¬ProofeF (ϕ, π))] .

The sentence ΨeF is not provable in PV1.658

21

Proof. Suppose PV1 ⊢ ΨeF . Fix a countable nonstandard model M of PV1. Let M∗, a, and n ≜ |a| be659

as in Corollary 5.12. Since ΨeF holds in M∗, there is a tautology ϕ ∈ M∗ with ϕ ≥ a and consequently660

|ϕ| ≥ n such that ϕ does not have an eF-proof of size |ϕ|log |ϕ| in M∗. In particular, ϕ does not have a proof661

of size nlogn. On the other hand, by the two properties of M∗ the formula ϕ has an eF-proof of size at most662

nk for some standard number k. Finally, since n is nonstandard, we have nk ≤ nlogn. This contradiction663

implies that PV1 does not prove ΨeF .664

Open Problem 5.14. Show that PV1 cannot prove fixed-polynomial size lower bounds on the length of eF665

proofs.666

Open Problem 5.15. Establish the unprovability of the sentence ΨeF in theory S12.667

5.3 Connection Between Upper Bounds and Lower Bounds668

In this section, we explain a result from [BKO20] showing that the unprovability of P = NP (Open669

Problem 5.3) is related to the unprovability of circuit lower bounds. For a PV1 function symbol h and a670

circuit size parameter k ∈ N, consider the sentence671

LBa.e.
k (h) ≜ ¬UBi.o.

k (h) ,

where UBi.o.
k (h) is the sentence defined in Section 5.1.1. The sentence LBa.e.

k (h) states that the language672

defined by h is hard on input length n for circuits of size nk whenever n is sufficiently large.673

Theorem 5.16 (Unprovability of P = NP in PV1 from the unprovability of lower bounds in PV1 [BKO20]).674

If there exists k ∈ N such that for no function symbol h theory PV1 proves the sentence LBa.e.
k (h), then for675

no function symbol f theory PV1 proves the sentence φP=NP(f).676

Theorem 5.16 shows that if PV1 does not prove nk-size lower bounds for a language in P, then P ̸= NP677

is consistent with PV1. Note that the hypothesis of Theorem 5.16 is weaker than the assumption that PV1678

does not prove that NP ⊈ SIZE[nk] for some k.679

Sketch of the proof of Theorem 5.16. We proceed in the contrapositive. We formalize in PV1 the result that680

if P = NP, then for any parameter k, P ⊈ i.o.SIZE[nk] (see, e.g., [Lip94, Theorem 3]). This result681

combines the collapse of PH to P with Kannan’s argument [Kan82] that PH can define languages that are682

almost-everywhere hard against circuits of fixed-polynomial size. Typically, proving this claim requires683

showing the existence of a truth table of size 2n that is hard against circuits of size nk. However, this result684

might not be provable in PV1.685

We address this issue as follows. From the provability in PV1 that P = NP, it follows that for each686

i ≥ 1 theory Ti
2 collapses to PV1 [KPT91]. Recall that the dual weak pigeonhole principle (dWPHP) for687

LPV-functions is provable in T2
2. Define a PV1 function symbol g that takes as input a circuit C of size nk688

and outputs the lexicographic first nk+1 bits of the truth table computed by C. From dWPHP(g), we now689

derive in PV1 that the prefix of some truth table is not computable by circuits of size nk, if n is sufficiently690

large. We can implicitly extend this truth table prefix with zeroes and use the resulting truth table to define691

a PV1-formula φ(x) with a constant number of bounded quantifiers that defines a language L that is hard692

against circuits of size nk, where the hardness is provable in PV1.693

Given that the provability in PV1 that P = NP implies the provability in PV1 that PH collapses to P,694

it follows that φ(x) is equivalent in PV1 to the language defined by some LPV-function h. In other words,695

PV1 ⊢ LBa.e.
k (h), which completes the proof of Theorem 5.16.696

22

[CLO24b] shows an example of a simple lower bound that is not provable in PV1, under a plausible697

cryptographic assumption. This indicates that Theorem 5.16 might offer a viable approach towards a solu-698

tion to Open Problem 5.3.699

6 Additional Recent Developments700

The provability of the dual Weak Pigeonhole Principle (dWPHP) for polynomial-time functions is701

closely related to the provability of exponential circuit lower bounds for a language in deterministic ex-702

ponential time [Jeř07]. [Kra21] showed that dWPHP cannot be proved in PV1 under the assumption that703

P ⊆ SIZE[nk] for some constant k. [ILW23] established the same unprovability result assuming sub-704

exponentially secure indistinguishability obfuscation and coNP ⊈ i.o.AM.705

[ABM23] established the unprovability of NEXP ⊆ SIZE[poly] in the theory of bounded arithmetic V0
2706

(not covered in this survey). Interestingly, their approach does not employ a witnessing theorem. It proceeds707

instead by simulating a comprehension axiom scheme assuming the provability of the upper bound sentence,708

eventually relying on an existing lower bound on the provability of the pigeonhole principle.709

[CLO24b] systematically investigates the reverse mathematics of complexity lower bounds. They710

demonstrated that various lower bound statements in communication complexity, error-correcting codes,711

and for Turing machines are equivalent to well-studied combinatorial principles, such as the weak pigeon-712

hole principle for polynomial-time functions and its variants. Consequently, complexity lower bounds can713

be regarded as fundamental axioms with significant implications. They use these equivalences to derive714

conditional results on the unprovability of lower bounds.715

[CKK+24] investigates the provability of the circuit size hierarchy in bounded arithmetic, captured by716

a sentence CSH stating that for each n ≥ n0, there is a circuit of size na that does not admit an equivalent717

circuit of size nb, where a > b > 1 and n0 are fixed. They showed that CSH is provable in T2
2, while its718

provability in T1
2 implies that PNP ⊈ SIZE[n1+ε] for some ε > 0. Thus a better proof complexity upper719

bound for the circuit size hierarchy yields new circuit lower bounds.720

[Kra24] offers a comprehensive reference on proof complexity generators, whose investigation is closely721

related to dWPHP and its provability in bounded arithmetic. The theory of proof complexity generators722

offers tautologies that serve as potential candidates for demonstrating super-polynomial extended Frege723

lower bounds and consequently the unprovability of P = NP in PV1.724

We have not covered a number of results connected to the meta-mathematics of complexity lower bounds725

developed in the context of propositional proof complexity (see, e.g., [Raz15, Kra19, AR23, Kra24] and726

references therein). It is worth noting that results on the non-automatability of weak proof systems such727

as [AM20, dRGN+21] were made possible thanks to the investigation of the meta-mathematics of proof728

complexity.729

Finally, several other recent papers have investigated directions connected to bounded arithmetic and730

the meta-mathematics of complexity theory, e.g., [PS22, Kha22, PS23, AKPS24, LLR24]. Due to space731

constraints, we are not able to cover all recent developments in this survey.732

Acknowledgements. I would like to thank Jan Krajı́ček, Mykyta Narusevych, Ján Pich, and Dimitrios Tsintsil-733

idas for their valuable comments and feedback on an earlier version of this survey. This work received support734

from the Royal Society University Research Fellowship URF\R1\191059; the UKRI Frontier Research Guarantee735

EP/Y007999/1; and the Centre for Discrete Mathematics and its Applications (DIMAP) at the University of Warwick.736

23

References737

[AB09] Sanjeev Arora and Boaz Barak. Computational Complexity - A Modern Approach. Cambridge University738

Press, 2009.739

[ABM23] Albert Atserias, Samuel R. Buss, and Moritz Müller. On the consistency of circuit lower bounds for740

non-deterministic time. In Symposium on Theory of Computing (STOC), pages 1257–1270, 2023.741

[AKPS24] Noel Arteche, Erfan Khaniki, Ján Pich, and Rahul Santhanam. From proof complexity to circuit com-742

plexity via interactive protocols. In International Colloquium on Automata, Languages, and Program-743

ming (ICALP), 2024.744

[AM20] Albert Atserias and Moritz Müller. Automating resolution is NP-hard. J. ACM, 67(5):31:1–31:17, 2020.745

[AR23] Per Austrin and Kilian Risse. Sum-of-squares lower bounds for the minimum circuit size problem. In746

Computational Complexity Conference (CCC), pages 31:1–31:21, 2023.747

[AW09] Scott Aaronson and Avi Wigderson. Algebrization: A new barrier in complexity theory. Transactions748

on Computation Theory (TOCT), 1(1), 2009.749

[Bey09] Olaf Beyersdorff. On the correspondence between arithmetic theories and propositional proof systems –750

a survey. Mathematical Logic Quarterly, 55(2):116–137, 2009.751

[BGS75] Theodore P. Baker, John Gill, and Robert Solovay. Relativizatons of the P =? NP Question. SIAM J.752

Comput., 4(4):431–442, 1975.753

[BKKK20] Sam R. Buss, Valentine Kabanets, Antonina Kolokolova, and Michal Koucký. Expander construction in754

VNC1. Annals of Pure and Applied Logic, 171(7):102796, 2020.755

[BKO20] Jan Bydzovsky, Jan Krajı́ček, and Igor C. Oliveira. Consistency of circuit lower bounds with bounded756

theories. Logical Methods in Computer Science, 16(2), 2020.757

[BKT14] Samuel R. Buss, Leszek A. Kołodziejczyk, and Neil Thapen. Fragments of approximate counting.758

Journal of Symbolic Logic, 79(2):496–525, 2014.759

[BM20] Jan Bydzovsky and Moritz Müller. Polynomial time ultrapowers and the consistency of circuit lower760

bounds. Arch. Math. Log., 59(1-2):127–147, 2020.761

[Bus86] Samuel R. Buss. Bounded Arithmetic. Bibliopolis, 1986.762

[Bus90] Samuel R. Buss. On model theory for intuitionistic bounded arithmetic with applications to indepen-763

dence results. In Feasible Mathematics: A Mathematical Sciences Institute Workshop, Ithaca, New York,764

June 1989, pages 27–47. Springer, 1990.765

[Bus94] Samuel R. Buss. On herbrand’s theorem. In Selected Papers from the Logic and Computational Com-766

plexity International Workshop (LCC), pages 195–209, 1994.767

[Bus97] Samuel R. Buss. Bounded arithmetic and propositional proof complexity. In Logic of Computation,768

pages 67–121. Springer Berlin Heidelberg, 1997.769

[CHO+22] Lijie Chen, Shuichi Hirahara, Igor C. Oliveira, Ján Pich, Ninad Rajgopal, and Rahul Santhanam. Beyond770

natural proofs: Hardness magnification and locality. J. ACM, 69(4):25:1–25:49, 2022.771

[CIKK16] Marco L. Carmosino, Russell Impagliazzo, Valentine Kabanets, and Antonina Kolokolova. Learning772

algorithms from natural proofs. In Conference on Computational Complexity (CCC), pages 10:1–10:24,773

2016.774

24

[CJSW21] Lijie Chen, Ce Jin, Rahul Santhanam, and Ryan Williams. Constructive separations and their conse-775

quences. In Symposium on Foundations of Computer Science (FOCS), 2021.776

[CK07] Stephen A. Cook and Jan Krajı́ček. Consequences of the provability of NP ⊆ P/poly. Journal of777

Symbolic Logic, 72(4):1353–1371, 2007.778

[CKK+24] Marco Carmosino, Valentine Kabanets, Antonina Kolokolova, Igor C. Oliveira, and Dimitrios Tsintsili-779

das. Provability of the circuit size hierarchy and its consequences. Preprint, 2024.780

[CKKO21] Marco Carmosino, Valentine Kabanets, Antonina Kolokolova, and Igor C. Oliveira. Learn-uniform781

circuit lower bounds and provability in bounded arithmetic. In Symposium on Foundations of Computer782

Science (FOCS), 2021.783

[CLO24a] Lijie Chen, Jiatu Li, and Igor C. Oliveira. On the unprovability of circuit size bounds in intuitionistic S1
2.784

Preprint: arXiv:2404.11841, 2024.785

[CLO24b] Lijie Chen, Jiatu Li, and Igor C. Oliveira. Reverse mathematics of complexity lower bounds. In Sympo-786

sium on Foundations of Computer Science (FOCS), 2024.787

[CN10] Stephen A. Cook and Phuong Nguyen. Logical Foundations of Proof Complexity. Cambridge University788

Press, 2010.789

[Cob65] Alan Cobham. The intrinsic computational difficulty of functions. Proc. Logic, Methodology and Phi-790

losophy of Science, pages 24–30, 1965.791

[Coo75] Stephen A. Cook. Feasibly constructive proofs and the propositional calculus (preliminary version). In792

Symposium on Theory of Computing (STOC), pages 83–97, 1975.793

[CU93] Stephen Cook and Alasdair Urquhart. Functional interpretations of feasibly constructive arithmetic.794

Annals of Pure and Applied Logic, 63(2):103–200, 1993.795

[Din07] Irit Dinur. The PCP theorem by gap amplification. J. ACM, 54(3):12, 2007.796

[dRGN+21] Susanna F. de Rezende, Mika Göös, Jakob Nordström, Toniann Pitassi, Robert Robere, and Dmitry797

Sokolov. Automating algebraic proof systems is NP-hard. In Symposium on Theory of Computing798

(STOC), pages 209–222, 2021.799

[Gay23] Azza Gaysin. Proof complexity of CSP. ArXiv e-Print arXiv:2201.00913, 2023.800

[Gay24] Azza Gaysin. Proof complexity of universal algebra in a CSP dichotomy proof. ArXiv e-Print801

arXiv:2403.06704, 2024.802

[HP93] Petr Hájek and Pavel Pudlák. Metamathematics of first-order arithmetic. Springer-Verlag, 1993.803

[ILW23] Rahul Ilango, Jiatu Li, and Ryan Williams. Indistinguishability obfuscation, range avoidance, and804

bounded arithmetic. In Symposium on Theory of Computing (STOC), pages 1076–1089. ACM, 2023.805

[Jeř04] Emil Jeřábek. Dual weak pigeonhole principle, boolean complexity, and derandomization. Annals of806

Pure and Applied Logic, 129(1-3):1–37, 2004.807

[Jeř05] Emil Jeřábek. Weak pigeonhole principle and randomized computation. PhD thesis, Charles University808

in Prague, 2005.809

[Jeř06] Emil Jeřábek. The strength of sharply bounded induction. Mathematical Logic Quarterly, 52(6):613–810

624, 2006.811

25

[Jeř07] Emil Jeřábek. Approximate counting in bounded arithmetic. Journal of Symbolic Logic, 72(3):959–993,812

2007.813

[Juk12] Stasys Jukna. Boolean Function Complexity: Advances and Frontiers. Springer, 2012.814

[Kan82] Ravi Kannan. Circuit-size lower bounds and non-reducibility to sparse sets. Information and Control,815

55(1-3):40–56, 1982.816

[Kha22] Erfan Khaniki. Nisan-Wigderson generators in proof complexity: New lower bounds. In Computational817

Complexity Conference (CCC), pages 17:1–17:15, 2022.818

[KO17] Jan Krajı́ček and Igor C. Oliveira. Unprovability of circuit upper bounds in Cook’s theory PV. Logical819

Methods in Computer Science, 13(1), 2017.820

[KP89] Jan Krajı́ček and Pavel Pudlák. Propositional provability and models of weak arithmetic. In CSL’89:821

Proceedings of the 3rd Workshop on Computer Science Logic, pages 193–210, 1989.822

[KPS90] Jan Krajı́ček, Pavel Pudlák, and Jiřı́ Sgall. Interactive computations of optimal solutions. In International823

Symposium on Mathematical Foundations of Computer Science (MFCS), volume 452, pages 48–60,824

1990.825

[KPT91] Jan Krajı́ček, Pavel Pudlák, and Gaisi Takeuti. Bounded arithmetic and the polynomial hierarchy. Annals826

of Pure and Applied Logic, 52(1-2):143–153, 1991.827

[Kra95] Jan Krajı́ček. Bounded Arithmetic, Propositional Logic, and Complexity Theory. Encyclopedia of Math-828

ematics and its Applications. Cambridge University Press, 1995.829

[Kra97] Jan Krajı́cek. Interpolation theorems, lower bounds for proof systems, and independence results for830

bounded arithmetic. J. Symb. Log., 62(2):457–486, 1997.831

[Kra11] Jan Krajı́cek. On the proof complexity of the Nisan-Wigderson generator based on a hard NP ∩ coNP832

function. Journal of Mathematical Logic, 11(1), 2011.833

[Kra19] Jan Krajı́ček. Proof Complexity. Encyclopedia of Mathematics and its Applications. Cambridge Univer-834

sity Press, 2019.835

[Kra21] Jan Krajı́ček. Small circuits and dual weak PHP in the universal theory of p-time algorithms. ACM836

Transactions on Computational Logic (TOCL), 22(2):1–4, 2021.837

[Kra24] Jan Krajı́cek. Proof Complexity Generators. Monograph available at https://www.karlin.mff.838

cuni.cz/˜krajicek/gdraft.html, 2024.839

[LC11] Dai Tri Man Le and Stephen A. Cook. Formalizing randomized matching algorithms. Log. Methods840

Comput. Sci., 8(3), 2011.841

[Lip94] Richard J. Lipton. Some consequences of our failure to prove non-linear lower bounds on explicit842

functions. In Structure in Complexity Theory Conference (CCC), pages 79–87, 1994.843

[LLR24] Jiawei Li, Yuhao Li, and Hanlin Ren. Meta-mathematics of resolution lower bounds: A TFNP perspec-844

tive. Preprint, 2024.845

[LO23] Jiatu Li and Igor C. Oliveira. Unprovability of strong complexity lower bounds in bounded arithmetic.846

In Symposium on Theory of Computing (STOC), 2023.847

[Lê14] Dai Tri Man Lê. Bounded Arithmetic and Formalizing Probabilistic Proofs. PhD thesis, University of848

Toronto, 2014.849

26

https://www.karlin.mff.cuni.cz/~krajicek/gdraft.html
https://www.karlin.mff.cuni.cz/~krajicek/gdraft.html
https://www.karlin.mff.cuni.cz/~krajicek/gdraft.html

[McK10] Richard McKinley. A sequent calculus demonstration of Herbrand’s theorem. arXiv preprint850

arXiv:1007.3414, 2010.851

[MP20] Moritz Müller and Ján Pich. Feasibly constructive proofs of succinct weak circuit lower bounds. Annals852

of Pure and Applied Logic, 171(2), 2020.853

[MPW02] Alexis Maciel, Toniann Pitassi, and Alan R. Woods. A new proof of the weak pigeonhole principle.854

Journal of Computer and System Sciences, 64(4):843–872, 2002.855

[Oja04] Kerry Ojakian. Combinatorics in Bounded Arithmetic. PhD thesis, Carnegie Mellon University, 2004.856

[Par71] Rohit Parikh. Existence and feasibility in arithmetic. Journal of Symbolic Logic, 36(3):494–508, 1971.857

[Pic15a] Ján Pich. Circuit lower bounds in bounded arithmetics. Annals of Pure and Applied Logic, 166(1):29–45,858

2015.859

[Pic15b] Ján Pich. Logical strength of complexity theory and a formalization of the PCP theorem in bounded860

arithmetic. Logical Methods in Computer Science, 11(2), 2015.861

[PS21] Ján Pich and Rahul Santhanam. Strong co-nondeterministic lower bounds for NP cannot be proved862

feasibly. In Symposium on Theory of Computing (STOC), pages 223–233, 2021.863

[PS22] Ján Pich and Rahul Santhanam. Learning algorithms versus automatability of Frege systems. In Inter-864

national Colloquium on Automata, Languages, and Programming (ICALP), pages 101:1–101:20, 2022.865

[PS23] Ján Pich and Rahul Santhanam. Towards P ̸=NP from extended Frege lower bounds. Electron. Collo-866

quium Comput. Complex., TR23-199, 2023.867

[Pud06] Pavel Pudlák. Consistency and games - in search of new combinatorial principles. In V. Stoltenberg-868

Hansen and J. Väänänen, editors, Logic Colloquium ’03, volume 24 of Lecture Notes in Logic, pages869

244–281. ASL, 2006.870

[PWW88] Jeff B. Paris, A. J. Wilkie, and Alan R. Woods. Provability of the pigeonhole principle and the existence871

of infinitely many primes. J. Symb. Log., 53(4):1235–1244, 1988.872

[Raz95a] Alexander A. Razborov. Bounded arithmetic and lower bounds in boolean complexity. In P. Clote and873

J. Remmel, editors, Feasible Mathematics II, pages 344—-386. Birkhäuser, 1995.874

[Raz95b] Alexander A Razborov. Unprovability of lower bounds on circuit size in certain fragments of bounded875

arithmetic. Izvestiya: mathematics, 59(1):205, 1995.876

[Raz15] Alexander A. Razborov. Pseudorandom generators hard for k-DNF resolution and polynomial calculus877

resolution. Annals of Mathematics, pages 415–472, 2015.878

[RR97] Alexander A. Razborov and Steven Rudich. Natural proofs. Journal of Computer and System Sciences,879

55(1):24–35, 1997.880

[Sub61] Bella A. Subbotovskaya. Realization of linear functions by formulas using +, ·, −. In Soviet Math.881

Dokl, 1961.882

[SW14] Rahul Santhanam and Ryan Williams. On uniformity and circuit lower bounds. Computational Com-883

plexity, 23(2):177–205, 2014.884

[TC21] Iddo Tzameret and Stephen A. Cook. Uniform, integral, and feasible proofs for the determinant identi-885

ties. J. ACM, 68(2):12:1–12:80, 2021.886

27

[Woo81] Alan R. Woods. Some problems in logic and number theory and their connections. PhD thesis, University887

of Manchester, 1981.888

[WP87] Alex J. Wilkie and Jeff B. Paris. On the scheme of induction for bounded arithmetic formulas. Ann. Pure889

Appl. Log., 35:261–302, 1987.890

28

	Introduction
	Preliminaries
	Complexity Theory
	Theories of Bounded Arithmetic
	PV1
	S12, T12, and Beyond
	APC1

	Auxiliary Definitions and Results
	Witnessing Theorems
	Bounded Arithmetic and Propositional Proofs
	Cuts of Models of Bounded Arithmetic

	The Strength of Bounded Arithmetic
	Formalization of Results from Algorithms and Complexity
	Concrete Example: Subbotovskaya's Formula Lower Bound in PV

	Unprovability of Complexity Bounds
	Unprovability of Upper Bounds
	LEARN-Uniform Circuits and Unprovability
	P = NP and Propositional Proof Complexity

	Unprovability of Lower Bounds
	Average-Case Circuit Lower Bounds
	Extended Frege Lower Bounds

	Connection Between Upper Bounds and Lower Bounds

	Additional Recent Developments

