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1. Matrices and intersections
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The number of intersections

▷ Given a boolean matrix

A =


1 1 0 0

0 0 1 1

0 1 1 0

1 0 1 1

 ,

Q. How many intersections are needed to construct A from
row and column matrices (using unions and intersections)?
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The base matrices

▷ Row matrices R1, . . . ,R4.

R3 =


0 0 0 0

0 0 0 0

1 1 1 1
0 0 0 0


▷ Column matrices C1, . . . ,C4.

C2 =


0 1 0 0

0 1 0 0

0 1 0 0

0 1 0 0
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Constructing A from R1, . . . , R4, C1, . . . , C4

A =


1 1 0 0

0 0 1 1

0 1 1 0

1 0 1 1

 =


1 1 0 0

0 0 0 0

0 0 0 0

0 0 0 0

∪


0 0 0 0

0 0 1 1

0 0 0 0

0 0 0 0

∪


0 0 0 0

0 0 0 0

0 1 1 0

0 0 0 0

∪


0 0 0 0

0 0 0 0

0 0 0 0

1 0 1 1

 .

(We view each boolean matrix as a subset of Γ def
= [4]× [4].)

Claim. Each remaining matrix constructed with 1 intersection.
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Constructing A from R1, . . . , R4, C1, . . . , C4

Claim. Each remaining matrix constructed with 1 intersection:

A′ def
=


0 0 0 0

0 0 0 0

0 0 0 0

1 0 1 1

 =


1 0 1 1

1 0 1 1

1 0 1 1

1 0 1 1

∩


0 0 0 0

0 0 0 0

0 0 0 0

1 1 1 1

 ,

In other words, A′ = (C1 ∪C3 ∪C4) ∩R4.

=⇒ A =


1 1 0 0

0 0 1 1

0 1 1 0

1 0 1 1

 constructed with ≤ 4 intersections.
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Notation

▷ For A ⊆ [N ]× [N ] and GN = {R1, . . . , RN , C1, . . . , CN},

D∩(A | GN) is the number of ∩ needed to construct A from GN .

▷ The previous construction establishes more generally that:

Claim. For every boolean matrix A ⊆ [N ]× [N ],

D∩(A | GN ) ≤ N .

▷ Interested in matrices that require several intersections.
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A simple example

▷ Consider the N ×N “parity” matrices PN ,

(i, j) ∈ PN ⇐⇒ i+ j ≡ 0 (mod 2)

D∩(PN | GN ) = O(1)
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Another example

Consider the N ×N symmetric matrices

IN
def
=


0 1⃗

. . .
1⃗ 0

 .

Exercise. If N is a power of 2 then D∩(IN | GN ) = logN .
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The random boolean matrix

Claim. If R ⊆1/2 [N ]× [N ] is a random boolean matrix, then

D∩(R | GN ) = Ω(N) with probability → 1.

▷ Showing a lower bound of Ω(N/ logN) is not difficult.

▷ Tight bound uses a result of Uri Zwick (1996).
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Summary and Main Problem

▷ Every matrix A satisfies D∩(A | GN ) ≤ N .

▷ A uniformly random matrix R satisfies D∩(R | GN ) = Ω(N).

▷ The symmetric matrices IN satisfy D∩(IN | GN ) = logN .

Problem. Show that some “explicit” sequence EN satisfies

D∩(EN | GN ) ≥ 10 logN.
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2. The connection to computation

– Based on the following work:
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Matrices, intersections, and computation

▷ Constructing such matrices has implications for Theoretical
Computer Science.

Proposition. If there is an “explicit” sequence EN such that

D∩(EN | GN ) ≥ (logN)ω(1),

then P ̸= NP.

▷ Give me instead a sequence with D∩(EN | GN ) ≥ C · logN .

▷ C ≥ 10 would establish a new result in complexity theory.
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Sketch of the proof (1/4)

D∩(EN | GN ) ≥ (logN)ω(1) =⇒ “Complexity Lower Bounds”

▷ Any computation can be simulated by boolean circuits.

▷ A circuit computes a boolean function g : {0, 1}n → {0, 1}.

▷ Enough to prove circuit size lower bound for explicit
f : {0, 1}n → {0, 1} obtained from matrix EN .
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Sketch of the proof (2/4)

▷ Let EN require ℓ intersections when generated from GN .

▷ Write N = 2n. Fix natural bijection φ : [N ]× [N ] → {0, 1}2n.

▷ Define f : {0, 1}2n → {0, 1} by f−1(1)
def
= φ(EN ) ⊆ {0, 1}2n.

1 0⃗
. . .

0⃗ 1

becomes Equality function over two n-bit strings.

Lemma. If SIZE(f) ≤ s then D∩(EN | GN ) ≤ s.

Idea: A boolean circuit C computing f generates the set f−1(1)

starting from sets x1, . . . , x2n, x1, . . . , x2n ⊆ {0, 1}2n.
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Sketch of the proof (3/4)

Lemma. If SIZE(f) ≤ s then D∩(EN | GN ) ≤ s.

▷ A circuit of size s for f generates a sequence:

x1, . . . , x2n, x1 , . . . , x2n , B1 , . . . , Bs = f−1(1) ⊆ {0, 1}2n.

▷ Get from this and bijection φ a construction of EN from GN :

Example: φ−1(Bs) = EN ⊆ [N ]× [N ].

Crucial: Need to generate φ−1(xi) and φ−1(xj) ⊆ [N ]× [N ]

from row and column matrices in GN . Can be done without ∩.

16



Sketch of the proof (3/4)

Lemma. If SIZE(f) ≤ s then D∩(EN | GN ) ≤ s.

▷ A circuit of size s for f generates a sequence:

x1, . . . , x2n, x1 , . . . , x2n , B1 , . . . , Bs = f−1(1) ⊆ {0, 1}2n.

▷ Get from this and bijection φ a construction of EN from GN :

Example: φ−1(Bs) = EN ⊆ [N ]× [N ].

Crucial: Need to generate φ−1(xi) and φ−1(xj) ⊆ [N ]× [N ]

from row and column matrices in GN . Can be done without ∩.

16



Sketch of the proof (3/4)

Lemma. If SIZE(f) ≤ s then D∩(EN | GN ) ≤ s.

▷ A circuit of size s for f generates a sequence:

x1, . . . , x2n, x1 , . . . , x2n , B1 , . . . , Bs = f−1(1) ⊆ {0, 1}2n.

▷ Get from this and bijection φ a construction of EN from GN :

Example: φ−1(Bs) = EN ⊆ [N ]× [N ].

Crucial: Need to generate φ−1(xi) and φ−1(xj) ⊆ [N ]× [N ]

from row and column matrices in GN . Can be done without ∩.

16



Sketch of the proof (4/4)

Crucial: Need to generate φ−1(xi) and φ−1(xj) ⊆ [N ]× [N ]

from row and column matrices in GN . Can be done without ∩.

The space {0, 1}4 and its
“red” subspace x4 ⊆ {0, 1}4

The corresponding set in
[4]× [4] via the bijection φ.


00 01 10 11

00 0 1 0 1

01 0 1 0 1

10 0 1 0 1

11 0 1 0 1
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3. An approach to estimate D∩(A | B)

– A is an arbitrary set contained in ambient space Γ.

– B is a collection of subsets of Γ.
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Intersections and Cover Problems

▷ Would like to lower bound D∩(A | B).

▷ Can adapt “fusion method” (Razborov/Karchmer) to show:

ρ(A,B) ≤ D∩(A | B) ≤ ρ(A,B)2.

Reduces complexity lower bounds to the analysis of
“static” 2-dimensional cover problems.

▷ By adapting the work of Nakayama-Maruoka,

ρ(A,B) = D

œ

∩ (A | B) (intersections in œ -networks)

▷ Connections to other areas/problems + applications?
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Appendix: Cover complexity (1/3)

Appendix: Definition of ρ(A,B).

▷ Let Ac def
= Γ \A, where Γ is the ambient space.

▷ A is non-trivial, i.e., both A and Ac are non-empty.

▷ B is a collection of subsets of Γ.

Definition (Semi-filter)
A non-empty family F ⊆ P(U) is a semi-filter over U if the
following hold:

• (upward closure) If U1 ∈ F and U1 ⊆ U2 ⊆ U , then U2 ∈ F .

• (non-trivial) ∅ /∈ F .

▷ We will always use U
def
= Ac.
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Appendix: Cover complexity (2/3)

Definition (Semi-filter above a ∈ A)
F is above an element a ∈ A (with respect to B) if for every
B ∈ B, if a ∈ B then B ∩Ac ∈ F .

· • · • • · · · · · · • • · • · · • • • · ·
· · · • • • · · • • • • · • a · • • • • · ·
· · · · • · · · • · · • · · · · · • · • · ·
· • · • · • • · · · · · • · • • · • · · · ·
· · · · · · · • · • • • • · • · • • • · · ·
· · · • • · · · • · · · • · • · • · · • • ·

Definition (Preservation of pairs of subsets)
Let Λ = {(E1, H1), . . . , (Eℓ, Hℓ)} be a family of pairs of subsets
of Ac. F preserves a pair (Ei, Hi) if Ei ∈ F and Hi ∈ F imply
Ei ∩Hi ∈ F . F preserves Λ if it preserves every pair in Λ.
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Appendix: Cover complexity (3/3)

Definition (Cover complexity)
ρ(A,B) is the minimum size of a collection Λ of pairs of subsets
of Ac such that there is no semi-filter F that preserves Λ and is
above an element a ∈ A.

Theorem. The following results hold:

ρ(A,B) ≤ D∩(A | B) ≤ ρ(A,B)2 and ρ(A,B) = D

œ

∩ (A | B)

Corollary: k-Clique (for k = 3) monotone lower bounds of
Razborov extend to number of intersections in monotone

œ -networks: Θ̃(n3) intersections needed to detect a triangle.
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