Boolean function complexity and two-dimensional cover problems

Igor Carboni Oliveira

Joint work with Bruno Cavalar

1. Matrices and intersections

> Given a boolean matrix

$$\boldsymbol{A} = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 1 \end{bmatrix},$$

Q. How many **intersections** are needed to construct *A* from **row** and **column** matrices (using **unions** and **intersections**)?

 \triangleright **Row** matrices R_1, \ldots, R_4 .

$$\boldsymbol{R}_3 = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ \mathbf{1} & \mathbf{1} & \mathbf{1} & \mathbf{1} \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

 \triangleright **Column** matrices C_1, \ldots, C_4 .

$$\boldsymbol{C}_2 = \begin{bmatrix} 0 & \mathbf{1} & 0 & 0 \\ 0 & \mathbf{1} & 0 & 0 \\ 0 & \mathbf{1} & 0 & 0 \\ 0 & \mathbf{1} & 0 & 0 \end{bmatrix}$$

Constructing A from $R_1, \ldots, R_4, C_1, \ldots, C_4$

$$oldsymbol{A} \ = \ egin{bmatrix} 1 & 1 & 0 & 0 \ 0 & 0 & 1 & 1 \ 0 & 1 & 1 & 0 \ 1 & 0 & 1 & 1 \end{bmatrix} \ =$$

(We view each boolean matrix as a subset of $\Gamma \stackrel{\text{def}}{=} [4] \times [4]$.)

Claim. Each remaining matrix constructed with 1 intersection.

Constructing A from $R_1, \ldots, R_4, C_1, \ldots, C_4$

Claim. Each remaining matrix constructed with 1 intersection:

In other words, $A' = (C_1 \cup C_3 \cup C_4) \cap R_4$.

Claim. Each remaining matrix constructed with 1 intersection:

In other words, $A' = (C_1 \cup C_3 \cup C_4) \cap R_4.$

$$\implies \mathbf{A} = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 1 \end{bmatrix} \text{ constructed with } \le 4 \text{ intersections.}$$

▷ For $A \subseteq [N] \times [N]$ and $\mathcal{G}_N = \{R_1, \dots, R_N, C_1, \dots, C_N\}$, $D_{\cap}(A \mid \mathcal{G}_N)$ is the number of \cap needed to construct A from \mathcal{G}_N .

> The previous construction establishes more generally that:

Claim. For every boolean matrix $A \subseteq [N] \times [N]$,

 $D_{\cap}(A \,|\, \mathcal{G}_N) \leq N.$

> Interested in matrices that require several intersections.

 \triangleright Consider the $N \times N$ "parity" matrices P_N ,

$$(i,j) \in P_N \iff i+j \equiv 0 \pmod{2}$$

 \triangleright Consider the $N \times N$ "parity" matrices P_N ,

$$(i,j) \in P_N \iff i+j \equiv 0 \pmod{2}$$

 $D_{\cap}(P_N \,|\, \mathcal{G}_N) = O(1)$

Consider the $N\times N$ symmetric matrices

$$\overline{I_N} \stackrel{\text{def}}{=} \begin{bmatrix} 0 & & \vec{\mathbf{1}} \\ & \ddots & \\ \vec{\mathbf{1}} & & 0 \end{bmatrix}$$

Consider the $N \times N$ symmetric matrices

$$\overline{I_N} \stackrel{\text{def}}{=} \begin{bmatrix} 0 & & \vec{\mathbf{1}} \\ & \ddots & \\ \vec{\mathbf{1}} & & 0 \end{bmatrix}$$

Exercise. If N is a power of 2 then $D_{\cap}(\overline{I_N} | \mathcal{G}_N) = \log N$.

Claim. If $\mathbf{R} \subseteq_{1/2} [N] \times [N]$ is a random boolean matrix, then $D_{\cap}(\mathbf{R} \mid \mathcal{G}_N) = \Omega(N)$ with probability $\rightarrow 1$. Claim. If $\mathbf{R} \subseteq_{1/2} [N] \times [N]$ is a random boolean matrix, then $D_{\cap}(\mathbf{R} \mid \mathcal{G}_N) = \Omega(N)$ with probability $\rightarrow 1$.

 \triangleright Showing a lower bound of $\Omega(N/\log N)$ is not difficult.

▷ Tight bound uses a result of Uri Zwick (1996).

 \triangleright Every matrix A satisfies $D_{\cap}(A \mid \mathcal{G}_N) \leq N$.

 \triangleright A uniformly random matrix \boldsymbol{R} satisfies $D_{\cap}(\boldsymbol{R} | \mathcal{G}_N) = \Omega(N)$.

 \triangleright The symmetric matrices $\overline{I_N}$ satisfy $D_{\cap}(\overline{I_N} | \mathcal{G}_N) = \log N$.

 \triangleright Every matrix A satisfies $D_{\cap}(A \mid \mathcal{G}_N) \leq N$.

 \triangleright A uniformly random matrix \boldsymbol{R} satisfies $D_{\cap}(\boldsymbol{R} | \mathcal{G}_N) = \Omega(N)$.

 \triangleright The symmetric matrices $\overline{I_N}$ satisfy $D_{\cap}(\overline{I_N} | \mathcal{G}_N) = \log N$.

Problem. Show that some "**explicit**" sequence E_N satisfies $D_{\cap}(E_N \mid \mathcal{G}_N) \ge 10 \log N.$

2. The connection to computation

- Based on the following work:

Pavel Pudlák, Vojtech Rödl, and Petr Savický. **Graph complexity.** *Acta Inf.*, 25(5):515–535, 1988. Constructing such matrices has implications for Theoretical Computer Science.

Proposition. If there is an "explicit" sequence E_N such that $D_{\cap}(E_N | \mathcal{G}_N) \ge (\log N)^{\omega(1)}$, then $P \ne NP$. Constructing such matrices has implications for Theoretical Computer Science.

 \triangleright Give me instead a sequence with $D_{\cap}(E_N | \mathcal{G}_N) \ge C \cdot \log N$.

 $rac{>} C \ge 10$ would establish a **new result** in complexity theory.

 $D_{\cap}(E_N | \mathcal{G}_N) \ge (\log N)^{\omega(1)} \implies$ "Complexity Lower Bounds"

 \triangleright Any computation can be simulated by **boolean circuits.**

 \triangleright A circuit computes a boolean function $g \colon \{0,1\}^n \to \{0,1\}$.

▷ Enough to prove **circuit size lower bound** for explicit $f: \{0, 1\}^n \rightarrow \{0, 1\}$ obtained from matrix E_N .

▷ Let E_N require ℓ intersections when generated from \mathcal{G}_N . ▷ Write $N = 2^n$. Fix natural bijection $\varphi : [N] \times [N] \to \{0, 1\}^{2n}$.

 $\rhd \text{ Define } f \colon \{0,1\}^{2n} \to \{0,1\} \text{ by } f^{-1}(1) \stackrel{\text{def}}{=} \varphi(E_N) \subseteq \{0,1\}^{2n}.$

 \triangleright Let E_N require ℓ intersections when generated from \mathcal{G}_N .

 \triangleright Write $N = 2^n$. Fix natural bijection $\varphi \colon [N] \times [N] \to \{0,1\}^{2n}$.

 $\rhd \text{ Define } f \colon \{0,1\}^{2n} \to \{0,1\} \text{ by } f^{-1}(1) \stackrel{\text{def}}{=} \varphi(E_N) \subseteq \{0,1\}^{2n}.$

 $\begin{vmatrix} 1 & 0 \\ \cdot \cdot & \\ \vec{0} & 1 \end{vmatrix}$ becomes **Equality** function over two *n*-bit strings.

 \triangleright Let E_N require ℓ intersections when generated from \mathcal{G}_N .

 \triangleright Write $N = 2^n$. Fix natural bijection $\varphi \colon [N] \times [N] \to \{0, 1\}^{2n}$.

 $\rhd \text{ Define } f \colon \{0,1\}^{2n} \to \{0,1\} \text{ by } f^{-1}(1) \stackrel{\text{def}}{=} \varphi(E_N) \subseteq \{0,1\}^{2n}.$

 $\begin{bmatrix} 1 & \vec{0} \\ & \ddots & \\ \vec{0} & & 1 \end{bmatrix}$ becomes **Equality** function over two *n*-bit strings.

Lemma. If $SIZE(f) \leq s$ then $D_{\cap}(E_N | \mathcal{G}_N) \leq s$.

 \triangleright Let E_N require ℓ intersections when generated from \mathcal{G}_N .

 \triangleright Write $N = 2^n$. Fix natural bijection $\varphi \colon [N] \times [N] \to \{0, 1\}^{2n}$.

 \rhd Define $f: \{0,1\}^{2n} \to \{0,1\}$ by $f^{-1}(1) \stackrel{\text{def}}{=} \varphi(E_N) \subseteq \{0,1\}^{2n}$.

 $\begin{bmatrix} 1 & \vec{0} \\ & \ddots & \\ \vec{0} & & 1 \end{bmatrix}$ becomes **Equality** function over two *n*-bit strings.

Lemma. If $SIZE(f) \leq s$ then $D_{\cap}(E_N | \mathcal{G}_N) \leq s$.

Idea: A boolean circuit *C* computing *f* generates the set $f^{-1}(1)$ starting from sets $x_1, \ldots, x_{2n}, \overline{x_1}, \ldots, \overline{x_{2n}} \subseteq \{0, 1\}^{2n}$.

Lemma. If $SIZE(f) \leq s$ then $D_{\cap}(E_N | \mathcal{G}_N) \leq s$.

 \triangleright A circuit of size *s* for *f* generates a sequence:

 $x_1, \ldots, x_{2n}, \overline{x_1}, \ldots, \overline{x_{2n}}, B_1, \ldots, B_s = f^{-1}(1) \subseteq \{0, 1\}^{2n}.$

Lemma. If $SIZE(f) \leq s$ then $D_{\cap}(E_N | \mathcal{G}_N) \leq s$.

 \triangleright A circuit of size *s* for *f* generates a sequence:

 $x_1, \ldots, x_{2n}, \overline{x_1}, \ldots, \overline{x_{2n}}, B_1, \ldots, B_s = f^{-1}(1) \subseteq \{0, 1\}^{2n}.$

 \triangleright Get from this and bijection φ a construction of E_N from \mathcal{G}_N : **Example:** $\varphi^{-1}(B_s) = E_N \subseteq [N] \times [N].$ **Lemma.** If $SIZE(f) \leq s$ then $D_{\cap}(E_N | \mathcal{G}_N) \leq s$.

 \triangleright A circuit of size *s* for *f* generates a sequence:

 $x_1, \ldots, x_{2n}, \overline{x_1}, \ldots, \overline{x_{2n}}, B_1, \ldots, B_s = f^{-1}(1) \subseteq \{0, 1\}^{2n}.$

 \triangleright Get from this and bijection φ a construction of E_N from \mathcal{G}_N : **Example:** $\varphi^{-1}(B_s) = E_N \subseteq [N] \times [N].$

Crucial: Need to generate $\varphi^{-1}(x_i)$ and $\varphi^{-1}(\overline{x_j}) \subseteq [N] \times [N]$ from row and column matrices in \mathcal{G}_N . **Can be done without** \cap .

Crucial: Need to generate $\varphi^{-1}(x_i)$ and $\varphi^{-1}(\overline{x_i}) \subseteq [N] \times [N]$ from row and column matrices in \mathcal{G}_N . Can be done without \cap .

The space $\{0,1\}^4$ and its "red" subspace $x_4 \subseteq \{0,1\}^4$ [4] × [4] via the bijection φ .

The corresponding set in

	00	01	10	11	
00	0	1	0	1]	
01	0	1	0	1	
10	0	1	0	1	
11	0	1	0	1	

3. An approach to estimate $D_{\cap}(A \mid \mathcal{B})$

- A is an arbitrary set contained in ambient space Γ .
- \mathcal{B} is a collection of subsets of Γ .

> Can adapt "fusion method" (Razborov/Karchmer) to show:

 $\rho(A, \mathcal{B}) \leq \mathbf{D}_{\cap}(\mathbf{A} \mid \mathbf{B}) \leq \rho(A, \mathcal{B})^2.$

> Can adapt "fusion method" (Razborov/Karchmer) to show:

 $\rho(A, \mathcal{B}) \leq \mathbf{D}_{\cap}(\mathbf{A} \mid \mathbf{B}) \leq \rho(A, \mathcal{B})^2.$

Reduces complexity lower bounds to the analysis of "static" 2-dimensional cover problems.

> Can adapt "fusion method" (Razborov/Karchmer) to show:

 $\rho(A, \mathcal{B}) \leq \mathbf{D}_{\cap}(\mathbf{A} \mid \mathbf{B}) \leq \rho(A, \mathcal{B})^2.$

Reduces complexity lower bounds to the analysis of "static" 2-dimensional cover problems.

> By adapting the work of Nakayama-Maruoka,

 $\rho(A, \mathcal{B}) = D^{\mathbb{C}}_{\cap}(A \mid \mathcal{B}) \quad \text{(intersections in } \mathbb{C}\text{-networks)}$

> Can adapt "fusion method" (Razborov/Karchmer) to show:

 $\rho(A, \mathcal{B}) \leq \mathbf{D}_{\cap}(\mathbf{A} \mid \mathbf{B}) \leq \rho(A, \mathcal{B})^2.$

Reduces complexity lower bounds to the analysis of "static" 2-dimensional cover problems.

> By adapting the work of Nakayama-Maruoka,

 $\rho(A, \mathcal{B}) = D_{\cap}^{\mathbb{C}}(A \mid \mathcal{B}) \quad \text{(intersections in } \mathbb{C}\text{-networks)}$

Connections to other areas/problems + applications?

References and Related Work

	Bruno Cavalar and Igor C. Oliveira. Boolean function complexity and two-dimensional cover problems. Preprint, 2024.
	Stasys Jukna. Computational complexity of graphs (book chapter). Advances in Network Complexity, Quantitative and Network Biology, 2013.
	Mauricio Karchmer. On proving lower bounds for circuit size. In Structure in Complexity Theory Conference (CCC), pages 112–118, 1993.
E	Katsutoshi Nakayama and Akira Maruoka. Loop circuits and their relation to Razborov's approximation model. Inf. Comput., 119(2):154–159, 1995.
	Pavel Pudlák, Vojtech Rödl, and Petr Savický. Graph complexity. Acta Inf., 25(5):515–535, 1988.
	Alexander A. Razborov. On the method of approximations. In Symposium on Theory of Computing (STOC), pages 167–176, 1989.
	Avi Wigderson. The fusion method for lower bounds in circuit complexity. In Combinatorics, Paul Erdos is Eighty, pages 453–467, 1993.
	Uri Zwick. On the number of ANDs versus the number of ORs in monotone boolean circuits. Inf. Process. Lett., 59(1):29–30, 1996.

Appendix: Definition of $\rho(A, \mathcal{B})$.

 \triangleright Let $A^c \stackrel{\text{def}}{=} \Gamma \setminus A$, where Γ is the *ambient space*.

 $\triangleright A$ is *non-trivial*, i.e., both A and A^c are non-empty.

 $\triangleright \mathcal{B}$ is a collection of subsets of Γ .

Definition (Semi-filter)

A non-empty family $\mathcal{F} \subseteq \mathcal{P}(U)$ is a *semi-filter* over U if the following hold:

- *(upward closure)* If $U_1 \in \mathcal{F}$ and $U_1 \subseteq U_2 \subseteq U$, then $U_2 \in \mathcal{F}$.
- (non-trivial) $\emptyset \notin \mathcal{F}$.
- \triangleright We will always use $U \stackrel{\text{def}}{=} A^c$.

Appendix: Cover complexity (2/3)

Definition (Semi-filter above $a \in A$) \mathcal{F} is *above* an element $a \in A$ (with respect to \mathcal{B}) if for every

 $B \in \mathcal{B}$, if $a \in B$ then $B \cap A^c \in \mathcal{F}$.

Definition (Preservation of pairs of subsets) Let $\Lambda = \{(E_1, H_1), \dots, (E_\ell, H_\ell)\}$ be a family of pairs of subsets of A^c . \mathcal{F} preserves a pair (E_i, H_i) if $E_i \in \mathcal{F}$ and $H_i \in \mathcal{F}$ imply $E_i \cap H_i \in \mathcal{F}$. \mathcal{F} preserves Λ if it preserves every pair in Λ .

Definition (Cover complexity)

 $\rho(A, \mathcal{B})$ is the minimum size of a collection Λ of pairs of subsets of A^c such that there is no semi-filter \mathcal{F} that preserves Λ and is above an element $a \in A$.

Theorem. The following results hold:

 $\rho(A, \mathcal{B}) \leq D_{\cap}(A \mid \mathcal{B}) \leq \rho(A, \mathcal{B})^2 \text{ and } \rho(A, \mathcal{B}) = D_{\cap}^{\mathbb{C}}(A \mid \mathcal{B})$

Corollary: *k*-Clique (for k = 3) monotone lower bounds of Razborov extend to **number of intersections** in **monotone** \mathbb{C} -**networks**: $\widetilde{\Theta}(n^3)$ intersections needed to detect a triangle.