Boolean function complexity and two-dimensional cover problems

Igor Carboni Oliveira

Joint work with Bruno Cavalar

1. Matrices and intersections

▷ Given a **boolean matrix**

$$
\mathbf{A} = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 1 \end{bmatrix},
$$

Q. How many **intersections** are needed to construct A from **row** and **column** matrices (using **unions** and **intersections**)? \triangleright **Row** matrices R_1, \ldots, R_4 .

$$
\boldsymbol{R}_3 = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}
$$

 \triangleright **Column** matrices C_1, \ldots, C_4 .

$$
C_2 = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}
$$

Constructing A from $R_1, \ldots, R_4, C_1, \ldots, C_4$

$$
A = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 1 \end{bmatrix} =
$$

 $\sqrt{ }$ $\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \end{array} \\ \begin{array}{c} \end{array} \end{array} \end{array}$ 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 $\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \end{array} \end{array}$ ∪ $\sqrt{ }$ $\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \end{array} \\ \begin{array}{c} \end{array} \end{array} \end{array}$ 0 0 0 0 0 0 1 1 0 0 0 0 0 0 0 0 1 $\begin{array}{c} \n \downarrow \\ \n \downarrow \n \end{array}$ ∪ $\sqrt{ }$ $\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \end{array} \\ \begin{array}{c} \end{array} \end{array} \end{array}$ 0 0 0 0 0 0 0 0 0 1 1 0 0 0 0 0 1 $\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \\ \end{array} \end{array} \end{array}$ ∪ $\sqrt{ }$ $\begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array} \end{array} \\ \begin{array}{c} \end{array} \end{array} \end{array}$ 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 1 1 $\begin{array}{c} \n\downarrow \\ \n\downarrow \\ \n\downarrow \n\end{array}$

(We view each boolean matrix as a subset of $\Gamma \stackrel{\text{def}}{=} [4] \times [4]$.)

Claim. Each remaining matrix constructed with 1 intersection.

.

Constructing A from $R_1, \ldots, R_4, C_1, \ldots, C_4$

Claim. Each remaining matrix constructed with 1 intersection:

$$
A' \stackrel{\text{def}}{=} \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 0 & 1 & 1 \end{bmatrix} \cap \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 \end{bmatrix},
$$

In other words, $A' = (C_1 \cup C_3 \cup C_4) \cap R_4$.

Claim. Each remaining matrix constructed with 1 intersection:

$$
A' \stackrel{\text{def}}{=} \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 0 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 0 & 1 & 1 \\ 1 & 0 & 1 & 1 \end{bmatrix} \cap \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & 1 & 1 & 1 \end{bmatrix},
$$

In other words, $A' = (C_1 \cup C_3 \cup C_4) \cap R_4$.

$$
\implies A = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 1 \end{bmatrix}
$$
 constructed with ≤ 4 **intersections**.

 \triangleright For $A \subseteq [N] \times [N]$ and $\mathcal{G}_N = \{R_1, \ldots, R_N, C_1, \ldots, C_N\},$ $D_{\cap}(A | \mathcal{G}_N)$ is the number of \cap needed to construct A from \mathcal{G}_N .

 \triangleright The previous construction establishes more generally that:

Claim. For every boolean matrix $A \subseteq [N] \times [N]$,

 $D_{\Omega}(A \mid \mathcal{G}_N) \leq N$.

▷ **Interested in matrices that require several intersections.**

 \triangleright Consider the $N \times N$ "parity" matrices P_N ,

$$
(i,j) \in P_N \iff i+j \equiv 0 \text{ (mod 2)}
$$

 \triangleright Consider the $N \times N$ "parity" matrices P_N ,

$$
(i,j) \in P_N \iff i+j \equiv 0 \text{ (mod 2)}
$$

 $D_{\cap}(P_N | \mathcal{G}_N) = O(1)$

Consider the $N \times N$ symmetric matrices

$$
\overline{I_N} \stackrel{\text{def}}{=} \begin{bmatrix} 0 & & \vec{1} \\ & \ddots & \\ \vec{1} & & 0 \end{bmatrix}
$$

.

Consider the $N \times N$ symmetric matrices

$$
\overline{I_N} \stackrel{\text{def}}{=} \begin{bmatrix} 0 & \vec{1} \\ \cdot & \cdot \\ \vec{1} & 0 \end{bmatrix}
$$

.

Exercise. If N is a power of 2 then $D_{\cap}(\overline{I_N} | \mathcal{G}_N) = \log N$.

Claim. If $R \subseteq_{1/2} [N] \times [N]$ is a random boolean matrix, then $D_{\cap}(\mathbf{R} | \mathcal{G}_N) = \Omega(N)$ with probability $\rightarrow 1$.

Claim. If $R \subseteq_{1/2} [N] \times [N]$ is a random boolean matrix, then $D_{\Omega}(\mathbf{R} | \mathcal{G}_N) = \Omega(N)$ with probability $\rightarrow 1$.

 \triangleright Showing a lower bound of $\Omega(N/\log N)$ is not difficult.

 \triangleright Tight bound uses a result of Uri Zwick (1996).

 \rhd Every matrix A satisfies $D_0(A | \mathcal{G}_N) \leq N$.

 \triangleright A uniformly random matrix R satisfies $D_{\cap}({\bf R} | \mathcal{G}_N) = \Omega(N)$.

 \triangleright The symmetric matrices $\overline{I_N}$ satisfy $D_{\cap}(\overline{I_N} | \mathcal{G}_N) = \log N$.

 \rhd Every matrix A satisfies $D_0(A | \mathcal{G}_N) \leq N$.

 \triangleright A uniformly random matrix R satisfies $D_{\cap}(R | \mathcal{G}_N) = \Omega(N)$.

 \triangleright The symmetric matrices $\overline{I_N}$ satisfy $D_{\cap}(\overline{I_N} | \mathcal{G}_N) = \log N$.

Problem. Show that some "**explicit**" sequence E_N satisfies $D_{\Omega}(E_N | \mathcal{G}_N) \geq 10 \log N$.

2. The connection to computation

– Based on the following work:

Pavel Pudlák, Vojtech Rödl, and Petr Savický. **Graph complexity.** Acta Inf., 25(5):515-535, 1988.

 \triangleright Constructing such matrices has implications for Theoretical Computer Science.

Proposition. If there is an "explicit" sequence E_N such that $D_{\cap}(E_N | \mathcal{G}_N) \geq (\log N)^{\omega(1)},$ then $P \neq NP$.

 \triangleright Constructing such matrices has implications for Theoretical Computer Science.

Proposition. If there is an "explicit" sequence E_N such that $D_{\cap}(E_N | \mathcal{G}_N) \geq (\log N)^{\omega(1)},$ then $P \neq NP$.

 \triangleright Give me instead a sequence with $D_{\Omega}(E_N | \mathcal{G}_N) \geq C \cdot \log N$. $\triangleright C > 10$ would establish a **new result** in complexity theory.

Sketch of the proof (1/4)

 $D_{\cap}(E_N \,|\, \mathcal{G}_N) \ge (\log N)^{\omega(1)} \implies \text{``Complexity Lower Bounds''}$

▷ Any computation can be simulated by **boolean circuits.**

 \triangleright A circuit computes a boolean function $g: \{0,1\}^n \to \{0,1\}.$

▷ Enough to prove **circuit size lower bound** for explicit $f: \{0,1\}^n \rightarrow \{0,1\}$ obtained from matrix E_N .

 \triangleright Let E_N require ℓ intersections when generated from \mathcal{G}_N . \triangleright Write $N = 2^n$. Fix natural bijection $\varphi \colon [N] \times [N] \to \{0, 1\}^{2n}$.

 \rhd Define $f\colon \{0,1\}^{2n} \to \{0,1\}$ by $f^{-1}(1) \stackrel{\text{def}}{=} \varphi(E_N) \subseteq \{0,1\}^{2n}.$

Sketch of the proof (2/4)

 \triangleright Let E_N require ℓ intersections when generated from \mathcal{G}_N .

 \triangleright Write $N = 2^n$. Fix natural bijection $\varphi \colon [N] \times [N] \to \{0, 1\}^{2n}$.

 \rhd Define $f\colon \{0,1\}^{2n} \to \{0,1\}$ by $f^{-1}(1) \stackrel{\text{def}}{=} \varphi(E_N) \subseteq \{0,1\}^{2n}.$

 $\sqrt{ }$ 1 $\vec{0}$. . . $\vec{0}$ 1 Τ $\Big\}$ becomes **Equality** function over two n-bit strings. \triangleright Let E_N require ℓ intersections when generated from \mathcal{G}_N .

 \triangleright Write $N = 2^n$. Fix natural bijection $\varphi \colon [N] \times [N] \to \{0, 1\}^{2n}$.

 \rhd Define $f\colon \{0,1\}^{2n} \to \{0,1\}$ by $f^{-1}(1) \stackrel{\text{def}}{=} \varphi(E_N) \subseteq \{0,1\}^{2n}.$

 $\sqrt{ }$ 1 $\vec{0}$. . . $\vec{0}$ 1 Τ $\Big\}$ becomes **Equality** function over two n-bit strings.

Lemma. If SIZE(f) $\leq s$ then $D_{\cap}(E_N | \mathcal{G}_N) \leq s$.

 \triangleright Let E_N require ℓ intersections when generated from \mathcal{G}_N .

 \triangleright Write $N = 2^n$. Fix natural bijection $\varphi \colon [N] \times [N] \to \{0, 1\}^{2n}$.

 \rhd Define $f\colon \{0,1\}^{2n} \to \{0,1\}$ by $f^{-1}(1) \stackrel{\text{def}}{=} \varphi(E_N) \subseteq \{0,1\}^{2n}.$

 $\sqrt{ }$ 1 $\vec{0}$. . . $\vec{0}$ 1 Τ $\Big\}$ becomes **Equality** function over two n-bit strings.

Lemma. If SIZE(f) $\leq s$ then $D_{\cap}(E_N | \mathcal{G}_N) \leq s$.

Idea: A boolean circuit C computing f generates the set $f^{-1}(1)$ starting from sets $x_1,\ldots,x_{2n},\overline{x_1},\ldots,\overline{x_{2n}}\subseteq \{0,1\}^{2n}.$

Lemma. If SIZE(f) ≤ s then $D_{\Omega}(E_N | \mathcal{G}_N)$ ≤ s.

 \triangleright A circuit of size s for f generates a sequence:

 $x_1, \ldots, x_{2n}, \overline{x_1}, \ldots, \overline{x_{2n}}, B_1, \ldots, B_s = f^{-1}(1) \subseteq \{0, 1\}^{2n}.$

Lemma. If SIZE(f) ≤ s then $D_{\Omega}(E_N | \mathcal{G}_N)$ ≤ s.

 \triangleright A circuit of size s for f generates a sequence:

 $x_1, \ldots, x_{2n}, \overline{x_1}, \ldots, \overline{x_{2n}}, B_1, \ldots, B_s = f^{-1}(1) \subseteq \{0, 1\}^{2n}.$

 \triangleright Get from this and bijection φ a construction of E_N from \mathcal{G}_N : **Example:** $\varphi^{-1}(B_s) = E_N \subseteq [N] \times [N]$.

Lemma. If SIZE(f) ≤ s then $D_{\Omega}(E_N | \mathcal{G}_N)$ ≤ s.

 \triangleright A circuit of size s for f generates a sequence:

 $x_1, \ldots, x_{2n}, \overline{x_1}, \ldots, \overline{x_{2n}}, B_1, \ldots, B_s = f^{-1}(1) \subseteq \{0, 1\}^{2n}.$

 \triangleright Get from this and bijection φ a construction of E_N from \mathcal{G}_N : **Example:** $\varphi^{-1}(B_s) = E_N \subseteq [N] \times [N]$.

Crucial: Need to generate $\varphi^{-1}(x_i)$ and $\varphi^{-1}(\overline{x_j}) \subseteq [N] \times [N]$ from row and column matrices in G_N . **Can be done without** ∩

Crucial: Need to generate $\varphi^{-1}(x_i)$ and $\varphi^{-1}(\overline{x_j}) \subseteq [N] \times [N]$ from row and column matrices in \mathcal{G}_N **. Can be done without** ∩**.**

"red" subspace $x_4 \subseteq \{0,1\}^4$ [4] \times [4] via the bijection φ .

The space $\{0,1\}^4$ and its The corresponding set in

3. An approach to estimate $D_∩(A | B)$

- A is an arbitrary set contained in ambient space Γ .
- $-$ B is a collection of subsets of Γ .

▷ Can adapt "**fusion method**" (Razborov/Karchmer) to show:

 $\rho(A,\mathcal{B}) \leq D_{\cap}(A \,|\, \mathcal{B}) \leq \rho(A,\mathcal{B})^2.$

▷ Can adapt "**fusion method**" (Razborov/Karchmer) to show:

 $\rho(A,\mathcal{B}) \leq D_{\cap}(A \,|\, \mathcal{B}) \leq \rho(A,\mathcal{B})^2.$

Reduces complexity lower bounds to the analysis of "static" 2-dimensional cover problems.

▷ Can adapt "**fusion method**" (Razborov/Karchmer) to show:

 $\rho(A,\mathcal{B}) \leq D_{\cap}(A \,|\, \mathcal{B}) \leq \rho(A,\mathcal{B})^2.$

Reduces complexity lower bounds to the analysis of "static" 2-dimensional cover problems.

 \triangleright By adapting the work of Nakayama-Maruoka,

 $\rho(A,B) = D_{\cap}^{\mathcal{C}}(A | B)$ (intersections in \circlearrowleft **-networks**)

▷ Can adapt "**fusion method**" (Razborov/Karchmer) to show:

 $\rho(A,\mathcal{B}) \leq D_{\cap}(A \,|\, \mathcal{B}) \leq \rho(A,\mathcal{B})^2.$

Reduces complexity lower bounds to the analysis of "static" 2-dimensional cover problems.

 \triangleright By adapting the work of Nakayama-Maruoka,

 $\rho(A,B) = D_{\cap}^{\mathcal{C}}(A | B)$ (intersections in \circlearrowleft **-networks**)

▷ **Connections to other areas/problems + applications?**

References and Related Work

Appendix: Definition of $\rho(A, \mathcal{B})$.

 \triangleright Let $A^c \stackrel{\text{def}}{=} \Gamma \setminus A$, where Γ is the *ambient space*.

 \triangleright A is *non-trivial*, i.e., both A and A^c are non-empty.

 \triangleright B is a collection of subsets of Γ.

Definition (Semi-filter)

A non-empty family $\mathcal{F} \subseteq \mathcal{P}(U)$ is a *semi-filter* over U if the following hold:

- *(upward closure)* If $U_1 \in \mathcal{F}$ and $U_1 \subseteq U_2 \subseteq U$, then $U_2 \in \mathcal{F}$.
- *(non-trivial)* $\emptyset \notin \mathcal{F}$.
- \triangleright We will always use $U \stackrel{\text{def}}{=} A^c.$

Appendix: Cover complexity (2/3)

Definition (Semi-filter above a ∈ A**)**

F is *above* an element $a \in A$ (with respect to B) if for every $B \in \mathcal{B}$, if $a \in B$ then $B \cap A^c \in \mathcal{F}$.

Definition (Preservation of pairs of subsets) Let $\Lambda = \{ (E_1, H_1), \ldots, (E_\ell, H_\ell) \}$ be a family of pairs of subsets of A^c . F preserves a pair (E_i, H_i) if $E_i \in \mathcal{F}$ and $H_i \in \mathcal{F}$ imply $E_i \cap H_i \in \mathcal{F}$. F preserves Λ if it preserves every pair in Λ .

Definition (Cover complexity)

 $\rho(A, \mathcal{B})$ is the minimum size of a collection Λ of pairs of subsets of A^c such that there is no semi-filter $\mathcal F$ that preserves Λ and is above an element $a \in A$.

Theorem. The following results hold:

 $\rho(A,B) \leq D_{\cap}(A \,|\, B) \leq \rho(A,B)^2$ and $\rho(A,B) = D_{\cap}^{\mathbb{C}}(A \,|\, B)$

Corollary: k-Clique (for $k = 3$) monotone lower bounds of Razborov extend to **number of intersections** in **monotone** \circlearrowleft **-networks**: $\widetilde{\Theta}(n^3)$ intersections needed to detect a triangle.