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Chapter 1

Introduction

The language of game theory — coalitions, payoffs, markets, votes — suggests that it is not a
branch of abstract mathematics; that is motivated by and related to the world around us; and that
it should be able to tell us something about that world.

Robert J. Aumann, What is game theory trying to accomplish? [6]

1.1 Motivation
The present work analyzes various aspects of coalitional rationality in strategic
interaction, i.e. how a group of rational individuals, each endowed with their own
preferences and strategies, takes a joint decision.

Nowadays game theory, the discipline studying interactive decision making [51],
is subdivided into two branches: cooperative game theory, that studies how abstract
groups of individuals — called coalitions — act together, and non-cooperative game
theory, that studies instead how rational individuals strive to realize their goals.

However a variety of relations can be drawn between the two faces of the game-
theoretical coin. The link between the behaviour of rational individuals and that
of coalitions is already emphasized in von Neumann and Morgenstern’s seminal
account of games [70, p.221]:

As soon as there is a possibility of choosing with whom to establish
parallel interests, this becomes a case of choosing an ally. When alliances
are formed, it is to be expected that some kind of mutual understanding
between the two players involved will be necessary. One can also state
it this way: A parallelism of interests makes a cooperation desirable,
and therefore will probably lead to an agreement between the players
involved.

In the spirit of [70] we will study the rationality of coalitions that arise from an
underlying parallelism of interests among their members focusing on how individual
decisions are reflected in the decisions of the coalitions in which they take part. In this

1



2 CHAPTER 1. INTRODUCTION

purpose, the notion of rationality available in game theory for individual players
will be lifted to coalitions and studied in a cooperative twist. We will also analyze the
reasons for rational individuals to work together, proposing a theory of coalitions
that takes these reasons into account. Their formation, stability and disruption will
ultimately be judged against the preferences and the strategic possibilities of the
individuals composing them.

1.2 Research Questions

1.2.1 Coalitions and rationality

In non-cooperative interaction self-interested individuals strive to achieve their
own goals. The point of view taken in this work is to view how the competitive
perspective associated to such situations can be turned into a cooperative one, by
modelling how individuals are to act should they decide to join their forces.

To illustrate the research questions cropping up from our standpoint let us
reconsider a classic of game theory, the prisoner’s dilemma. Its story runs as
follows [45]:

Tanya and Cinque have been arrested for robbing the Hibernia Sav-
ings Bank and placed in separate isolation cells. Both care much more
about their personal freedom than about the welfare of their accomplice.
A clever prosecutor makes the following offer to each. - You may choose
to confess or remain silent. If you confess and your accomplice remains
silent I will drop all charges against you and use your testimony to
ensure that your accomplice does serious time. Likewise, if your ac-
complice confesses while you remain silent, he will go free while you
do the time. If you both confess I get two convictions, but I’ll see to it
that you both get early parole. If you both remain silent, I’ll have to
settle for token sentences on firearms possession charges. If you wish to
confess, you must leave a note with the jailer before my return tomorrow
morning.

The dilemma lies in the fact that both prisoners would profit from remaining
silent. Nevertheless, considering what the other does, each prisoner is better off
confessing than remaining silent. Being incapable of coordinating, each prisoner is
faced with an individual choice that needs to be rational whatever the accomplice is
going to choose. The scene is set in such a way that each prisoner sees his accomplice
as his opponent, and reasons accordingly.

However, suppose that during the night Tanya manages to escape from her
isolation cell, reach Cinque, and return to her cell before the prosecutor is back.
Completely different possibilities are now available. During their secret meeting,
Tanya and Cinque might have been able to reach a binding agreement and might
now be able to reason as a coalition, taking their decisions as part of a larger entity.
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The newly formed coalition of Tanya and Cinque has a variety of choices at
its disposal, combining the choices of each individual. But how to order them?
And how are the individual preferences to be reflected in the coalitional decisions?
Applying the analysis of rational decision making to coalitions poses a number of
interesting challenges.

Research Question 1. In strategic interaction, coalitional choices result from
the choices of the individuals composing them. But how can individuals endowed
with their own preferences merge in a larger coalition and decide there what choice
to take?

Chapter 3 proposes a model of coalitional rationality in strategic interaction,
where a group of individuals, each holding preferences and strategic possibilities,
chooses among possible alternatives. Issues are addressed as how to aggregate
individual preferences and how to order the choices at the disposal of a coalition.

1.2.2 Cooperation and competition
Game theory textbooks draw a clear distinction between models of cooperative
behaviour, called cooperative or coalitional games, and models of non-cooperative
behaviour, called non-cooperative or strategic games. 1

We may distinguish between two types of models: those in which the
sets of possible actions of individual players are primitive and those in
which the sets of possible joint actions of groups of players are primitive.

[51, p.2]
Much effort has been devoted to the understanding of their relation. A variety of

formal results [49, 56] have established that a certain class of cooperative games fully
describe strategic games, in the sense that for each strategic game the cooperative
possibilities of individuals involved can be described by an element of that class, and
that for each element of that class there is a strategic game which has an equivalent
description of its cooperative possibilities.

These results make use of similar formal apparatus, representing coalitional
power via the so-called effectivity functions, that associate to each group of indi-
viduals the properties of an interaction that they can achieve together. For instance,
in the prisoner’s dilemma Tanya and Cinque can achieve together that they both
remain silent or they can achieve together that Tanya remains silent while Cinque
doesn’t.

To describe the power distribution over a set of outcomes A between
coalitions we consider a very simple object which assigns to every coali-
tion its effectiveness power, intuitively understood as follows: if a coali-
tion is effective for some feasible set, then the coalition has the power to

1The term strategic game is often used to describe interactions among rational individuals that do not
consider the sequential structure of the decisions, as opposed to extensive games, that instead do [51]. The
present work is not concerned with extensive games and the term strategic game is used as a synonym of
non-cooperative game.
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obtain some alternative in this set; it might not have the power to choose
this alternative from the set, but at least it can guarantee that something
from the set will be chosen.

[1, p.30]
Generally speaking, each strategic game consists of a description of what out-

comes players can achieve by executing their strategies. Effectivity functions de-
scribe how groups of these players can coordinate their strategies to achieve joint
goals. The interplay between effectivity functions and strategic games shows that
the models of strategic and of cooperative behaviour are two faces of the same coin,
confirming the standpoint taken in [51, p.3]:

In particular we do not share the view of some authors that noncoop-
erative models are more ’basic’ than cooperative ones; in our opinion,
neither group of models is more ’basic’ than the other.

The relation between the two modes of interaction can be investigated further,
reasoning on the assumptions behind the results in the literature and inserting it
into a larger theory of coalitional rationality.

Research Question 2. How can a model of non-cooperative interaction be
described with a model of cooperative interaction? And how can a model of non-
cooperative interaction be retrieved from a model of cooperative interaction?

Chapter 3 answers the question for a more general case than the one treated in
[49, 56] and moreover corrects a believed correspondence given in [54].

1.2.3 Coalitions and interdependence

The standard approach to describing the cooperative possibilities of individuals
in strategic interaction consists of attributing to a coalition the capacity of fully
coordinating its members. In other words, in the classical account exemplified by
the effectivity functions, a coalition disposes of each combination of actions that can
be performed by its members. In a cooperative version of the prisoner’s dilemma
for instance Tanya and Cinque can achieve together that Tanya remains silent while
Cinque doesn’t. It is though difficult to believe that Tanya will be willing to accept
such an agreement, as (i) the consequence of it would be Cinque to be released and
Tanya to do serious time in prison; (ii) there is a better alternative that she can reach
on her own, namely cooperate with the prosecutor; (iii) there is a different strategy
that Tanya would like Cinque to play, namely remaining silent. This observation
sheds light on a more general fact: coalitions do not form unless there is a reason for
it, and the reason lies in the possibility for players to take advantage of each other.

In strategic interaction — but a similar point can be made for social interaction
in general— what each individual does affects the other individuals involved. As
put in [20, p. 161–162],
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Sociality obviously presupposes two or more players in a common,
shared world. A “Common World" implies that there is interference
among the actions and goals of the players: the effects of the action of
one player are relevant for the goals of another: i.e., they either favour
the achievement or maintenance of some goals of the other’s (positive
interference), or threat some of them (negative interference).

The classical account of coalition formation in games only focuses on cooperative
possibilities and does not take players’ interdependence into account. Tanya and
Cinque depend on each other for not staying long in prison and in this sense the
agreement that Tanya remains silent and Cinque talks is patently unfair. Generally
speaking, the process of coalition formation seems to require a certain grade of
reciprocity among the individual involved and to result in a mutual resolution of
what in [20, p. 161–162] are called positive interferences. It is then desirable to weaken
the classical theory of coalition considering more structured versions of cooperative
interaction that incorporate notions such as interdependence and reciprocity.

Research Question 3. Can coalitions be seen as resulting from an exchange of
favours between interdependent individuals?

This question is answered in Chapter 5, that extends the classical theory of
coalitions in strategic interaction with the concept of interdependence, giving rise
to a specific class of cooperative games, i.e. the dependence games.

1.2.4 Rationality and logic

In the opening of his book Logic and Structure Dirk van Dalen writes [67, p.5]:

Traditionally, logic is said to be the art (or study) of reasoning; so
in order to describe logic in this tradition, we have to know what ’rea-
soning’ is. According to some traditional view reasoning consists of
the building of chains of linguistic entities by means of a certain rela-
tion ’. . . follows from . . . ’, a view which is good enough for our present
purposes.

When studying the choices of individuals in strategic interaction we are un-
doubtedly dealing with a form of reasoning. In the prisoner’s dilemma the choice
of each individual not to remain silent follows from the judgment of the situations
resulting from the possible choices of the other prisoner: if Cinque talks, I had better
talk; if Cinque does not talk, I had better talk; In conclusion, I had better talk.

If logic is the study of reasoning then a specific class of logical languages can
certainly be developed to study strategic reasoning, the type of reasoning associated
with strategic interaction.

Traditionally the class of logical languages that have been devoted to describe
strategic reasoning are modal logics, mathematical languages that talk about graph-
like structures.
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Over the years modal logic has been applied in many different ways.
It has been used as a tool for reasoning about time, beliefs, computa-
tional systems, necessity and possibility, and much else besides. These
applications, though diverse, have something important in common:
the key ideas they employ (flows of time, relations between epistemic
states, transitions between computational states, networks of possible
worlds) can all be represented as simple graph-like structures. And as
we shall see, modal logic is an interesting tool for talking about such
structures: it provides an internal perspective on the information they
contain.

[11, p.2]
In models of strategic interaction, graph-like structures are ubiquitous. Think

for instance of how in our example Tanya orders the possibilities resulting from the
interaction with Cinque. She prefers a situation in which they both remain silent to
a situation where Cinque talks and she remains silent, and she prefers even more
a situation where she talks and Cinque remains silent, and so on. But outcomes
can not only be preferred, but also achieved. Tanya can for instance achieve that
she remains silent, but she cannot achieve that Cinque talks. Tanya and Cinque can
instead achieve this. Each individual, and arguably each coalition, can order the
outcomes according to his preferences or according to his capacities, giving rise to
mathematical structures that are well-suited for a modal account.

Hereby, both in the case of classical coalitional games and in the case of depen-
dence games a logical analysis of coalitional reasoning can be systematically carried
out by means of modal languages.

Research Question 4. What is the logical structure of strategic reasoning in coali-
tional games and dependence games? How can interesting properties of coalitional
rationality, such as presence of reciprocity among the individuals, be characterized
by means of a logical language?

Chapter 4 and Chapter 6 develop modal languages to describe the fundamental
properties of coalitional rationality studied in Chapter 3 for standard coalitional
games and Chapter 5 for dependence games.

1.2.5 Rationality and norms
When a group of individuals is confronted with a number of possible choices, often
the question arises of what the individuals should do. Traditionally, the formal
study of terms as should, must, ought to, may etc. has been dealt with by deontic
logic, a branch of modal logic that analyzes the structure of normative concepts.
Recently John Horty’s seminal contribution [41] has brought deontic logic into the
realm of strategic interaction, establishing a parallel between coalitional rationality
and normative concepts.

In the past, the task of mapping the relations between deontic logic
and act utilitarianism has resulted in surprising difficulties, leading some



1.3. THESIS OUTLINE 7

writers to suggest the possibility of a conflict in the fundamental prin-
ciples underlying the two theories. One source of these difficulties,
I believe, is the gap between the subjects of normative evaluation in-
volved in the two areas: while deontic logic has been most successfully
developed as a theory of what ought or ought not to be, utilitarianism is
concerned with classifying actions, rather than states of affairs, as right
or wrong. The present account closes this gap, developing a deontic
logic designed to represent what agents ought to do within a frame-
work that allows, also, for the formulation of a particular variant of act
utilitarianism, the dominance theory.

[41, p.70]
In a nutshell, Horty’s proposal consists of viewing choices that should be per-

formed as carrying a meaning in terms of rationality, i.e. they are the rational choices
at a coalition’s disposal.

A different, arguably more abstract, view has been proposed within computer
science, where John-Jules Meyer’s account [48] relates deontic notions to dynamic
logic, a mathematical language to reason about computer programs. Building
upon previous philosophical work, Meyer studies a labelling of outcomes as vio-
lations against which individual actions get evaluated in a deontic sense. The two
approaches look at norms from complementary perspectives: while Horty empha-
sizes the internal side of norms (norms are related to choices and preferences of the
individuals involved in the interaction), Meyer emphasizes the external side (obli-
gations are not related to choices and preferences but depend on a preestablished
label on the states). The two views on norms, apparently at odds with each other,
offer a comprehensive perspective on the analysis of rationality and can as such be
studied together.

Research Question 5. What are the obligations, permissions and prohibitions
to be applied to a coalition in order for it to act rationally? What are instead its
obligations in order to fulfill external requirements? How are these two views
related to each other?

Chapter 4 and Chapter 6 studies the two perspectives in coalitional and depen-
dence games. In line with the internal view analyzed in [41], we study norms as
linked with rational action; and in line with the external view analyzed in [48], we
also study them as originating from a priori established violations.

1.3 Thesis Outline
This thesis analyzes the properties of rationality in strategic interaction combining
several perspectives, which can be articulated into two main branches:

• Coalitional games and dependence games analysis;

• Structural and logical analysis.
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Coalitional Games Dependence Games

Structural analysis Chapter 3 Chapter 5

Logical analysis Chapter 4 Chapter 6

Table 1.1: Core chapters outline. The analysis of coalitional games and dependence
games is carried out at the structural level, analyzing the properties of the models,
and at the logical level, analyzing the properties of the logical languages interpreted
on the models.

More specifically, the thesis presents an analysis of both coalitional games, i.e.
models of group rational behaviour under the assumptions of perfect coordination,
and dependence games, i.e. models of group rational behaviour under the assump-
tion of reciprocity. The analysis is carried out at the structural level, i.e. analyzing
the properties of the models, and at the logical level, i.e. studying the properties of
a logical language interpreted on the models.

The two branches are reflected on the thesis structure, sketched in Table 1.1,
which consists of two parts and each part of two chapters:

• Part I looks at the structure (Chapter 3) and the logic (Chapter 4) of coalitional
games;

• Part II looks at the structure (Chapter 5) and the logic (Chapter 6) of depen-
dence games.

Part I and Part II are preceded by Chapter 2 that introduces the mathematical
preliminaries used throughout the thesis. The chapter mainly recalls well-known
concepts in set theory, logic and game theory, providing some basic results.

1.3.1 Part I: Strategic reasoning and coalitional games

The first part consists of two chapters analyzing coalitional games from a structural
and logical perspective.

Chapter 3 studies a notion of coalitional rationality analogue to that used in
non-cooperative games for individual players and obtained by introducing orders
on effectivity functions that take into account preference relations and opponents’
possibilities. It moreover establishes a correspondence between a class of effectivity
functions and strategic games.

Chapter 4 introduces a logic language to reason on coalitional rationality and
able to characterize the structural notions studied in Chapter 3. Part of the chapter
is devoted to studying the regulation of coalitional rationality, inspired by classical
work on deontic logic.
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1.3.2 Part II: Strategic reasoning and dependence games
The second part consists of two chapters analyzing dependence games from a
structural and logical perspective.

Chapter 5 provides a formal definition of dependence relation between players
in a strategic games, obtained by generalizing the classical ones of best response
and dominant strategy. The notion of dependence relation allows to study the
reciprocity cycles arising among the players, i.e. what they can do for each other,
and allows for the formulation of the notion of agreement. Agreements allow in
turn to view strategic games as dependence games, the class of cooperative games
where coalitional choices are determined by agreements.

Chapter 6 provides a logical analysis of dependence games. The theory of
dependence elaborated in Chapter 5 is equipped with the tools defined in Chapter 3
to build up a semantics of coalitional rationality in undertaking agreements. A part
of the chapter revisits the classical deontic operators and redefines them in terms of
agreements, proposing a deontic logic for coalition formation.

The concluding Chapter 7 wraps up the work and briefly summarizes how the
research questions have been answered.
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Chapter 2

Preliminaries

We strive to make statements that, while perhaps not falsifiable, do have some universality, do ex-
press some insight of a general nature; we discipline our minds through the medium of mathematical
model; and at their best, our disciplines do have beauty, simplicity, force and relevance.

Robert J. Aumann, What is game theory trying to accomplish? [6]

This chapter introduces the notational conventions and the basic facts on the
mathematical notions to be used henceforth. Even though most of them are well-
established in the literature, it is convenient, to avoid ambiguities, to list them once
more.

Set theoretical notions will be introduced in Section 2.1, game-theoretical notions
in Section 2.2 and logical notions in Section 2.3. Main references for Section 2.1 are
[37, 3, 28], for Section 2.2 [70, 51, 50, 1, 9, 30] and for Section 2.3 [23, 10, 46, 54].

2.1 Sets and Relations
Sets are denoted X,Y,Z, . . ., possibly with subscripts and superscripts. The fact that
the object x is an element of the set X is denoted x ∈ X, while the fact that it is not
an element of the set X is denoted x � X. The fact that a set X is included in a set
Y is denoted X ⊆ Y, while the fact that it is not included in Y is denoted X � Y.
Strict inclusion is denoted ⊂, i.e. X ⊂ Y means that X ⊆ Y and Y � X. The powerset
of a set X, i.e. the set of all its subsets, is denoted 2X. The empty set is denoted ∅.
Union and intersection are denoted X ∪ Y and X ∩ Y respectively. If X is a set of
sets, then

�
X and

�
X denote respectively the union and the intersection of all sets

in X, i.e.
�
X = {x | x ∈ X for some X ∈ X} and

�
X = {x | x ∈ X for all X ∈ X}. The

complement of X in Y is the set of all elements of Y that are not in X and is denoted
Y \ X. When Y is understood X is used. The cartesian product of sets X and Y is
the set of ordered pairs X × Y = {(x, y) | x ∈ X and y ∈ Y}. More generally, if Xα is
an indexed family of sets, for α ∈ I, the cartesian product of the sets Xα is the set
�

α∈I Xα consisting of all I-tuples whose αth component is in Xα for all α ∈ I. The set
of natural numbers will be denotedN, that of reals R.

11
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A binary relation R defined on a set X is a subset of X × X. R is called:

• reflexive if (x, x) ∈ R for all x ∈ X;

• irreflexive if (x, x) � R for all x ∈ X;

• symmetric if (x, y) ∈ R whenever (y, x) ∈ R;

• transitive if (x, z) ∈ R whenever both (x, y) ∈ R and (y, z) ∈ R;

• antisymmetric if x = y whenever (x, y) ∈ R and (y, x) ∈ R;

• complete if for all x, y ∈ X either (x, y) ∈ R or (y, x) ∈ R;

• trichotomous if for all x, y ∈ X either (x, y) ∈ R or (y, x) ∈ R or x = y.

Notice that a relation is complete if and only if it is reflexive and trichotomous.
A binary relation is moreover called a:

• preorder if it is reflexive and transitive;

• partial order if it is an antisymmetric preorder;

• strict partial order if it is irreflexive and transitive;

• total order if it is a trichotomous strict partial order;

• total preorder if it is complete preorder;

• equivalence relation if it is reflexive, transitive and symmetric.

When no confusion can arise the fact that (x, y) ∈ R can be denoted in infix
notation, i.e. xRy. The set on which a relation is defined is referred to as domain and
omitted when clear.

Given a relation R defined on a domain W, a cycle c of length k− 1 in R is a tuple
(x1, . . . , xk) such that:

1. x1, . . . , xk ∈W;

2. x1 = xk;

3. for all xi, xj with 1 � i � j ≺ k, xi � xj;

4. x1Rx2R . . .Rxk−1Rxk.

Given a cycle c = (x1, . . . , xk), its orbit O(c) = {x1, . . . , xk−1} denotes the set of its
elements.

Consider a set X ⊆ W and a set of sets X such that each Y ∈ X is such that
Y ⊆ W. The operation of superset closure (X)supW and that of set restriction X � X
are defined as follows:
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(X)supW = {Z ⊆W | there is Y ∈ X such that Y ⊆ Z ⊆W}

X � X = {Y ∩ X | Y ∈ X}

X is called:

• closed under finite unions, if X ∈ X and Y ∈ X implies X ∪ Y ∈ X;

• closed under supersets, if X ∈ X and X ⊆ Y implies Y ∈ X; or alternatively if
X = (X)sup;

• closed under subsets, if Y ∈ X and X ⊆ Y implies X ∈ X;

• closed under finite intersections, if X ∈ X and Y ∈ X implies X ∩ Y ∈ X;

• containing the unit, if W ∈ X.

• filter, if it is closed under finite intersections, contains the unit and it is closed
under supersets;

– principal filter, if it is a filter and
�
X ∈ X;

– nonprincipal filter, if it is a filter but not a principal filter;

– proper filter, if it is a filter different from 2W ;

• partition, if
�
X = W and X,Y ∈ X implies that X ∩ Y = ∅. The partition of a

set X is abbreviated P(X).

A principal filter F is also said to be generated by the intersection of all its
members, formally X ∈ X if and only if

�
X ⊆ X.

Functions, denoted f , g, h, . . ., are binary relations such that no two distinct
elements have the same first component, i.e. (x, y) ∈ f and (x, y�) ∈ f implies that
y = y�, which is also denoted f (x) = y. f : Y → Z indicates that function f has
domain Y and range Z. If X ⊆ Y and f : Y → Z then f (X) = { f (x)|x ∈ X} ⊆ Z is the
image of set X under function f . If X ⊆ Y and f : Z → Y then f−1(X) = {x| f (x) ∈
X} ⊆ Z is the preimage of set X under function f . A function f : A→ B is injective if,
for x, y ∈ X, x � y implies that f (x) � f (y), surjective if for all y ∈ Y there exists x ∈ X
such that f (x) = y; bijective if both surjective and injective. If f : X→ Y is a bijective
function then its inverse function f−1 associates to each element y of Y a unique x
such that f (x) = y. Given two functions f : X → Y and g : Y → Z their composition
f ◦ g is defined as follows: ( f ◦ g)(x) = y if and only if g( f (x)) = y.

Given a set X, a permutation on X is a bijection µ : X→ X. The set PERMX of all
permutations on a set X consists of |X|! different elements. When the set X is finite,
each of these permutations µ : X → X induces a set of cycles on X, that naturally
partition X [3].
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x y

ν(x)

ν(y)

µ(x) µ(y)

Figure 2.1: Permutations, cycles and partitions on a finite set X. Permutations µ
and ν induce a set of cycles on X, whose orbits form a partition.

Proposition 1 (Permutations and cycles) Let µ be a permutation on a finite set X and
consider a relation R ⊆ X × X such that xRy if and only if y = µ(x). Then R consists of a
set of cycles C such that {O(c) | c ∈ C} is a partition of X.

Proof As the set X is finite we can enumerate all its elements with the first |X| natural
numbers. Now we can construct the cycles as follows: open a pair of brackets, write down
the element associated to 1 followed by its R-successor and so on, closing the brackets when
the first element is repeated. Open a new pair of brackets, list element associated to the
smallest number which has so far not been mentioned and repeat the procedure until all the
elements of X are mentioned. Notice that being R corresponding to a permutation, for each
element of X there is a unique R-successor and a unique R-predecessor in X. Suppose that
the procedure outputs a tuple (x1, . . . , xk) that is not a cycle. Then we have that for some
xi, xj with 1 � i � j ≺ k, xi = xj. Suppose without of loss of generality that i < j. But then
for each m ∈ N and for xiRxi+1 . . .Rxi+m and xjRxj+1 . . .Rxj+m we have that xj+m = xi+m.
Pick now an n ∈N such that xj+n = xk. We must have that xi+n = xk and 1 < i+n < j+n.
Contradiction. As X is finite the procedure guarantees that all x ∈ X are member of some
cycle. In conclusion we obtain a set of cycles C such that {O(c) | c ∈ C} is a partition of X.

Example 1 (Permutations and cycles) Consider the set X = {x, y} and the permutations
µ, ν such that µ(x) = x, µ(y) = y and ν(x) = y, ν(y) = x, all possible different permutations
on X as, notice, |X|! = 2. µ induces the cycles (x, x)(y, y), connecting x and y with
themselves, while ν induces the cycle (x, y, x), connecting x with y and y with x. In both
cases the set of orbits of the cycles partition the set X. Figure 2.1 illustrates this.

Let P(µ) be the partition induced by µ on X, and P(µ) the nonempty powerset
of this partition. The fact that a set Y ⊆ X is the union of some members of the
partition induced by µwill be denoted with Y ∈ PX(µ). Whenever X is understood
the notation P(µ) will be adopted. Permutations form a group under the operation
of function composition [3] and are therefore closed under composition and inverse,
i.e. for µ�, µ�� ∈ PERMX, we have that µ� ◦ µ�� ∈ PERMX and that µ�−1 ∈ PERMX.

2.2 Games
The present work deals with strategic interaction. Therefore the basic ingredients
we will be working with are a finite set N, to be understood as a set of players, and a
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L R
U 2, 2 0, 3
D 3, 0 1, 1

Prisoner’s dilemma

L R
U 3, 3 2, 2
D 2, 2 1, 1

Full convergence

L R
U 1, 1 0, 0
D 0, 0 1, 1

Coordination

L R
U 3, 3 2, 2
D 2, 5 1, 1

Partial convergence

Figure 2.2: Examples of two players strategic games. The strategies are labelled
according to their position in the matrix: L stands for left, U for up and so on.
Players, that henceforth will get the anonymous names of Row and Column, have
a preference order over the outcomes as described by the matrix entries, with Row
being associated to the first component and Column to the second one.

set W to be understood as a set of alternatives. Players are denoted i, j, k, . . .while sets
of players, i.e. elements of 2N, are denoted C,C�,C��, . . . and are henceforth called
coalitions. The coalition made by all players, i.e. the set N, will be referred to as
the grand coalition. Alternatives are denoted u, v,w, . . . and are also called outcomes,
states or worlds. Players are assumed to have preferences over the alternatives.
Therefore, each player i is endowed with a preference order (�i)i∈N, a total preorder
on the set of alternatives, where v �i w has the intuitive reading that outcome v is
at least as nice as outcome w for player i. The corresponding strict partial order is
defined as expected: v �i w if, and only if, v �i w and not w �i v, to mean that
for player i outcome w is strictly better than outcome v. The notation ≺i,�i for the
reverse relations will be used as well when no confusion can arise.

2.2.1 Strategic games
As informally illustrated in Chapter 1 strategic games are models of interactive deci-
sion making that relate players’ preferences to their strategic possibilities. A strategy
σi for a player i is a specification of i’s moves at each of i’s decision points, i.e. the
move he makes at each turn of his. The intuition behind strategic games, first intro-
duced by von Neumann and Morgenstern, is that ”players begin a game by making
a firm preplay commitment to a particular strategy” [9]. In other words, strategic
games abstract away from the sequential structure of the decision problems. Their
formal definition goes as follows.

Definition 1 (Strategic game) A strategic game is a tuple G = (N,W,Σi,�i, o) where:

• N is a set of players;

• W is a set of outcomes;

• Σi is a set of strategies for player i ∈ N;
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• �i is a total preorder on W for player i ∈ N;

• o :
�

i∈N Σi → W is the outcome function, relating tuples of individual strategies,
also called strategy profiles, to elements of W.

Games will be denoted G,G�,G��, . . .. σi ∈ Σi will denote an individual strategy
for player i in his set of strategies Σi, while σC will denote an element of

�

j∈C Σ j,
a tuple of individual strategies for each member of the coalition C; as a convention
σ
{i} will be denoted σ−i.

Examples of strategic games are given in Figure 2.2. Following the usual con-
vention, the row player and the column player obtain a payoff as established in
the entries of the matrix corresponding to the intersection of the respective choices.
In other words, vectors representing payoffs in a bimatrix are of the form (pay-
off(row),payoff(column)). Numerical entries carry a preference order, and in this
sense the games given in Figure 2.2 fall under the definition of strategic game given
in Definition 1. Not all preference relations though can be univocally associated
to a numerical entry [1], so not all strategic games can be represented in a matrix
form. However for illustrative purposes matrices will often be used to represent
the general case.

The outcome function, that associates strategy profiles to outcomes, is usually
required to be a bijection (see for instance [51]) and can be consequently dispensed
with. Here the outcome function will not be assigned any particular property, unless
otherwise specified.

At times it is convenient to talk about games without mentioning preference
relations. These structures are called strategic game forms, and they are denoted
Fs,F�s,F

��
s , . . .. The game form Fs can be associated to the preference relation �i and

the resulting game is denoted (Fs,�i). At other times it is convenient to evaluate
outcomes without making reference to players’ strategic possibilities. We can do this
by making use of the classical notion of Pareto optimality [51], that only considers
outcomes and players’ preferences.

Definition 2 (Pareto Optimality) Let N be a finite set of players, W a set of alternatives
and �i a preference relation over W. x ∈W is called weakly Pareto optimal if there is no
y ∈ W for which y �i x for all i ∈ N; it is called strongly Pareto optimal if there is no
y ∈W for which y �i x for all i ∈ N and y �i x for some i ∈ N.

That an outcome is Pareto Optimal, either in its weak or strong form, suggests
that no change to another outcome is possible that makes at least one individual
better offwithout making any other individual worse off.

Example 2 (Pareto Optimality) To give a flavour of Pareto optimality in games, let us
consider the partial convergence game of Figure 2.2. The strategy profile (U,R) 1 is neither
weakly Pareto optimal nor strongly Pareto optimal, as the strategy profile (U,L) is better
for both players. However if strategy profile (U,L) were not an available outcome, (U,R)

1Notice that in the game representation of Figure 2.2 the strategy profiles identify the outcomes,
therefore those games have a bijective outcome function.
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would still be weakly Pareto optimal but would not be strongly Pareto optimal any longer.
The latter because (L,D) would be strictly better for at least one player without making the
others worse off.

Cornerstone of game theory is the notion of rational behaviour [6], i.e. what
a player should do provided what he can choose and what his preferences are. 2

The concepts of best response and dominant strategy are possibly the most used to
formalize what it means for an individual to act rationally.

Definition 3 (Best Response and Dominant Strategy) Let G = (N,S,Σi,�i, o) be a
game and let i, j ∈ N. Let σ be a strategy profile. Player j’s strategy σ j is called,

• best response if and only if ∀σ�j, o(σ) � j o(σ�j, σ− j);

• dominant strategy iff ∀σ�j,∀σ
�

− j, o(σ j, σ�− j) � j o(σ�).

Substantially, a strategy is a best response for a player if, fixing the strategies of
the other players, there is no other strategy that can guarantee a better outcome;
and it is a dominant strategy if it is a best response for all possible strategies of the
other players.

Example 3 (Best Response and Dominant Strategy) In the partial convergence game
of Figure 2.2 Row’s strategy in the strategy profile (U,R) is best response, while Column’s
strategy in the same strategy profile is not best response, as the first player cannot profitably
deviate to (D,R), while the second player can do this, moving to (U,L). For this reason R
cannot be a dominant strategy for Column. Notice that U is instead a dominant strategy
for Row.

The Coordination game of Figure 2.2 is also of interest. Even though (U,L) and (D,R)
are there strongly Pareto optimal outcomes, and both players have no incentive to deviate
from (U,L) or (D,R), no player has a dominant strategy.

Two major solution concepts, i.e. sets that contain those outcomes to be reached in
a game provided that players act rationally, will be considered: Nash equilibrium,
to be referred to alsof as best-response equilibrium (BR-equilibrium), and dominant
strategy equilibrium (DS-equilibrium), that extend Definition 3 to talk about rational
behaviour by all players.

Definition 4 (Equilibria) Let G be a game. A strategy profile σ is a:

• BR-equilibrium (Nash equilibrium) if and only if ∀i ∈ N, σi is a best response;

• DS-equilibrium if and only if ∀i ∈ N, σi is a dominant strategy.

In words, a strategy profile is a Nash equilibrium if each individual strategy is
a best response for the player holding it, and it is a dominant strategy equilibrium
if each individual strategy is a dominant strategy for the player holding it.

2Aumann’s classical definition of rationality (”A person’s behavior is rational if it is in his best
interests, given his information”, [7]) considers epistemic notions such as knowledge and belief with
which our work is not concerned.
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Example 4 (Equilibria) To illustrate BR and DS equilibria, let us consider the games
described in Example 3. Partial convergence game has one BR-equilibrium, namely (U,L):
as already observed, no player has an incentive to deviate from it. The fact that (U,L) ≺Column
(D,L) is a sufficient condition for a deviation by the column player, as he is not capable of
moving to (D,L) without the help of his opponent. (U,L) is also the unique DS-equilibirum.
As for the coordination game, the observations made in Example 3 are sufficient to conclude
that (U,L) and (D,R) are the only BR-equilibria, while no DS-equilibrium is present.

As previously discussed, strategic game models suggest a representation of
simultaneous play. This fact is also witnessed by the formulation of the outcome
function, that goes from tuples of strategy profiles to outcomes. However for our
purposes it is also convenient to define subgames, that are intended to represent
game restrictions caused by moves of some players.

Definition 5 (Subgame of a strategic game) Let G = (N,W,Σi,�i, o) be a game, σ be
a strategy profile, and C ⊆ N. The subgame of G defined by σC is a game G ↓ σC =
(N�,W�,Σ�i ,�

�

i , o
�) such that:

• N� = N \ C;

• W� =W \ {s | ∃σ� such that s = o(σ�) and σ�C � σC};

• for all i ∈ N \ C, Σ�i = Σi;

• for all i ∈ N \ C, ��i=�i;

• o� :
�

i∈N\C Σ
�

i →W� is such that for all σ� ∈
�

i∈N\C Σ
�

i , o�(σ�) = o(σ�, σC).

A subgame G ↓ σC of G is nothing but what is obtained from G once the
coalitional strategy σC of the set of players in C is fixed. It should be thought of as
a snapshot representing what is still ‘left to play’ once the players in C have made
their choice.

Example 5 Matrix representations, such as the ones given in Figure 2.2, are extremely
useful to have a grasp of subgames. Consider the prisoner’s dilemma for instance, and the
strategy U by the row player. The subgame G ↓ URow, where G represents the prisoner’s
dilemma and URow the fact that the row player plays up, can be represented as a matrix
where the move D is cut out of the picture. In this matrix, what is left for Column to play is
a choice between (U,R) and (U,L). Figure 2.3 applies this transformation to each game in
Figure 2.2.

2.2.2 Coalitional games
In addition to the strategic games of Definition 1 a great amount of attention will be
devoted to coalitional games (also called cooperative games), that abstractly represent
the power of groups of players by so-called effectivity functions [50]. Effectivity
functions are defined as follows:
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L R
U 2, 2 0, 3

Prisoner’s dilemma

L R
U 3, 3 2, 2

Full convergence

L R
U 1, 1 0, 0

Coordination

L R
U 3, 3 2, 2

Partial convergence

Figure 2.3: Examples of G ↓ URow for each game in Figure 2.2

Definition 6 (Effectivity function) Let N be a finite sets of players and W a set of
outcomes. An effectivity function is a function E : 2N → 22W , such that for each C ⊆ N,
E(C) is closed under supersets.

An effectivity function assigns to every coalition a set of sets of states. Intuitively,
if X ∈ E(C) the coalition is said to be able to force or determine that the outcome of
the interaction will be some member of the set X. Along these lines, each set of
states X ∈ E(C) will be referred to as a choice of coalition C, while the set E(C) will be
called the choice set of coalition C. Under this interpretation, closure under superset
is quite a natural property: if a coalition is able to force the game to end up inside
set X then it is also able to force it to end up in each Y with X ⊆ Y.

Generally speaking, a number of properties can be assigned to effectivity func-
tions, depending on the features to be modelled. For present purposes the following
definitions will come to hand.

Definition 7 Let C,C� ⊆ N be a coalition. An effectivity function is

• Closed under finite unions, if for all C, E(C) is closed under finite unions;

• Outcome monotonic, if for all C, E(C) is closed under supersets;

• Regular, if for all C, X ∈ E(C) and Y ∈ E(C) implies that X ∩ Y � ∅;

• Superadditive, if for all C,C�with C∩C� = ∅, X ∈ E(C) and Y ∈ E(C�) implies that X∩
Y ∈ E(C ∪ C�);

• N-maximal, if X � E(∅) implies that X ∈ E(N);

• Coalition monotonic, if for all C,C� with C ⊆ C�, X ∈ E(C) implies that X ∈ E(C�);

• Closed-world or satisfies inability of the empty coalition (IOEC) if C = ∅ implies
that E(C) = {W};

• Playable, if it is outcome monotonic, superadditive, for all C we have that E(C)
contains the unit and ∅ � E(C);

• Determined, if playable and closed-world.
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The above mentioned properties acquire a natural reading once we understand
effectivity functions as a set of sets that a coalition can force. Closure under finite
union says that a coalition being able to force the interaction to end up either in a
set A or in a set B can force the interaction to end up in the set A ∪ B. Outcome
monotonicity, that implies closure under finite unions, says that if a coalition is
able to force the outcome of the interaction to belong to a particular set, then that
coalition is also able to force the outcome to belong to all its supersets. Regularity
says that if a coalition is able to force the outcome of an interaction to belong to
a particular set, then no possible combinations of moves by the other players can
prevent this from happening. When outcome monotonicity holds, an alternative
way to express regularity (used for instance in [54]) is the following: for all C,
X ∈ E(C) implies that X � E(C), which says that if a coalition can force a particular
set then its opponents cannot force the complement of that set. Superadditivity
expresses the fact that two disjoint coalitions can join forces, by stating that if a set
X can be forced by some coalition C and a set Y by some disjoint coalition D then
the intersection of the two sets can be forced by the union of the two coalitions.
N-maximality says that if the empty coalition cannot force the interaction to end up
in a set X then the coalition made by all players together can force the complement
of that set, i.e. X. Coalition monotonicity states that the bigger a coalition is, the
more the properties this coalition will be able to force, i.e. the more the sets in its
effectivity function. The IOEC condition requires the empty coalition to be able to
bring about only trivial consequences: if we think of an outcome as resulting from
the intersection of the choices of opposing coalitions, IOEC guarantees the sets of
all players taken together to determine where the interaction will end up. The last
conditions, playability and determinacy, will be shown in the coming sections to be
crucial when relating effectivity functions and strategic games. Playable effectivity
functions have been first introduced in [54] while determined ones in [19].

As is clear from their definition, which requires outcome monotonicity, effectivity
functions bear a certain redundancy. The following notion is a description of a
nonredundant effectivity function.

Definition 8 (Nonmonotonic core) [54] Let E be an effectivity function. The non-
monotonic core Enc(C) for C ⊆ N is the set of minimal sets in E(C):

{X ∈ E(C) | ¬∃Y(Y ∈ E(C) and Y ⊂ X)}

The nonmonotonic core is a description of the minimal sets in an effectivity
function. Nevertheless there can be effectivity functions defined on a domain W
consisting of an infinite descending chain of sets W ⊃ W1 ⊃ . . . ⊃ Wn . . . for which
none of the sets Wi is represented in the nonmonotonic core. In this sense non-
monotonic cores still eliminate too much information from the original effectivity
function. To overcome this potential problem, we say that the nonmonotonic core
of E(C) is complete if it undercuts every set in E(C), i.e., for every X ∈ E(C) there
exists Y ∈ Enc(C) such that Y ⊆ X.

Variations in the definition of effectivity functions are adopted in the literature.
Dynamic effectivity functions, defined first in [54], specify at each state what out-
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w0 w1

w2

w3

Figure 2.4: Nonmonotonic core of a choices set E(w0)(C). The dashed squares
indicate the minimal sets, the smallest choices available to coalition C from w0.
In case each set X ∈ E(w0)(C) is superset of some dashed square, i.e. in case
E(w0)(C) = {{w1,w2}{w3}}

sup, the nonmonotonic core of E(w0)(C) is also complete.

comes a coalition is able to force. They will be used in Chapter 4 and Chapter 6 in
connection with logical models of coalitional rationality and are defined as follows.

Definition 9 (Dynamic effectivity function)
Given a finite set of players N and a set of states W, a dynamic effectivity function is

a function E : W → (2N → 22W ) such for each w ∈W, and C ⊆ N we have that E(w)(C)
is closed under supersets .

A dynamic effectivity function E enjoys the properties in Definition 7 whenever
they hold for all E(w), for w ∈ W, and the nonmonotonic core of its choice sets can
be naturally described. An example is given in Figure 2.4.

Effectivity functions are the characteristic feature of coalitional games, that can
now be formally introduced.

Definition 10 (Coalitional game) A coalitional game is a tupleC = (N,W,E,�i) where:

• N is a set of players;

• W is a set of outcomes;

• E is an effectivity function;

• �i is a total preorder on S.

Coalitional games will be denoted C,C�,C��, . . .. Coalitional game forms will be
denoted Fc,F�c,F

��
c , . . .. Comparing the definition of coalitional games and that of

strategic game it will be immediately clear that in the coalitional case effectivity
functions replace the outcome function and the strategy profiles. That effectivity
functions are really more abstract than outcome functions and strategy profiles will
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soon be observed, but to establish the properties that effectivity functions need to
have in order to correspond to strategic games will require some more effort and
will be dealt with in the coming chapters. To start with we can observe that a
coalitional game can be obtained from a strategic game in a canonical way (cf. [50]),
by relating the coalitional effectivity function to the strategies of the players in the
strategic game.

Each strategy game has therefore its own effectivity function, known as the α-
effectivity function. The α-effectivity function, extensively used in the social choice
literature [49, 1], contains those sets in which a coalition C can force the game G to
end up, no matter what C does.

Definition 11 (α-Effectivity function) Let G = (N,S,Σi,�i, o) be a strategic game. Its
α-effectivity function Eα

G
is defined as follows:

X ∈ EαG(C)⇔ ∃σC∀σC o(σC, σC) ∈ X.

Coalitional games can be constructed from strategic ones making use of the
α-effectivity function.

Definition 12 (Coalitional games from strategic ones) Let G = (N,W,Σi,�i, o) be a
strategic game. The coalitional game of G is CG = (N,S,Eα

G
,�i).

Example 6 (α-Effectivity) Let us consider again each game G of Figure 2.2. Their α-
effectivity functions coincide, as in the standard account preferences are not relevant in
defining coalitional power and players’ strategies share the same labels. Eα

G
({Column}), the

α-effectivity function of the column player, comprises the set {(U,L), (U,R)}, as Column can
only decide between L and R, and, for the same reason, the set {(D,L), (D,R)}, together with
all their supersets. Likewise the α-effectivity function of the row player Eα

G
({Row}) is given

by the set {(U,L), (D,L)}, as Row can only decide between U and D, the set {(D,R), (U,R)},
and all their supersets. As for the other coalitions, we have that Eα

G
(∅) = {W}, as the empty

coalition does not interfere in the choice of the outcome, and that Eα
G

(N) = 2W \∅, as players
together can choose any possible outcome.

Eα,nc
G

({Column}), the nonmonotonic core of the α-effectivity function of the column
player, is given by the set {(U,L), (U,R)} together with the set {(D,L), (D,R)}. As for the row
player Eα,nc

G
({Row}) is given by the set {(U,L), (D,L)} together with the set {(D,R), (U,R)}.

As for the remaining coalitions Eα,nc
G

(∅) remains {W} while Eα,nc
G

(N) =
{(U,L), (D,R), (U,R), (D,L)}. Notice that all the nonmonotonic cores are complete.

The class of α-effectivity functions is clearly included in the class of effectivity
functions. One central question of our work is to establish the exact nature of this
inclusion. At the present stage we can make it more precise, showing that the class
of effectivity functions that are α-effectivity functions of strategic games is included
in the class of playable effectivity functions, as witnessed by the following results.

Proposition 2 Let G = (N,W,Σi,�i, o) be a game and Eα
G

its α-effectivity function.
Then the following holds:
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• Eα
G

is playable;

• Eα
G

is determined whenever o is surjective.

Proof The proof is a straightforward check of the conditions. The argument of Eα
G

being
playable first appears in [54].

The nonmonotonic core of α-effectivity functions is of particular interest for the
coming part of the work. Proposition 2 has shown that α-effectivity functions are
playable. The nonmonotonic core of the empty coalition in playable effectivity
functions will be of particular relevance in establishing subsequent results.

Proposition 3 For every playable effectivity function E:

1. E(∅) is a filter.

2. Enc(∅) is either empty or a singleton.

Proof 1. E(∅) is non empty by safety; it is closed under supersets by outcome monotonic-
ity, and under intersections by superadditivity (with respect to the empty coalition).

2. Suppose Enc(∅) is nonempty, and let X,Y ∈ Enc(∅). Then, ∅ is effective for each of X
and Y, hence, by superadditivity, it is effective for X ∩ Y. By the definition of Enc(∅),
it follows that X = X ∩ Y = Y. Suppose instead that Enc(∅) is not a singleton and
that is nonempty. Then there are X,Y ∈ Enc(∅) with X � Y. By superadditivity
X ∩ Y ∈ Enc(∅) and we have that X ∩ Y ⊂ Y or X ∩ Y ⊂ X. Contradiction.

Proposition 2 has established that the class of playable effectivity functions in-
cludes the class of effectivity functions that are α-effectivity function of some strate-
gic game; consequently Proposition 3 applies to all α-effectivity functions. However
α-effectivity functions enjoy other interesting properties, that can be observed look-
ing at their nonmonotonic core.

Proposition 4 For every α-effectivity function Eα
G

: 2N → 22W , the following hold:

1. The nonmonotonic core of Eα
G

(∅) is the singleton set {Z} where

Z = {x ∈W | x = o(σN) for some σN}.

2. Eα
G

(∅) is the principal filter generated by Z.

Proof For both claims it suffices to observe that Z ∈ Eα
G

(∅) and that for every U ∈ Eα
G

(∅),
Z ⊆ U. Therefore, Enc(∅) = {Z} for E = Eα

G
and Eα

G
(∅) is the principal filter generated by Z.

We can observe that while Proposition 3 has formulated the nonmonotonic core
of playable effectivity functions in terms of filters, Proposition 4 has formulated the
nonmonotonic core of α-effectivity functions in terms of principal filters. The results
in Chapter 3 will show that this difference is crucial if want to characterize the class
of effectivity functions that correspond to, or represent, strategic games. Formally



24 CHAPTER 2. PRELIMINARIES

Strategic Games Strategic Subgames

Coalitional Games Coalitional Subgames

G ↓ σC

Eα
G

E�

EG↓σC

Figure 2.5: Relations between games and subgames. The operation G ↓ σC (Def-
inition 5), that restricts a strategic game with a strategy of a group of players,
transforms a game into a subgame, while EG↓σC (Definition 13) describes what coali-
tions can do in a subgame. Eα

G
(Definition 11) describes the α-effectivity function of a

strategic game, extracting its coalitional structure. The picture will be completed in
Chapter 3, defining the operation E� of choice restriction of an effectivity function,
that transforms a coalitional game into a coalitional subgame.

an effectivity function E such that E = Eα
G

, for G being a strategic game, is said to
represent G. For a dynamic effectivity function the same terminology applies. In
that case, if for some w ∈W, E(w) = Eα

G
, E is said to represent G at world w.

In the same way we have done for strategic games, representability can be lifted
to subgames. This definition will turn out to be useful when studying coalitional
rationality in strategic games. To lift representability to subgames we introduce the
notion of effectivity function for a subgame, that mimics the features of Definition
5.

Definition 13 (Coalitional subgames) Let G = (N,W,Σi,�i, o) be a game. The coali-
tional subgame CG↓σC = (N�,S�,EG↓σC ,��i ) of G is a coalitional game where the entries
different from EG↓σC follow Definition 5 and the sub-α-effectivity function EG↓σC is defined
for each C� ⊆ C as follows:

X ∈ EG↓σC (C�)⇔ ∃σC�∀σC\C� o(σC, σC) ∈ X.

Intuitively, a set X belongs to EG↓σC (C�) when coalition C� is able to force the
outcome of the game to end up in X provided coalition C has chosen strategy σC.
The coalitional subgame (Definition 13) reflects the notion of subgame (Definition
5) in the same way the notion of coalitional game (Definition 11) reflects the notion
of game (Definition 1). Figure 2.5 illustrates the relation between the structures.

As to solution concepts for coalitional games we consider the core, ”the coop-
erative solution concept that is perhaps best known to economists” [6]. The core
is based on a dominance relation among outcomes: an outcome x is dominated by
an outcome y if there is a coalition that can achieve y and whose members prefer
it to x. The core collects the outcomes that are not dominated. As Abdou and
Keiding put it in [1] (p.53) ”this notion captures the idea that group choice should
be robust against coalitional improvements, i.e. no coalition should be so badly off
in society’s choice that it could by itself establish something better for everyone in
the coalition”.
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Definition 14 (The core) Let C = (N,W,E,�i) be a coalitional game. We say that a state
s is dominated in C if for some C and X ∈ E(C) it holds that x �i s for all x ∈ X, i ∈ C. The
core of C, in symbols CORE(C) is the set of undominated states.

Intuitively, the core is the set of those states in the game that are stable, i.e., for
which there is no coalition that is at the same time able and interested to deviate
from them. An other appealing rewording, again by Abdou and Keiding, is that
of considering the outcomes not in the core as those encountering an ”effective
opposition” [1] (p.52).

2.3 Logic
The logical systems that we will work with are modal languages, i.e. extensions
of the language of propositional logic with a set of modal operators �1, ...,�n, . . .,
defined on a countable set of atomic propositions Prop = {p1, p2, . . .}, on which the
set of well-formed formulas is inductively built [67]. Each well-formed formula ϕ of
a modal language L, henceforth simply called formula, is defined as follows:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | �iϕ

where �i ∈ {�1, . . . ,�n, . . .} and p ∈ Prop.
A model for this language is a tuple M = (W,R1, . . . ,Rn, . . . ,V), consisting of a

set of worlds or states W commonly referred to as domain; an accessibility relation Ri
for each modal operator �i, defined via so-called neighbourhood functions [23], i.e.
functions Ri : W → 22W ; and a valuation function V : Prop → 2W that assigns to
each atomic proposition a subset of W, with the intuitive understanding that each
atomic proposition is assigned the set of worlds where this proposition is true. A
model without a valuation function is called a frame. As a general convention a mul-
timodal language with modalities �1, . . . ,�n, . . . will be denoted by L f (�1),..., f (�n),...,
specifying its modal operators where the function f associates to each modality a
symbol representing it. The symbols will be systematically introduced as intuitive
shorthands for the modalities. Let ∆ be a modal language consisting of modalities
�1, ...,�n, . . . and let M = (W,R1, . . . ,Rn, . . . ,V) be a model for this language. The
satisfaction relation of a formula ϕ ∈ ∆ with respect to a pair (M,w), where w ∈ W,
is defined according to the following truth conditions:

M,w |= p if and only if w ∈ V(p)

M,w |= ¬ϕ if and only if M,w �|= ϕ

M,w |= ϕ ∧ ψ if and only if M,w |= ϕ and M,w |= ψ

M,w |= �iϕ if and only if ϕM ∈ Ri(w)

where ϕM = {w ∈W |M,w |= ϕ} is called the truth set or the extension of ϕ.
A formula ϕ of a modal language ∆:
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• holds at a state w of model M whenever M,w |= ϕ;

• is valid in a model M, denoted |=M ϕ, if and only if M,w |= ϕ for every w ∈ W,
where W is the domain of M;

• is valid in a class of modelsM, denoted |=M ϕ, if and only if it is valid in every
M ∈M;

• is valid in a frame F, denoted |=F ϕ, if and only if for every valuation V we have
that |=(F,V) ϕ;

• is valid in a class of frames F , denoted |=F ϕ, if and only if it is valid in every
F ∈ F .

The set of formulas of ∆ that are valid in a class of modelsM is denoted ∆M (for
frames the denotation is ∆F ). For a set of formulas Σ, we write M,w |= Σ to say that
M,w |= σ, for all σ ∈ Σ. We say that a set of formulasΣ semantically entails a formula
ϕ in a class of modelsM, denoted Σ |=M ϕ, if for every M ∈ Mwe have that |=M
Σ implies |=M ϕ.

A modal rule

ϕ1, ...,ϕn

ψ
(2.1)

is sound in a class of modelsM if ϕ1, ...,ϕn |=M ψ.
Let us recall, following [23], that a modal logic ∆ is called classical if it is closed

under the rule of equivalence, i.e. for each � in the language ∆we have:

ϕ↔ ψ

�ϕ↔ �ψ
(2.2)

It is called monotonic if it is classical and it is moreover closed under the rule of
monotonicity, i.e. for each � in the language ∆we have:

ϕ→ ψ

�ϕ→ �ψ
(2.3)

It is called normal if it is monotonic, it is closed under the rule of generalization
and contains the K axiom, i.e. for each � in the language ∆we have

ϕ
�ϕ

(2.4)

and �(ϕ→ ψ)→ (�ϕ→ �ψ).
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2.3.1 Coalition Logic
The logical language used to reason about effectivity functions is Coalition Logic
[54]. Coalition Logic is multimodal language, where modalities are of the form [C]ϕ
and represent the fact that a certain coalition C can force a certain formula ϕ to be
true. The language of Coalition Logic is denoted L[C] and it is made by formulas
that are defined as follows:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | [C]ϕ

where p ranges over Prop and C ranges over the subsets of N. The other boolean
connectives are defined as usual.

The modalities are interpreted in neighbourhood structures [23] induced by the
effectivity functions and called Coalition Models.

Definition 15 (Coalition Models) A Coalition Model is a triple

(W,E,V)

where:

• W is a nonempty set of states;

• E : W −→ (2N −→ 22W ) is a dynamic effectivity function;

• V : W −→ 2Prop is a valuation function.

The satisfaction relation of the formulas of the form [C]ϕ with respect to a pair
M,w is defined as follows:

M,w |= [C]ϕ if and only if ϕM ∈ E(w)(C)

where, ϕM = {w ∈ W | M,w |= ϕ}. As outcome monotonicity is taken to be a
property of all effectivity functions, the rule of monotonicity is valid in Coalition
Logic, which is therefore a monotonic modal logic [39]. Figure 2.6 gives an example
of a Coalition Model.

The rule of monotonicity takes this form for each C ⊆ N:

ϕ→ ψ

[C]ϕ→ [C]ψ
(2.5)

As usual with neighbourhood structures, relations between set theoretical and
logical properties are fairly immediate to spot. Standard correspondence results
between class of frames and neighbourhood functions [23] can be automatically
used for Coalition Logic.

Proposition 5 Let F = (W,E) be a Coalition Frame, and C,C� arbitrary coalitions. The
following results hold:
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¬p

w0

p

w1

p

w2

¬p

w3

Figure 2.6: Coalition Models. The modalities are interpreted in dynamic effectivity
functions that specify the neighbourhood function. In the picture the effectivity
function E(w0)(N) = {{w2,w1}, {w3}}

sup — as usual the minimal sets are represented
by the dashed lines — and the valuation function V(p) = {w1,w2}— represented by
the atomic proposition assigned to the worlds where it is satisfied —make sure that
the following statements hold: M,w0 |= [N]p, i.e. at w0 coalition N can achieve p
and M,w0 |= [N]¬p, i.e. at w0 coalition N can achieve ¬p.

• |=F [C]� if and only if for all w ∈W, E(w)(C) contains the unit;

• |=F ¬[∅]¬ϕ→ [N]ϕ if and only if E is regular and outcome monotonic;

• |=F ¬[C]⊥ if and only if ∅ � E(w)(C) for each w ∈W;

• |=F [C�]ϕ ∧ [C��]ψ→ [C� ∪ C��](ϕ ∧ ψ) if and only if E is superadditive;

• ϕ→ ψ |=F [C]ϕ→ [C]ψ if and only if E is outcome monotonic.

Proof The proof is standard and given in [54].

Correspondence results allow us to distinguish by modal means a number of
class of frames. However expressivity of the modal operators strongly limit the
capacity of the language to discern classes of structures. To this extent the reader
should notice that the logics of both determined and playable effectivity frames
share the fact that |=F [∅]�. However this proposition, whose interpretation is that
for each w ∈W, {W} ∈ E(w)(∅), is not sufficient to make a formal distinction between
E(w)(∅) in the two different classes of effectivity functions, which will be a topic of
discussion in Chapter 3.

Cooperative Game Models

Coalition models, which are nothing but cooperative game forms with a valuation
function, can be naturally extended with preference relations.
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Figure 2.7: Preference Models. The arrows represent the relation �i, that links
worlds according to the desirability of player i. The valuation given ensures that
the following holds: M,w0 |= ��i �

�

i ¬ϕ.

Definition 16 We call Cooperative Game Model a Coalition Model extended by a
preference relation �i for each i ∈ N.

A Cooperative Game Model without a valuation function, i.e. a tuple (N,W,E,�i)
will be also referred to as a Cooperative Game Frame.

2.3.2 Preference Logic
In order to talk about the preference relations of a Cooperative Game Model two
standard modalities to reason about preferences [17, 63, 66] will be used.

The first, ��i , indicates what holds at some world that is better than the present
one, the second,��i ϕ, indicates what holds at some world that is strictly worse than
the current one. Their interpretation is given as follows:

M,w |= ��i ϕ if and only if M,w� |= ϕ, for some w� with w �i w�

M,w |= ��i ϕ if and only if M,w� |= ϕ, for some w� with w� ≺i w

Formulas with an occurrence of a weak preference operator such as ��i ϕ are
meant to express the fact that ϕ is a property that holds in all worlds that are worse
than the current one.

As is clear from the interpretation of the modal operators fundamental properties
of the language, such as validity of certain formulas, are strictly dependent on the
underlying relation. Also for preference total preorders, standard correspondence
result are of great use.

Proposition 6 Let F = (W,�i) be a frame with a preference relation �i. The following
results hold:

• |=F ϕ→ ��i ϕ if and only if �i is reflexive;

• |=F ��i �
�

i ϕ→ �
�

i ϕ if and only if �i is transitive;
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Proof The results are standard and given in [10].

The reader will notice that the property of connectedness has not been charac-
terized. In fact this is not possible in a modal language like L�, that can only talk
about local properties of relations [10]. Some exceptional cases are however note-
worthy. L� is extremely close to Boutilier’s CO-logic, [17] a modal logic defined on
modalities��,�≺, interpreted on a total preference preorder and expressive enough
to be able to define conditional preferences, for example sentences such as ”from
all worlds satisfying formula ϕ, the best worlds satisfy formula ψ”, which will be
object of study in Chapter 4.

For the purpose of expressing global properties of relations is convenient to use
a universal (or global) modality A. This modality expresses properties of all the
states in a domain W of a model M and it is interpreted as follows.

M,w |= Aϕ if and only if M,w� |= ϕ, for all w� ∈W

The formula ¬A¬ϕwill be abbreviated Eϕ. The symbol E is the existential dual
of A and it indicates that a certain formula holds at some state in the model. Notice
that with the global modality we have a genuine addition of expressivity (together
with further gains, as shown in [31]), therefore we can express validity in a model
by truth in a world, witness the fact that M,w |= Aϕ⇔|=M ϕ.

The following frame correspondence results should give a flavour of the power
of the global modality together with the preference and coalition logic modalities.

Proposition 7 Let F = (W,E,�i) be a frame with a preference relation �i and an effectivity
function W. The following results hold:

• F |= (ϕ ∧ ��i ψ)→ A(ψ ∨ ϕ ∨��i ϕ) if and only if �i is trichotomous;

• F |= Aϕ↔ [∅]ϕ if and only if E has IOEC.

Proof The first case is standard [10]. For the second case, assume that |=F Aϕ ↔ [∅]ϕ
while not E(w)(∅) = {W} for every w in any frame F = (W,E) in the class of Coalitional
Frames F . As both W and E(w)(∅) are nonempty, there is a W� �W s.t W� ∈ E(w)(∅). Let
us construct a model M, based on F that consists of the following valuation function: each
atom p is false in all w� ∈ W� and true in W \W�. Now M �|= Ap ↔ [∅]p. Contradiction.
For the other direction assume E(w)(∅) = {W} for a given w in an arbitrary model M based
on F, and that M,w |= Aϕ. Then ϕM = W and M,w |= [∅]ϕ follows. Assume now that
M,w |= [∅]ϕ. It has to be the case that ϕM = W by assumption. So also that M,w |= Aϕ,
which concludes the proof.

Proposition 7 shows that empowering the languageL[C],�, the language of Coali-
tion Logic extended with the��i modality, with the global modality allows both the
characterization of connected frames and the distinction between playable and de-
termined effectivity functions. In other works the global modality, combined with
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preference logics, has been shown to be expressive enough to define binary com-
bination of preferences over formulas [66], bringing further the achievements of
[17].

For all these reasons the language L[C],�,g, i.e. the language L[C],� enriched with
the global modality, will be our starting point for reasoning about the strategic
aspect of interaction introduced in Chapter 1.



32 CHAPTER 2. PRELIMINARIES



Part I

Strategic Reasoning and
Coalitional Games
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Chapter 3

Coalitional Games

Normative aspects of game theory may be subclassified using various dimensions. One is whether
we are advising a single player (or group of players) on how to act best in order to maximize payoff
to himself, if necessary at the expense of other players; and the other is advising society as a whole
(or a group of players) of reasonable ways of dividing payoff among themselves. The axis I’m talking
about has the strategist (or the lawyer) at one extreme, the arbitrator (or judge) at the other.

Robert J. Aumann, What is game theory trying to accomplish? [6]

3.1 Introduction
In cooperative game theory [56, 50], but also in related disciplines such as social
choice theory [49, 1], effectivity functions have been used as an abstract representa-
tion of coalitional power. In its general form given in Definition 6, this abstraction
does not consider players’ preferences nor opponent possibilities but it is limited to
providing a set of possible choices for a coalition without committing to a model of
rational decision making, i.e. what coalitions should do with those possible choices.
The purpose of this chapter is to provide a model of coalitional rationality where
coalitions are treated as decision makers that, by coordinating their members, have
an opinion on the possible outcomes of the interaction, reflect on their opponents’
possibilities and take a joint decision.

The theory of games has come up with rigorous models of rational decision
making for individuals, which can be immediately illustrated by a classical example.

Example 7 (Motivating Example) Let us consider a version of the prisoner’s dilemma
depicted in Figure 2.2, already extensively discussed in the introductory chapter. We first
focus on Row and reflect on what is best for him to do. After the choice L by Column,
the choice D becomes preferable to the choice U — yielding (3, 0) instead of (2, 2). The
same holds in case Column moved R — yielding (1, 1) instead of (0, 3). These two facts,
exhausting all possibilities, are enough to conclude that whatever Column does Row is better
off by playing D. If we now turn to Column we get a similar conclusion: playing R is better
than playing L, no matter what Row does. In the common sense reading the choices U and L

35
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are cooperative moves respectively of Row and Column, while D and R are their defective
counterparts. What gives the situation the flavour of a dilemma is that, as already observed
in Example 3, the outcome (D,R) is not Pareto optimal and yet it is the one that has been
argued for on rational grounds.

Looked at from an individual perspective, a prisoner’s dilemma is an interactive
situation in which the advantages of cooperation are overruled by the incentive for
individual players to defect. But looked at from a coalitional perspective, the
situation changes: using the tools presented in Definition 11, we can extract from
the prisoner’s dilemma the information regarding the strategic ability of the groups
of players involved. Considering the reasoning patterns of coalitions instead of
individuals makes new possibilities arise.

Example 8 (Motivating Example cont.) Even though cooperative moves U and L may
be irrational from an individual perspective, the coalition {Row,Column} can choose the
strategy profile (U,L) without fearing to be ruling out a strictly better alternative. In fact,
the only outcome that coalition {Row,Column} would rationally not choose is the outcome
(D,R), i.e. the result of individually rational reasoning: (D,R) is the only outcome among
the available ones for which there exists an alternative that would make both players better
off.

Together with the prisoner’s dilemma there are plenty of strategic games in
which larger coalitions would rationally choose outcomes that their members would
not choose on individual grounds. We believe that an appropriate model of coali-
tional rationality should be able to make this distinction. However, as previously
observed, cooperative games furnish a rather abstract representation of coalitional
power and cannot express concepts such as rationality of a coalitional choice. The
chapter will bridge the gap by formulating a model of coalitional decision making
based on coalitional power and individual preferences.

We will consider:

• A number of preference orders over choices within a coalitional effectivity
function, in order to compare what choices are better for a certain coalition;

• The notion of choice restriction, seen as restriction on a coalitional effectivity
function induced by the opponents’ moves, in order to reason on situations
brought about by the possible moves of the other players;

• A definition of optimal choice based on a combination of the previous two
notions, in order to establish what is best to do for a certain coalition.

The added value of working out a theory of optimal choices in effectivity func-
tions is that of being able to talk about coalitional rationality in strategic games, but
also in extremely abstract coalitional games that do not correspond to any strategic
game. In interactions when a coalition C can bring about the property X and and its
opponent C can bring about X — i.e. whose effectivity function lacks the property
of playability typical of strategic games (Proposition 2) — understanding what a
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coalition should do is even more necessary. Our model of coalitional rationality
will be general enough to be applicable to those types of interactions.

Even though the theory of optimal choices will be formulated for the general
case, the peculiar features of strategic games will be dealt with:

• On the one hand, we will characterize the class of effectivity functions that
correspond to strategic games, correcting a well-known result in the literature
from [54];

• On the other hand, we will discuss the various meanings of choice in strategic
interaction and propose an alternative to effectivity functions, in order to
abstractly represent coalitional power in games.

The models of coalitional rationality, elaborated for the general case, will natu-
rally incorporate the features of coalitional ability in strategic games.

Chapter structure: In Section 3.2, based on joint work with Jan Broersen, Rosja
Mastop and John-Jules Meyer [18], a notion of coalitional rationality is studied,
introducing an order on coalitional effectivity functions that takes into account
individual preference relations and opponents’ possibilities. Section 3.3 deals with
the relation between coalitional games and strategic games. In Subsection 3.3.1,
based on joint work with Wojtek Jamroga and Valentin Goranko [30], a relation is
established between strategic games and a class of effectivity functions, correcting
a believed correspondence in the literature. Subsection 3.3.2, based on joint work
with Jan Broersen, Rosja Mastop and John-Jules Meyer [19], elaborates on alternative
representations of coalitional ability in games to model desirable features of strategic
interaction. A section discussing the achievements and the related literature will
conclude the chapter.

3.2 Coalitional Rationality
Cooperative games have been introduced in Chapter 2 as structures endowed with
a preference relation and an effectivity function. Due to the abstraction level of
these two constructs, coalitional games can only provide a general representation
of what a group of players can force and of what its members individually prefer.
However, in order to model coalitional rationality, we need to express that within
an effectivity function a certain choice is the best among the available ones. Hereby
we are confronted with four problems:

1. The preference relations are formulated for individual players, but we are
interested in coalitional preferences.

2. The preference relations are formulated as relations over outcomes, but we
are interested in preferences within effectivity functions, which are sets of sets
of outcomes.
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3. The classical notions of optimality, such as Pareto optimality (Definition 2), do
not concern players’ strategic possibilities, but we are interested in formulating
a notion of optimality within an effectivity function.

4. The classical notions of optimality do not concern opponents’ strategic pos-
sibilities, but we are interested in formulating the notion of optimality that
takes into account what the opponents can do.

Our objective is to address these points one by one, formulating a notion of
coalitionally rational choice as an analogue to the notion of dominant strategy
available in strategic games (Definition 3). Section 3.2.1 will study a lifting of
preference relations to sets, addressing point 2; Section 3.2.2 will make use of
this lifting to define a notion of optimality within a coalitional effectivity function
without taking into account the opponents’ possibilities — what we call a Pareto
optimal choice — addressing points 1 and 3; Section 3.2.3 will finally endow Pareto
optimal choices with the capacity of reasoning on the opponents — what we call
an undominated choice — addressing the last point. A number of results will show
that these notions are natural generalizations of the notion of dominant strategy in
strategic games for the coalitional case.

3.2.1 Lifting preferences to sets

As effectivity functions are sets of sets of states and preference relations are orders
on states, the first step towards a model of coalitional rationality is to define a lifting
of preference relations from states to sets of states. A number of contributions
already exist in the literature tackling this and various results are available [27, 56,
42, 46, 65, 41]. However none of them has handled the problem of preference lifting
within a coalitional effectivity function, which is the concern of the present chapter.

Being interested in comparing choices according to individual preferences, we
will consider a relatively small number of feasible preference orders on choices,
namely those relating pairs of sets according to a quantified comparison of their
elements. More specifically for two sets X,Y we will consider preference relations
of the form

X �(Q1,Q2)
i Y

where Q1 and Q2 can be an existential or a universal quantifier and �i either a weak
or a strict preference order. For example X �(∃,∀)

i Y means that for player i there
exists an element in X that is better than all elements of Y. Figures 3.1, 3.2, 3.4, 3.3
illustrate the types of lifting.

Their formal definition goes as follows.

Definition 17 (Individual preferences for sets of states) Let �i be a preference order,
W a set of alternatives, and Q1,Q2 ∈ {∀,∃}. Then �(Q1,Q2)

i ⊆ 2W × 2W is defined as follows:
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x2

x1

x3

y2

y1

y3

Figure 3.1: The (∀,∀) lifting. The arrows indicate the relation �i for player i. The
left set X is better than the right set Y, as each element x ∈ X is better than each
element y ∈ Y.

x2

x1

x3

y2

y1

y3

Figure 3.2: The (∀,∃) lifting. The left set X is better than the right set Y, as for each
element x ∈ X there is an element y ∈ Y with x �i y.
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x2
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x3

y2
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y3

Figure 3.3: The (∃,∀) lifting. The left set X is better than the right set Y, as there is
an element x ∈ X that is better than all elements y ∈ Y.

x2

x1

x3

y2

y1

y3

Figure 3.4: The (∃,∃) lifting. The left set X is better than the right set Y, as there is
an element x ∈ Y and an element y ∈ Y with x �i Y.
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X �(∀,∀)
i Y if and only if for all x ∈ X, y ∈ Y, x �i y

X �(∀,∃)
i Y if and only if for all x ∈ X there exists y ∈ Y such that x �i y

X �(∃,∀)
i Y if and only if there exists x ∈ X such that for all y ∈ Y x �i y

X �(∃,∃)
i Y if and only if there exists x ∈ X, y ∈ Y such that x �i y

For the strict order �Q1,Q2
i ⊆ 2W × 2W the definition is obtained by substituting

every occurrence of �i with �i.
The preference liftings are applicable to a variety of settings but look particularly

suited to modelling strategic decisions. To this extent in [66], which studies similar
liftings, it is noticed how they ”make excellent sense while choosing best moves in
a game”[66].

Let us look again at games with the new definitions at hand.

Example 9 (Lifting the prisoners) Definition 12 and Example 6 have shown how the
effectivity function of a two person strategic game like the prisoner’s dilemma should be
represented. Its preference order �i for i ∈ N = {Row,Column} is instead induced by the
numerical entries in the matrix as expected. The following statements are representative of
the way of comparing arbitrary sets of outcomes in our game:

• {(R,U), (R,D), (L,U)} �(∀,∀)
Column {(L,D)}, i.e. the worst that can happen to Column is

that he cooperates while Row defects;

• {(R,D)} �(∀,∃)
Column {(R,U), (R,D), (L,U), (L,D)}, i.e. defection by both players is not

the worst that can happen to Column;

• {(L,D), (R,U)} �(∃,∀)
Column {(R,D), (L,U)}, i.e. in some cases difformity of choice (one

player cooperates while the other defects) can be better for Column than any uniform
choice (both players cooperating or both defecting);

• {(L,D), (R,U)} �(∃,∃)
Column {(R,D), (L,U)}, i.e. in some cases difformity of choice (one

player cooperates while the other defects) can be better for Column than some uniform
choice (both players cooperating or both defecting);

Different preference liftings emphasize different aspects of betterness. The (∀,∀)
lifting for instance emphasizes a notion of absolute betterness: expressions of the
form {(R,U), (R,D), (L,U)} �(∀,∀)

Column {(L,D)} mean that all states in the left set are
strictly better for Column than all states in the right set. Clearly when two sets are in
this relation, in order to exclude the choice of the second set, it is even needless to
look at what the opponents might do. The (∀,∃) lifting is instead close to a notion
of safe betterness: {(R,D)} �(∀,∃)

Column {(R,U), (R,D), (L,U), (L,D)} means that it is safer
for Column to choose {R,D} than a set containing all outcomes, as Column might risk
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ending up in {(L,D)}. It should be kept in mind, though, that the notion of risk is
simply a synonym of presence of multiple possibilities and does not (yet) make the
role of the opponents’ possible moves explicit. The other two types of preference
liftings, (∃,∀) and (∃,∃), function as a sort of dual of the (∀,∀) and (∀,∃) types: they
emphasize that a choice A is not to be absolutely dispreferred to a choice B in case
A �(∃,∀)

Column B or in case A �(∃,∃)
Column B.

Of particular interest is the role of preference liftings within a coalitional effec-
tivity function.

Example 10 (Lifting the prisoners (cont.)) Let us now focus on the sets in E(w)(Column)
and see how the preference liftings can be applied there. We have that:

• neither {(U,R), (D,R)} �(∀,∀)
Column {(U,L), (D,L)}nor {(U,L), (D,L)} �(∀,∀)

Column {(U,R), (D,R)},
as (L,D) �Column (R,U) and (R,D) �Column (L,U), i.e. cooperating is not absolutely
better than defecting nor is defecting absolutely better than cooperating.

• {(U,R), (D,R)} �(∀,∃)
Column {(U,L), (D,L)}while not {(U,L), (D,L)} �(∀,∃)

Column {(U,R), (D,R)},
i.e. defection is ’safer’ than cooperation.

Once again, the (∀,∀) lifting properly mimics a notion of absolute betterness
while the milder (∀,∃) adds an element of risk and uncertainty, especially in relation
with its negation, as with the expressions in Example 10 stating that defection is
’safer’ than cooperation.

The example has shown that liftings indeed make perfect sense when comparing
choices in an effectivity function and directs us towards the formulation of the notion
of Pareto optimal choices (Definition 19), which are nothing but the maxima of the
preference order induced by the liftings within a coalitional effectivity function. But
first let us look more closely at some general properties of the preference liftings, in
relation to the underlying preference order.

Properties of preference liftings

It goes without saying that many properties of the preference liftings are directly
inherited from the underlying preference order. In our case this is a total preorder
over the outcomes. Yet, most of the above defined liftings are not total preorders.

Proposition 8 Let (�i)i∈N be a preference order, W a set of alternatives, Q1,Q2 ∈ {∀,∃}
and �(Q1,Q2)

i ,�(Q1,Q2)
i the preference relations as given in Definition 17. We have that:

1. �∀,∃i is a total preorder;

2. If �(Q1,Q2)
i ��∀,∃i then �(Q1,Q2)

i is not a total preorder;

3. �(Q1,Q2)
i is not a total preorder.
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Proof To prove �∀,∃i is a total preorder it suffices to prove that �∀,∃i is transitive and
complete. For transitivity assume A �∀,∃i B and B �∀,∃i C. We need to prove that A �∀,∃i C.
If A is empty the proof is trivial, otherwise take an arbitrary x ∈ A. From the assumptions it
follows that there exists y ∈ B such that x �i y. Again from the assumptions it follows that
there exists a z ∈ C such that y �i z. But �i is transitive so x �i z. To prove completeness,
let us take two arbitrary nonempty sets A,B ⊆ W. If A ⊆ B we have by reflexivity of �i

that A �∀,∃i B. Suppose instead that A � B. So there exists x ∈ A such that x � B. Let us
consider the set X = A \ B. Suppose there exists x ∈ X such that for no y ∈ B we have that
x �i y (otherwise simply A �∀,∃i B). But by completeness of �i we have that y �i x for all
y ∈ B, that is B �∀,∃i A.

To prove that no other preference relation over sets of the form we have defined is a total
preorder we need to find a counterexample for each case. Let us consider the sets A = B = {x}
for some x ∈ W. It does not hold that A �(Q1,Q2)

i B nor that B �(Q1,Q2)
i A for each Q1,Q2,

which proves that none of these relations is a total preorder. To see that �(∃,∃)
i is not a total

preorder consider sets A = {1, 3}, B = {2, 7}, C = {6, 5} that have the natural numbers
N as domain, with the naturally induced preference relation. We have that A �(∃,∃)

i B,
B �(∃,∃)

i C and that it is not the case that A �(∃,∃)
i C which falsifies transitivity. To see

that �(∀,∀)
i is not a total preorder consider set A = {a, b} with a �i b. It is not the case that

A �(∀,∀)
i A, which falsifies completeness. To see that �(∃,∀)

i is not a total preorder consider
sets A = {x ∈ N | x is even } and B = {x ∈ N | x is odd }, where again the preference
relation is induced by the order on the numbers. It is not the case that A �(∃,∀)

i B nor that
B �(∃,∀)

i A, which falsifies completeness.

A number of properties have been studied against which to compare a preference
lifting. Proposition 8 shows how the structural properties of a preference order are
reflected in the types of lifting that we are studying.

3.2.2 Pareto optimal choices
The preference liftings in Definition 17 can be used to order players’ choice sets.
Mimicking the classical notion of Pareto optimality, used to classify states, we can
now introduce Pareto optimality for choices. The intuition is that, given a choice
set X and a preference relation � over subsets of its domain (� denoting its strict
counterpart), a choice X ∈ X is a Pareto optimal if there is no choice Y ∈ X that
dominates X according to �. 1

Definition 18 (Pareto optimal choice) Let W be a set of alternatives, C ⊆ N a set
of players and E(w)(C) a choice set of coalition C at w defined on the domain W. A
choice X ∈ E(w)(C) is Pareto optimal choice for coalition C at w if, and only if, for no
Y ∈ E(w)(C), Y �i X for all i ∈ C.

1As a convention, in order to increase readability, when introducing new concepts involving a quan-
tified preference relation over sets, the relation will be anonymously denoted �. Only later, once the
notion is explained, further properties coming from the various liftings will be discussed.
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w3
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Figure 3.5: A (∀,∀) Pareto optimal choice. The arrows indicate the relation �i for
each player i in coalition C at w modulo transitivity and reflexivity, and the sets
succinctly represent choices in E(w)(C). The leftmost set is Pareto optimal for C at
w, as no better set exists in E(w)(C).

In words, the definition says that a choice is Pareto optimal for a coalition at a
certain state if there is no better alternative to that choice for all members of that
coalition at that state. The betterness order is indicated by the preference relation
over sets, which henceforth will be one of the preference liftings introduced in
Definition 17. The choice set in which a Pareto optimal choice for a coalition C is
evaluated will be, unless otherwise specified, the effectivity function of coalition
C itself, at a particular state. To study the consequences of preference liftings in
classifying choices the full-blown definition is needed.

Definition 19 (Quantified Pareto optimal choice) Let E(w)(C) be a choice set. X ∈
E(w)(C) is (Q1,Q2)-Pareto optimal choice for coalition C in w if, and only if, for no
Y ∈ E(w)(C), Y �(Q1,Q2)

i X for all i ∈ C, and for Q1,Q2 ∈ {∃,∀}.

As a convention, when the effectivity function is understood, we indicate with
POC,w(A,�(Q1,Q2)

i ) the fact that set A is Pareto optimal choice for C in w according to
preference relation �(Q1,Q2)

i . When instead the effectivity function is not clear from
the context, it will be said that POC,w(A,�(Q1,Q2)

i ) holds in a given effectivity function
E. The new definition makes the role of preference liftings explicit in classifying
choices. If for instance a set X is Pareto optimal choice for coalition C at w then there
is no reason (no set Y exists in the choice set of C at w that is better than X according
to the given preference lifting) not to choose X. Figure 3.5 and Example 11 illustrate
this further.

Example 11 (Pareto optimal choices) Let us carry on with the prisoner’s dilemma, and
let us represent it by an effectivity function E and a preference relation �i for i ∈ N =
{Row,Column}. As the prisoner’s dilemma is a game with a surjective outcome function
we have in particular that all Pareto optimal outcomes can be forced by the grand coalition,
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L R
U 0, 2 0, 100
D 0, 3 0, 1

Decision Problem 1

L R
U 0, 2 0, 4
D 0, 3 0,−100

Decision Problem 2

Figure 3.6: Two decision problems for the column player, while the row player
is indifferent among the possible outcomes. The preference liftings have often
unsatisfactory suggestions, ruling out reasonable alternatives such as choosing R in
the game on the left or choosing L in the game on the right.

formally {(D,L)}, {(U,L)}, {(U,R)} ∈ E(w)(N). But are these outcomes also Pareto optimal
choices? The answer is positive, for all preference liftings. Take for instance the (∀,∀)
lifting. Clearly, for each Pareto optimal outcome x, it is not possible to find an X ∈ E(w)(N)
such that X �(∀,∀)

i {x}.
At the level of single player coalitions the situation is a bit more complicated. How to

treat the choices D and U by Row? The (∀,∀) lifting treats them both as Pareto optimal
choices: the idea is that there is no absolute reason to choose defect or cooperate. The (∀,∃)
lifting instead recognizes the element of risk in the cooperative move and only indicates
defection as Pareto optimal. Dually, the (∃,∃) lifting declares no choice in E(w)({Row})
Pareto optimal, while the (∃,∀) would declare defection as Pareto optimal.

From the last observation in the example one might conclude that (∃,∀) and
(∀,∃) behave better in the prisoner’s dilemma than the weak (∀,∀) lifting. This is
true in fact, though the other three types of liftings (and their corresponding strict
counterparts) show other undesirable properties. It is not difficult to think of games
where the (∀,∃) and (∃,∀) lifting do not provide a satisfactory solution.

Example 12 Let us consider the games in Figure 3.6. In the game on the left we have that
{(L,U), (L,D)} �(∀,∃)

Column {(R,U), (R,D)}, as (R,D) is the worst possible outcome and, for
the same reason, not {(R,U), (R,D)} �(∀,∃)

Column {(L,U), (L,D)}. In other words, according to
the (∀,∃) preference lifting there is a reason not to choose R but there is no reason not to
choose L. Using Pareto optimality as a suggestion for action, the conclusion is that L is to
be preferred to R, which is at least debatable. In the game on the right, instead, is the (∃,∀)
lifting to behave in an undesired way, by suggesting Column the move R, as (R,D) is for
him the best possible outcome.

The example shows that no preference lifting, at least among the ones that we
have introduced, can always indicate the most reasonable move in a game and
for each of them a game can be found where the given answer is not completely
satisfactory. The only exception is possibly the (∀,∀) type of lifting, which tends to
provide too many suggestions, but it never excludes the desirable ones. Henceforth,
this extremely weak type of lifting will be adopted by default, as a basis to define
more structured concepts that refine its suggestions.
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Before moving on to introduce undominated choices, that endow Pareto optimal
ones with choice restrictions, we focus on some formal properties of the latter.

Properties of Pareto optimal choices

Here we provide formal results that relate the Pareto optimal choices with effectivity
functions and strategic games together with the relation between the various forms
of Pareto optimal choices associated with the preference liftings.

Pareto optimal choices and effectivity functions Pareto optimal choices are or-
ders defined in effectivity functions, which are outcome monotonic sets of sets. How
does outcome monotonicity of the effectivity function influence the optimality of
choices? We can prove that the influence of outcome monotonicity depends on
the lifting under consideration: while Pareto optimality enjoys monotonicity when
considering relations �(∀,∀)

i ,�(∃,∀)
i , it enjoys antimonotonicity when considering re-

lations �(∃,∃)
i ,�(∀,∃)

i .

Proposition 9 Let W be a set of alternatives, C ⊆ N a set of players, X a choice set over
W, A,B ∈ X, and �(Q1,Q2)

i for Q1,Q2 ∈ {∃,∀} the usual preference relation. We have that:

1. A ⊆ B implies that POC,w(B,�(∀,∀)
i ) whenever POC,w(A,�(∀,∀)

i );

2. A ⊆ B implies that POC,w(B,�(∃,∀)
i ) whenever POC,w(A,�(∃,∀)

i );

3. A ⊆ B implies that POC,w(A,�(∃,∃)
i ) whenever POC,w(B,�(∃,∃)

i );

4. A ⊆ B implies that POC,w(A,�(∀,∃)
i ) whenever POC,w(B,�(∀,∃)

i );

Proof The proof is a direct consequence of Definition 19.

The proposition shows that the (∀,∀) and the (∀,∃) Pareto optimal choices are
monotonic (items 1 and 2), while the (∃,∀) and the (∃,∃) are antimonotonic (items
3 and 4). These properties are formally desirable but they allow for paradoxical
interpretations. If we for instance consider the monotonic forms of Pareto optimal
choices we come across a sort of Ross Paradox [47]: if it is optimal to cooperate then
it is optimal to cooperate or not to cooperate.2. For the other two a reversed Ross
paradox is available: if it is optimal to cooperate or to defect then it is optimal to
defect. This suggests that the intuitive interpretation of choices should be further
disentangled: choosing X in a certain effectivity function should be here understood
as choosing a strategy leading to X. Different definitions of choices are possible, some
of which do not enjoy properties such as outcome monotonicity: this will be a topic
of discussion of Section 3.3.

2The original paradox states that if it is obligatory to send a mail then it is obligatory to send a mail
or to burn it [47].
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Strong Pareto optimal choices To complete the picture of the various forms of
Pareto optimal choice we introduce its strong version, that corresponds to strong
Pareto optimality for outcomes (Definition 2).

Definition 20 (Quantified strongly Pareto optimal choice) Let Q1,Q2 ∈ {∃,∀} and
E(w)(C) be a choice set. X ∈ E(w)(C) is (Q1,Q2)-Strongly Pareto Optimal for coalition
C in w if, and only if, for no Y ∈ E(w)(C), Y �(Q1,Q2)

i X for all i ∈ C; and Y �(Q1,Q2)
i X for

some i ∈ C.

A choice is strongly Pareto optimal for some coalition if there is no choice
available that is at least as good for all members of that coalition and strictly better
for some. Strongly Pareto optimal choices coincide with Pareto optimal choices
when considering coalitions made by one player. They significantly differ in the
other cases. For instance, for C = ∅, each X ∈ E(w)(C) is strongly Pareto optimal
choice while none is Pareto optimal choice. As for monotonicity it behaves like the
Pareto optimal case (Proposition 9). The following proposition states the expected
inclusion relations between weakly and strongly Pareto optimal choices.

Proposition 10 Let W be a set of alternatives, C ⊆ N a set of players, X a choice set over
W; A,B ∈ X, and �(Q1,Q2)

i for Q1,Q2 ∈ {∃,∀} the usual preference relation. Let us indicate
with SPOC,w(A,�(Q1,Q2)

i ) the fact that set A is Pareto optimal choice for C in w according to
preference relation �(Q1,Q2)

i . We have that:

• SPOC,w(B,�(Q1,Q2)
i ) and C � ∅ implies that POC,w(B,�(Q1,Q2)

i );

• SPOC,w(A,�(∃,∃)
i ) and C � ∅ implies that POC,w(A,�(∀,∀)

i ).

Proof The proof is a direct consequence of Definitions 19 and 20.

The proposition says that for nonempty coalitions each strongly Pareto optimal
choice is a Pareto optimal choice and that each strongly Pareto optimal choice
according to the (∃,∃) preference lifting is also a Pareto optimal choice according to
the (∀,∀) one.

Pareto optimality of outcomes and of choices One feature suggested by Example
9 and Example 10 is that Pareto optimal choices reflect weak Pareto optimality of
outcomes. The intuition can be made formal by the following result.

Proposition 11 LetG be a game with a surjective outcome function and Eα
G

the effectivity
function representing it at world w. For all x ∈W and for Q1,Q2 ∈ {∃,∀} we have that:

x is Pareto optimal in G⇔ PON,w({x},�(Q1,Q2)
i ) in EαG

Proof From left to right, assume x to be Pareto optimal in G. So for no y ∈ W do we have
that y �i x for all i ∈ N. By the fact that G has surjective outcome function we have that
Eα
G

(w)(N) = 2W \ ∅. Suppose that {x} ∈ Eα
G

(w)(N) is not such that PON,w({x},�(Q1,Q2)
i )
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for some Q1,Q2 ∈ {∃,∀}. Then there exists X ∈ Eα
G

(w)(N) such that for all (and for some)
y ∈ X, y �i x for all i ∈ N. As X � ∅ we have that there exists y ∈ X, y �i x for all i ∈ N.
Contradiction. The other direction is straightforward.

The proposition shows a mapping between Pareto optimality of choices and
Pareto optimality of outcomes in the corresponding game. However it holds only
for surjective outcome functions. In this case therefore the effectivity function of N
includes all choices of the form {x} for x being a possible outcome of the game and
establishing Pareto optimality for choices implies Pareto optimality for outcomes.

As to the correspondence with strongly Pareto optimal outcomes a similar result
is obtained.

Proposition 12 LetG be a game with a surjective outcome function and Eα
G

the effectivity
function representing it at world w. For all x ∈W and for Q1,Q2 ∈ {∃,∀} we have that:

x is Strongly Pareto Optimal in G⇔ SPON,w({x},�(Q1,Q2)
i ) in EαG

Proof It follows the same procedure as for the weak case.

Propositions 11 and 12 show that Pareto optimal choices are generalizations of
Pareto optimality on outcomes, independently of the preference lifting we might
want to consider.

3.2.3 Undominated choices
The contribution of game theory to the analysis of interaction has emphasized that
one fundamental aspect of rationality lies in the capability of reasoning about one’s
opponents. As put in [6, p.14],

when advising what to do, you must take into account what the other
players can do, and the outcome may well be a reasonable compromise.

Pareto optimal choices do not take this stance into account, as they are an
order on coalitional choices that only consider the preferences of its members. In
this section we define undominated choices, as those choices that remain Pareto
optimal for all possible reactions of the opponents. As we have pointed out in the
introductory part of this work opponents’ possibilities can be modelled looking at
how they transform coalitional choices: it is the notion of choice restriction that we
can retrieve in strategic reasoning.

Definition 21 (Choice restriction) Let E be an effectivity function, and X ∈ E(w)(C).
The X-choice restriction for C in w is the set E(w)(C) � X.

Given a choice set E(w)(C) its choice restriction E(w)(C) � X is given by the
intersection of each set in E(w)(C) with X. The idea, illustrated in Figure 3.7 and
Example 13, is that each possible choice of C is now restricted by the choice X by C.
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Figure 3.7: A choice restriction. The dotted rectangle, symbolizing a choice of
coalition C�, restricts the choice set of C�, succinctly represented by the straight
rectangles.

Example 13 Let us take the usual example of the prisoner’s dilemma. It has been previously
observed that given the choice L by Column, i.e. the set {(U,L), (D,L)} ∈ E(w)({Column}),
the choice D, i.e. the set {(D,L), (D,R)} ∈ E(w)({Row}), becomes preferable to the choice L.
With the notion of choice restriction we can compute the effect of the choice L on the strategic
possibilities of the row player, i.e. E(w)({Row}) � {(U,L), (D,L)} = {{(U,L)}, {(D,L)}}. The
choices available to Row now share sets in L: this is precisely the idea of restriction of one’s
moves by the opponents, that cuts the possible available outcomes for a coalition.

Combining the notions of choice restriction and Pareto optimal choice, undom-
inated choices are immediate to define. For present purposes it is convenient to
focus on only one type of Pareto optimal choice, namely the one making use of the
(∀,∀) preference lifting.

Definition 22 (Undomination) Let E(w)(C) be a choice set. X ∈ E(w)(C) is said to be
undominated for C at w (abbreviated X�C,w) if, and only if, for all Y ∈ E(w)(C), (X ∩ Y)
is a (∀,∀) Pareto optimal choice in E(w)(C) � Y for C at w.

In words, a choice is undominated for coalition C at w if it is (∀,∀) Pareto optimal
choice in all choice restrictions induced by the opponents’possible reactions. This
definition suggests that coalitional rationality consists of two dimensions: an inward
Pareto-like reasoning, aiming at choosing the best among the available choices;
and an outward strategic reasoning, taking the possible moves of the opponents
into account. Both dimensions are represented in undominated choice, that merge
Pareto optimal choices with choice restrictions, as exemplified in Figure 3.8. Hereby
undomination clearly resembles the notion of dominant strategy of Definition 3.
Later on, we will be able to turn this clear resemblance into a formal connection.

Example 14 Continuing our example, we have that playing D, i.e. {(D,L), (D,R)}, is
undominated at w for Row and so is playing R, i.e. {(D,R), (U,R)}, for Column, as defecting
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Figure 3.8: The structure of undominated choices. Pareto optimality is calculated
in the choice restrictions induced by the opponents possible choices. The leftmost
set is (∀,∀) Pareto optimal in the choice restriction induced by the dotted rectangle.

in the prisoner’s dilemma remains optimal whatever the opponent decides to do. However it
is not the case that playing down and right, i.e. {(D,R)} at w for the coalition made by Row
and Column, as there is a set, namely {(U,L)}, that dominates {(D,R)} in E(w)(N)�W. In
words, the notion of undomination shows formally that indeed the situation in which both
players defect is individually rational but not in the interest of both players taken together.

Undomination is the appropriate concept to refine the (∀,∀) preference lifting, as
can be seen from all games of Figure 2.2. Full convergence game, for instance, is an
example of failure of (∀,∀) Pareto optimality to indicate a reasonable choice, as both
the sets corresponding to L and R are Pareto optimal. With undomination the matter
clears, as the set corresponding to R is dominated, while the one corresponding to
L is undominated. This can be seen as an example of how undomination, in its
strongest form that uses the (∀,∀) preference lifting, implements what Horty calls
the sure-thing principle [41]: if an action K is to be preferred to an action K�, K ∩ X is
to be preferred to K� ∩ X exhausting all possibilities X. In strategic interaction, the
space of possibilities is played by the opponents’ possible moves.

Properties of undomination

Let us now concentrate on the structural properties of undomination, to be used
later on. First we focus on choice restrictions, that as we expect from their defi-
nition, radically modify coalitional effectivity functions though preserving several
important properties.

Proposition 13 Let E(w)(C) be a choice set and X ∈ E(w)(C). The following holds

1. E(w)(C) � X = (E(w)(C) � X) � X;

2. E(w)(C) � X = E(w)(C) whenever X =W;
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3. ∅ � E(w)(C) � X whenever E is regular ;

4. X ∈ E(w)(C) � X whenever E contains the unit ;

5. E(w)(∅) � X = {X} whenever E is determined ;

Proof The first and second item follow from the properties of the intersection and Definition
21. For the third item let us reason by contraposition and suppose ∅ ∈ E(w)(C) � X. This
means that either ∅ ∈ E(w)(C) or that X ∩ Y = ∅ for some Y ∈ E(w)(C). In either case E
is not regular. For the fourth item suppose W ∈ E(w)(C). But this means that there is a
Y ∈ E(w)(C) such that Y ∩ X = X. The same reasoning applies to the fifth item.

Proposition 13 shows that an effectivity function restricted by a set cannot be
restricted further by the same set (item 1), and it is not modified when restricted by
the set {W} (item 2). Properties of effectivity functions also influence choice restric-
tions. Item 3 shoes that the empty set does not belong to any choice restriction of
any regular effectivity function, while item 4 shows that a restricting set X is carried
along to the choice restriction E(w)(C)�X in every effectivity function containing the
unit. Finally item 5 shows a particular property of E(w)(∅) in determined effectivity
functions: restricting it with any set X is equivalent to obtain a choice restriction of
the form {X}.

Undomination and games The relation between choice restrictions and subgames,
that has been appreciated in the examples, can be formally drawn. Its formal
statement will be used later on to connect undominated choices with dominant
strategies in games.

Proposition 14 Let G a strategic game and E the effectivity function representing it at
world w. Let σC be a strategy of coalition C in G and X be such that X = {x | o(σC, σC) =
x for some σC available in G}. We have that

E(w)(C) � X = EG↓σC (C)

Proof Let us first show that E(w)(C)�X ⊆ EG↓σC (C). Assume Y ∈ E(w)(C)�X, for E an
effectivity function representingG and let X be such that X = {x | o(σC, σC) = x for some σC}

for σC, σC being coalitional strategies in game G. From the assumptions and the definition
of Eα

G
(Definition 11) we can derive that X ∈ E(w)(C). By Definition 21 there exists a set

Z ∈ E(w)(C) such that Z ∩ X = Y. As Z belongs to an effectivity function representing G
there exists a strategy ρC such that for all strategies ρC o(ρC,ρC) ∈ Z. It follows that the
strategy (ρC, σC) is such that o(ρC, σC) ∈ Z ∩ X = Y. But by Definitions 5 and 13 (ρC, σC)
is an available strategy in G ↓ σ

C
for coalition C. So we have that Y ∈ EG↓σC (C). For the

reverse direction, assume Y ∈ EG↓σC (C). This means, by Definitions 5 and 13, that there is
a strategy ρC in G ↓ σ

C
such that o(ρC, σC) = {w} ⊆ Y. But as again by Definition 5 ρC is

also a strategy of coalition C in G, let us consider Z = {x | o(ρC,ρC) for some ρC}. We have
that Z ∈ E(w)(C) and by the fact that Z ∩ X = {w} we also have that Y ∈ E(w)(C) � X.
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In a nutshell Proposition 14 states that, with effectivity functions representing
strategic games, choice restrictions behave as subgames, completing the picture
sketched in Figure 2.5.

Using this result we are also able to show how, for effectivity functions repre-
senting strategic games, undominated choices can be seen as dominant strategies
in disguise.

Proposition 15 Let G be a strategic game and E the effectivity function representing it at
world w. Let σ−i be a strategy of coalition {i} in G as in Definition 1. Let X be such that
X = {x | o(σi, σi) = x for some σ−i available in G}.

We have that

X �{i},w if and only if σi is a dominant strategy for i in G

Proof (⇒) Recall first that by Proposition 14 Y ∈ EG↓σi if and only if Y ∈ X � E(w)({i})
for E being the effectivity function representing G.

Suppose σi is not a dominant strategy for i in G. This is equivalent to saying that
there exists σ�i such that for some σ−i we have that o(σ�i , σ−i) �i o(σ). Consider now
the set X� = {x� | o(σ�i , σ−i) = x for some σ−i available in G} representing σ�i and the set
Z = {z | o(ρi, σ−i) = z for some ρi available in G} representing σ−i. From the properties of
E we must have that X� ∈ E(w)({i}) and Z ∈ E(w)({i}). Consider now the sets X ∩ Z and
X� ∩ Z. We must have that X� ∩ Z �(∀,∀)

i X ∩ Z, which shows that X is dominated.
(⇐) Follows the same pattern of the previous direction.

The proposition shows that, in effectivity functions representing the choices of
individual players in games, undominated strategies represent dominant strategies.
The result lifts the notion of rationality available for strategic games to a more gen-
eral coalitional version. The next section will bring this view further by analyzing
the peculiar features of coalitional ability in games.

3.3 Coalitional Games and Strategic Games

This section is devoted to discussing the relation between coalitional games and
strategic games. In Chapter 2 we have noticed how effectivity functions are rich
enough to express coalitional power in strategic interaction, by defining a coalitional
effectivity function of a strategic game, also called α-effectivity function (Definition
11). A natural question is whether it is possible to isolate the class of effectivity
functions that precisely represent strategic games, i.e. the properties that an ef-
fectivity function needs to satisfy in order to be the α-effectivity function of some
strategic game. Subsection 3.3.1 addresses this point. A second issue we will deal
with, also related to the connection between undominated choices and dominant
strategies, concerns the interpretation of an effectivity function in a strategic game
and its flexibility in representing strategy execution. Subsection 3.3.2 is devoted to
this issue.



3.3. COALITIONAL GAMES AND STRATEGIC GAMES 53

3.3.1 Representation theorems
The representation theorem given in [54][Theorem 2.27], known as Pauly’s Repre-
sentation Theorem, states that an effectivity function is playable if and only if it
corresponds to a strategic game. It is a generalization of already existing correspon-
dence results in [49, 56] for strategic games with arbitrary outcome functions.

Specifically, the correspondence (called α-correspondence [54]) is formulated in
two directions:

• every playable effectivity function is theα-effectivity function of some strategic
game,

• each game has an α-effectivity function that is playable.

The proof of the latter claim was already recalled in Chapter 2 (Proposition 2).
But the former turns out not to be correct.

Before showing this, it is instructive to recall what coalitional strategies are,
following [54, p.16]:

For notational convenience, let σC := (σi)i∈C denote the strategy tuple
for coalition C ⊆ N which consists of player i choosing strategy σi ∈ Σi.

From the interpretation given, that is also consistent with its use [54], we have
that Σ∅ = {∅}, i.e. the set of strategies of coalition ∅ only contains an empty strategy.
3 The α-effectivity function of the empty coalition in a game G reduces then to the
following:

X ∈ EαG(∅)⇔ ∃σ∅∀σNo(σ∅, σN) ∈ X⇔ ∀σNo(σN) ∈ X

In words sets in the α-effectivity function of coalition ∅ are supersets of the
set of the possible outcomes reachable by the grand coalition. In a nutshell, the
coalitional power of the empty coalition cannot hinder players from reaching a
certain outcome.

For the sake of precision, the types of structures that are in [54] called games are
usually referred to as game forms, because they do not consist of preference relations.
As preference relations do not affect the correspondence and denoting game forms
makes the notation more heavy we stick to the formulation given in [54]: we will
talk of games and not of game forms and use the notation Eα

G
instead of the more

precise but heavier Eα
Fs

.

A Counterexample to Pauly’s Representation Theorem

We can now show a counterexample to Pauly’s Representation Theorem, obtained
by constructing an effectivity function that is playable but cannot correspond to any
strategic game.

3As coalitional strategies are treated as functions from sets of players to the tuples of their individual
strategies, the empty strategy boils down to an empty function.
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Proposition 16 There is a playable effectivity function E for which E � Eα
G

for all strategic
games G.

Proof Consider a coalitional game frame with a single player ’a’ that has the set of natural
numbersN as the domain (i.e., N = {a},W =N), and the effectivity defined as follows:

• E({a}) = {X ⊆N | X is infinite};

• E(∅) = {X ⊆N | X is finite}.

In other words, the grand coalition {a} is effective for all infinite subsets of the natural
numbers, while the empty coalition can enforce all its cofinite subsets.

E is playable and it does not correspond to any strategic game. To see this let us first verify
the playability conditions. Outcome monotonicity, N-maximality, liveness and safety are
straightforward to check. For superadditivity, notice that we only have two cases to verify:

1. C = {a},C� = ∅;

2. C = ∅,C� = ∅.

For the first case, consider a set X ∈ E({a}) and a set Y ∈ E(∅). To show that X ∩ Y ∈
E({a} ∪ ∅) = E({a}) we only need to observe that X = (X ∩ Y) ∪ (X ∩ Y). As X ∩ Y is a
finite set and Y cofinite, we must have that X ∩ Y is infinite, so X ∩ Y ∈ E({a}). For the
second case it is sufficient to recall that the intersection of two cofinite sets is cofinite.

On the other hand, Enc(∅) = ∅ because there are no minimal cofinite sets. This implies,
by Proposition 4, that E � Eα

G
for all strategic games G.

The counterexample constructs a playable effectivity function that assigns no
minimal set to the empty coalition. Using Proposition 4, which states that α-
effectivity functions have a minimal set, we are able to conclude that there are
playable effectivity functions that do not correspond to any strategic games.

Given this fact, it is to be expected that the rather technical argument provided
in [54] fails at some point. As its proof will be readapted for an alternative char-
acterization result, it is useful to have a look at it. However, due to its technical
character, we leave its discussion to the appendix (Section A.1).

The consequences We have observed that playability conditions are not enough
to characterize strategic games. This raises some relevant issues for studying game
models and logics for reasoning about games:

1. What are the “truly playable” effectivity functions, i.e. the class of effectivity
functions that really correspond to strategic games? How can we characterize
these functions in an abstract way? This issue is discussed in Section 3.3.1.

2. Finally, what is the impact on logics for strategic ability, Coalition Logic in
particular? Are the axiomatizations from [54] and [32] sound and complete
for truly playable models? What logical constructs are needed to distinguish
between playable and truly playable structures? These questions, which have
a logical nature, are left for the next chapter.



3.3. COALITIONAL GAMES AND STRATEGIC GAMES 55

{x} {y} {z}

{x, y} {x, z} {y, z}

{x, y, z}

Figure 3.9: A crown

Truly Playable Effectivity Functions

The set of playable effectivity functions that α-correspond to strategic games can be
characterized making use of the additional notion of crown.

Definition 23 An effectivity function E : 2N → 22W is a crown if and only if X ∈ E(N)
implies that {x} ∈ E(N) for some x ∈ X.

Intuitively, an effectivity function is a crown if the set of all players has complete
control over the outcome of the game, i.e., every choice of the players includes at
least one state that the grand coalition can enforce precisely. Formally, this means
that N can only force some singleton sets and all their supersets. By forming an
anti-chain of singletons and drawing the cones we obtain a ‘crown’ as in Figure 3.9,
hence the term.

Definition 24 An effectivity function E is called truly playable if it is playable and is a
crown.

Several meaningful characterizations of truly playable effectivity functions are avail-
able.

Proposition 17 The following are equivalent for every playable effectivity function E :
2N → 22W .

1. E(∅) has a complete nonmonotonic core.

2. E(∅) has a nonempty nonmonotonic core.

3. Enc(∅) is a singleton and E(∅) is a principal filter, generated by Enc(∅).

4. E is truly playable.

Proof
(1)⇒ (2): immediate, by safety.
(2)⇒ (3): Let Z ∈ Enc(∅) and let X ∈ E(∅). Then, by superadditivity, Z ∩ X ∈ E(∅),

and Z ∩ X ⊆ Z, hence Z ∩ X = Z by definition of Enc(∅). Thus, Z ⊆ X. Therefore, E(∅) is
the principal filter generated by Z, hence Enc(∅) = {Z}.

(3)⇒ (1): immediate from the definitions.
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(3) ⇒ (4): Let Enc(∅) = {Z} and suppose {x} � E(N) for all x ∈ X for some X ⊆ W.
Then, by N-maximality, S \ {x} ∈ E(∅), i.e. Z ⊆ S \ {x} for every x ∈ X. Then Z ⊆ S \ X,
hence S \X ∈ E(∅). Therefore, X � E(N) by superaditivity and liveness. By contraposition,
E is a crown.

(4)⇒ (3): Let Z = {z | {z} ∈ E(N)} and let X ∈ E(∅). Take any z ∈ Z, which is nonempty
by true playability. By superadditivity we obtain that {z} ∩ X ∈ E(N), hence z ∈ X by
liveness. Thus, Z ⊆ X. Moreover, Z ∈ E(∅), for else S \ Z ∈ E(N) by N-maximality, hence
{x} ∈ E(N) for some x ∈W \ Z, which contradicts the definition of Z. Therefore, E(∅) is the
principal filter generated by Z, hence Enc(∅) = {Z}.

We also observe that on finite domains playability and true playability coincide.

Proposition 18 Every playable effectivity function E : 2N → 22W on a finite domain W is
also truly playable.

Proof Straightforward, by Proposition 17.3 and the fact that every filter on a finite set is
principal.

Truly playable effectivity functions correspond to strategic game forms

The proof of Theorem 2.27 from [54] fails when we consider the effectivity function
of the empty coalition (and, dually, of the grand coalition). However the proof is
correct for the other cases. It is possible to show that the additional condition of
true playability yields correctness of the original construction from [54].

Theorem 19 A coalitional effectivity function E α-corresponds to a strategic game if and
only if E is truly playable.

The proof of this fact is to found in the appendix (Section A.2).
Theorem 19 provides a general characterization of coalitional games that repre-

sent strategic games. It shows that adding certain properties to coalitional effectiv-
ity functions, that is a model of cooperative interaction, boils down to describing
a strategic game, that is a model of non-cooperative interaction. The theory of
rationality, elaborated in the previous section for the abstract cooperative case, still
holds for strategic games, that enjoy however extra properties, due to the type of
coalitional ability that they describe.

Characterizing games with citizen sovereignty In coalitional games the grand
coalition may be effective for all outcomes of the game. This case has often been
dealt with by several works in the field of social choice theory [50], and it is referred
to as non-imposedness or citizen sovereignty, as it allows players to choose freely
among all possible alternatives in a decision process.

However as observed, even in coalitional games representing strategic games
citizen sovereignty may not be realized. Games with citizen sovereignty are, because
of the properties of playability, simply determined games and they can now be fully
characterized.
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Corollary 20 A coalitional effectivity function E α-corresponds to a strategic game with a
surjective outcome function if and only if E is determined.

Proof Follows from Proposition 2 and Theorem 19.

Corollary 20 extends Theorem 19 to treat games with surjective outcome func-
tion, showing once again the role of the empty coalition in differentiating among
various types of strategic games.

3.3.2 On coalitional choices in games
The informal reading of an effectivity function is that of a family of set of sets X
representing the choices assigned to a coalition. However, as previously observed,
this reading is ambiguous and choosing a set X should in fact be understood as
choosing a strategy leading to X. In this section we analyze a different meaning of
choices, that do not enjoy properties like outcome monotonicity.

To do this we consider a family of sets of sets for each coalition, to be understood
as the moves that a coalition can make. This intuitive formulation can be made clear
by the following formal definition, that will be referred to as the coalitional move
function of a strategic game.

Definition 25 (Move Function) LetG = (N,W,Σi,�i, o) be a game. Its coalitional move
function HG : 2N → 22W is given as follows:

X ∈ HG(C)⇔ ∃σC such that {v | o(σC, σC) = v for some σC} = X.

Every set in the move function clearly corresponds to a strategy of the origi-
nal strategic game, as it collects for each coalitional strategy all the completions of
that strategy that can be carried out by the opponents. The following is the way
a coalitional game can be obtained from a strategic game, making use of move
functions.

Definition 26 (Coalitional games with move function from strategic game) LetG =
(N,W,Σi,�i, o) be a game. The coalitional gameCG = (N,W,HG,�i) of HG is a move func-
tion.

Structures with a move function are richer than structures with an α-effectivity
function. Their richness can be made precise in a formal way: all α-effectivity
functions can be move functions but the converse does not hold.

Move functions have several properties that resemble α-effectivity functions.

Proposition 21 Let HG be the move function of G. The following hold:

1. HG is regular, superadditive, nonempty for each C;

2. HG,nc(N) = HG(N);

3. X ∈ HG(∅) if and only if {x} ∈ HG(N) for all x ∈ X;
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4. HG(C) has IOEC whenever G is surjective.

Proof It is an easy check of the definitions.

The proposition shows that move functions show a number of desirable prop-
erties such as regularity and superadditivity (item 1), are closely related to their
nonmonotonic core (item 2) and display a duality between the empty and the grand
coalition (item 3). Finally they behave as α-effectivity functions when it comes to
games with surjective outcome function (item 4). Notice that, unlike the case of
α-effectivity functions, HG(C) need not be outcome monotonic.

Given the resemblance between move functions and α-effectivity functions a
question suggests itself: can effectivity functions correspond to move functions and
in turn characterize strategic games in the same way truly playable effectivity func-
tions did? The answer is negative, because move functions are not monotonic, so
no effectivity function can characterize them. But can we obtain a correspondence
dropping monotonicity? Said otherwise, what is the class of sets of sets that cor-
respond to move functions? We tackle this problem by introducing the notion of
move set.

Definition 27 (Move sets) Let XC⊆N be a family of set of sets for each C ⊆ N. XC⊆N is a
move set if it superadditive, and for each disjoint coalition C,C we have that X ∈ XC and
Y ∈ XC we have that |X ∩ Y| = 1.

Move sets assign to each coalition choices in such a way that: bigger coalitions
have bigger power (superadditivity condition) and choices from disjoint coalitions
always amount to a single outcome (disjoint coalitions condition).

The following correspondence is conjectured, and would establish a correspon-
dence between move sets and strategic games, in the same way we have for effec-
tivity functions.

Conjecture 22 A set of sets XC⊆N for each C ⊆ N is a move set if and only if there exists a
strategic game G such that XC⊆N = HG.

Move sets based models are very close to Kooi and Tamminga consequentialist
models [44], a simplification of STIT models [8] where each coalition is associated
with a partition of the domain, discussed in the section on related work.

3.4 Discussion
This section puts together the achievements obtained in this chapter, discussing the
issues left open and the related work.

3.4.1 Related work
The work presented in Section 3.2 takes inspiration from Horty’s seminal contri-
bution Agency and Deontic Logic [41], where a model on coalitional rationality
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is proposed, based on STIT models [8], a branching-time account of coalitional
ability endowed with classical utility functions [70]. A broad discussion of the
history-based models used by Horty would take this work far from the treatment
of strategic interaction, which is why we resort to the discussion of the simpler
consequentialist models, that share with Horty’s models the local features that are
necessary to treat one shot interactions. Consequentialist models already have been
used as one-shot STIT counterpart by Tamminga and Kooi [44], who also present
a model of coalitional rationality with classical utility function, that has much in
common with our account.

Definition 28 (Consequentialist models) [44]
A consequentialist model is a pair (Γ,V) where Γ us a choice structure and V is a

valuation function on a countable set of propositions Prop.

The choice structure is nothing but a description of a cooperative game frame
where effectivity functions are replaced by partitions in the following way:

Definition 29 (Choice Structures) [44]
A choice structure is a triple (W,N,Choice) where W is a set of outcomes, N a finite

set of players and Choice : 2N → 22W a function with the following constraints:

• for each i ∈ N, Choice({i}) is a partition on W;

• for each i ∈ N, let W be the set of functions s such that s(i) ∈ Choice({i}), for s(i) ∈W.
We have that for C ⊆ N,

�
i∈C s(i) � ∅, i.e. the pairwise intersection of players’

choices is nonempty.

• for C ⊆ N, Choice(C) = {
�

i∈C s(i) : s ∈ W}, i.e. coalitional choices are constructed
by taking the pairwise intersection of individual choices.

Consequentialist models clearly resemble strategic games, for the way coali-
tional choices are constructed, though a correspondence is not yet known. A re-
semblance can be also observed if we look at coalitional games with move function,
provided in Definition 26.

As for the notion of coalitional rationality, both in [41] and [44] a utility function
is used that associates to each outcome (histories in Horty’s framework) an element
of an closed interval in the reals (positive reals in Horty’s framework, the interval
[−5, 5] in Kooi and Tamminga’s framework). Setting aside the fact that Kooi and
Tamminga evaluate coalitional choices in the interest of other coalitions, a feature
that will be dealt with later on in the chapter, for the base case both frameworks
share equivalent notions of dominance:

Definition 30 (Dominance) [44]
Let K,K� ∈ Choice(C) and u : N →W → [−5, 5] an utility function over the outcomes

for each player. We say that K dominates K� if and only if for all S ∈ Choice(C) we have that
w ∈ K ∩ S and w� ∈ K� ∩ S implies that uC(w) ≥ uC(w�), where uC returns the average of
individual utilities of members of C.
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This notion of dominance is very close to that of domination too, provided in
Definition 22, which is however of a more general nature: we admit coalitional
structures that do not enjoy properties like superadditivity or regularity, a plurality
of preference liftings and we can relate it formally to dominant strategies in strategic
games (Proposition 15), while the correspondence between strategic games and
consequentialist models is still an open problem.

Section 3.3 deals instead with coalitional games. Here too, other works in
social choice and game theory have been concerned with characterizing the class
of effectivity functions corresponding to strategic games, such as [49]. However, as
also observed in [54], Pauly’s was the first attempt to characterize strategic games
with arbitrary outcome function. In game theory textbooks, such as [51], it is
often the case that outcomes are the same as strategic profiles (intending thus a
bijective outcome function), and these are the structure taken as starting point in
the correspondence results by [49].

3.4.2 Open issues
A number of interesting questions have been left unanswered, both in Section 3.2
and in Section 3.3. As to the former, they mostly concern the relation of undomi-
nated choices and the classical solution concepts of strategic games, such as Nash
equilibrium and dominant strategy equilibrium. It has been shown by Proposition
11 and Proposition 12 that weak and strong Pareto optimality can be represented
via the (∀,∀) preference lifting and by Proposition 14 that subgames can be repre-
sented by choice restrictions. Even though the formulation of Nash equilibria and
dominant strategy equilibria makes use of subgames it is not straightforward to
claim that a choice is undominated if and only if it represents a best response or a
dominant strategy, even if it is undominated in an effectivity function representing
a strategic game.

To see why this is the case, let us consider an α-effectivity function of a strategic
game G, Eα

G
and let us call a set X a move of C at w if and only if it is the result of

applying some strategy of C. Formally what it is meant is the following:

Definition 31 (Moves) Let Eα
G

be an α-effectivity function of a strategic game G. A set
X ∈ Eα

G
(C) is called a move of coalition C at w if and only if there exists a coalitional

strategy σC such that X = {v | o(σC, σC) for some σC}

Moves are the basic components that have been used to introduce move func-
tions in Definition 26, and it is easy to see that every move of a coalition belongs
to its coalitional effectivity function. However an effectivity function, being closed
under superset, may be constituted by sets that are not moves. Hereby saying that
a certain set X is undominated does not mean that X corresponds to a dominant
strategy as X may not be a move.

This brings us to Section 3.3 where the most important open problem is stated in
Conjecture 22 and concerns the question whether coalitional games with move func-
tions characterize strategic games. This is conjectured, given Theorem 19 and the
observations made above on dominant strategies, but a formal proof is still lacking.
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It is also not known what the conditions are for move sets to correspond to parti-
tions of the domain, in short, when their models can be turned into consequentialist
models.

3.4.3 Conclusion
In this chapter a model of coalitional rationality in strategic interaction has been
proposed. It stems from the abstract representation of coalitional power given by
effectivity functions and it empowers it with preference relations, which allows
lifting along with preferences, also the classical notions of optimality, as studied in
Section 3.2. The relation of effectivity functions with strategic games, together with
their interpretation of coalitional choice have been studied in Section 3.3.

Concretely in Section 3.2 the following achievements have been realized.

• Lifting of a preference order over alternatives to sets of sets of alternatives, in
order to match it with the effectivity function representation, also given as a set
of sets. This operation has been carried out in eight different ways, pairwise
comparing the elements of the two sets (with four different alternations of the
existential and universal quantifier) according to a strict and a weak preference
relation. Structural properties, such as preservation of reflexivity, transitivity
and completeness, have been stated in Proposition 8.

• Definition of a betterness order within an effectivity function, identifying the
optimal sets. These have been called Pareto optimal choices, to mimic the
classical notion defined over outcomes. A strong version of Pareto optimal
choice has also been defined and both these notions have been formally related
to the corresponding ones in strategic games, via Propositions 11 and 12.

• Definition of the notion of subgame, i.e. the restriction on a coalitional effectiv-
ity function induced by a possible move of the opponent, and its relating via
Proposition 5 to the notion of subgame for strategic games defined in Chapter
2. Using subgames and Pareto optimality a notion of undominated choice has
been defined, as a choice the remains Pareto optimal in all possible subgames.

In Section 3.3 the following achievements have been realized:

• Correction of a well-established result relating strategic games and playable
effectivity functions, known as Pauly’s Representation Theorem, proved in
[54]. A counterexample has first been found, showing that in infinite game
models there are playable effectivity functions for which no corresponding
strategic game can ever be constructed (Proposition 16).

• Analysis of the original proof in [54], identifying where the wrong steps had
been taken;

• Proof of correspondence between strategic games and the so-called truly playable
class (Theorem 19);
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• Discussion of the interpretation of effectivity function as coalitional choice in
games, comparing it against examples taken from the literature on cooperative
games. A different view of coalitional choice, closer to the consequentialist-
STIT view from [8] has been proposed and discussed.

All in all, the chapter has laid the structural foundations for an exploration of
the logical features of coalitional rationality, to be carried out in the coming chapter.



Chapter 4

Strategic Reasoning in
Coalitional Games

It’s not that assumptions don’t count, but that they come after the conclusions; they are justified
by the conclusions. The process goes this way: Suppose you have a set of assumptions, which
logically imply certain conclusions. One way to go is to argue about the innate plausibility of the
assumptions; then if you decide that the assumptions sound right, then logically you must conclude
that the conclusions are right. That’s the way that I reject, that’s bad science.

Robert J. Aumann, On the state of the art in game theory [5]

4.1 Introduction
The characteristic feature of coalitional rationality, studied in the previous chapter,
is the capacity to order the members’ available choices considering the opponents’
possibilities. The present chapter investigates the logical structure of this type of
reasoning, describing its features within a simple mathematical language.

Vestiges of such a structure can already be found in the reasoning of individuals
in the prisoner’s dilemma:

1. If my opponent defects, I had better defect;

2. If my opponent cooperates, I had better defect;

3. In conclusion, I had better defect.

What is more, in coalitional reasoning decisions are obtained by merging mem-
bers’ choices and preferences. To say it with a slogan, the word ”I”, typical of
strategic games, is replaced by the word ”we”, typical of cooperative games.

At present though, the languages to talk about coalitions, such as Coalition Logic
[54] — but similar remarks hold for related logics such as Seeing To It That [8] and
Alternating-time Temporal Logic [2] — do not explicitly represent preferences and
only allow reasoning about what a coalition of players can achieve independently

63
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of the moves of the other players [41, 43, 62], substantially ignoring the opponents’
possibilities. Our objective is to give a unified account of coalitional rationality com-
bining and extending already existing logics for strategic ability and preferences.
In line with the study of cooperative games in the previous chapter, our logical
analysis will make the following features of coalitional rationality explicit:

• betterness, i.e. the comparison of a coalition’s possibilities, as in sentences
like ”we had better not do this”, ”we had better defect”;

• choice restriction, i.e. the transformation in a coalitional choice space brought
about by a possible move of the opponents, typical of the conditional reading
of strategic decisions: ”if they do this, then that will hold”, ”if our opponent
defects, then we had better cooperate”.

Once a language to reason about coalitional rationality is available, we can also
start reasoning about the regulation of conflicts among different coalitions. Let us
exemplify this point further.

In strategic interaction plenty of situations can arise in which individual pref-
erences are not compatible and coalitions can steer the game in many possible
directions. The enactment of norms can in these cases be used to regulate such
conflicts. By enacting a norm we mean the introduction of a normative constraint on
individual and collective choices to achieve some systemic desiderata. In doing so, we dis-
tinguish two perspectives: the first, called utilitarian or internal, evaluates coalitional
actions only from the point of view of their rationality; the second, called systemic or
external, evaluates coalitional action from the point of view of pre-stablished norma-
tive standards, the latter possibly independent of rationality constraints. The two
complementary perspectives on regulation will be studied together, for the abstract
case of coalitional games.

Attention will also be devoted to the specific case of coalitional games that
represent strategic games. The results in Chapter 3 have questioned the capability
of Coalition Logic to express their logical structure. In this respect the following
issues will be addressed:

• understanding whether languages such as Coalition Logic can still be used to
reason about strategic games;

• understanding the right abstraction level to express the characteristic features
of coalitional ability in games.

Summing up, the present chapter aims at bringing various logical languages
for preferences, coalitional ability and norms within a unified formal framework to
account for coalitional rationality in strategic interaction.

Chapter structure: Section 4.2, based on joint work with Jan Broersen, Rosja Mastop
and John-Jules Meyer[18], presents a logic of coalitional rationality, able to charac-
terize many of the structural notions studied in Chapter 3, via a combination of
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standard preference logics and Coalition Logic. Section 4.3, based on joint work
with Jan Broersen, Rosja Mastop and John-Jules Meyer[18], deals with regulation
of coalitional rationality, formalizing the internal and the external perspective on
norms. Section 4.4, based on joint work with Wojtek Jamroga and Valentin Goranko
[30], studies an extension of Coalition Logic to characterize truly playable effectiv-
ity functions and coalitional power in strategic games in general. Mathematical
properties, such as finite axiomatization, completeness and finite model property
are provided for some interesting fragments of the language. Section 4.5 finally
discusses related works and issues that are left open.

4.2 Reasoning on Coalitional Rationality
This section is devoted to the construction of a logical language, based on standard
modal accounts of preferences and coalitional ability [46, 54], that makes the notions
of betterness and choice restriction explicit.

4.2.1 Betterness and optimality

Classically preference logics have been developed in analytic philosophy and philo-
sophical logic to provide a precise description of notions such as having a goal,
desire, intention etc.. The work of von Wright [71, 73] laid the ground for a modal
logic treatment of preference, where the information of what situations are to be
preferred (or dispreferred) to the present one are encoded in the modal operators.
Subsequent contributions, mostly originated around the work of Johan van Ben-
them [65, 64], studied the rich mathematical structure behind these modalities. As
typical with modal logic, properties of relational structures such as preference re-
lations are immediately captured by the logical structure of the modal language.
Examples of such modalities are the ones given in Section 2.3.1 of Chapter 2.

However preference logics have mostly been studied in isolation, without ex-
plicitly drawing their natural connection with the logics for coalitional action, with
a few recent exceptions [44, 68]. Therefore, preferences, when lifted to sets, can be
naturally associated with effectivity functions and share the same modal flavour of
coalitional actions. As we have remarked in the previous chapter, in [66] it is rightly
noticed how preference liftings can be extremely useful to describe betterness in
games. It is starting from this intuition that we move on to characterize Pareto
optimal choices.

Characterizing Pareto optimal choices

Pareto optimal choices are maximal sets according to a preference order on sets in
a coalitional effectivity function. A first attempt to characterize them can be made
using the results in [66], which logically characterize binary preference liftings
similar to the ones we have discussed in Chapter 3. However those liftings are of
general character:
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• They only compare relative preference between two propositions and not
absolute preference of a proposition with respect to all others;

• They do not restrict attention to subsets of the possible propositions, as hap-
pens in establishing maxima in a coalitional effectivity function.

Surprisingly enough not only is a language with two modalities for preference
(��i and��i defined in Section 2.3.2), one for coalitional ability ([C] defined in Section
2.3.1) and the global modality (A defined in Section 2.3.2), expressive enough to
characterize Pareto optimality in all its forms, but in some cases the global modality
and the modality for strict preference are not even needed.

We call this languageL�,�,g,[C] and the grammar of its formulasϕ goes as follows:

ϕ ::= p | ¬ϕ | ϕ ∧ ϕ | ��i ϕ | �
�

i ϕ | Aϕ | [C]ϕ

As usual, p is an atomic proposition and ��i ,�
�

i ,E, �C� are used as abbreviations
for ¬��i ¬,¬�

�

i ¬,¬A¬ and ¬[C]¬ respectively. Their interpretation with respect to
Coalitional Game Models has already been given in Chapter 2.

The following proposition establishes a characterization of (weak) Pareto opti-
mality with the (∀,∀) preference lifting.

Proposition 23 Let M be a Coalitional Game Model and ϕ a formula of L�,�,g,[C]. The
following holds:

POC,w(ϕM,�(∀,∀)
i ) if and only if M,w |= [C]ϕ ∧ �C�

�
i∈C��i ϕ

Proof (⇒)
Let us assume that POC,w(ϕM,�(∀,∀)

i ), i.e. thatϕM is a Pareto optimal choice for coalition
C at world w according to the (∀,∀) preference lifting. This means, by Definition 19, that
for no X ∈ E(w)(C), X �(∀,∀)

i ϕM for all i ∈ C and that ϕM ∈ E(w)(C). But this means that
for all X ∈ E(w)(C) ∃x ∈ X,∃y ∈ ϕM,∃ j ∈ C such that x � j y. By the interpretation of the
modal operators, no set X ∈ E(w)(C) is such that X ⊆ (

�
i∈C ¬��i ϕ)M. So we can conclude

that M,w |= [C]ϕ ∧ �C�
�

i∈C��i ϕ.
(⇐)
M,w |= [C]ϕ∧�C�

�
i∈C��i ϕmeans thatϕM ∈ E(w)(C) and (¬

�
i∈C��i ϕ)M � E(w)(C).

So, by outcome monotonicity, every X ∈ E(w)(C) contains world x such that M, x |=�
i∈C��i ϕ, which means that for some player i ∈ C we have that x �i y for some y ∈ ϕM.

In sum X ∈ E(w)(C), X �(∀,∀)
i ϕM for all i ∈ C.

Before going on to characterize the other forms of Pareto optimal choice a com-
ment is needed. The formula [C]ϕ ∧ �C�

�
i∈C��i ϕ, which corresponds to ϕ being

Pareto optimal choice for coalition C at w following the (∀,∀) preference lifting, says
in words that coalition C can choose ϕ and cannot avoid that some of its players
prefer ϕ, which may seem far away from the concept of Pareto optimality of a
choice. However applying elementary reasoning we can rewrite the formula into
this equivalent one:

[C]ϕ ∧ ¬[C]
�

i∈C

��i ¬ϕ
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whose reading is more intuitive: coalition C can force ϕ and cannot force any
set whose states are only worse than states satisfying ¬ϕ, which is much closer to
the original intuition behind Pareto optimal choices.

Let us now consider the other cases.

Proposition 24 POC,w(ϕM,�(∀,∃)
i ) if and only if M,w |= [C]ϕ ∧ �C�

�
i∈C ¬��i ϕ

Proof (⇒)
POC,w(ϕM,�(∀,∃)

i ) means that ϕM ∈ E(w)(C) and for no X ∈ E(w)(C),X �(∀,∃)
i ϕM for

all i ∈ C. X �(∀,∃)
i ϕM for all i ∈ C means that for all x ∈ X there is a y ∈ ϕM such that

x �i y and not y �i x for all i ∈ C. Its negation is equivalent to saying that there exists a
player j and an element x ∈ X for any X s.t. for all y ∈ ϕM, not x � j y or y � j x . In either
case it is is not true that x � j y. For this reason we have that M, x |=

�
i∈C ¬��i ϕ. In turn,

using the assumptions together with the interpretation of the modal operators, this means
that M,w |= [C]ϕ ∧ �C�

�
i∈C ¬��i ϕ.

(⇐)
Suppose M,w |= [C]ϕ ∧ �C�

�
i∈C ¬��i ϕ. This means ϕM ∈ E(w)(C) and, by outcome

monotonicity, that for all X ∈ E(w)(C) there is an x ∈ X such that M, x |=
�

i∈C ¬��i ϕ. By
the semantics of the modal operators there is no world y ∈ ϕM such that x � j y for some
j ∈ C. As a result POC,w(ϕM,�(∀,∃)

i ).

Proposition 25 POC,w(ϕM,�(∃,∃)
i ) if and only if M,w |= [C]ϕ ∧ A

�
i∈C ¬��i ϕ

Proof (⇒)
POC,w(ϕM,�(∃,∃)

i ) means that for no X ∈ E(w)(C),X �(∃,∃)
i ϕM, for all i ∈ C and

ϕM ∈ E(w)(C). By the properties of the preference relation we have that for all x ∈ X and
y ∈ ϕM, not x �i y for all i ∈ C. But W ∈ E(w)(C), by the fact that E is outcome monotonic
and nonempty. So we can conclude M,w |= [C]ϕ ∧ A

�
i∈C ¬��i ϕ.

(⇐)
M,w |= [C]ϕ∧A

�
i∈C ¬��i ϕ clearly implies that no X ∈ E(w)(C) is such that X �(∃,∃)

i
ϕM for i ∈ C. We already know that M,w |= [C]ϕ, so POC,w(ϕM,�(∃,∃)

i ) .

Proposition 26 POC,w(ϕM,�(∃,∀)
i ) if and only if M,w |= [C]ϕ ∧ A

�
i∈C��i ϕ

Proof (⇒)
POC,w(ϕM,�(∃,∀)

i ) means that for no X ∈ E(w)(C),X �(∃,∀)
i ϕM, for all i ∈ C, and ϕM ∈

E(w)(C). So for all x ∈ X there is y ∈ ϕM, s.t. not x �i y for all i ∈ C. By connectedness
y �i x. But W ∈ E(w)(C), by the fact that E is outcome monotonic and nonempty. By the
semantics of the modal operators we can conclude that M,w |= [C]ϕ ∧ A

�
i∈C��i ϕ.

(⇐)
M,w |= [C]ϕ ∧ A

�
i∈C��i ϕ implies that no X ∈ E(w)(C) is such that X �(∃,∀)

i ϕM for
all i ∈ C. We already know that M,w |= [C]ϕ and we can conclude that POC,w(ϕM,�(∃,∀)

i ).

As for the strong version of Pareto optimal choices analogous results hold, whose
proofs follow the same pattern of the corresponding quantified weak versions.
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Proposition 27 The following hold:

• SPOC,w(ϕM,�(∀,∀)
i ) if and only if M,w |= [C]ϕ ∧ �C�(

�
i∈C�≺i ϕ ∨

�
i∈C��i ϕ).

• SPOC,w(ϕM,�(∀,∃)
i ) if and only if M,w |= [C]ϕ ∧ �C�(

�
i∈C ¬��i ϕ ∨

�
i∈C ¬��i ϕ).

• SPOC,w(ϕM,�(∃,∃)
i ) if and only if M,w |= [C]ϕ ∧ A(

�
i∈C ¬��i ϕ ∨

�
i∈C ¬��i ϕ)

• SPOC,w(ϕM,�(∃,∀)
i ) if and only if M,w |= [C]ϕ ∧ A(

�
i∈C��i ϕ ∨

�
i∈C��i ϕ)

Summing up, a full spectrum of maximality relations within a coalitional ef-
fectivity function can be characterized by using operators to describe properties of
relational structures. In half of the cases, namely the weak and strong version of the
Pareto optimal choices with the (∀,∀) and (∀,∃) liftings, these maximality relations
among sets of states can be characterized only resorting to modal operators that are
designed to express binary relations among states in a models.

4.2.2 Choice restrictions
An effectivity function encodes a specific view of coalitional ability, that of a coalition
being able to force the game to end up in a certain set, whatever way the opponents
decide to act. This rather strong representation does not consider the effects on a
coalitional strategic ability should the opponents decide to make a particular move,
which was what we tried to capture by the notion of subgame in Chapter 2. For
this reason a fine-grained representation of strategic reasoning cannot be expected
from a language that can only reason about effectivity functions.

As pointed out in [62], p.1:

Much of game theory is about the question whether strategic equi-
libria exist. But there are hardly any explicit languages for defining,
comparing, or combining strategies as such — the way we have them
for actions and plans, maybe the closest intuitive analogue to strategies.
True, there are many current logics for describing game structure —
but these tend to have existential quantifiers saying that ”players have a
strategy” for achieving some purpose, while descriptions of these strate-
gies themselves are not part of the logical language.

The expressive power of our logic for strategic ability, i.e. Coalition Logic, seems
to inherit this limitation: the fact that at some model M and world w and for some
coalition C we have M,w |= [C]ϕ only makes reference to the power of coalition C,
independently of the possible decisions of C. Let us look at this in more details.

Example 15 (Saying it in Coalition Logic) A strategic game like the prisoner’s dilemma
–let us again resort to its representation in Figure 2.2– can be naturally rewritten as a Coop-
erative Game Model. In any world w representing the prisoner’s dilemma in a model PD, we
therefore have that PD,w |= [{Row}](Row defects )∧¬[{Row}](Column defects ), where the



4.2. REASONING ON COALITIONAL RATIONALITY 69

propositions are interpreted as expected. On the other hand it seems that we cannot express
what {Row} can do given that {Column} defects. If this were the case we would also be able
to express that {Row} has a strategy forcing that {Row} defects and {Column} defects and a
strategy forcing that {Row} cooperates and {Column} defects. Bringing this observation at
the model level, we should have that PD,w |= [{Row}](Row defects and Column defects ) ∧
[{Row}](Row cooperates and Column defects ). By the validity of outcome monotonicity in
every coalition model (see Chapter 2), we would then get PD,w |= [{Row}](Column defects ),
which is at odds with our initial claim.

The example given shows how coalition logic modalities do not easily accommo-
date a notion of conditional action. For this reason we introduce a modal operator
to express explicitly in our language that a coalition can force some outcome given
what its opponents do. This should not be confused with the reasoning patterns
in extensive games, in which players reason on the best action to take after their
opponents have moved, nor with the notion of ability to guarantee an outcome inde-
pendently of what the other players do, which is the typical reading of the operators
in the various game logics.

The subgame operator

To model choice restrictions we introduce a modal expression of the form

[C ↓ ψ]ϕ

whose informal reading is: “in case coalition C chooses ψ, ϕ holds”, where ϕ and ψ
are formulas of the languageL�,�,g,[C] extended with modalities of the form [C ↓ ψ].
We define the dual �C ↓ ψ�ϕ as an abbreviation of ¬[C ↓ ψ]¬ϕ. Intuitively what
we do is to talk about what holds in case the choice ψ of coalition C is performed.
Thanks to this operator formulas of the form

[C ↓ ψ][C]ϕ

allow us to talk of the restriction in the coalitional ability of C that is caused by
coalition C choosingψ. This restriction clearly resembles the one in the definition of
subgame given in Definition 5. For this reason it will be called the subgame operator.

Its formal interpretation goes as follows:

M,w |= [C ↓ ψ]ϕ⇔ ψM
∈ E(w)(C) implies M,w ↓(C,ψM)|= ϕ

The interpretation of the operator has a conditional reading: if a coalition C
has a certain choice ψM at w, then the world where this choice is actually executed
(w ↓(C,ψM), to be formally defined next) makes a certain proposition ϕ true. Notice
that the capacity of C to choose ψM is the precondition for C to actually execute ψM.

The updated world w ↓(C,ψM) is so defined:

• It inherits the same valuation function as w
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• It updates the effectivity function E(w ↓(C,ψM)).

Definition 32 Let E be an effectivity function defined on a set of outcomes W and a set of
players N and let C,C� ⊆ N, X ⊆ W and w ∈ W. E(w ↓(C,X)) is defined in the following
way:

E(w ↓(C,X))(C�) � ({X})sup for C� ∩ C � ∅

E(w ↓(C,X))(C�) � (E(w)(C�) � X)sup for C� ∩ C = ∅ and C� � ∅

E(w ↓(C,X))(C�) � E(w)(C�) for C� = ∅

The way the relation is updated, illustrated in Figure 4.1, deserves some com-
ment. A distinction is made between the strategic ability update of the players who
made a certain choice ψ and all the other players. After coalition C has made a
choice ψ, all the coalitions involving agents belonging to C are given ({ψM})sup as a
choice set. This view maintains that a coalition comprising players in the coalition
that has already chosen cannot further influence the outcome of the game. This
fact implies that the subgame operator is not superadditive, in the sense given in
[54], that is, bigger coalitions need not have bigger power. Said in other words, we
do not allow players to make a choice within a certain coalition and then, at the
same time, to make a choice within different coalitions. The models of reference are
strategic games, in which strategies are decided in the beginning once and for all
[51]. The other (nonempty) coalitions instead truly update their choice set having it
restricted by the choice of C. Restriction is implemented in this case by intersecting
the effectivity function with the move that has been carried out. In case for instance
C chooses to force ψ and C was able to choose ξ, then given the choice by C, C
is able to force ξ ∧ ψ. The coalitional relation at worlds different from the one
where the choice is made remains instead unchanged. This means that the update
is local. Again, the references are strategic games, where the sequential structure of
strategies is substantially ignored. Notice also that by the last condition the empty
coalition never gains power. In sum the strategic ability update is governed by
three principles:

• the irrelevance of hybrid coalitions, that does not allow the members of the
coalition that moved to further influence the interaction,

• the restriction of opponents’ choices, that truly updates the effectivity func-
tion of the coalitions opposing the one that moved,

• the locality of the update, that only updates the power of nonempty coalitions
at one world.

The following fact follows directly from Proposition 13:

Proposition 28 For every C,w, ψM ∈ E(w)(C), we have that



4.2. REASONING ON COALITIONAL RATIONALITY 71

¬p

w0

p

w1

p

w2

¬p

w3

¬p

w0 ↓ (C,pM)

↓ (C, pM)

Figure 4.1: Updating worlds. w0 ↓ (C,pM) inherits from w0 the same valuation
function but it updates its effectivity function. At w0 coalition C cannot achieve the
property p, as the set {w1,w2} is not in its effectivity function. However, should its
opponents do p, then C would also be able to achieve p, as the set {w1,w2} is in its
effectivity function at the updated world w0 ↓ (C,pM).

1. E(w ↓(C,ψM)) is outcome monotonic.

2. E(w ↓(C,ψM)) has IOEC whenever E(w) has IOEC.

3. E(w ↓(C,ψM)) is regular whenever E(w) is superadditive.

Proof The proof is a direct consequence of the definitions.

The proposition shows how updating worlds preserves many characteristic fea-
tures of the original effectivity function, for instance outcome monotonicity (item
1). IOEC is also preserved under updates (item 2) but this is not the case with su-
peradditivity (item 3): updating superadditive effectivity functions only preserves
the property of regularity. The latter proposition shows that updates might cause
the loss of important properties of the original effectivity function. Let us have a
closer look at what happens.

On the nature of the updates

The definition of update allows to jump from each world in a model to its updated
counterpart, within one coalition model. Figure 4.1 is once again a neat illustration
of this fact. The update operation is treated as a function that takes a triple world-
coalition-set as a value and returns a world. A consequence is that the coalition
frames are special frames that contain all instances of their updates. In other words,
they are closed under subgames .

Definition 33 (Closure under subgames) Let F = (W,E) be a coalition frame. F is said
to be closed under subgames if and only if X ∈ E(w)(C) implies that w ↓(C,X)∈W.
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This is a frame condition and, as many others that we have seen so far, can be
modally characterized.

Proposition 29 Let F = (W,E) be a coalition frame. The following holds:
F |= [C]ξ↔ �C ↓ ξ�� if and only if F is closed under subgames.

Proof From right to left, it is straightforward. From left to right assume F |= [C]ξ↔ �C ↓
ξ��. Consider now a set X ∈ E(w)(C) and take a valuation function V such that ξM = X for
some M based on F. By the assumptions we have that M,w |= �C ↓ ξ��, which means that
there is a world w ↓(C,ξM)∈W such that M,w ↓(C,ξM)|= �, i.e. F is closed under subgames.

A different path could be taken in defining the interpretation of the subgame
operator, closer to the notion of model update in Dynamic Epistemic Logic [69]. The
subgame operator could be interpreted in updated models created from the original
one, i.e. ’controlled’ transformations of the original models of which they preserve
some relevant properties. In this case, the updated models would be equivalent to
the original model as regards the set of outcomes, the set of players and the valuation
function. But they would differ in the effectivity function, changed according to
the rules we have discussed, only for the world where the choice takes place. This
would make the model a sort of metamodel, a model that relates other models, and
how these change.

Summing up, there is a substantial difference between the two approaches:

• The first, updating the world, is not constructive. Each instance of a world
updated by a coalitional choice needs to be present in the original model. We
have called these kind of models closed under subgames.

• The second, updating the model, is constructive. A new model is created,
following the rules of the update. The subgame operator is interpreted in
what we have called metamodels.

The difference between the two approaches has consequences at the logical level.
Think of the universal modality: when interpreted in models that are closed under
subgames, saying that at some world w the formula Aϕ holds means that ϕ is true
at every world but also at each of its updates. Instead, interpreting Aϕ in a model
that is not closed under subgames says nothing about ϕ holding once the updated
is performed. On these grounds, and in light of the result in the coming section, we
prefer to work with the first, nonconstructive approach.

A surprising reduction

Even though the interpretation of the update operator in models that are closed
under subgames may look complex and rather demanding, its structural behaviour
is rather simple. The validities in Table 4.1 allow us to translate every sentence
where the operator is occurring to a sentence where the operator is not occurring.
Notice that by the interpretation of the update each relation that is not changed
in the subgame does behave properly. As an example, consider the preference
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modality ��i , whose reduction axiom can be obtained by replacing it to the A in the
reduction axiom for the global modality. 1The proof of their validity is given in the
appendix (Section B.1).

What is striking about this reduction is that conditional reasoning can be ex-
pressed in Coalition Logic, contrary to what Example 15 seemed to suggest. As an
example, the formula

[C]ϕ ∧ [C](ϕ→ ψ)

shows in a natural way how the coalitional power of coalition C is changed should
coalition C decide to choose ϕ.

Example 16 (Back to the game) By means of the subgame operator it becomes possible to
make the conditional aspect of strategic reasoning explicit. The only critical point to be taken
into account is that subgames should also be represented in the models. We won’t be overly
formal in doing this, as the procedure boils down to copying the effectivity function of the
original game and adding the instances of the subgames. In the tuple PD�,w, representing
the prisoner’s dilemma closed under subgames we have that

PD�,w |= [{Row} ↓ Row defects ]([{Column}](Column defects and Row defects )∧
[{Column}](Column cooperates and Row defects ))

i.e. given the choice by the row player to defect, Column can see to it that both players
defect and can see to it that he cooperates and its opponent defects.

Undomination and Subgames

The logical structure of undominated choices can be clarified by making use of
the subgame operator. To check that a choice is undominated, for any preference
lifting that we might want to consider, we need to check Pareto optimality in each
choice restriction. While Pareto optimality can be characterized with preferences
and coalitional modalities, choice restrictions can be made explicit using the sub-
game operator. There are however structural limitations in the possible uses of the
subgame operator:

• Formulas of the form [C ↓ ψ]ϕ talk about properties that hold given one choice
restriction, namely the choice of ψ by coalition C;

• Expressions of the form ϕM�C,w (Definition 22) concern a property holding
given all choice restrictions, namely each choice X ∈ E(w)(C) by coalition C.

Taking this structural limitation into account, undomination can be characterized
in L�,�,g,[C] extended with the subgame operator.

The first characterization will be carried out at the model level, assuming that
every coalition can force only a finite amount of propositions.

1This would not have been so if we had taken a metamodel approach. The axiom for the global
modality does not hold with that approach and more restrictive assumptions on the models would be
required.
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Proposition 30 Let{ψM
1 , ...,ψ

M
n } = E(w)(C) be a coalitional effectivity function in a Coali-

tional Game Model M closed under subgames. We have the following :

ϕM �C,w if and only if M,w |=
�

ψk∈{ψ1,...,ψn}

[C ↓ ψk]([C](ϕ ∧ ψk) ∧ �C�
�

i∈C

��i (ϕ ∧ ψk))

Proof This follows as a direct consequence of Definition 22 and the interpretation of the
modal operators.

The formula says that if finitely many choices are available to a coalition then
undominated choices can be verified by finitely checking Pareto optimality. A finite
conjunction of formulas starting with the subgame operator, plus the characterizing
formulas of Pareto optimal choices, are enough to express this concept. Notice that
ϕM ∩ ψM

k can be empty, but in this case ⊥M = ∅ is never Pareto optimal, thanks to
the use of the (∀,∀) preference lifting that makes X �(∀,∀)

i ⊥M trivially true for any
X.

The following proposition holds when undomination is taken to be a frame
condition.

Proposition 31 Let F be the class of cooperative game frames closed under subgames and
let F ∈ F be one of them. The following holds:

F |= [C]ϕ→ [C ↓ ψ]([C](ϕ∧ψ)∧�C�
�

i∈C��i (ϕ∧ψ)) if and only if each X ∈ E(w)(C)
is such that X�C,w

Proof From right to left the proof is straightforward. From left to right, let us assume
that X ∈ E(w)(C) and that E(w)(C) � ∅, otherwise the proposition holds trivially. Let us
consider a set Y ∈ E(w)(C) and a valuation function V such that V(p) = X and V(q) = Y.
We have, by the characterization result of Pareto optimal choice, that F,V |= [C]p → [C ↓
q][C](p ∧ q) ∧ �C�

�
i∈C��i (p ∧ q). As a consequence, X�C,w.

The proposition allows for interesting observations. First of all, since we are
characterizing undomination as a property of the frames, we do not need any
restriction on the choices of coalitions. Second, we can characterize a much finer
notion of undomination and Pareto optimality of choice: we can talk about all sets in
an effectivity function, and not only those that are the truth set of some proposition.

In the class of effectivity functions that have IOEC the characterization in the case
of the grand coalition is rather elegant and does not require particularly restrictive
assumptions.

Proposition 32 Let M = (W,E,�i,V) be a Coalitional Game Model closed under subgames
such that E(w) has IOEC. The following holds,
ϕM �N,w if and only if M,w |= [C]ϕ ∧ �C�

�
i∈N ��i ϕ

Proof Straightforward once we notice that E(w)(N) � X = E(w)(N) for each X ∈ E(w)(∅)
in effectivity functions that have IOEC.
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Axioms

A6 [C]ξ↔ �C ↓ ξ��

A7 [C ↓ ξ]p↔ ([C]ξ→ p)

A8 [C ↓ ξ]¬ϕ↔ ([C]ξ→ ¬[C ↓ ξ]ϕ)

A9 [C ↓ ξ](ϕ ∧ ψ)↔ ([C ↓ ξ]ϕ ∧ [C ↓ ξ]ψ)

A10 [C ↓ ξ]Aϕ↔ ([C]ξ→ Aϕ)

A11 [C ↓ ξ]��i ϕ↔ ([C]ξ→ ��i ϕ)

A12 [C ↓ ξ][C�]ϕ↔ ([C]ξ→ [C�](ξ→ ϕ)) (for C� ∩ C = ∅ and C� � ∅)

A13 [C ↓ ξ][C�]ϕ↔ A(ξ→ ϕ) (for C� ∩ C � ∅)

A14 [C ↓ ξ][C�]ϕ↔ ([C]ξ→ [C�]ϕ) (for C� = ∅)

Rules

R1 ϕ⇒ [C ↓ ξ]ϕ

R2 ϕ↔ ψ⇒ [C ↓ ξ]χ↔ [C ↓ ξ]χ[ϕ/ψ]

Table 4.1: Axioms and Rules for the subgame operator

Stocktaking The modal operators defined so far allow us to express that a choice
in a coalitional effectivity function is rational for that coalition, and in some cases
these operators are even reducible to a language that can only talk about abstract
effectivity and preference between states. But this is not the end of the story:
reasoning about rationality is also a way of reasoning about what a coalition should
do with the choices in its effectivity function, which was the reason why we decided
to move away from that abstract representation of power. It is clear that the notion
of rationality itself carries a normative content: if a choice is rational, then the
coalition—in some sense—should perform it. But rational choices can be many and
there can be many coalitions behaving rationally, often aiming at bringing about
properties that conflict with one another. How to deal then with the regulation of a
strategic interaction?
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4.3 Regulating Coalitional Choices
This section describes two complementary views on the regulation of coalitional
choices within a unified deontic language.

• In the first, norms assume an internal or utilitarian character: actions that are
permitted for a coalition are those that are best for the coalition itself (or, in a
general sense, for some bigger coalition including it). The utilitarian view of
norms is started in [41] and taken up and generalized in [44].

• In the second, norms assume an external or systemic character: choices are
judged against general interests, specified from outside the system. This is
the classical view of deontic logic, taken up in Meyer’s Dynamic Deontic Logic
approach [48].

Hereby the ingredients of our deontic language will be two: first, a set of
formulas to express coalitional rationality, and second a set of formulas to express
violations.

The internal view: a deontic logic for coalitional rationality

The utilitarian approach characteristic of the internal view on norms can be sum-
marized by Horty’s statement ([41] p.70),

The general goal of any utilitarian theory is to specify standards for
classifying actions as right or wrong: and in its usual formulation act
utilitarianism defined an agent’s action in some situation as right just in
case the consequences of that action are at least as great in value as those
of any of the alternatives open to the agent, and wrong otherwise.

Summing up, in Horty’s view, to reason about what coalitions ought to do we
then need to reason about their own coalitional rationality.

The language we have defined in the previous section is well-suited to define
coalitional rationality. It is however convenient to expand it by introducing modal
formulas of the form

[rationalC]ϕ

where C is a coalition and ϕ a formula of the language. Formulas of this form
succinctly indicate what choices are rational for a coalition, where the notion of
rationality acquires a semantics in terms of undomination. The satisfaction relation
of the formulas with respect to a tuple M,w is defined as follows:

M,w |= [rationalC]ϕ if and only if ϕM�C,w

Also for the sake of simplicity we will work with finite Coalitional Game Models
closed under subgames. By the results of the previous chapter (Proposition 30),
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the operator [rationalC] is in these models a mere abbreviation of formulas of the
language of Coalition Logic with a preference modality and the subgame operator.
Within this language we can define the classical deontic operators of forbiddance,
obligation and permission. We do it in two ways, first defining the notion of
absolute commands, i.e. classical deontic operators that tell coalitions what to
do independently of the other coalitions, second defining the notion of policy, i.e.
norms that coordinate the choices between coalitions and that generalize the first
ones.

Absolute commands We define operators of the form XC� (C,ϕ), for X ∈ {P,O,F}
to say that in the interest of coalition C� ⊇ C it is forbidden, permitted or obliged for
C to choose ϕ.

Definition 34 (Deontic Operators) For C ⊆ C� ⊆ N the following statements define
forbiddance, permission and obligation:

FC� (C,ϕ) := [C]ϕ→ ¬[rationalC� ]ϕ

PC� (C,ϕ) := ¬FC� (C,ϕ)

OC� (C,ϕ) := FC� (C,¬ϕ)

The first operator says that in the interest of the bigger coalition C� it is forbidden
for coalition C to chooseϕ. This is equivalent to saying that if coalition C can choose
ϕ then it is not rational for coalition C� to chooseϕ, i.e. ϕ is undominated for C�. The
second operator says that in the interest of the bigger coalition C� it is permitted for
coalition C to choose ϕ, which is equivalent to saying that it is not true that in the
interest of coalition C� is forbidden for coalition C to choose ϕ. The third operator
says that it is obligatory for coalition C to choose ϕ, which is equivalent to saying
that coalition C is forbidden, in the interest of the bigger coalition C�, to choose ¬ϕ.

The deontic operators are relatively simple reductions to operators that talk
about coalitional ability and rationality. The way this reduction is carried out resem-
bles Meyer’s classical account of norms in Dynamic Deontic Logic [48]. Likewise,
our operators display a number of features typical of that approach.

First of all, in formulas of the form FC� (C,ϕ) the subformula ϕ, that corresponds
to the choice that is forbidden for C, may not be present in its effectivity function.
In Meyer’s account the fact that an action α is forbidden is defined as follows:

F(α) := [α]viol

that is, α is forbidden if and only if each terminating execution of α leads to an
undesirable state. Notice that there may be no terminating executions of α. 2 These
choices are in some sense trivially forbidden, as their execution is not even possible.

2It is also worth noting how the utilitarian framework presented here suggests correspondence
between violations and irrational choices.
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Furthermore ϕmay not be present in the effectivity function of the bigger coali-
tion C�. This can be obtained in games that do not enjoy the property of superaddi-
tivity (Definition 7), where bigger coalitions do not enjoy bigger power.

The other two operators also follow the same view of Dynamic Deontic Logic
and for them the same remarks hold. In Meyer’s account, that is reflected in our
definitions, P(α) := ¬F(α), i.e. permission is the opposite of forbiddance; and
O(α) := F(¬α), obligation of performing an action means forbidding refraining from
that action.

At times we will be concerned with the special case of rationality in the interest of
the coalition itself and rationality in the interest of all the players. As for the first case,
notice that saying that something is permitted in the interest of the coalition itself
(PC(C,ϕ)) is equivalent to saying that it is rational for that coalition ([rationalC]ϕ).

For each coalition we have now defined a spectrum of norms that reflect a notion
of rationality ranging from self interest FC(C,ϕ) to social interest FN(C,ϕ). Let us
now focus on the formal properties of this spectrum. The following validities and
invalidities shed light on its logic.

validities

1 PC� (C,ϕ)↔ ¬OC� (C,¬ϕ)

2 [C]ϕ ∧ [rationalN]ϕ↔ PN(C,ϕ) ∧ [N]ϕ

3 PC� (C,ϕ) ∨ PC� (C,ψ)→ PC� (C,ϕ ∨ ψ)

4 [C]ϕ ∧ON(C,ϕ)→ ON(D,ϕ)

5 [rationalC]ϕ ∧ ¬[rationalN]ϕ→ FN(C,ϕ)

6 FC� (C,ϕ) ∧ FC� (C,ψ)→ FC� (C,ϕ ∧ ψ)
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non-validities

1 OC� (C,ϕ) ∧OC� (C,ψ)→ OC� (C,ϕ ∧ ψ�

2 PC� (C,ϕ ∨ ψ)→ PC� (C,ϕ) ∨ PC� (C,ψ)

3 OC� (C,ϕ)↔ ¬OC� (C,¬ϕ)

4 [rationalC]ϕ↔ [rationalN]ϕ

5 OC� (C,ϕ)→ PC� (C,ϕ)

6 OC� (C,ϕ)→ [C]ϕ

The first validity says that the presence of permission is equivalent to the ab-
sence of conflicting obligations. In our framework this resembles what the legal
philosophers call the sealing legal principle, i.e. ”whatever is not forbidden is thereby
permitted”, [72]. When thinking of permission as rational action (even when the
group of reference is a bigger coalition), the principle seems to make perfect sense,
as a choice not being dominated (forbidden) is in fact a rational choice (and thereby
permitted).

The second proposition makes the relation between rational action for the grand
coalition and permission explicit. Whenever a proposition can be forced by the
grand coalition and it is permitted for a smaller coalition then that choice is rational
for the grand coalition and it can be executed by the smaller coalition. This is a way
of saying that to establish the socially permitted choices we need to look at what is
rational for the grand coalition.

The third proposition says that the permission ofϕ or the permission ofψ implies
the permission ofϕ orψ. Its validity is a consequence of the monotonicity condition
for the (∀,∀) lifting, that makes undominated choice monotonic. A related and even
stronger validity is PC� (C,ϕ)→ PC� (C,ϕ∨ψ), which is a version of the Ross paradox
in our system [47].

The fourth item says that if ϕ is a possible choice for coalition C and ¬ϕ is
forbidden for C taking into account the interests of the grand coalition, then ¬ϕ is
also forbidden for any other coalition taking into account the interests of the grand
coalition. The reason for this seemingly strong consequence of forbiddance is the
fact that ¬ϕ is an irrational choice for the grand coalition, no matter what coalition
can make that choice.

The fifth validity sums up the point of view on regulation carried by the deontic
operators: when acting in the interest of the grand coalition, the conflict between
social rationality and coalitional rationality is always resolved favouring the first.
In a strictly utilitarian view, it makes perfect sense to say that actions can be rational
without being socially rational, i.e. FC(C,ϕ) ∧ ¬[rationalN]ϕ. Our framework goes
beyond this strict view, generalizing rationality to the interest of bigger coalitions.
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The last validity we analyze concerns prohibition, which has a conjunctive prop-
erty: if choosing ϕ is forbidden and choosing ψ is forbidden then choosing ϕ and
ψ together is also forbidden. As already observed in the previous chapter, if two
choices are dominated and their intersection is also an available choice, then the
latter must also be dominated.

The propositions that are not valid in the models are also illuminating about the
properties of the deontic operators.

The first invalidity is deontic agglomeration, that is the fact that two proposi-
tions that are obligatory implies that their conjunction is also obligatory. Deontic
agglomeration together with the principle of ”ought implies can” (obligation implies
ability) rules out, in standard deontic logic, the existence of moral conflicts [44]. In
our framework instead deontic operators (and later also violation constants) point
to the regulation of moral conflicts.

The second invalidity shows that a permission of choice is not equivalent to a
choice of permission. If the one side is due to monotonicity of Pareto optimality,
the other side is falsified by the following consideration: permission requires by
definition that a coalition is able to perform the permitted choice, but effectivity
functions are not closed under finite intersections (Definition 7). Notice that the
proposition instead holds for the empty coalition in strategic games (Definition 11).

The third invalidity shows that a coalition need not be obliged to perform a
choice between a formula and its negation. This happens when both ϕ and ¬ϕ are
undominated dominated choices. Notice though that it cannot be the case that ϕ
and ¬ϕ are both dominated, as in the one case ϕM needs to be dominated by an
X ⊆ (¬ϕ)M, and it cannot be the case that some Y ⊆ ϕM dominates (¬ϕ)M.

The next invalidity says that the rational action for a certain coalition does
not necessarily coincide with that of the grand coalition, which has already been
discussed.

The last invalidity states the invalidity of the classical principle of ”ought implies
can”. When a choice is obligated it does not mean that the coalition can perform
it. This is due to the fact that obligation of a formula means forbiddance of its
negation, i.e. irrationality of its negation. However a dual principle is available,
”ought implies can refrain”, as ON(C,ϕ)→ [C]¬ϕ.

Summing up, the deontic operators presented here indicate what a coalition
should do in order to behave rationally. They are arguably simple reductions
to operators that talk about coalitional ability and rationality. Their simplicity has
several drawbacks however, the most important of which is discussed in the coming
paragraph.

Policies Let us have a look again at the definition of the prohibition operator we
have just defined:

FN(C,ϕ) := [C]ϕ→ ¬[rationalN]ϕ

If we apply this operator to simple games like the prisoner’s dilemma, we will
notice that very intuitive deontic statements, such as F(Row,Row defects), are false.
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The reason is because the prohibition F(Row,Row defects) is of absolute nature: it
says that the set of all states Row defectsPD is not rational for the grand coalition. But
we know from the results on undomination that any choice in the effectivity function
of the grand coalition containing a Pareto optimal state is necessarily undominated.
In conclusion F(Row,Row defects) is not satisfied in a world w representing the
prisoner’s dilemma.

However the common feeling concerning the play for the grand coalition in a
prisoner’s dilemma warrants the defective choice by the prisoners to be forbidden.
Can we deal with this problem within the language?

The answer is positive, but to express that prisoners are forbidden to defect a
new operator should be introduced, of the form

F(C : ϕ,C� : ψ) := [C]ϕ ∧ [C�]ψ→ ¬[rationalN](ϕ ∧ ψ)

whose informal reading is: ”in the interest of the grand coalition, choices ϕ by C
and ψ by C� are to be forbidden”.

What this operator does is to lay down a policy to which coalitions need to com-
ply in order to promote higher interests. The operator takes into account how the
intersection of two coalitional choices even when coalitionally rational can become
irrational for the grand coalition and it is clearly an abbreviation of formulas of the
language. In our example we could say things like F(Row :defect,Column :defect),
i.e. it is forbidden for Row to defect and for Column to defect. Let us write down the
definition in its most general form.

Definition 35 (Policies) Let C1, . . . ,Cn be a partition of coalition
�
{C1, . . . ,Cn}. The

following operators define deontic statements in the interest of coalition
�
{C1, . . . ,Cn}.

F(C1 : ϕ1, . . . ,Cn : ϕn) := ([C1]ϕ1 ∧ . . . ∧ [Cn]ϕn)→ ¬[rational�{C1,...,Cn}](ϕ1∧, . . . ,∧ϕn)

P(C1 : ϕ1, . . . ,Cn : ϕn) := ¬F(C1 : ϕ1, . . . ,Cn : ϕn)

O(C1 : ϕ1, . . . ,Cn : ϕn) := F(C1 : ¬ϕ1, . . . ,Cn : ¬ϕn)

The norms state a policy to be applied to the coalitions involved. For instance the
prohibition operator F(C1 : ϕ1, . . . ,Cn : ϕn) states that in the interest of the coalition
formed by the union of C1, . . . ,Cn, coalition C1 is forbidden to choose ϕ1, coalition
C2 to choose ϕ2 and so on until coalition Cn, which is forbidden to choose ϕn. The
reason for this prohibition lies in the fact that the intersection of the respective
choices ϕ1∧, . . . ,∧ϕn is not rational for those coalitions taken together. Permission
and obligation follow the same pattern of the absolute norms.

These newly defined operators are in fact straightforward generalizations of
the utilitarian norms in Definition 34, provided the coalitional effectivity function
contains the unit.

Proposition 33 Let M = (W,E,�i,V) be a Cooperative Game Model where E is an ef-
fectivity function containing the unit, and let ϕi = � for i = 2, . . . ,n. The following
holds:
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M |= F(C1 : ϕ1, . . . ,Cn : ϕn)↔ F
�
{C1,...,Cn}(C,ϕ1)

Proof M,w |= F
�
{C1,...,Cn}(C,ϕ1) is equivalent to M,w |= [C]ϕ1 → ¬[rational{C1,...,Cn}]ϕ1.

But by the fact that the effectivity function contains the unit ensures that [C]� for each
C ⊆ N . This means that M,w |= [C]ϕ1 → ¬[rational{C1,...,Cn}]ϕ1 is equivalent toM,w |=
F(C1 : ϕ1, . . . ,Cn : ϕn) for ϕi = � for i = 2, . . . ,n.

Substantially the policy operators generalize the deontic operators in case the
effectivity function of coalitions is not empty, which is a rather mild assumption.

Let us now return to the examples and analyze them.

Example 17 (Norms of cooperation and norms of conformity) The games of Figure
2.2 are a striking example of conflict between potential coalitions. In particular the prisoner’s
dilemma rules out, in its classical account based on individual rationality, the possibility
for individual players (in our account single player coalitions) to achieve the Pareto optimal
outcomes. However these outcomes are to be achieved in the interest of both players taken
together. Let us see how to express this fact in the language.

In the model PD of the prisoner’s dilemma at world w we have the following:
PD,w |= [Row]Row cooperates , i.e. the row player can see to it to play U, the cooperative

move, PD,w |= [rationalRow,Column]Row cooperates , i.e. it is rational for both players that
row player chooses U. This allows, confirming the validity discussed before, the conclusion
that PD,w |= P(Row,Row cooperates).

However, due to the formulation of the deontic operators no single player coalition is
obligated to cooperate, nor forbidden to defect, as the move D by the row player remains
undominated, and thus rational, in the effectivity function of the grand coalition.

A command like ”Row is forbidden to defect” is, in our logic, of absolute nature. It
says that the set of states corresponding to the defective move by Row is dominated in the
effectivity function of the grand coalition. But in our case these are {(D,L), (D,R)} and
D,R being Pareto optimal, the set {(D,L), (D,R)} is certainly undominated for the grand
coalition.

In these cases the policy operators are of immediate use. We have that
FN(Row : Rowdefects,Column : Columndefects), i.e. in the interest of coalition N Row
should not defect and Column should not defect either.

The external view: a deontic logic for coalition formation

The internal view on norms was concerned with establishing what a coalition should
do in order to act rationally. The present section takes a different perspective.
Starting out from a labelling on outcomes that should be understood as undesirable
we ask ourselves what coalitions would find it rational to make choices that are
violation-free. In other words, we use the labelling on outcomes to understand
which coalitions are allowed forming.

To express undesirable properties of outcomes we extend our language with a
special atomic propositions viol to be interpreted in the following way:
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viol

w0

viol

w1

viol

w2
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Figure 4.2: Violations and choices. The violation constant splits each model into two
parts: the undesirable states, where viol holds, and the desirable ones, where ¬viol
holds. As a consequence coalitional choices naturally inherit a deontic evaluation.

M,w |= viol if and only if w ∈ violM

Once a violation constant is introduced in the language a natural question is
whether coalitions would rationally choose the desirable states. This observation
allows to lift the deontic operators to coalitions, i.e. to determine what coalitions
are to be forbidden, permitted, obligated if the desirable states are to be achieved.

F(C) := FC(C,¬viol)

P(C) := ¬F(C)

O(C) :=
�

C��C F(C�)

A coalition C is forbidden, formally F(C), when the ideal states, i.e. the set
of all states where viol does not hold, are not a rational choice for that coalition;
it is permitted, formally P(C), when the ideal states are a rational choice for that
coalition; it is obligated, formally O(C), when all the other coalitions are forbidden.

The introduction of the violation constant, labelling the undesirable states, has
allowed us to lift the classical deontic operators to coalitions. In some sense this
approach generalizes the utilitarian one, as violations can be introduced that are
rational choices for a certain coalition. Consider therefore the following formula:

¬[rationalC]ϕ→ A(ϕ→ viol)

When valid in a model this formula means that all irrational choices of coalition
C are choices leading to violation. Consider instead this one:



84 CHAPTER 4. STRATEGIC REASONING IN COALITIONAL GAMES

[rationalC]ϕ ∧ A(ϕ→ viol)

When valid in a state this formula says that there is a rational choice for coalition
C that always leads to violation. This, notice, implies that coalition C must be
forbidden.

The following example gives a flavour of what is possible to do by using the
violation constant in combination with the choices that are rational for certain
coalitions.

Example 18 (Forbidding coalitions) Let us make use of our violation constant in the
prisoner’s dilemma (whose model is denoted PD) and the coordination game (CG). In the first
case we would like to forbid the states where both players defect, namely violPD = {(D,R)},
and in the other the states where players do not coordinate, namely violCG = {(U,R), (D,L)}.
Let w be a world in both models to be used as evaluation point. We have that PD,w |=
F({Row})∧F({Column}), i.e. individual coalitions are forbidden, as they cannot force the set
of ideal states, while PD,w |= O({Row,Column})∧P({Row,Column}) as the only coalition
that is not forbidden is the one made by both players. The same propositions hold true in
CG,w, for the way we have used the violation constant.

Stocktaking

The utilitarian approach uses the notion of coalitional rationality as semantic under-
pinning for the deontic operators, while what we have called the systemic approach
combines the operator for rational choices with violation constants, to label the un-
desirable states independently of the preferences of the players. If the first approach
is more concrete and directly applicable to strategic games by means of the deon-
tic policy operators, using violation constants in combination with the coalitional
rationality operator allows for an elegant lifting of norms to coalitions.

4.4 Reasoning on Coalitions in Games

The previous section has dealt with a characterization of coalitional rationality and
the issues of its regulation for general coalitional games. This section will focus
on strategic games and will provide a logic to characterize the coalitional power in
those structures. The section will thus not be concerned with a theory of coalitional
rationality, as its traits have been previously provided, but with characterizing the
distinguishing properties of strategic games in a logical language.

More specifically, in this section, we investigate the impact of true playability on
logics of coalitional ability. We begin by indicating that the validities of Coalition
Logic do not change if we restrict models to truly playable. As a consequence,
Coalition Logic (and even ATL) cannot distinguish between models based on truly
playable effectivity functions and models based on playable effectivity functions.
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4.4.1 True playability and Coalition Logic

The previous chapter analyzed the specific features of coalitional ability in strategic
games, providing an alternative representation result to the one originally given
in [54]. We can immediately observe that this new relation between effectivity
functions and strategic games has no repercussions on the semantics of Coalition
Logic and the soundness/completeness results for that logic. The axiomatization of
playable Coalition Logic amounts in [54] to the formulas and the rules characterizing
playability (Proposition 5), the axioms of propositional logic and modus ponens.
In [54] it is proved how this axiomatization is sound and complete with respect to
playable coalition models. The following result can be carried over.

Corollary 34 The axiomatization of playable Coalition Logic from [54] is sound and com-
plete wrt truly playable coalition models (and hence also strategic game models).

Proof To see this, let us formally define Play to be the class of playable coalitional models,
and TrulyPlay as the class of models based on truly playable effectivity functions. Since
TrulyPlay ⊂ Play, every Coalition Logic formula valid in Play is valid in TrulyPlay, too.
To see the converse, one can use the finite model property of Coalition Logic with respect to
Play and the fact that it coincides with TrulyPlay on finite models.

The results show that Coalition Logic 3 describes strategic interaction at an
extremely abstract level, that is insufficient to distinguish playability from true
playability. In the next section we extend the language to make this distinction
possible.

4.4.2 Coalition Logic with outcome selector modality

Here we propose an extension of Coalition Logic, by adding a new normal modality
�O� called “outcome selector”. Its dual will be denoted [O]. The informal reading
of �O�ϕ should be “there is an outcome state, enforceable by the grand coalition and
satisfyingϕ”. Instead of defining the semantics of �O� in the straightforward way (by
an appropriate semantic clause), we choose a different path in order to characterize
the new language axiomatically, and thus provide an axiomatic characterization
of truly playable models. That is, we first expand coalition models to what we
call extended coalition models with an additional “outcome enforceability” relation R.
Later we will use axioms to impose the right behavior of R.

Definition 36 (Extended coalition frames) An extended (playable) coalition frame
is a neighbourhood frame F = (W,E,R) where W is a set of outcomes, E a playable effectivity
function, R a binary relation on W.

3Furthermore, the semantics based on effectivity functions can be extended to ATL. See [29] and
[54] for the fragment of ATL without “until”, called Extended Coalition Logic). Again, it can be shown
that Play and TrulyPlay determine the same sets of validities for ATL, by checking the soundness of the
axiomatization for ATL given in [32] for Play, and using the completeness result for ATL with respect to
strategic game models (equivalently, TrulyPlay) proved in the same paper.
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Figure 4.3: Extended Coalition Models. The relation R is not dependent on the
dynamic effectivity function. There can be outcomes that are reachable from w0 via
R but that are not available choices at w0.

An extended coalition model — an illustration is given in Figure 4.3 — is an
extended coalition frame endowed with a valuation function. Given an extended
coalition model M, the modality �O) is interpreted as follows.

M,w |= �O�ϕ⇔ wRs and M, s |= ϕ for some s ∈W

That is, �O� has standard Kripke semantics with respect to the outcome enforce-
ability relation R.

Note that extended coalition models do not require any interaction between the
effectivity function and the relation R. However, given the intuitive reading of the
relation R, the interaction suggests itself, and the following definition accounts for
that.

Definition 37 (Standard coalition frames) A standard coalition frame is an extended
coalition frame such that, for all w, v ∈W, we have wRv if and only if {v} ∈ E(w)(N).

A standard coalition model, depicted in Figure 4.4, is a standard coalition frame
with a valuation function. Depending on the properties of the underlying effectivity
functions we call extended coalition frames and models playable or truly playable.

Characterizing standard truly playable coalition frames

Proposition 35 An extended coalition frame F is standard and truly playable if and only
if F |= [N]ϕ↔ �O�ϕ.

Proof Left to right: Assume that F is standard and truly playable. Assume first that
(F,V),w |= [N]ϕ for any V and w ∈ W. By definition of E we have that ϕM ∈ E(w)(N).
As F is truly playable there is v ∈ ϕM with {v} ∈ E(w)(N). However F is also standard so
wRv. But this means that (F,V),w |= �O�ϕ. Conversely, if (F,V),w |= �O�ϕ then wRv for
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Figure 4.4: Standard Coalition Models. The relation R is now dependent on the
dynamic effectivity function: each reachable outcome is an available choice and
each single outcome choice is also reachable.

some v ∈ ϕM. F being standard we have that {v} ∈ E(w)(N). By outcome monotonicity
ϕM ∈ E(w)(N), i.e. (F,V),w |= [N]ϕ.

Right to left: Assume that F |= [N]ϕ ↔ �O�ϕ. Let us first prove that F is standard.
Suppose wRv for some w, v ∈ W. Let V be a valuation that assigns the proposition ϕ only
to v. We have that M,w |= �O�ϕ. Then, by the assumptions we also have M,w |= [N]ϕ,
which means that {v} ∈ E(w)(N). Conversely, suppose now that {v} ∈ E(w)(N). For the
same valuation V we must have that M,w |= [N]ϕ and by assumption that �O�ϕ, which
means that wRv. Thus, F is standard. To prove that F is truly playable, assume that for
some X ⊆ W, X ∈ E(w)(N) and let now V be a valuation function such that ϕF,V = X. By
definition of E we have that (F,V),w |= [N]ϕ, hence by assumption, that (F,V),w |= �O�ϕ,
which means that wRv for some v ∈ ϕF,V. Then, F being standard, {v} ∈ E(w)(N).

Axiomatizing standard truly playable models

We propose the following axiomatic system for the class of standard truly playable
coalition models TrulyPlay, extending Pauly’s axiomatization of CL. The axioms
include propositional tautologies plus the following schemes:

1. [N]�

2. ¬[C]⊥

3. ¬[∅]ϕ→ [N]¬ϕ

4. [C]ϕ ∧ [C�]ψ→ [C ∪ C�](ϕ ∧ ψ) for any disjoint C,C� ⊆ N

5. [N]ϕ↔ �O�ϕ

6. [O](ϕ→ ψ)→ ([O]ϕ→ [O]ψ).
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The inference rules are: Modus Ponens, plus:

ϕ→ ψ

[C]ϕ→ [C]ψ
, and

ϕ
[O]ϕ

.

Notice that the modalities [C] are monotone but not normal while the modality
[O] is normal. 4 We denote the logic axiomatized as above by TPCL. The following
is routine.

Proposition 36 TPCL is sound for the class TrulyPlay: every formula derivable in TPCL
is valid in TrulyPlay.

Now we will establish the following completeness result:

Theorem 37 (Completeness theorem) Every formula consistent in TPCL is satisfiable
in TrulyPlay. Consequently, the logic TPCL is complete for the class TrulyPlay.

The full completeness proof is in given in the appendix (Section B.3).
Summing up, the present section has established a correspondence between

formulas of Truly Playable Coalition Logic, an extension of Coalition Logic with
what we have called the outcome selector modality, and truly playable models, that we
have proved in the previous chapter to be exactly corresponding to strategic games.
Moreover we have shown that the playable fragment of Coalition Logic, rather
surprisingly, also corresponds to truly playable models. This apparent paradox can
be easily explained: the playable fragment of Coalition Logic is simply too abstract
to distinguish between truly playable and playable models, while Truly Playable
Coalition Logic is enhanced with enough extra expressive power (the outcome
selector modality) to make this distinction possible.

4.5 Discussion

4.5.1 Related work
A number of contributions exist in the literature touching upon the issues dealt with
in this chapter, and some of them have already been taken into account as to their
specific contributions. They can be divided into three main branches, namely the
works aimed at:

• providing a logical account of strategic reasoning, mainly within the logic and
multi-agent system community; eminent examples are the use of counterfac-
tuals in CATL [68], the action expressions used in Coalition Action Logic [16]
and the first order strategy terms in Strategy Logic [22] and the explicit strate-
gies in [74]. Even though not directly focused on strategic interaction, the
contribution in [66] makes an important step in the direction of formalizing
preference liftings for strategic decisions.

4 Despite the equivalence in axiom 5, the introduction of the new outcome modality is justified
because we only want to consider frames where [N] is a diamond operator of a normal modality, whereas
the semantics of all coalition operators [C] is given in terms of neighbourhood effectivity functions.
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• understanding the deontic operators in terms of properties of strategic inter-
action; the only related contributions we consider, and up to our knowledge
the only existing ones, are by Horty [41] and Kooi and Tamminga [44].

• building a logic for effectivity functions, and their generalizations. The contri-
butions on logics for strategic interaction are plenty, starting from the seminal
contribution by Rohit Parikh on the logic of games and its applications [52],
however the ones using effectivity functions all originate from Marc Pauly’s
Coalition Logic [54, 55].

In this section we are going to focus on the approach by van der Hoek, Jamroga
and Wooldridge [68] extended recently in [74], which discusses modal operators
that make strategies explicit, in a similar way done by our subgame operator; and
on the semantics for the deontic operators given in [41] and in [44], comparing them
with our contribution.

Logics for strategic reasoning The logic Alternating-time Temporal Logic with
Counterfactuals (CATL) by van der Hoek, Jamroga and Wooldridge [68], extended
ATL with commitment operators of the form Ca(ρ,ϕ), meaning ”under the assump-
tion that a commits to strategy ρ then ϕ holds”. The similarity of the CATL operator
and the subgame operator is evident, however a number of differences can be
immediately spotted looking at the interpretation of the CATL operator.

Definition 38 (CATL models) [68]
The CATL operator is interpreted in models that are called Action-based Alternating

Transition Systems, formally a tuple:

(Q, q0,Φ,π,Ag,Ac1, . . . ,Acn,ρ, τ,Y1, . . . ,Yn, ||.||M)

where Q is a nonempty set of states; q0 ∈ Q is the initial state; Φ is a nonempty finite
set of atomic propositions; π is a valuation funciton; Ag is a finite set of players such that
|Ag| = n and such that each player i is assigned a unique set Aci of actions (the sets are
pairwise disjoint); ρ :

�

i Aci → 2Q is an action precondition function, specifying at which
states a certain action profile can be executed; τ : Q → J → Q, where J ⊆

�

i Aci is the
system transition function, that specifies what the effect of the action profiles is, respecting
the action precondition function. Y1, . . . ,Yn are sets of so-called strategy terms for each
player, also pairwise disjoint. In each model M each strategy Σi by player i will be denoted
by the function ||.||M.

Leaving technicalities aside it is immediately evident that CATL models resem-
ble strategic game forms, together with a mechanism to indicate for which model
what strategies each player can execute. The commitment operator Ca(ρ,ϕ) is in-
terpreted by means of a model update, as follows.

Definition 39 (Commitment interpretation) [68]
Let M be a CATL model having Q as domain and let q ∈ Q. The formula Ci(σ,ϕ), for σ

a strategy of player i and ϕ a formula of the language of CATL, is interpreted as follows:
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M, q |= Ci(σ,ϕ) if and only if M †i ||σ||, q |= ϕ

The operation M †i ||σ|| on M returns a new model that is made as follows:

(Q, q0,Φ,π,Ag,Ac1, . . . ,Acn,ρ�, τ�,Y1, . . . ,Yn, ||.||M� )

where the new elements ρ�, τ�, ||.||M� are updated, taking into account the fact that
strategy σ has been executed by player i and the remaining elements are literally
copied from M.

The CATL logic, extended later in [74], was the first to deal with the issue of
choice restriction in strategic reasoning and implemented it quite effectively by
updating the models. However there are two issues left unanswered by CATL that
we tried to deal with by means of the subgame operator:

• In CATL, strategy terms, as for example the occurrence of σ in formulas of
the form Ci(σ,ϕ), are not formulas of the language, but they act as functions
from a model M to its updated version M †i ||σ||. Contrarily, in the subgame
operator, the analogue of strategies are formulas, as in expressions of the
form [C ↓ ϕ]ψ. The main advantage of this method is the possibility to
relate strategy execution to strategic ability, in our case by means of reduction
axioms.

• If in Coalition Logic expressions of the form [{i}]ϕ are used to express the fact
that a coalition {i} has a strategy σi to achieve ϕ, CATL expressions make σi
explicit, by saying for instance Ci(σ,ϕ). In a way, from being able to express the
presence of a strategy, we are now able to name that strategy in the language
and study the transformations it brings about at the model level. However 5

Coalition Logic is also able to express that a coalition does not have a strategy
to achieve ϕ, by simply saying ¬[C]ϕ; this seems particularly awkward to
do only using expressions of the form Ci(σ,ϕ) as ¬Ci(σ,ϕ) only means that
strategy σ does not achieve ϕ. With the subgame operator though ¬[C ↓ ψ]ϕ
is directly reducible to an expression without the subgame operator occurring
in it, preserving the possibility of expressing the various meanings of strategic
ability.

All in all, CATL and its extensions represent a fundamental starting point for
the investigation of logics for strategic reasoning and have partly inspired the con-
struction of the subgame operator, that, even though far less structured, looks more
suited to study the relation between strategic ability and strategy execution.

5As far we can recollect, the argument has been first used by Johan van Benthem in his invited talk
”In praise of strategies, but how?”, during the ”First Workshop on Logics and Strategies”, June 26, 2009
at the University of Groningen.
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Norms and coalitions In the section of related work of the previous chapter,
we have dealt with the notion of dominance in consequentialist models, taken as
simplified representation of the branching-time STIT framework. In consequentialist
models the ought operator by Horty [41] and Kooi and Tamminga [44] can be
defined. While the first deals with a strictly utilitarian view of oughts, i.e. a
coalition ought to do what it is optimal for itself, the second generalizes this view
to take into account the preferences of other coalitions, i.e. what a coalition ought
to do needs to be optimal for a coalition specified in the modal operator.

We believe that interpreting both operators on consequentialist models will not
betray Horty’s views, even though we are aware that more subtle meanings carried
by the ought operator can only be expressed using the full-blown STIT apparatus.

Let us interpret Horty’s ought operator⊙[C cstit : ϕ], with the intuitive meaning
that coalition C ought to see to it that formulaϕholds, using the notion of dominance
in Definition 30.

Definition 40 (Horty’s ought) Let M be a consequentialist model and w a world in its
domain. Let Choice(C)w be the assignment of the set Choice(C) at world w according to
Definition 29. We have

M,w |= ⊙[C cstit : ϕ] if and only if for each K ∈ Choice(C)w such that K � ϕM

there is an action K� ∈ Choice(C)w such that

• K dominates K�

• K� ⊆ ϕM

• K�� ⊆ ϕM implies that K� dominates K��

Horty’s notion of dominance is somewhat stronger than ours, as it is not based
on a (∀,∀) preference lifting. It can then be the case that in a choice set of a
consequentialist model there are no undominated choices, even when this choice
set is nonempty. For this reason Horty’s ought consists of three clauses introduced
by a ∀ − ∃ quantification on the sets in a choice set. This makes it at the same time
particularly expressive and particularly awkward to characterize in terms of simple
modal expressions, as we did for our deontic operators.

Being concerned with expressing moral conflicts, Kooi and Tamminga generalize
Horty’s operator, by generalizing the underlying notion of dominance.

Definition 41 (F-dominance) [44]
Let K,K� ∈ Choice(C) and ui : N → W → [−5, 5] a utility function over the outcomes

for each player. We say that K F-dominates K� if and only if for all S ∈ Choice(C) we have
that w ∈ K ∩ S and w� ∈ K� ∩ S implies that uF(w) ≥ uF(w�), where uC returns the average
of individual utilities of members of F.

The definition of their ought operator ⊙F[C cstit : ϕ] is obtained by replacing
the word dominates by the word F-dominates in Definition 40.

The notion of F-dominance can be though of as a sort of dominance for someone
else, i.e. a dominance looked at from the point of view of another coalition. We will
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see that such generalizations get very close to the theory of dependence relations
dealt with in the second part of the thesis. But for now we observe how Kooi
and Tamminga’s approach inherits the strength (but also the complexity) of Horty’s
ought, by adding the issue of evaluating a coalitional choice from the point of view of
a different coalition. We have seen how in our case an operator of the form FN(C,ϕ),
where the prohibition is made in the interest of a bigger coalition, is an absolute
command, and as such does not propose a desirable solution for even simple games.
Kooi and Tamminga deal with the prisoner’s dilemma by showing formulas of
the form ⊙{Row,Column}[Row cstit : Row cooperates] ∧ ⊙{Row}[Row cstit : Row defects]
(a notational variant of these formulas also holds with our absolute commands),
however they do not focus on the operators of forbiddance and permission, making
our remark on absolute commands not strictly applicable. Moreover, the scope of
their work being other than analyzing the effects of simultaneous norms, it does not
discuss policies to regulate games.

4.5.2 Open issues
The present chapter has left several issues unresolved. We prefer to focus on what
we think are the two most fundamental ones, that concern both the characterization
of strategic reasoning and the role of norms. As to the first point, we deal with the
relation between the role of updates in the subgame operator and the well-known
model update in Dynamic Epistemic Logics [69]. As to the second point we deal
with the relation between the role of norms in our framework and how they can
account for a multiplicity of other interesting related notions, such as social choice
correspondences.

Choices as announcements Public Announcement Logic [69] formalizes the effect
of the announcement of a true formula in each agent a’s epistemic relation R(a),
defined as a partition on a domain W. The standard operator [ϕ]ψ says that ψ holds
after ϕ is announced. Its semantics is given as follows:

M,w |= [ϕ]ψ⇔M,w |= ϕ implies M|ϕ,w |= ψ

where M|ϕ = (W�,R�(a),V�) takes these values:

• W� = ϕM

• R�(a) = R(a) ∩ (W × ϕM)

• V�(p) = V(p) ∩ ϕM

The model restriction of public announcement eliminates worlds. At the logical
level a reduction can be shown such that every sentence from the modal language
with the modal operator interpreted on the epistemic relation and the public an-
nouncement operator can be translated into a sentence from the same language
without the public announcement operator occurring in it. We report the reduction
axioms in Table 3.
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Axioms

Public Announcement Axioms

A1 [ϕ]p↔ (ϕ→ p)

A2 [ϕ]¬ψ↔ (ϕ→ ¬[ϕ]ψ)

A3 [ϕ](ξ ∧ ψ)↔ ([ϕ]ξ ∧ [ϕ]ψ)

A4 [ϕ]�aψ↔ (ϕ→ �a[ϕ]ψ)

Rules

R1 ξ ∧ (ξ→ ψ)⇒ ψ

R2 ξ⇒ [ϕ]ξ

Table 4.2: Proof System for Public Announcement Logic

If we compare the public announcement operator to the subgame operator, we
can observe the structure of the two axiom systems is very similar in the atomic
and boolean case, but very different in the modal case. A subtle difference can
however be observed in the atomic clause. If Public Announcement Logic reduces
the atomic announcement to an implication between atoms ([q]p ↔ (q → p)), the
subgame operator reduces it to an implication between an atom and a choice ([C ↓
q]p↔ ([C]q→ p)). This fact witnesses that we are really reducing strategy execution
to strategic ability.

The appendix will make it clear (Section B.1) that the similarity of the logics
applies to the proof techniques as well, that are at least for the basic cases identical
to those of Public Announcement Logic [69]. The specific differences are given, once
again, by the way the coalitional relation is updated.

Majority Voting Social choice theory, preference aggregation and judgment ag-
gregation — for their interrelation see the work in [33] — analyze various paradoxes
of preference merging, like the paradox of majority voting. This says that a major-
ity can decide for an issue p, a majority for p → q, and another majority for not q,
yielding illogical policies. Our deontic operator can be extended to satisfy a majority
optimality.

Definition 42 (Majority Domination) Given an effectivity function E, X is majority
undominated for C in w if, and only if, (i) X ∈ E(w)(C) and (ii) for all Y ∈ E(w)(C),
(X ∩ Y) is Pareto Optimal in E(w)(C) � Y for a C� ⊆ C such that |C�| ≥ |C|2 + 1.
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We can define a majority deontic operator M,w |= P 1
2 (C,ϕ)⇔ ϕM ∈ E(w)(C) and

is majority undominated for C in w. Majority Voting Paradox arises in this framework:

M �|= P
1
2 (C,ϕ) ∧ P

1
2 (C,ϕ→ ψ)→ P

1
2 (C,ψ)

Here the obligation for a coalition to do ϕ and ϕ → ψ need not mean the
obligation to do ψ. In general it would be extremely profitable for the applicability
of such deontic languages to systematically relate to classical results in Social Choice
Theory, as for instance Arrow’s results on Social Welfare Functions [4].

There are typical conditions that such a function should have in order to be
desirable:

Unanimity (or Pareto Optimality): If all individuals weakly prefer an alternative
x over an alternative y, then x should be weakly preferred over y in the final
decision.

Independence of Irrelevant Alternatives : Given two preference orderings �,�� if
all individuals prefer x over y according to ≤ if and only if x is preferred to y in
the final decision according to � then all individuals prefer x over y according
to �� if and only if x is preferred to y in the final decision according to ��.

Universal Domain : every alternative should be ranked.

Non-Dictatorship : There is no agent i such that, for all preference orderings �, if i
prefers x over y according to �, then x is preferred over y in the final decision.

We can clearly observe some resemblance with properties satisfied by our oper-
ator [rationalN], but again, systematic treatment is required.

4.5.3 Conclusion
The contribution of this chapter consists in the formalization of various aspects of
cooperative interaction and its regulation. The whole enterprise has been conducted
by making use of a standard logic for coalitional ability, Coalition Logic, empow-
ered with modal operators to meet the specific needs. First, Coalition Logic has
been empowered with a preference modality, to characterize notions of optimality
inside an effectivity function; second, it has been empowered with the subgame
operator, to reason about choice restriction; third with violation constants, to reason
about regulation of coalitional choice and finally with modalities to characterize the
specificity of strategic games as opposed to general coalitional games.

As for the logical characterization of strategic reasoning, the following results
have been achieved:

• Logical characterization of betterness within an effectivity function, by means
of a coalition and preference modality in some cases with an auxiliary global
modality. The so-called Pareto optimal choices have been characterized in
their strong and weak version, for all preference liftings studied in the previous
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chapter. We could show that for the (∀,∀) preference lifting, Pareto optimal
choices could be expressed even without resorting to the global modality.

• Logical characterization of choice restriction, by means of an operator that
could express choice execution by a coalition. This has been called the sub-
game operator, its role being to talk of formulas that would hold if some
coalitions were to make a certain choice. The subgame operator was shown to
behave rather elegantly by displaying reduction axioms to the standard coali-
tion logic operator, yet the price to pay is that models of coalitional interaction
need to contain all the instances of the subgames.

As for the regulation of coalitional interaction, the chapter has described deontic
languages to tell coalitions how to behave to achieve certain desirable outcomes.
Two views have been proposed:

• The internal, or utilitarian view, where, in order to decide whether a coalitional
choice is to be obliged, prohibited or permitted, the interest of bigger coali-
tions need to be taken into account. Coalitional choices that are permitted for
coalition C in the interest of some C� ⊇ C are rational choice for coalition C�,
while forbiddance and obligation are defined following a standard duality in
deontic logic. Refining on this we have defined the notion of policy, a simul-
taneous deontic command on some coalitions in order to protect the interest
of those coalitions taken together. With the notion of policy, the standard
reasoning in games like the prisoner’s dilemma can be fully accounted for.

• The external, or systemic view, where desirable properties to be achieved
by coalitional choice do not depend on coalitional interests. States in an
interaction are split between good states and bad states, in the spirit of classical
deontic logic. The labelling in a strategic context acquires a natural meaning,
allowing the lifting the deontic operators to coalitions. The idea behind this
lifting is that coalitions for which all rational choices are violations should not
be allowed, and should instead be permitted or even obligated otherwise.

As for the logical characterization of strategic games, plenty of issues raised by
the previous chapter have been answered.

• We have pointed out that Coalition Logic and ATL are not expressive enough
to characterize true playability. On the other hand, they can be extended in a
relatively simple way to obtain such a characterization.

• We have studied an extension of Coalition Logic with a normal outcome se-
lector modality that we show sufficient for axiomatic characterization of truly
playable structures.

All in all, the results have shown that a number of complex concepts in strategic
interaction can be reconducted to the realm of Coalition Logic and reasoned upon
with minimal extensions of that language.
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Chapter 5

Dependence Games

To understand an idea or a phenomenon — or even something like a piece of music — is to relate
it to familiar ideas or experiences, to fit it into a framework in which one feels at home.

Robert J. Aumann, What is game theory trying to accomplish? [6]

5.1 Introduction
Traditionally, the cooperative possibilities of players in strategic games are described
by merging their strategic ability and forming coalitions. This mathematically
simple step, that takes the union of the players and the pairwise intersection of their
choice sets, implicitly assumes that players are able and willing to join forces to
achieve a common goal. However such assumptions are not applicable to a large
number of scenarios, for a variety of reasons:

• Players may not be able to communicate with each other, as in the classical
story of the prisoner’s dilemma in Chapter 1, making coordination impossible;

• Players may not wish to form a coalition with other players, due to differences
in desires, views, preferences etc.;

• Players may not have control of the process of coalitional decision making
and may not trust the way the coalitional outcomes are chosen;

• The procedures employed to come up with a coalitional decision may impose
additional costs on the participants (time, computational power etc.).

This chapter is devoted to a weakening of the classical view of strategic games
as coalitional games, by keeping the individual perspective typical of strategic
games and constraining the possibility of players to work together. We start from
the observation that in some games players can do something for each other or,
otherwise said, depend on each other. If we look at the prisoner’s dilemma in Figure

99
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2.2, for example, it is evident that the row player can do something for the column
player (playing U instead of D) and that the column player can do something for the
row player (playing L instead of R). As soon as players are aware of this possibility,
they can exchange favours and reach an outcome that is satisfactory for both.

The perspective that we have just intuitively introduced radically differs from the
classical coalitional account, where coalitions can be formed without considering
players’ preferences. Our account, that sees coalitions as resulting for reciprocal
exchanging of favours among their members, will be called dependence theory.

The importance of dependence in multi-agent systems was not recognized until
the publication of a series of papers by Castelfranchi and colleagues [21, 20], who
elevated it to a paradigm to understand social interaction. Their work emphasized
the necessity of building a formal theory of dependence modelling the role that
cognitive phenomena such as beliefs and goals play in its definition. In the last
decade, the notion of dependence has made its way into several research lines (e.g.,
[60, 12, 13, 59]), but still today dependence theory has several versions and no
unified theory. However, the aim of the theory is clear:

“One of the fundamental notions of social interaction is the dependence
relation among players. In our opinion, the terminology for describing
interaction in a multi-player world is necessarily based on an analytic
description of this relation. Starting from such a terminology, it is pos-
sible to devise a calculus to obtain predictions and make choices that
simulate human behavior" [21, p. 2].

In this view, dependence theory addresses two main issues:

• the representation of dependence relations among the players in a system;

• the use of such information as a means to obtain predictions about the behavior
of the system.

While all contributions to dependence theory have thus far focused on the first
point, the second challenge, “[to] devise a calculus to obtain predictions", has been
mainly addressed by means of computer simulation methods (e.g., [59]) and no
analytical approaches have yet been developed. We take up these two challenges
from an analytical point of view and outline a theory of dependence based on
standard game-theoretical notions and techniques.

The theory moves from the following definition of dependence, which is adapted
from one of the definitions that can be found in the informal literature on depen-
dence theory in multi-agent systems (e.g., [21, 20]):

Player i depends on player j for strategy σ j, within a given game, if and only if
σ j is a dominant strategy (or a best response in some profile σ) not for j itself,
but instead for i.1

1This definition will be formalized in Definition 44.
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The aim of the chapter is to provide a thorough analysis of the above informal
definition. Concretely, it presents two results. First, it shows that dependence
allows for the characterization of an original notion of reciprocity for strategic
games (Theorem 40). Second, it shows that dependence can be fruitfully applied to
ground cooperative solution concepts. These solution concepts are characterizable
as the core of a specific class of coalitional games—here called dependence games—
where coalitions can force outcomes only in the presence of reciprocity (Theorems
41 and 42).

Our study is meant to lay a bridge between game theory and dependence theory
that, within the multi-agent systems community, are erroneously considered to be
alternative, when not incompatible, paradigms for the analysis of social interaction.2
It is our conviction that the theory of games and that of dependence are highly
compatible endeavours. On the one hand dependence theory can be incorporated
into the highly developed mathematical framework of game theory, obtaining the
sort of mathematical foundations that are still missing. On the other hand, game
theory can fruitfully incorporate a novel dependence-theoretic perspective on the
analysis of strategic interaction.

With respect to this latter point, the chapter shows that dependence theory can
play a precise role in games by modeling a specific way in which cooperation arises
within strategic situations (Section 5.3):

“As soon as there is a possibility of choosing with whom to establish
parallel interests, this becomes a case of choosing an ally. When alliances
are formed, it is to be expected that some kind of mutual understanding
between the two players involved will be necessary. [. . . ] One can
also state it this way: A parallelism of interests makes a cooperation
desirable, and therefore will probably lead to an agreement between the
players involved." [70, p. 221]

Once this intuitive notion of “parallelism of interests" is taken to mean “mutual
dependence" [21] or “dependence cycle" [60] the bridge is laid and the sort of
cooperation that arises from it can be fruitfully analyzed in dependence-theoretic
terms. This intuition, we will see, leads to the definition of a particular class of
cooperative games.

Chapter structure: The chapter, based on joint work with Davide Grossi [35, 34], is
structured as follows. Section 5.2 provides a formal definition of dependence rela-
tion between players in a strategic game, obtained by generalizing the classical ones
of best response and dominant strategy. With a definition of dependence at hand,
we can literally draw dependence relations among players and spot dependence
cycles, i.e. strategies that can be played in favour of each other. Section 5.3 provides
the solution for dependence cycles, by formulating the notion of agreement, seen
as a strategy profile where each player favours some other player. Agreements

2An impression that was recently reiterated during the AAMAS’2009 panel discussion ”Theoretical
Foundations for Agents and MAS: Is game theory sufficient?”.
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allow us to view strategic games as dependence games, the class of cooperative
games where coalitional choices are determined by agreements. Section 5.3 studies
in addition how the solution concepts for cooperative games behave in dependence
games. Finally, Section 5.3.5 shows an application to games with transferable utili-
ties, making use of a theory of dependence in that setting. As for the other chapters,
special attention is devoted to related literature and issues left open.

5.2 Dependence in Games
Dependence theory, as developed within artificial intelligence and multi-agent sys-
tems, has been mainly inspired by work in the social sciences such as [24]. It moves
from presuppositions that are clearly shared by the theory of games—eminently
the fact that the outcome of social interaction depends on the choices of different
agents—but it emphasizes, rather than the strategic aspect of agents’ choices, the
interdependencies existing between them in terms of what they want and what they
choose:

“Sociality obviously presupposes two or more players in a common
shared world. A ‘Common World’ implies that there is interference
among the actions and goals of the players: the effects of the action of
one player are relevant for the goals of another: i.e., they either favour
the achievement or maintenance of some goals of the other’s (positive
interference), or threat some of them (negative interference).” [20, p.
161-162]

In this view, what underpins the analysis of social interaction is the idea that agents
can favour or hinder each other’s goals.

The present section shows how, by tweaking some basic game-theoretical no-
tions, this perspective on social interaction can be accommodated within the theory
of games. The section proceeds with a formal definition and analysis of the notion
of dependence in games.

This section introduces and studies the formal properties of dependence in
strategic games, obtained by generalizing the classical notions of dominant strategy
and best response given in Definition 3.

5.2.1 Dependence relations
The literature on dependence theory features a number of different relations of
dependence. Yet, in its most essential form, a dependence relation is a relation
occurring between two players i and j with respect to a certain state (or goal) which
i wants to achieve but which it cannot achieve without some appropriate action of
j.

“x depends on y with regard to an act useful for realizing a state p when
p is a goal of x’s and x is unable to realize p while y is able to do so.”
[21, p.4]
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The definition in [21] acquires a variety of meanings applicable to different
contexts. We start out by emphasizing the strategic aspects of dependence by
reformulating its definition as follows:

A player i depends on a player j for the strategy σ j when σ j is a favour by j to
i, that is, the choice by j of σ j is in i’s interest.

Let us compare this reading with the one given by Castelfranchi in [21, p.4], which
will make clear what the assumptions are upon which the theory will be developed.
In fact, it might be argued that the focus of Castelfranchi’s formulation seems to
differ slightly from ours in a few points. Such differences, we claim, are not essential
and do not lie at the core of the notion:

• Castelfranchi stresses the fact that one of the actors is not able to realize the
goal which he is dependent for (”[. . . ] while y is able to do so.” [21, p.4]).
An attentive reading of our formulation will reveal that the requirement is
encoded in the fact that strategy σ j, played by j in i’s interest, is by definition
not under control of player i.

• Castelfranchi talks about playing to reach someone else’s goal, while we adopt
the more immediate notion of favour. Once again, clear formulations of favour
or of play to reach someone else’s goal are not available in the literature, and
different cognitive accounts provide different solutions. As will be clear from
Definition 43, a generalization of the standard definitions of best response
and dominant strategy can naturally formalize a game-theoretical notion of
favour.

• Finally, while our formulation of dependence consists of a three-place rela-
tion, Castelfranchi’szzs incorporates further ingredients such as acts, while
some other accounts even adopt the notion of plans (e.g. [60]). We reckon a
treatment of actions and plans separate from strategies not to be fundamental
for a formal theory of dependence in games and we consequently abstract
away from them by using the sole notion of strategy.

To formalize favours, which constitute a fundamental ingredient of a theory of
dependence, we generalize the notions of best response and dominant strategy, that
are applied to strategies that a player plays in his own interest, to the notions of best
response and dominant strategy for someone else.

Definition 43 (Best for someone else) Let G = (N,S,Σi,�i, o) be a game, i, j ∈ N and
σ be a strategy profile.

1. The strategy σ j is a best response for i if and only if ∀σ�j ∈ Σ j, o(σ) �i o(σ�j, σ− j).

2. The strategyσ j is a dominant strategy for i if and only if∀σ� ∈
�

k∈N Σk, o(σ j, σ�− j) �i

o(σ�).
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In words, a strategy σ j by player j is best response for player i if there is no other
strategy σ�j that guarantees a better outcome to player i than σ j, provided the other
players stick to the profile σ− j; and it is a dominant strategy for player i if, no matter
what strategy profile σ�

− j the other players stick to, the strategy σ j by j guarantees
to player i a better outcome than any other strategy by j.

Definition 43 generalizes Definition 3 by allowing the player holding the prefer-
ence to be different from the player whose strategies are considered. When player i
and j coincide we get Definition 3 back.

Once we have defined what it means to play in someone else’s interest, a defi-
nition of dependence is straightforward. In the same fashion as Definition 43, we
formulate a notion of BR-dependence, if we consider an underlying best response
for someone else, and one of DS-dependence, if instead we focus on dominant
strategies.

Definition 44 (Dependence) Let G = (N,S,Σi,�i, o) be a game and i, j ∈ N and σ be a
strategy profile.

1. Player i BR-depends on j for strategy σ j—in symbols, iRBR
σ j—if and only if σ j is a

best response for i in σ.

2. Player i DS-depends on j for strategy σ j—in symbols, iRDS
σ j—if and only if σ j is a

dominant strategy for i.

Definition 44 deserves a few remarks. The first thing to notice is that the notion
of dependence arising from the definition is based on an underlying notion of
rationality. In our case we opted for the ones that are, arguably, most standard in
a pure strategy setting like ours: best response and dominant strategy. But it must
be clear that other choices are possible (e.g. strict best response, strict dominance)
and that Definition 44 could be easily extended to accommodate them.

Secondly, a consequence of the definition is that, given any game, we can always
associate to any profile σ a binary relation—RBR

σ or RDS
σ —on the set of players which

describes who depends on whom for the realization of that profile. In other words,
we can associate to each profileσ a graph (N,RBR

σ ), or a graph (N,RDS
σ ), which provide

a structural description of the sort of dependencies at work in the underlying game.
We call these graphs dependence graphs.

Example 19 (The dependence graph of the prisoner’s dilemma) Consider again the
prisoner’s dilemma in Figure 2.2. Its best response dependence graph is depicted in Figure
5.1. There we notice that, for instance, the relation RBR

(U,R) depicted in the up-right corner
is such that Column depends on him/herself (it is a reflexive point), as it plays its own best
response, but also on Row, as Row does not play its own best response but a best response
for Column. Therefore (U,R) displays some kind of ‘inbalance’. In contrast, the graph
associated to (U,R) depicts a cycle of BR-dependence in which Row plays a best response for
Column and, vice versa, Column for Row.

The last remark worth making is that, in general, relations RBR
σ and RDS

σ do not
enjoy any particular structural property. However, when they do, such structural
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(U,L) (U,R)

(D,R)(D,L)

1 2 1 2

1 2 1 2

Figure 5.1: BR-dependences in the Prisoner’s dilemma.

properties can have a precise game-theoretical meaning. The following simple fact
gives a simple example of how structural properties of dependence graphs relate to
game-theoretical properties of the underlying games.

Proposition 38 (Reflexive dependencies and equilibria) LetG be a game and let x ∈
{BR,DS}. It holds that: for any profile σ, Rx

σ is reflexive if and only if σ is an x-equilibrium.

Proof Two claims must be proven. [First claim for x = BR] From left to right, we assume
that ∀i ∈ N, iRBR

σ i. From Definition 44, it follows that ∀i ∈ N,∀σ� : o(σ) �i o(σ�i , σ−i), that
is, σ is a Nash equilibrium. From left to right, we assume that σ is a Nash equilibrium.
From this it follows that ∀i ∈ N σi is a best response for i, from which the reflexivity of RBR

σ
follows by Definition 44. [Second claim for x = DS] An analogous proof applies.

In other words, any profile in which players depend on themselves—either in a best
response or in a dominant strategy sense—is an equilibrium of the corresponding
type—BR or DS. Figure 5.1 offers a good pictorial example. The ‘defect-defect’
profile (D,R), the Nash equilibrium, indeed gives rise to a BR-dependence relation
which is reflexive.

5.2.2 Dependence cycles
We have seen above how the reflexivity of dependence is related to the existence of
equilibria (Proposition 38). In this section we move to a more general property of
dependence relations, the existence of cycles. The literature on dependence theory in
multi-agent systems puts particular emphasis on this property as cycles intuitively
suggest that there exists common ground for cooperation: if an individual depends
on an other individual, and the latter depends in turn on the first to achieve a specific
outcome, the choice of that outcome means that the individuals are doing each other
a favour. This perspective is very clearly expressed, for instance, in [12, 13], where
dependence cycles are taken to signal the possibility of social interaction between
players of a do-ut-des (give-to-get) type.
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g ¬g
g 3, 3, 3 2, 4, 2
¬g 4, 2, 2 1, 1, 0

g

g ¬g
g 2, 2, 4 0, 1, 1
¬g 1, 0, 1 1, 1, 1

¬g

Figure 5.2: A three person game. Player 1 denotes Row, player 2 Column, and player
3 chooses between the right and left matrices.

In that literature, however, dependence relations are considered as given—they
do not arise from underlying structures such as games—and so are cycles, whose
importance is not motivated in terms of some underlying rationale, but is taken
for granted. In this and the following sections (Sections 5.2.2-5.2.4) we show how,
starting from dependence relations that arise from an underlying game (Definition
44), we can give precise game-theoretical reasons for the significance of dependence
cycles in strategic settings. So let us start with a definition of what a dependence
cycle is.

Definition 45 (Dependence cycles) Let G = (N,S,Σi,�i, o) be a game, (N,Rx
σ) be its

dependence structure for profile σ with x ∈ {BR,DS}, and let i, j ∈ N. An Rx
σ-dependence

cycle c of length k − 1 in G is a tuple (a1, . . . , ak) such that:

1. a1, . . . , ak ∈ N;

2. a1 = ak;

3. ∀ai, aj with 1 ≤ i � j < k, ai � aj;

4. a1Rx
σa2Rx

σ . . .Rx
σak−1Rx

σak.

Given a cycle c = (a1, . . . , ak), its orbit O(c) = {a1, . . . , ak−1} denotes the set of its elements.

In other words, cycles are sequences of pairwise different players, except for the
first and the last which are equal, such that all players are linked by a dependence
relation. Note that the definition allows for cycles of length 1, whose orbit is a
singleton, i.e., reflexive arcs. Those are the cycles occurring at reflexive points in
the graph.

We have already seen in Example 19 that the cooperative outcome of the pris-
oner’s dilemma exhibits a cycle linking Row and Column (see Figure 5.1). Even more
interesting are cycles in games with more than two players.

Example 20 (Cycles in a three-person game) Consider the following three-person game.3
A committee of three jurors has to decide whether to declare a defendant in a trial guilty or
not. All the three jurors want the defendant to be found guilty, however, all three prefer that

3The game can be viewed as a weak three-person variant of the prisoner’s dilemma, where defection,
although not being a dominant strategy, can turn out to be a best response for all players, making
defection—like in the prisoner’s dilemma—a Nash equilibrium.
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(g, g, g) (¬g, g, g)

(¬g,¬g, g) (¬g,¬g,¬g)

1 2

3

1 2

1 2

1 2

3 3

3

Figure 5.3: Some BR-dependencies from the game matrix in Figure 5.2 (Example
20).

the others declare the defendant guily while she declares her innocent. Also, they do not
want to be the only ones declaring the defendant guilty if the other two vote for innocence.
They all know each other’s preferences. Figure 5.2 gives a payoff matrix for such a game.
Figure 5.3 depicts some cyclic BR-dependencies inherent in the game presented. Player 1 is
row, player 2 column, and player 3 picks the right or left matrix. Among the ones depicted,
(g, g, g) displays six cycles of length 3 and so does (¬g,¬g,¬g), which also contains three
reflexive arcs—and hence, by Proposition 38, is a Nash equilibrium. Also (¬g, g, g) is a
Nash equilibrium: it does not contain any cycle of length 3, but it does contain two of length
two between players 2 and 3. Finally, (¬g,¬g, g) does not contain any cycle.

5.2.3 Reciprocity

We now proceed to isolate some specific forms of cycles. These will be used to
define several variants of a property of strategic games which we call reciprocity.
The idea is that, depending on the properties of the dependence cycles of a given
profile, we can isolate some significant ways in which players are interconnected
via a dependence relation. These will be linked, in the next section, to the existence
of equilibria in appropriately transformed games.

Definition 46 (Reciprocity) Let G be a game, σ a profile, and (N,Rx
σ) the corresponding

dependence graph with x ∈ {BR,DS}. We say that:

i) a profile σ is x-reciprocal if and only if there exists a partition P(N) of N such that
each element p of the partition is the orbit of some Rx

σ-cycle in (N,Rx
σ);
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ii) for C ⊆ N, a profile σ is partially x-reciprocal in C (or C-x-reciprocal) if and only if
there exists a partition P(C) of C such that each element p of the partition is the orbit
of some Rx

σ-cycle in (N,Rx
σ);

iii) a profile σ is trivially x-reciprocal if and only if (N,Rx
σ) is reflexive, that is, it contains

|N| x-cycles whose orbits are singletons;

iv) a profile σ is fully x-reciprocal if and only if (N,Rx
σ) contains at least one x-cycle with

orbit N (i.e., a Hamiltonian cycle).

Let us explain the above definitions by considering the case of best response de-
pendence (BR-dependence). A profile σ is BR-reciprocal if all players belong to
some cycle of BR-dependence. This is the case in both the (U,L), i.e., ‘cooperate-
cooperate’, and (D,R), i.e., ‘defect-defect’, outcomes in the prisoner’s dilemma (see
Figures 2.2 and 5.1). The other two outcomes are not BR-reciprocal as one of the
two players does not belong to the orbit of any cycle.

Along the same lines, a profile σ is partially BR-reciprocal in coalition C (or C-BR-
reciprocal) if all the members of C are partitioned by cycles of BR-dependence. This
means, intuitively, that independently of whether the players outside of coalition C
are linked by dependencies or not, the members of C are in a situation of reciprocity
in which everybody plays a best response strategy for somebody else in the coalition.
So, in the prisoner’s dilemma, outcome (D,L)—maximally preferred by Row—is
{Row}-BR-reciprocal as Row is playing a best response for herself, hence being in
a dependence relation with herself. A perfectly symmetric consideration can be
made about (U,R) and Column.

Finally, trivial and full BR-reciprocity are special cases of BR-reciprocity. In the
first case all players belong to a reflexive arc, that is, all players play their own best
response strategy. In the second case there exists one Hamiltonian cycle, that is, all
players are connected to one another by a path of BR-dependence. For example,
inspecting the BR-dependencies in the prisoner’s dilemma (Figure 5.1) it can be
observed that: (U,L) is fully BR-reciprocal as it contains two Hamiltonian cycles:
Row RBR

(U,L) Column RBR
(U,L) Row and Column RBR

(U,L) Row RBR
(U,L) Column. On the other

hand, (D,R) is trivially BR-reciprocal as the only cycles are Column RBR
(D,R) Column

and Row RBR
(D,R) Row.

To sum up, a profile is reciprocal when the corresponding dependence relation,
be it a BR- or DS-dependence, clusters the players into non-overlapping groups
whose members are all part of some cycle of dependencies (including degenerate
ones such as reflexive links). It is partially reciprocal if its dependence graph
contains at least one cycle. Trivial and full reciprocity refers to two extreme cases
of reciprocity. In the first case the cycles are reflexive arcs and in the second case all
players are ‘visited’ by one and the same cycle.

Before moving to the next section, we first provide one further illustrative ex-
ample and then study the relation between the two types of reciprocity that arise
from Definition 46: best response and dominant strategy reciprocity.
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Example 21 (Reciprocity in the three-person game) Let us go back to Example 20 and
to its BR-dependence graph given in Figure 5.3. The graph of profile (g, g, g) contains cycles
which all yield the partition {{1, 2, 3}} of the set of players. It is then a fully BR-reciprocal
profile. The cycles of profile (¬g, g, g), instead, yield two partitions: {{1}, {2}, {3}} and
{{1}, {2, 3}}, so that profile is BR-reciprocal, but not fully BR-reciprocal. As its graph is
reflexive, it is trivially BR-reciprocal, and also partially BR-reciprocal with respect to each
nonempty coalition. Interestingly, profile (¬g,¬g,¬g) it is both fully and trivially BR-
reciprocal. Intuitively, in that profile each player acts in favour of some other player by
playing his/her own best response strategy. Finally, profile (¬g,¬g, g) does not exhibit any
form of reciprocity.

Here below we report a few relevant facts concerning the interplay between DS-
and BR-reciprocity.

Proposition 39 (DS- vs. BR-reciprocity) Let G be a game, σ a profile, C ⊆ N, and
(N,Rx

σ) be its dependence graph with x ∈ {BR,DS}. The following holds:

i) σ is C-BR-reciprocal if and only if σC is BR-reciprocal in G ↓ σC;

ii) σ is C-DS-reciprocal if and only if σC is DS-reciprocal in G ↓ σ�
C

for any profile σ�;

iii) if σ is C-DS-reciprocal, then σ is C-BR-reciprocal, but not vice versa;

iv) if σ is DS-reciprocal, then σ is BR-reciprocal, but not vice versa.

Proof (First claim) From left to right. By Definition 46, if σ is C-BR-reciprocal, then C is
the union of orbits of RBR

σ -cycles. That is, by Definition 44, each member i of C plays a best
response to σ−i for some member j in C. Notice that, if we consider player i, best responding
to σC\i in G ↓ σC is equivalent to best responding to σ−i in G. From right to left. It follows
directly by the notion of best response and by Definitions 46 and 43. [Second claim] From
left to right. By Definition 46, if σ is C-DS-reciprocal, then C is the union of orbits of a
RDS
σ -cycle. That is, by Definition 44, each member i of C plays a dominant strategy for

some member j in C. As a dominant strategy is such no matter what the other players do,
the desired result follows directly. From right to left. It follows directly by the notion of
dominant strategy and by Definitions 46 and 43. [Third claim] It follows from the fact that
a dominant strategy is always a best response. [Fourth claim] It follows directly from the
third claim by setting C := N.

In words, the first claim states that a profile σ is partially BR-reciprocal in a coalition
C if and only if the restrictionσC ofσ to C is BR-reciprocal with respect to the subgame
(recall Definition 5) obtained from G by fixing the strategy of the complement C of
coalition C. More concisely, a profile is partially BR-reciprocal in a given coalition
if and only if it is BR-reciprocal in the subgame obtained by fixing what the players
do who do not belong to the coalition. The second claim is similar and states that a
profile is partially DS-reciprocal in a given coalition if and only if it is DS-reciprocal
in all subgames obtainable by fixing the strategies of the players who are not in the
coalition. These two claims show a first interesting difference between partial BR-



110 CHAPTER 5. DEPENDENCE GAMES

and DS- reciprocity: partial BR-reciprocity is bound by the dependence structure
of the current profile while partial DS-reciprocity is not. This is not surprising
as the two forms of reciprocity build one on the notion of best response, and the
other on the stronger notion of dominant strategy. A second important difference is
pointed out by the third and fourth claims, which show that, as expected, (partial)
DS-reciprocity is a stronger notion than (partial) BR-reciprocity.

Direct and indirect reciprocity

In the study of cooperation within the social sciences [25] special attention is devoted
to the difference between direct reciprocity, seen as direct exchange between two
participants, and indirect reciprocity, where instead a favour is returned indirectly.
Our framework allows to accommodate and refine these two notions.

Definition 47 (Direct and indirect reciprocity) Let G be a game and (N,Rx
σ) be its

dependence structure with x ∈ {BR,DS} and σ be a profile, and C ⊆ N.

i) A profile σ is individually x-reciprocal if and only if there exists a partition P(N) of
N such that each element p of the partition is the orbit of some Rx

σ-cycle and |p| = 1

ii) A profile σ is directly x-reciprocal if and only if there exists a partition P(N) of N
such that each element p of the partition is the orbit of some Rx

σ-cycle and |p| = 2.

iii) A profile σ is indirectly x-reciprocal if and only if it x-reciprocal but not directly nor
individually.

iv) A profile σ is totally indirectly x-reciprocal if and only if it x-reciprocal but there is
no partition P(N) of N with an element p of the partition such that |p| < 3 and is the
orbit of some Rx

σ-cycle.

Example 22 (Direct reciprocity among prisoners) The prisoner’s dilemma is a two play-
ers’ game. We can then expect that reciprocity can arise only in its direct form. The profile
of strategy (U,L) is directly DS-reciprocal, while this does not hold for the profile of strategy
(D,R) as it is reciprocal but it induces only cycles of length 1. The three persons’ prisoner’s
dilemma of Figure 3 allows for interesting refinements as the profile of strategies (U,L, 1)
that arises from the third player choosing the first game is indirectly x-reciprocal. It is not
totally indirectly x-reciprocal though, because there is always the possibility of cycles where
two players act in direct reciprocity.

We now proceed to give a game-theoretical interpretation of these definitions of
reciprocity based on the notion of dependence cycle.

5.2.4 Reciprocity and equilibrium
We provide a characterization of reciprocity as defined in Definition 46 in terms
of standard solution concepts. However, we first have to complement the set of
notions provided in Section 2.2.2 with the notion of permuted game.
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L R
U 0, 0 1, 0
D 0, 1 1, 0

G

L R
0, 0 0, 1
1, 0 1, 0

Gµ

Figure 5.4: The two horsemen game matrix and its permutation modeling the
horse-swap.

Definition 48 (Permuted games) Let G = (N,S,Σi,�i, o) be a game, σ a profile, and
µ : N �→ N a bijection on N. Theµ-permutation of gameG is the gameGµ = (Nµ,Sµ,Σµ,�µi
, oµ) such that:

• Nµ = N;

• Sµ = S;

• for all i ∈ N, Σµi = Σµ(i);

• for all i ∈ N, �µi =�i;

• oµ :
�

i∈N Σµ(i) → S is such that oµ(µ(σ)) = o(σ), where µ(σ) denotes the permutation
of σ according to µ.

Intuitively, a permuted game Gµ is therefore a game where the strategies of each
player are redistributed according to µ in the sense that i’s strategies become µ(i)’s
strategies, where players keep the same preferences over outcomes, and where the
outcome function assigns the same outcomes to the same profiles.

Example 23 (Two horsemen [53]) “Two horsemen are on a forest path chatting about
something. A passerby M, the mischief maker, comes along and having plenty of time and
a desire for amusement, suggests that they race against each other to a tree a short distance
away and he will give a prize of $100. However, there is an interesting twist. He will give
the $100 to the owner of the slower horse. Let us call the two horsemen Bill and Joe. Joe’s
horse can go at 35 miles per hour, whereas Bill’s horse can only go 30 miles per hour. Since
Bill has the slower horse, he should get the $100. The two horsemen start, but soon realize
that there is a problem. Each one is trying to go slower than the other and it is obvious that
the race is not going to finish. [. . . ] Thus they end up [. . . ] with both horses going at 0
miles per hour. [. . . ] However, along comes another passerby, let us call her S , the problem
solver, and the situation is explained to her. She turns out to have a clever solution. She
advises the two men to switch horses. Now each man has an incentive to go fast, because
by making his competitor’s horse go faster, he is helping his own horse to win!" [53, p.
195-196].

Once the game of the example is depicted as the left-hand side game matrix in
Figure 5.4, it is possible to view the second passerby’s solution as a bijection µ
which changes the game to the right-hand side version. Now Row can play Column’s
moves and Column can play Row’s moves. The result is a swap of (D,L) with (U,R),
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since (D,L) in Gµ corresponds to (U,R) in G and vice versa. On the other hand,
(U,L) and (D,R) stay the same, as the exchange of strategies do not affect them. As
a consequence, profile (D,R), in which both horsemen engage in the race, becomes
a dominant strategy equilibrium.

On the ground of these intuitions, it is possible to obtain a simple characterization
of the different notions of reciprocity given in Definition 46 as the existence of
equilibria in appropriately permuted games.

Theorem 40 (Reciprocity in equilibrium) Let G be a game and (N,Rx
σ) be its depen-

dence graph with x ∈ {BR,DS} and σ be a profile. It holds that:

i) σ is x-reciprocal if and only if there exists a bijectionµ : N �→ N s.t. σ is a x-equilibrium
in the permuted game Gµ;

ii) • σ is partially BR-reciprocal in C (or C-BR-reciprocal) if and only if there exists
a bijection µ : C �→ C s.t. σC is a BR-equilibrium in the permuted subgame
(G ↓ σC)µ;

• σ is partially DS-reciprocal in C (or C-DS-reciprocal) if and only if there exists
a bijection µ : C �→ C s.t. σC is a DS-equilibrium in all permuted subgames
(G ↓ σ�

C
)µ for any profile σ�;

iii) σ is trivially x-reciprocal if and only if σ is an x-equilibrium in Gµ where µ is the
identity over N;

iv) σ is fully x-reciprocal if and only if there exists a bijection µ : N �→ N s.t. σ is a
x-equilibrium in the permuted game Gµ and µ is such that {(i, j) | i ∈ N & j = µ(i)} is
a Hamiltonian cycle in N.

Proof The theorem states eight claims: four for x = BR and four for x = DS. [First claim
for x = BR.] From left to right, assume that σ is BR-reciprocal and prove the claim by
constructing the desired µ. By Definition 46 it follows that there exists a partition P of N
such that each element p of the partition is the orbit of some RBR

σ -cycle. Given P, observe
that any player i belongs to at most one member p of P. Now build µ so that µ(i) outputs
the successor j (which is unique) of i in the cycle whose orbit is the p to which i belongs.
Since each j has at most one predecessor in a cycle, µ is an injection and since domain and
codomain coincide µ is also a surjection. Now it follows that for all i, j, iRBR

σ j implies, by
Definition 44, that σµ(i) is a best response for i in σ. But in Gµ it holds that σµ(i) ∈ Σi and
since σ is reciprocal, by Definition 46, we have that for all i σi is a best response in Gµ, and
hence it is a Nash equilibrium. From right to left, assume µ to be the bijection at issue. It
suffices to build the desired partition P from µ by an inverse construction of the one used
in the left to right part of the claim. We set iRBR

σ j if and only if µ(i) = j. The definition is
sound w.r.t. Definition 44 because σ being a Nash equilibrium we have that iRBR

σ j if and
only if j plays a best response for i in σ. Since µ is a bijection, it follows that RBR

σ contains
cycles whose orbits are disjoint and cover N. Therefore, by Definition 46, we can conclude
that σ is BR-reciprocal. [First claim for x = DS.] The proof is analogous. [Second claim
(i)] From right to left assume σ is C-x-reciprocal. It follows that there exists a non-empty
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C s.t. the restriction of RBR to C is a cycle. By Definitions 5 and 46 this is equivalent to
stating that σC is BR-reciprocal in G ↓ σC. From this, by the first claim we obtain that σC
is a BR-equilibrium in (G ↓ σC)µ for some bijection µ. As these steps are all equivalences
(Proposition 39 first equivalence) we also directly obtain the direction from left to right.
[Second claim (ii)] The proof follows the line of the proof of the previous claim but exploits
the second equivalence of Proposition 39. [Third claim for x = BR] Follows directly from
Definition 46 and Proposition 38. [Third claim for x = DS] Follows directly from Definition
46 and Proposition 38. [Fourth claim for x = BR] Follows directly from Definition 46 and
the first claim. [Fourth claim for x = DS] It can be proven in the same way.

Intuitively, the theorem connects all cycle-based forms of reciprocity identified in
Definition 46 with equilibria in (sub-)games that could be obtained by appropri-
ate permutations of the underlying game. Furthermore, the instructions for such
permutations—which strategies go to which player—are provided by the existent
cycles. So, if the profile is trivially reciprocal (third claim), then it is already an equi-
librium, and if it is fully reciprocal (fourth claim), it then becomes an equilibrium
via a permutation that follows one of the available Hamiltonian cycles over the set
of players.

We hold Theorem 40 to be of particular interest for two reasons. First, it provides
a clear connection between intuitions developed in the theory of dependence—such
as the significance of cycles—with notions which lie at the heart of game theory—
such as that of equilibrium. Second, it provides a systematic dependence-based
rationale for modifications of games that allow desirable but unstable outcomes—
such as the cooperative outcome in the prisoner’s dilemma—to become equilibria.

Implementation via permutation

As just discussed, in view of Theorem 40, permutations can be fruitfully viewed
as ways of implementing—in a social software sense [53]—reciprocal profiles. This
terminology can be made formal as follows.

Definition 49 (Implementation as game permutation) Let G be a game, σ a profile
and (N,Rx

σ) be its dependence graph. Let also µ : N �→ N be a bijection with C ⊆ N. We
say that:

i) µ BR-implements σ if and only if σ is a BR-equilibrium in Gµ;

ii) µ DS-implements σ if and only if σ is a DS-equilibrium in Gµ;

iii) µ partially BR-implements σ in C if and only if σC is an BR-equilibrium in (G ↓ σC)µ;

iv) µ partially DS-implements σ in C if and only if σC is a DS-equilibrium in (G ↓ σ�
C

)µ

for any profile σ�.

Intuitively, implementation is here understood as a way of transforming a game in
such a way that the desirable outcomes, in the transformed game, are brought about
at an equilibrium point. In this sense we talk about BR- or DS-implementation.
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L R
U 2, 2 0, 3
D 3, 0 1, 1

G

L R
U 2, 2 3, 0
D 0, 3 1, 1

Gµ

Figure 5.5: The prisoner’s dilemma matrix and its permutation swapping Row with
Column according to the cycle of profile (U,L).

Analogously, partial BR- or DS-implementation consist in the realization of the
desirable outcomes as equilibria in one subgame (partial BR-implementation) or all
possible sub-games (partial DS-implementation).

Example 24 (Implementation of cooperation in the prisoner’s dilemma) Just as for
the two-horsemen example (Example 23) we can think of implementing the cooperative out-
come (U,L) of the prisoner’s dilemma (Figure 2.2) by permuting the game according to the
permutation µ dictated by one of the Hamiltonian cycles present in the dependence graph of
that profile (Figure 5.1): µ(Row) = Column and µ(Column) = Row. In the resulting game
where, essentially, Row decides whether Column plays L or R and Column whether Row
plays U or D, the cooperative outcome is a Nash equilibrium by Theorem 40 (see Figure
5.5). An example of partial BR-implementation is provided by Example 20 (see also Figure
5.2). There, profile (¬g, g, g) is partially BR-reciprocal in coalition {1, 2} (see Example 21).
A permutation between 2 and 3 would yield a game such that (g, g) is a Nash equilibrium
in the sub-game obtained by fixing the strategy of player 1 to ¬g (notice, however, that in
this case the identity permutation would also guarantee such result). In other words, were
it so that 1 had already made his/her choice, swapping the strategies of 2 and 3 would lead
to a stable outcome.

5.3 Solving Dependencies: Dependence Games

The previous sections have shown how reciprocity can be given two corresponding
formal characterizations: existence of cycles in a dependence structure, and exis-
tence of equilibria in a suitably permuted game (Theorem 40). In the present section,
we apply the notion of reciprocity to obtain a refinement of coalitional games. The
intuition behind such refinement consists, in a nutshell, in allowing coalitions to
form only in the presence of some sort of reciprocity.

5.3.1 Agreements

The central solution concept for games that take dependence relations seriously will
be the one of players’ agreement. The key idea behind it is that, given a reciprocal
profile (of some sort according to Definition 46), the players can fruitfully agree to
transform the game by some suitable permutation of sets of strategies.
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Definition 50 (Agreements and partial agreements) Let G be a game, (N,Rx
σ) be its

dependence structure in σ with x ∈ {BR,DS}, and let i, j ∈ N. A pair (σ, µ) is:

i) an x-agreement for G if σ is an x-reciprocal profile, and µ : N �→ N a bijection which
x-implements σ;

ii) a partial x-agreement in C (or a C-x-agreement) for G, if σ is a C-x-reciprocal profile
and µ : C �→ C a bijection which C-x-implements σ.

The set of x-agreements of a gameG is denoted x-AGR(G) and the set of partial x-agreements,
that is the set of pairs (σ, µ) for which there exists a C such that µ C-x-implements σ, is
denoted x-pAGR(G).

Intuitively, a (partial) agreement, of BR or DS type, can be seen as the result of
coordination (endogenous, via the players themselves, or exogenous, via a third
party like in Example 23) selecting a desirable outcome and realizing it by an
appropriate exchange of strategies.

Example 25 (Agreements in the prisoner’s dilemma) Let us go back to the prisoner’s
dilemma. Agreement ((D,R), µ) withµ(i) = i for all players, is the standard DS-equilibrium
of the strategic game. But there is another possible agreement, where the players swap their
strategies: it is ((U,L), ν), for which ν(i) = N\{i}. Here Row plays cooperatively for Column
and Column plays cooperatively for Row. Of the same kind is the agreement arising in
Example 23. Notice that in such an example, the agreement is the result of coordination
mediated by a third party (the second passerby). Analogous considerations can also apply
to Example 20 where, for instance, ((g, g, g), µ) with µ(1) = 2, µ(2) = 3, µ(3) = 1 is a BR-
agreement.

As we might expect, BR- and DS-agreements are related in the same way as BR-
and DS-reciprocity (Proposition 39). In what follows we will focus only on DS-
agreements and partial DS-agreements so, whenever we talk about agreements and
partial agreements, we mean DS-agreements and partial DS-agreements, unless
stated otherwise.

5.3.2 Dominance between agreements
As there can be several possible agreements in a game, the natural question arises
of how to order them. We will do that by defining a natural notion of dominance
between agreements, but first we need some auxiliary notions.

Definition 51 (C-candidates and C-variants) Let G = (N,S,Σi,�i, o) be a game and C
a non-empty subset of N. An agreement (σ, µ) for G is a C-candidate if C is the union of
some members of the partition induced by µ, that is: C =

�
X where X is an element of

the partition induced by µ on N. An agreement (σ, µ) for G is a C-variant of an agreement
(σ�, µ�) if σC = σ�C and µC = µ�C, where µC and µ�C are the restrictions of µ to C. As a
convention we take the set of ∅-candidate agreements to be empty and an agreement (σ, ν)
to be the only ∅-variant of itself.
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In other words, an agreement (σ, µ) is a C-candidate if the partial dependence
relation for σ of C and C follows exactly µ, and it is a C-variant of (σ�, µ�) if it differs
from this latter at most in its C-part. We can now define the following notions of
dominance between agreements and between partial agreements.

Definition 52 (Dominance) LetG = (N,S,Σi,�i, o) be a game and C ⊆ N be a coalition.
We say that:

i) An agreement (σ, µ) is dominated if and only if for some coalition C there exists
a C-candidate agreement (σ�, µ�) for G such that for all agreements (ρ, ν) which are
C-variants of (σ�, µ�), o(ρ) �i o(σ) for all i ∈ C.

ii) A partial agreement (σC, µ) in C is dominated if and only if for some coalition C� ⊆ N
there exists (τC� , ν) which is a C�-agreement such that for all σ�, τ�, o(τC� , τ�C� ) �i

o(σC, σ�C) for all i ∈ C�.

The set of undominated agreements of G is denoted DEP(G) and the set of undominated
partial agreements is denoted pDEP(G).

Intuitively, an agreement is undominated when a coalition C can force all possible
agreements to yield outcomes which are better for all the members of the coalition,
regardless of what the rest of the players can agree to do, that is, regardless of the
C-variants of their agreements. A partial agreement in coalition C is undominated
when C can, by means of a partial permutation, force the game to end up in a set of
states which are better for the member of the coalition no matter what the players
in C do.

It is worth stressing the critical difference between the two notions of domi-
nance. This difference resides in the fact that while dominance between agreements
only considers deviations which are the results of agreements, dominance between
partial agreements considers any form of possible deviation.

Example 26 (Dominance between partial agreements) In the three person game of
Figure 5.2, ((g1, g2), (µ(1) := 2, µ(2) := 1)) is a partial DS-agreement in {1, 2}. This agree-
ment, which represents a form of dependence-based cooperation between 1 and 2 dominates
the partial DS-agreement in N—on a trivially DS-reciprocal profile—((¬g1,¬g2,¬g3),
(µ(1) := 1, µ(2) := 2, µ(3) := 3)). In fact, it is undominated, since even the partial
DS-agreement in N ((g1, g2, g3), (µ(1) := 2, µ(2) := 3, µ(3) := 1)) (which is also a DS-
agreement) does not dominate it.

5.3.3 Dependence-based coalitional games
Agreements exploit the dependence relations between the players in order to achieve
some form of mutually beneficial cooperation. It is then natural to use agreements
to study games in strategic form as some form of coalitional games where players
form coalitions only in the presence of reciprocity. Standard questions of coopera-
tive game theory can then be meaningfully asked, such as the following one:
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Can we characterize the notion of dominance for agreements and partial agree-
ments (Definition 52) in terms of a suitable notion of stability in appropriately
defined coalitional games?

In order to answer this question we proceed as follows. First, starting from a
game G, we consider its representation CG as a coalitional game as illustrated in
Definition 12. As Definition 12 abstracts from dependence-theoretic considerations
we refine it in two ways, corresponding to the two different sorts of dependence
upon which we want to build the coalitional game:

1. The first refinement is obtained by defining a coalitional gameCGDEP capturing
the intuition that coalitions form only by means of agreements (Definition 50).
Such games are called dependence games.

2. The second is obtained by defining a coalitional game CGpDEP capturing the
intuition that coalitions form only by means of partial agreements (Definition
50). Such games are called partial dependence games.

Having done this, we show that the core of CGDEP coincides with the set of undomi-
nated agreements of G (Theorem 41) and, respectively, that the core of CGpDEP coin-
cides with the set of undominated partial agreements ofG (Theorem 42). We thereby
obtain a cooperative game-theoretical characterization of the notion of dominance
in Definition 52, formally linking agreements to the core of classes of coalitional
games.

Dependence games

We start by refining the method to obtain a coalitional game from a game in strategic
form (Definition 12), thus defining the notion of dependence game.

Definition 53 (Dependence games from strategic ones) Let G = (N,S,Σi,�i, o) be a
game. The dependence game CGDEP = (N,S,EGDEP,�i) of G is a coalitional game where the
effectivity function EGDEP is defined as follows:

X ∈ EGDEP(C) ⇔ ∃σC, µC s.t.
∃σC, µC : [((σC, σC), (µC, µC)) ∈ AGR(G)]
and [∀σC, µC : [((σC, σC), (µC, µC)) ∈ AGR(G)
implies o(σC, σC) ∈ X]].

where µ : N→ N is a bijection.

This somewhat intricate formulation states nothing but that the effectivity function
EGDEP(C) associates with each coalition C the states which are outcomes of agreements
(and hence of reciprocal profiles), and which C can force via partial agreements
(σC, µC) regardless of the partial agreements (σC, µC) of C.

We obtain the following theorem.
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Theorem 41 (DEP vs. CORE) Let G = (N,S,Σi,�i, o) be a game. It holds that, for all
agreements (σ, µ):

(σ, µ) ∈ DEP(G) ⇔ o(σ) ∈ CORE(CGDEP).

where µ : N→ N.

Proof [Left to right:] By contraposition, assume o(σ) � CORE(CGDEP). By Definition
14 this means that ∃C ⊆ N,X ∈ EGDEP(C) s.t. x �i o(σ) for all i ∈ C, x ∈ X. Applying
Definition 53 we obtain that there exists an agreement ((σ�C, σ

�

C
), (µ�C, µ

�

C
)) s.t. ∀σ�

C
, µ�

C
,

o(σ�C, σ
�

C
) ∈ X and s.t. x �i o(σ) for all i ∈ C, x ∈ X. Now, ((σ�C, σ

�

C
), (µ�C, µ

�

C
)) is obviously

C-candidate, and all its C-variants yield better outcomes for C than σ. Hence, by Definition
52,(σ, µ) � DEP(G). [Right to left:] Notice that the set up of Definition 52 implies that,
if (σ, µ) is dominated, then any other agreement for σ would also be dominated. So, by
contraposition, assume (σ, µ) � DEP(G). By Definition 52, we obtain that there exists a C-
candidate agreement (σ�, µ�) for G such that for all agreements (ρ, ν) which are C-variants
of (σ�, µ�), o(ρ, ν) �i o(σ) for all i ∈ C. But this means, by Definition 53, that ∃C,X
such that X ∈ EGDEP(C) and x �i o(σ) for all x ∈ C. Hence, by Definition 14, we obtain
o(σ) � CORE(CGDEP).

Put otherwise, here is what Theorem 41 states. Given a game G, a profile σ which
is partially DS-implemented by µ (Definition 49) forms an undominated partial
agreement (σ, µ) if and only if σ is in the core of the dependence game of G. By
taking Definition 46 and Theorem 40 into the picture, we thus see that Theorem
41 connects three apparently rather different properties of a strategic game G: the
existence of reciprocal profiles, the existence of DS-equilibria in permutations of G,
and the core of the dependence game built on G.

Partial dependence games

We now move on to define the class of partial dependence games, in a way analogous
to that followed for dependence games in Definition 53.

Definition 54 (Partial dependence games from strategic ones) Let G = (N,S,Σi,�i
, o) be a game. The partial dependence game CGpDEP = (N,S,EGpDEP,�i) of G is a coalitional
game where the effectivity function EGpDEP is defined as follows:

X ∈ EGpDEP(C) ⇔ ∃σC, µC s.t.

(σC, µC) ∈ pAGR(G)
and [∀σC : o(σC, σC) ∈ X]].

where µC : C→ C is a bijection.

Partial dependence games are defined by just looking at the set of outcomes that
each coalition can force by means of a partial agreement. Unlike Definition 53,
Definition 54 is much closer to the standard definition of coalitional games based
on strategic ones (Definition 12).
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Like for dependence games, we have a characterization of the set of undominated
partial agreements.

Theorem 42 (pDEP vs. CORE) Let G = (N,S,Σi,�i, o) be a game. It holds that, for all
agreements (σ, µ):

(σ, µ) ∈ pDEP(G) ⇔ o(σ) ∈ CORE(CGpDEP).

where µ : C→ C is a bijection with C ⊆ N.

Proof [Left to right:] By contraposition, assume o(σ) � CORE(CGpDEP). By Definition
14 this means that ∃C ⊆ N,X ∈ EGDEP(C) s.t. x �i o(σ) for all i ∈ C, x ∈ X. Applying
Definition54 we obtain that there exists a partial agreement (ρ�C, µ

�

C) s.t. ∀ρ�
C

, o(ρ�C,ρ
�

C
) ∈ X

and s.t. x �i o(σ) for all i ∈ C, x ∈ X. By Definition 52, (σ, µ) � pDEP(G). [Right to left:]
By contraposition, assume (σ, µ) � pDEP(G). By Definition 52, we obtain that there exists
a partial agreement (ρ�C, µ

�

C) for G such that for all ρ�
C

, o(ρ, ν) �i o(σ) for all i ∈ C. But this
means, by Definition 54, that ∃C,X such that X ∈ EGpDEP(C) and x �i o(σ) for all x ∈ C.
Hence, by Definition 14, we obtain o(σ) � CORE(CGDEP).

Like Theorem 41, Theorem 42 establishes a precise connection between the notions
of partial reciprocity in a strategic game G, the existence of DS-equilibria in all
permuted subgames of G, and the core of the partial dependence game built on G.

5.3.4 Coalitional, dependence, partial dependence effectivity
The coalitional game CG built on a strategic game G and its dependence-based
counterparts CGDEP and CGpDEP are logically related. The following fact shows how.

Proposition 43 (Effectivity functions related) The following relations hold:

i) For all G: EGpDEP ⊆ EG;

ii) It does not hold that for all G: EGDEP ⊆ EGpDEP; nor does it hold that for all G: EGpDEP ⊆

EGDEP;

iii) It does not hold that for all G: EGDEP ⊆ EG; nor does it hold that for all G: EG ⊆ EGDEP.

Proof (First Claim) Suppose not. Then for some G, some X ⊆ S and some C ⊆ N we
have that X ∈ EGpDEP and X � EG(C). The latter means that ¬∃σC ∈

�

i∈C Σi such that
∀σCo(σC, σC) ∈ X. However this implies by elementary logical reasoning that ¬∃σC ∈
�

i inC Σi¬∃µC such that (σC, µC) ∈ pAGR(G) and ∀σCo(σC, σC) ∈ X, i.e. that X � EGpDEP.
Contradiction. [Second Claim] To refute the first inclusion consider a prisoner’s dilemma in
which {(D,R)} ∈ EGDEP({Column,Row}) but {(D,R)} � EGpDEP({Column,Row}). The second
inclusion instead can be refuted by any game G that features a partial agreement (µC, σC)
for players in C but no partial agreement for players in C. [Third Claim] For the first
inclusion consider a gameGwith three players 1, 2, 3 and two actions {a, b} for each of them.
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Suppose the only possible agreement is the identity permutation µ(i) = i and (a, a, a) is a DS-
equilibrium. We have that {o(a, a, a)} ∈ EGDEP({1}) while {o(a, a, a)} � EG({1}). For the second
inclusion take G the prisoner’s dilemma game in which {(U,R)} ∈ EG({Column,Row}) but
{(U,R)} � EGDEP({Column,Row}).

The fact shows that dependence-based effectivity functions considerably modify
the powers assigned to coalitions by the standard definition of coalitional games on
strategic ones (Definition 12). Partial dependence effectivity functions instead really
weaken the notion of coalitional ability, reducing the coalitional strategy at players’
disposal. A formal consequence of Proposition 43 is the establishment of the relation
between CORE(CG), CORE(CGDEP) and CORE(CGpDEP), as a direct consequence of the
inclusion relation among their corresponding effectivity functions.

Summing up, the results in this section have shown that agreements and partial
agreements are a form of coalitional power that can be related to standard cooper-
ative solution concepts such as the core (Theorems 41 and 42). In particular, partial
agreements can be seen as a weakened form of coalitional strategies (Proposition 43),
i.e. those strategies that can be executed only in the presence of mutual reciprocity
among the members of a coalition. As such partial dependence games, which gen-
eralize dependence games, should be understood as an intermediate level between
the individualistic perspective studied in strategic games and the group perspective
analyzed in coalitional games.

5.3.5 An application to transferable utility games
The present section shows an application of dependence theory to transferable
utility games [51]. In transferable utility games (in short TU games) the preference
relations are replaced by payoff functions, that associate to each strategy profile a
positive real number, with the intuitive understanding that the number symbolizes
what the player gets at the state associated to that strategy profile.

Definition 55 (TU game) A (strategic form) transferable utility game (TU game) is a
tuple G = (N,Σi, pi) where:

• N is a set non-empty set of players;

• Σi is a set of strategies for player i ∈ N;

• pi :
�

i∈N Σi → R+ is a payoff function, that associates to each player and each
strategy profile a positive real number.

So, TU games are games in strategic form where the outcome function is substituted
by a payoff function where numerical payoffs encode agents’ preferences. All games
in Figure 2.2 are then examples of TU Games.4

4TU games are defined without an outcome function and the payoffs are directly associated to strategy
profiles. TU games can be translated into standard strategic games (Definition 1) by endowing them
with a bijective outcome function and a class of preference relations �i induced by the payoff functions
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Definition 12 allows us to translate strategic games into coalitional games by
using so-called α-effectivity functions. In TU games this translation is not available
as players together can only reach vectors of reals and not set of outcomes, but a
similar notion can be defined, interpreting what a coalition can achieve as the best
payoff that a coalition is able to achieve on its own, i.e., what we call the value of a
coalition. We first define the coalitional payoff associated to each strategy profile.

Definition 56 (Coalitional payoff in TU Games) Let G be a TU game and σ ∈ Σ be
a strategy profile. The payoff of coalition C for the strategy profile σ, pC(σ) is defined as
follows:

pC(σ) =
�

i∈C

pi(σ).

Taking into account the possible replies of the opponents, we are able to define the
minimal payoff, namely minσC

pC(σ), for each strategy σC that coalition C can play.
In essence, we take a negative view on the opponents assuming that they will try
to minimize C’s payoff. Coalitions can then choose the best strategy knowing each
minimal payoff, which constitutes the value of the coalition.

Definition 57 (Value of a coalition) Let G be a TU game and C ⊆ N be a coalition.
vα(C), the value that coalition C is able to guarantee, is defined as follows:

vα(C) = maxσC minσC
pC(σ).

In words, the value of a coalition C is the payoff pC(σ) where σC is the most rewarding
collective strategy that C can play knowing that σC is the toughest collective strategy
by C.

Definition 57 allows coalition C to select any collective strategy at its disposal.
One immediate contribution of the theory of dependence is to restrict the set of
available strategies via partial agreements. As done in Section 5.3, we restrict our
attention to partial DS-agreements.

Definition 58 (Coalitional Agreements in TU Games) Let G be a TU game. σC is a
coalitional agreement of C in gameG if there exists µ : C→ C, such that for all i ∈ C
and for all σ�i and ρ−i we have that:

pµ(i)(σi,ρ−i) ≥ pµ(i)(σ�i ,ρ−i)

We call AGRTU(G)C the set of coalitional agreements of C at game G.

Now we can define the negotiated value of a coalition, i.e., the payoff that a coalition
can guarantee by undertaking agreements.

as expected:
o(σ) �i o(σ�) if and only if pi(σ) ≤ pi(σ�)

for each strategy profile σ, σ� and each player i ∈ N.
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Definition 59 (Negotiated value of a coalition) Let G be a game and C ⊆ N be a
coalition. vαDEP(C), the negotiated value of coalition S is able to guarantee, is defined as
follows:

vαDEP(C) = maxσC∈AGRTU(G)C
minσC

pC(σ).

Intuitively, vαDEP(C) represents the payoff that players in C can guarantee undertak-
ing an agreement that answers the toughest collective strategy by their opponents.
As a convention, if a coalition is not able to reach any agreement, vαDEP is set to 0.
Notice the similarity with partial agreements, where the opponents of a coalition
can play strategies that need not be themselves coalitional agreements.

Several properties are desirable for TU games. One of the most fundamental
is that of superadditivity of the coalitional value, i.e the fact that coalitions can
achieve more by uniting than by playing separately. In our case this translates into
the following requirement: vαDEP(C)+ vαDEP(C�) ≤ vαDEP(C� ∪C) for each disjoint C,C�.
Under a mild assumption, this property holds.

Proposition 44 Let C ⊆ N,C� ⊆ N and C ∩ C� = ∅ and vαDEP(C) > 0, vαDEP(C) > 0.

vαDEP(C) + vαDEP(C�) ≤ vαDEP(C� ∪ C)

Proof It follows from the fact that σC ∈ AGRTU(G)C and σC� ∈ AGRTU(G)D for disjoint
C,C� implies that σC∪C� ∈ AGRTU(G)C∪C� and Definition 57.

In words the proposition says that coalitions can favourably merge their partial
agreements. In general partial agreements are not superadditive, as a consequence
of the fact that bigger coalitions may hinder agreements instead of favouring them,
unless their separate components could already agree on something. In the latter
case a partial agreement can always been obtained, by merging the two disjoint
partial agreements. Finally, it is instructive to notice that superadditivity would
not be obtainable under simple agreements. This depends on the fact that agree-
ments are defined with respect to a whole strategy profile limiting considerably the
possibilities of coalition formation and, therefore, of coalition merging.

In summary, the concept of partial agreement applies naturally to games with
transferable utility, where the value of coalitions can be calculated looking at the
payoff that players can achieve together (Definition 57). In the context of such
games, partial agreements turn out to be well-behaved as they enforce, under
a natural assumption, the desirable property of superadditivity (Proposition 44)
which constitutes a common assumption in cooperative game theory.

5.4 Discussion

5.4.1 Related work
We relate here our game-theoretical view of dependence to existing literature in
MAS. To the best of our knowledge, almost no attention has been dedicated up
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till now to the relation between game theory and dependence theory. There are,
however, three noteworthy exceptions:

• A study of the added value of exchanging tasks in a restricted game-like
structure can be found in [14], where task-exchange is studied as a means to
ease the computation of coalitions.

• Recently, the work presented in [15, 58] elaborates on ideas close to [14]
applying them to a special class of games, called Boolean games.

We first briefly describe the framework in [14] and then discuss [15, 58].

Coalitions that exchange tasks

A series of papers by Boella, Sauro and van der Torre [14, 12, 57] put forward
a formalization of the notions of power and dependence inspired by the work
of Castelfranchi and colleagues. In their work the attempt of using dependence
relations to form coalitional structures first makes its appearance. In [14] the authors
frame their definitions within task based power structures 5.

Definition 60 (Task based power structures) A task based power structure is a tuple
�Ag,G,T, goals, power� where:

• Ag is a non-empty set of agents;

• G is a non-empty set of goals;

• T is a non-empty set of tasks;

• goals : Ag→ 2G is a function that associates to each agent in Ag the subset of goals
G it desires to achieve;

• power : 2Ag×T → 2G is a partial function that associates to a task assignment
τ ⊆ Ag × T a set of goals that the task assignment achieves.

From their very first definition, the structures analyzed in [14] are characterized
by a clear resemblance to strategic games. However, a variety of new concepts
are introduced, such as tasks and tasks assignments, power and goals. It is worth
stressing, even more because these concepts are used also in [58], the primitive
character of goals and tasks, which are introduced as sets with no further formal
requirement. In a task based power structure the classical definitions of rationality
(such as those in Definition 3) are not immediately available and the costs and the
benefits for each agents need to be independently defined.

Definition 61 (Costs and Benefits) The benefits and costs of the task assignment τ for
agent a ∈ Ag are defined as follows:

benefits(τ, a) = goals(a) ∩ power(τ)
costs(τ, a) = {t ∈ T | (a, t) ∈ τ}

5Similar structures are studied in [12, 57] and subsequent papers.
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The authors of [14] proceed then to defining a notion of domination among task
assignments. A task assignment τ1 is dominated if there is a task assignment τ2 ⊆ τ1
such that all the agents involved in τ2 enjoy higher benefits in τ2 (or lower costs).
Task assignments that are not dominated are called do-ut-des task assignments.

Despite the resemblance of task based power structures to strategic games, the
do-ut-des links among players in [14] are of a completely different nature from
ours. Apart from the lack of structure of goals, the correspondent of preferences
in tasks based structures, and the consequent difficulty of formulating classical
solution concepts, it appears even more problematic to relate the notion of benefit
in Definition 61 to our notion of favour. While the latter is a straightforward
generalization of the classical notions of best response and dominant strategy the
do-ut-des in [14] is only concerned with the burden that a player bears in a task
assignment and does not aim at being a formal correspondent of reciprocity in
games. As authors of [14] rightly claim their definition should be interpreted as
”give something to obtain something else”, without concerning the strategic aspects
of decision making.

Dependence in Boolean games

Recently, [15] and [58] have studied a notion of dependence for a restricted class
of strategic games called Boolean games [38]. In a nutshell, Boolean games are
n-player games where players act by controlling the truth value of a propositional
variable, and where players’ preferences are dichotomous, that is, each player has a
single goal—expressed by a propositional formula—which is either fulfilled or not.
The work presented in [58] then extends some of the results presented in [15] to
the class of cooperative Boolean games [26], that is, a coalitional version of Boolean
games. Like in our case, the authors of [15] and [58] look at dependence relations as
graph-theoretical information hidden within the game structure. However, there
are several important differences.

First of all the simple structure of Boolean games, and in particular the fact that
players’ preferences are dichotomous, allows for a definition of dependence which
is considerably simpler than ours (Definition 44):

Player i depends on player j if and only if j controls some propositional variables
which are relevant for the satisfaction of i’s goal.

It is easy to see that such a definition cannot be straightforwardly generalized to the
case in which players have non-dichotomous preferences, as in that case it becomes
unclear what the ‘goal’ of player i actually is. In fact, this is precisely the sort of issue
that we went around by proposing Definition 44. Notice that, as a consequence,
the two definitions of dependence differ radically in that the one proposed by [15]
and [58] views dependence structures as properties of games, while ours views
dependence structures as properties of the outcomes of games.

Secondly, it is worth mentioning an underlying difference in motivation between
our work and the one presented in [15] and [58]. The latter develops the analysis of
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dependence relations essentially as a means to extract graphical information which
eases the complexity of computing Nash equilibria in Boolean games and the core
in cooperative Boolean games. What motivates our analysis instead is rather the
attempt to provide a game-theoretical foundation to dependence theory as such.
This lead us to consider strategic games in their generality—rather than Boolean
games—and to look at dependence as a means to characterize interesting properties
of games (e.g., reciprocity) and to define a specific class of coalitional games, which
has been the aim of Section 5.3.

5.4.2 Open issues

The formalization of dependence relations and agreements provided here does not
consider a variety of subtleties that might play a role in interaction. We list a few of
them, sketching how to extend our framework in order to incorporate these more
complex features.

Partial strategy permutation. Agreements are implemented by strategy permu-
tations among stakeholders. If this operation fits perfectly games where players
are endowed with a small number of strategies, such as those of Figures 2.2 and
5.4, it seems more problematic when players are endowed with a larger number
of strategies. Therefore, players may be interested in favours without necessarily
having to lend control of all their actions. In this purpose, it would make sense to
restrict possible permutations—exchanges of favours—to subsets of the available
strategies. This could be done via a function that, when applied to a gameG, yields
a game identical to G, but where profiles are restricted to the available strategies,
and where the outcome function is restricted accordingly. The intuition behind
restricting the game is that players decide in advance the type of strategies that they
allow to be agreed upon.

AND and OR Dependence. Our definition of players’ dependence allows for
situations, such as the one illustrated in Figure 5.2, where a player can be simul-
taneously dependent on several other players, suggesting the possibility of many
possible agreements. In the literature on dependence theory (cfr. [60]) this form of
dependence is usually referred to as OR dependence, as opposed to AND dependence,
where instead a player is dependent on the combined strategy of other players, i.e.
a sort of dependence not on a player but on a coalition. While the first can be
easily accommodated in our framework, for the latter a generalization is required,
that allows a dependence relation between a player and a coalition. The informal
account in [60] suggests that AND dependencies and OR dependencies have differ-
ent consequences for the stability of coalitions. If a situation of AND dependence
of player i on players j and k grants the latter two players a power position (as
i needs both), a situation of OR dependence allows player i to choose among the
possible stakeholders in a possible agreement: in some sense players profit from
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OR dependencies. A suitable generalization of the definition of dependence should
be able to account for this feature.

Extensive Interaction. Dependence and agreements have been formulated for
strategic games, where decisions have a one-shot nature and no temporality is
involved. However dependencies are naturally present in extensive interaction as
well and agreements make perfect sense there. In order to analyze dependence in
extensive games we could always adopt the standard translation of an extensive
game into a strategic one [51]. Dependence relations and agreements can then be
retrieved in the usual way, by resorting to the strategic game we have obtained.
However extensive games have special features. Their typical solution concept, for
instance, is that of sub-game perfect equilibrium, i.e. a Nash-equilibrium that rules out
incredible threats [51]. What is interesting for a theory of dependence in extensive
interaction is whether analogous solution concepts can be obtained for dependence
relations. A generalization of the notion of sub-game perfect equilibrium to a notion
of sub-game perfect equilibrium for someone else could be obtained as a refinement of
the notion of equilibrium based on best response for someone else that we have
studied here. Such refinement should take care of ruling out strategies determining
incredible favours.

5.4.3 Conclusion
Our chapter has shown that a theory of agent dependence, first introduced by
Castelfranchi and colleagues, can be fully incorporated within the theory of games,
where it gives rise to forms of rationality that lie between the individual perspective
of strategic games and the coalitional perspective of cooperative games. Concretely
what we have shown can be articulated in two directions:

• First and foremost it has been shown that the intuitive notion of dependence
relation originating from social and cognitive science literature [24, 20] can be
fully incorporated within the theory of games, contributing to the construction
of solution concepts that account for its underlying dynamics. The standard
solution concepts of best response and dominant strategies first provided in
Definition 3 have been generalized to best response and dominant strategy for
someone else in Definition 43, providing a basis for formalizing reciprocity in
games.

• Second, once the game-theoretical account has been formulated, it has been
shown that central dependence-theoretic notions such as the notion of cycle
have natural game-theoretical correspondents (Theorem 40). Furthermore,
dependence theory has been demonstrated to give rise to types of cooperative
games where solution concepts such as the core can be applied. The relation
between the various forms of cooperative games where coalitions undertake
agreements (dependence and partial dependence) have been analyzed, to-
gether with the dominance they induce on agreements (Theorem 41 and 42).
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The results suggest the presence of a full spectrum of cooperative solution con-
cepts for dependence structures, that form a partial order under the inclusion
relation, whose further investigation poses an interesting research challenge.

The next chapter will apply to dependence games the classical logical tools for
reasoning about coalitional ability.
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Chapter 6

Strategic Reasoning in
Dependence Games

The other way is not to argue about the assumptions at all, but to look at the conclusions only.
Do our observations jibe with the conclusions, do the conclusions sound right? If yes, then that’s
a good mark for the assumptions. And then we can go and derive other conclusions from the
assumptions, and see whether they’re right. And so on. The more conclusions we have that jibe
with our observations, the more faith we can put in the assumptions. That’s the way that I embrace,
that’s good science. Logically, the conclusions follow from the assumptions. But empirically,
scientifically, the assumptions follow from the conclusions!

Robert J. Aumann, On the state of the art in game theory [5]

6.1 Introduction
Chapter 4 has dealt with extensively one of the best known and most used for-
malisms for reasoning about cooperative structures, i.e. Coalition Logic [54]. Coali-
tion Logic is a modal logic extending propositional logic with a family of modal
operators [C]ϕ that are intuitively read as

”the set of players C can cooperate to achieve the property ϕ”

Formulas of Coalition Logic reason about what holds whenever players can
form coalitions, i.e. whenever they join forces to achieve a certain goal. Generally
speaking, Coalition Logic — and the same holds for similar formalisms such as
Alternating-time Temporal Logic (ATL) [2] and Seeing to It That (STIT) [8] — is not
concerned with investigating the reasons why cooperation should be established,
but it is limited to describing the logic of coalitional ability once cooperation is
already in force.

However, as we have extensively discussed in the introductory section of Chap-
ter 5, coalitions may not always be equally likely to form, for common interest in
collective action may not arise.

129
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The theory of dependence relations studied in Chapter 5 proposes itself has a
weakening of the classical theory of coalitions, clarifying the reason for players to
work together. A natural question arising from this viewpoint is whether modal
languages can be defined, analogous to that of Coalition Logic and siblings, where
the modal operator [C]ϕ is read as

”the set of players C can agree to achieve the property ϕ”

where agreements acquire a semantics in terms of the machinery built up in
Chapter 5 to talk about dependence games. Should such a link with modal logic be
established, agreements could be reasoned upon in a fully logical manner, making
it possible to transfer standard logical results to purely game-theoretical ground.

Nevertheless, the jump from a Coalition Logic modality interpreted on effectivity
functions to one interpreted on agreements (Definition 50) requires some work:
while effectivity functions are well-behaved neighbourhood structures, agreements
result from a complex interaction between preference relations and strategies in
dependence games, that are not a standard semantics for modal languages. True,
effectivity functions can be constructed from agreements (Definition 53), but they
are a mere description of outcomes that can be achieved by agreements and they
would not help in making the role of dependence relations explicit.

The aim of the chapter is to reason on agreements in a Coalition Logic-like lan-
guage, interpreted on effectivity functions and preferences, and based on operators
that can account for individual rationality and how it changes as a consequence of
agreements.

This chapter will also devote particular attention to the use of norms to regulate
agreements, investigating what in Chapter 4 has been called the external perspective
on norms, leaving the discussion of the internal one to the conclusion. Indeed,
we can find many examples of agreements violating systemic properties that we
recognize as desirable. Think of cartel formation, where more companies, instead
of competing to lower prices, agree on establishing a common level of price; the aim
of such collusion (also called the cartel agreement) is to increase individual members’
profits by reducing competition. To regulate them, we use the standard labelling on
outcomes through a violation constant. The newly introduced notion of agreement,
confronted with this labelling, acquires a deontic reading, on top of which we can
construct the semantics of the standard modal operators of permission, forbiddance
and obligation.

Our dependence-based approach to the regulation of multi-agent systems is
exemplified by the following story, that is also meant to recall the building blocks
of our theory of dependence.

Example 27 (Strangers on a Train) In Patricia Highsmith’s novel1, Strangers on a Train
[40], which Alfred Hitchcock turned in 1951 into a movie with the same title, the following
story takes place:

1We thank Paul Harrenstein for having brought this example to our attention.
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N S O
N 2, 2 2, 0 9, 1
S 0, 2 0, 0 0, 1
O 1, 9 1, 0 8, 8

Figure 6.1: Strangers on a train.

Two protagonists wish to get out of an unhappy relationship. Architect Guy
Haines wants to get rid of his unfaithful wife, Miriam, in order to marry the
woman he loves, Anne Faulkner. Charles Anthony Bruno, a psychopathic
playboy, deeply desires his father’s death. On a train to see his wife, Guy meets
Bruno, who proposes the idea of exchange murders: Bruno will kill Miriam if
Guy kills Bruno’s father; neither of them will have a motive, and the police will
have no reason to suspect either of them.

We can illustrate our protagonists’ setting, before any agreements are taken, with the
two persons’ matrix in Figure 6.1.

In the example, both players have the same possibilities: either do nothing (N),
commit the murder of their own significant other (S), or commit the murder of
the other persons’ significant other (O). Let Guy be the row player and Bruno
the column player. Focusing on the choices of Guy, we notice that N is a dominant
strategy for Guy (Definition 3), as whatever strategy Bruno plays, N is a best response
to that strategy. For Bruno the reasoning pattern is symmetric, therefore his strategy
N is also a dominant strategy. These two facts taken together mean that the strategy
profile (N,N) is a dominant strategy equilibrium (Definition 3).

However the story takes an interesting twist once we consider what players
could do for each other. The strategy O, by Guy, is a dominant strategy for Bruno
(Definition 43), as it is good for Bruno whatever Bruno himself decides to do. Same
for Guy: the strategy O by Bruno is a dominant strategy for Guy. Once we identify
what players can do for each other, the dependence relations can be automatically
drawn: Guy DS-depends on Bruno for strategy O and on himself for strategy N
(Definition 44), while Bruno DS-depends on Guy for strategy O and on himself for
strategy N. Dependence cycles (Definition 45) suggests the possibility of reciprocal
play: the profile (N,N), which is associated with two dependence cycles of length
1, is trivially DS-reciprocal (Definition 46), i.e. the only possible way for players to
agree is to play for themselves, while the profile (O,O), which is associated with an
Hamiltonian dependence cycle, is fully DS-reciprocal (Definition 46), i.e. players can
profit by playing for each other.

In this situation two agreements would be possible (Definition 50): ((N,N), µ) and
((O,O), ν), where µ is the identity permutation and ν is the players’ transposition.
However notice that the outcome resulting from (O,O) is preferred by both players
to the outcome resulting from (N,N), which means that ((N,N), µ) is a dominated
agreement (Definiton 52), while ((O,O), ν) is undominated. The latter is also stable
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N S O
N 2, 2 0, 2 1, 9
S 2, 0 0, 0 1, 0
O 9, 1 0, 1 8, 8

Figure 6.2: Swapping murders.

as, by Theorem 41, it belongs to the core of the resulting dependence game (Definition
53). Therefore ((O,O), ν) can be considered a rational outcome of the dependence
game: Guy would find it reasonable to kill Bruno’s father only if he knew that
Bruno would kill his wife, and the same for Bruno. This would be possible if Guy
could lend his action of killing in exchange to Bruno’s one. The proposal of swapping
murders, i.e. a simultaneous exchange of favours between the strangers, suggests
itself. If this agreement could take place then the game would be transformed into
the one pictured in Figure 6.2, the transposition of the matrix in Figure 6.1 under
swap of strategies. The swap of players shown in this game DS-implements (O,O)
(Definition 49).

Imposing a normative labelling onto the strangers’ example is to say that some
agreements can be harmful even when rational for its stakeholders. Starting from
this consideration we proceed in constructing a deontic language interpreted on
agreements that is able to solve the strangers’ game declaring their swap as undesir-
able and that is general enough to be applicable to a large number of interactions.

Chapter Structure: The chapter, based on joint work with Davide Grossi, Jan
Broersen and John-Jules Meyer [61], is structured as follows: in Section 6.2 the theory
of dependence elaborated in Chapter 5 is equipped with the tools defined in Chapter
3 to build up a semantics of coalitional rationality in undertaking agreements.
In Section 6.3 we build the syntax and the semantics of a logic of agreements,
introducing a switch operator to reason about permutations of effectivity functions.
In Section 6.4 the classical deontic operators are defined on agreements, and in line
with Chapter 4 they are able to reason about desirable and undesirable coalitions.
The concluding section discusses the open issues and the related work.

6.2 Agreements and Coalitional Rationality

In this section we elaborate a model of agreements in terms of preferences and
effectivity functions. In doing so we will follow two paths: in the first (Section 6.2.1),
we make use of the notion of undomination, studied in Chapter 3 as an analogue of
dominant strategy in strategic games. Besides we complement it with an operation
on effectivity functions, to model permuted games. In the second (Section 6.2.2) we
make use of a new notion of undomination, namely an undomination for someone
else, as an analogue of dominant strategy for someone else in dependence games.
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Finally, along the lines of Theorem 40, we investigate the assumptions under which
these two representations are equivalent.

6.2.1 Permuting effectivity functions
Effectivity functions have been introduced in Chapter 2 (Definition 6) as an abstract
representation of coalitional power. They represent systemic properties that a coali-
tion can achieve by cooperating, abstracting away from the process of coalitional
decision making. Effectivity functions are thereby too coarse to be taken as a model
of agreements among players.

To overcome this limitation, we start out by considering individual effectiv-
ity functions — effectivity functions for single players — on which to apply the
transformations induced by dependence relations.

Definition 62 (Individual effectivity functions) Given a set of players N and a set of
worlds W, an individual effectivity function is a function E : W → (N→ 22W ).

Individual effectivity functions, that for simplicity will simply be called effec-
tivity functions, display the individual perspective of strategic games, assigning to
each player the choices that can be made at each state. In the spirit of dependence
theory, the power of groups of players will be given by the possible agreements that
they can undertake.

Let us describe the example of the strangers with individual effectivity functions.

Example 28 Let w be a situation representing the game in Figure 6.1. In order to avoid
possible confusions due to the operation of strategy permutation we identify the outcomes
with their payoff vector instead of their corresponding strategy profile, i.e. we say (2, 2)
instead of (N,N). Guy’s effectivity function E(w)(G) amounts to his choices in the game
closed under supersets, that is

E(w)(G) = {{(2, 2), (2, 0), (9, 1)}, {(0, 2), (0, 0), (0, 1)}, {(1, 9), (1, 0), (8, 8)}}sup

while Bruno’s is

E(w)(B) = {{(2, 2), (0, 2), (1, 9)}, {(2, 0), (0, 0), (1, 0)}, {(9, 1), (0, 1), (8, 8)}}sup

For simplicity, when no ambiguity arises, we can name sets of outcomes, writing for
instance E(w)(G) = {N,S,O}sup. When instead ambiguity does arise we index choices with
players, for instance we say NG to indicate that doing nothing is a choice by Guy.

In the way we have defined them (Definition 50), agreements are a reallocation
of strategic ability that follows a certain dependence graph (as proved in Theorem
40). In a Cooperative Game Model however we only dispose of effectivity functions
and preferences. To define agreements in these models we need to endow them
with an operation that permutes effectivity functions, reassigning strategic ability.
We call this operation choice switch.



134 CHAPTER 6. STRATEGIC REASONING IN DEPENDENCE GAMES

Definition 63 (Choice switch) Let E(w)(i) be a choice set of player i at world w and
µ a permutation on N. Then E�(w)(i) is the choice switch for player i at w following
permutation µ if E�(w)(i) = E(w)(µ(i)).

Substantially the choice switch assigns to a player a new effectivity function,
according to a given permutation. For our purposes it is useful to dispose of a
global operation of choice switch, that reallocates effectivity functions according to
a certain permutation. We abbreviate with Eµ(w) the choice set E(w) constituted by
the choice switches for each player i at world w according to permutation µ.

Example 29 Let w be a situation representing the game in Figure 6.1 and let µ be a
permutation on the players such that µ(G) = B. Bruno’s choice switch following µ at w
amounts to Guy’s choices in the picture, namely

E(w)(µ(G)) = E(w)(B) = {{(2, 2), (2, 0), (9, 1)}, {(0, 2), (0, 0), (0, 1)}, {(1, 9), (1, 0), (8, 8)}}sup

which is the effectivity function of Bruno in Figure 6.2, representing the game scenario after
the agreement is taken. For Guy the result is symmetric:

E(w)(µ(B)) = E(w)(G) = {{(2, 2), (0, 2), (1, 9)}, {(2, 0), (0, 0), (1, 0)}, {(9, 1), (0, 1), (8, 8)}}sup

Proposition 45 The following property holds:

• Eµ(w) preserves outcome monotonicity, regularity, superadditivity, for coalitions
made by individual players.

Proof It is sufficient to notice that the listed properties are formulated for choice sets of any
two players in case of regularity and superadditivity and, in particular, they hold for any
permutation. For outcome monotonicity the same argument can be used.

A permuted individual effectivity function encodes a sort of candidate agree-
ment, i.e. a possible reallocation of players’ strategic ability that does not take
preferences into account. To obtain a proper agreement we need to identify the
undominated choices for each player at each permutation, i.e. what the players
find it rational to achieve if they could choose for someone else.

Definition 64 (Agreements and permuted games) Let E be an effectivity function on
W, C ⊆ N a coalition, µ : C → C a permutation, w ∈ W a state defined on a given
Coalitional Game Model M. A tuple (

�
(Xi)i∈C, µ) with Xi ∈ E(w)(i) is said to be an

agreement for coalition C at world w if

• Xi�µ−1(i),w in Eµ(w).

The definition says that an agreement results from an exchange of strategies
of individual players that are individually rational for the players receiving them.
More specifically, the agreement is made by a set X that is an intersection of sets
indexed by the players, and a permutation on the players. Each part of this set is an
undominated choice of player i in the effectivity function of the player j indicated
by the permutation.

The definition mimics the features of DS partial agreements of Definition 50, as:
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• it is defined for a coalition and not necessarily for all the players;

• it adopts undominated choices (Xi�µ−1(i),w), analogues of dominant strategies
in coalitional games.

Let us observe how this works in our example.

Example 30 From the results of Chapter 3 (Proposition 15) we know that the choice of
doing nothing by Guy and by Bruno are undominated choices in the effectivity function
obtained from the game in Figure 6.1. This is because doing nothing, i.e. the profile (N,N)
in the game, is a dominant strategy equilibrium . Once however the effectivity functions
are permuted, dominant strategy equilibria also change. In the game of Figure 6.2, the
choice to kill the other’s significant other (the profile (O,O)) is now a dominant strategy.
Consequently, making use of Proposition 15, the choice of doing nothing is undominated for
each player and it is thereby an agreement.

Agreements, formulated as undominated choices, inherit several properties typ-
ical of undomination. The most representative one is that of monotonicity, and its
validity is shown by the following proposition.

Proposition 46 Let (
�

(Xi)i∈C, µ) be an agreement for coalition C at a given state w. Then
each (Y, µ) such that

�
(Xi)i∈C ⊆ Y is an agreement for coalition C at w.

Proof By outcome monotonicity of effectivity functions and by the definition of the set Y,
Y is such that Y =

�
(Yi)i∈C for Yi ∈ E(w)(µ(i)). By monotonicity of Pareto optimality of

choices (Proposition 9) we also have that Yi�µ(i),w in E(w)(µ(i)). This is enough to conclude,
following Definition 64, that (Y, µ) is an agreement.

As anticipated, what we have just described is one of the two possible ways
to understand agreements, here seen as the conjunction of undominated choices
in permuted effectivity functions. An alternative way is the generalization of the
standard notion of undomination to undomination for someone else, which will be
pursued in the coming section.

6.2.2 Coalitional rationality for someone else

A different way of formalizing agreements is suggested by the definitions of best
response and dominant strategy for someone else that we have used in dependence
games (Definition 43). Instead of permuting effectivity functions we permute pref-
erences, generalizing undominated choices to undominated choices for someone else.

As we can recall from Definition 22 undominated choices have two constituents:

• Pareto optimality, i.e. undominated choices are (∀,∀) Pareto optimal choices;

• Choice restriction, i.e. undominated choices preserve optimality in every
choice restriction.
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In order to define undominated choices for someone else we need to generalize
the part of the definition concerning preferences.

To this end we define Pareto optimal choices for someone else, that select maxima
in one’s order of choices. But unlike its standard definition (Definition 19), the
maxima are considered in someone else’s preference order. Once again, we limit
ourselves to the (∀,∀) preference lifting. Henceforth we simply write �i (�i) for
�

(∀,∀)
i (�(∀,∀)

i ).

Definition 65 (Pareto optimal choice for someone else) Let E be an effectivity func-
tion, i, j ∈ N two players, w ∈ W a state and X ∈ E(w)(i) a set in i’s effectivity function.
X is Pareto optimal choice by i for j (in symbols PO(i�→ j)) at w if, and only if, for no
Y ∈ E(w)(i), Y � j X.

The definition says that Pareto optimal choices for someone else are those choices
in an individual effectivity function such that no better choice exists for another given
player. Despite their name, Pareto optimal choices for someone else become standard
Pareto optimal choices, i.e. for oneself , in case i and j coincide. Moreover, they
inherit all the properties of Pareto optimal choices described in Paragraph 3.2.2. In
particular they inherit monotonicity which, together with the adoption of the (∀,∀)
preference lifting, turns them into rather weak constructs. Let us have a look at
Pareto optimal choices for someone else in the example.

Example 31 In Figure 6.1 the choice N and the choice O are Pareto optimal choices by
all players for themselves. As a consequence of outcome monotonicity of Pareto optimality,
we have that the only choice that is not individually optimal is S, both for Guy and for
Bruno. This simply means that the only choice that the strangers do not like in an absolute
sense is to kill their own significant other. Pareto optimality for the other player is even less
informative: all three choices for both players are Pareto optimal for the other. Once again,
Pareto optimality does not represent what players should rationally do taking the opponents
into account, but what they should do in an absolute sense. If a set X in an effectivity
function is Pareto optimal then there is no other set Y such that all its elements are better
than all the elements in X.

In line with our considerations for the standard definition of Pareto optimality
(Definition 19), the example suggests that the mere use of Pareto optimality of
choice cannot provide a good characterization of individually rational choice, and
even less of rational choice for someone else. Once again the limitations of Pareto
optimality can be overcome by undominated choices. Here the intuition is that a
choice is undominated for player j if it is Pareto optimal for j no matter what the other
players decide to do. This is the formal definition:

Definition 66 (Undomination for someone else) Let E be an effectivity function, i, j ∈
N two players, w ∈W a state and X ⊆W a set. X is an undominated choice by i for j in
w (in symbols X�i�→ j,w)) if and only if

1. X ∈ E(w)(i)
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2. for all Y ∈
�

E(w)(k) with k � j, X ∩ Y is Pareto Optimal for j in E(w)(i) � Y.

The definition says that for a choice X in the effectivity function of player i to be
undominated for player j two conditions need to be satisfied: the first (item 1) that
X is really a choice available to player i and the second that there is no better choice
for player j available to player i (item 2).

If we recall Definition 22 for standard undominated choice we immediately
notice the two differences: effectivity functions are not coalitional but individual
and Pareto optimal choices is defined with respect to some other player.

Let us illustrate undominated choices for someone else in our motivating exam-
ple.

Example 32 In the effectivity function representing the game in Figure 6.1 the choice of
doing nothing (i.e. N) is an undominated choice by each player for himself, while it is not
in the effectivity function representing the game in Figure 6.2, where instead the choice
of killing the other’s significant other (i.e. O) is undominated by each player for himself.
However if we not only want to look at individual rationality, but also at what players
could do for the others, we need to resort to undomination for someone else: the choice O in
Figure 6.1 is an undominated choice by each player for its opponent and the outcome (O,O),
resulting from both players helping each other can already be seen as a possible agreement
which both players can give rise to.

The example has made clear how favours, so central for the treatment of agree-
ments, can be naturally incorporated in our framework: i depends on j for a choice
X if j’s strategy in X is a favour for i or, said formally, is undominated choice by j
for i.

Definition 67 (Agreements and reciprocity) Let E be an effectivity function on W,
C ⊆ N a coalition, µ : C→ C a permutation, w ∈ W a state defined on a given Coalitional
Game Model M. A tuple (

�
(Xi)i∈C, µ) with Xi ∈ E(w)(i) is said to be an agreement for

coalition C at w if

• Xi�(i�→µ−1(i),w).

The definition says that an agreement is a set of choices for members of a coalition
that are rational for some other member for that coalition. Notice the difference
with the previous definition of agreements for permuted games (Definition 64):
agreements are also given by the intersection of sets in players’ effectivity function
plus a permutation. But the permutation is now applied to preferences while in
Definition 64) it is applied to effectivity functions.

We have now two definitions of agreement, the one in Definition 64 and the
other in Definition 67. The following proposition shows that these two definitions
are in fact equivalent.

Proposition 47 Let E be an effectivity function on W, C ⊆ N a coalition, µ : C → C a
permutation, X ⊆W a set of outcomes, w ∈W a state defined on a given Coalitional Game
Model M. The tuple (

�
(Xi)i∈C, µ) with Xi ∈ E(w)(i) is an agreement for C at w in the sense

of Definition 64 if and only if it is an agreement for C at w in the sense of Definition 67.
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Proof It follows from the fact that Xi �(µ−1(i),w) in Eµ(w) is equivalent to Xi�(i�→µ−1(i),w) in
E(w).

The two ways of formalizing agreement with effectivity functions are now fully
disentangled and we can move on to their logical analysis.

6.3 A Logic for Agreements
In this section we introduce the syntax and the models for a modal language to
reason about agreements, providing a semantics to relate them. The language,
which we call L�,[i],↓,sw, is an extension of propositional logic, with modalities to
talk about preferences, single player coalitions, single player choice restriction and
permutation of effectivity functions. With a few relatively small extensions, the
logical language presented in Chapter 4 to reason on undominated choices, turns
out to be flexible enough to express dependence relations, and also agreements.

Definition 68 (Syntax) Let Prop be a countable set of atomic propositions. The formulas
of L�,[i],↓,sw have the following grammar:

ϕ := p | ¬ϕ | ϕ ∧ ϕ | [i]ϕ | Aϕ | ��i ϕ | [i ↓ ϕ]ψ | [sw]ϕ

where p ∈ Prop and sw is a permutation on N. The informal reading of the
modalities is ”player i can achieve ϕ”, ”ϕ is globally true”, ”there is a better world
than the current one for player i that satisfies ϕ”, ”after player i choses ϕ, ψ holds”,
”permuting effectivity functions according to sw, leads to ϕ”.

The language is equipped with modalities to formalize both the agreements
that involve the permutation of the effectivity function — via the modality [sw],
that reasons on the consequences of effectivity functions permutation — and the
agreements that involve undomination for someone else — via the modalities [i]
and��i , that reason respectively about the strategic ability of individual players and
their preferences.

We first concentrate on the first approach to agreement, seeing them as equilibria
in permuted interactions (following Theorem 40). Permuted interactions can be
expressed using the operator [sw].

The operator [sw], the switch operator

The operator [sw] accounts for the transformation in a model induced by permuting
players’ effectivity functions. In the same way we have done with the subgame
operator (Definition 32) its interpretation is nonconstructive. Each world w has an
outcoming arrow labelled with a permutation µ on players that goes to another
world w� that is equivalent to w as for valuation function but differs for the players’
effectivity functions, that are reallocated according to µ.

A different path could be taken, more alligned with the model update perspective
of Dynamic Epistemic Logic discussed in the concluding section of Chapter 4, that
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transforms each tuple model-world M,w into a different tuple M�,w, interpreting
the switch operator in a sort of metamodel. For the sake of uniformity with the
subgame operator, the nonconstructive interpretation has been chosen, while the
latter approach is discussed in the concluding chapter.

Definition 69 (Switch)

M,w |= [sw]ϕ if and only if M, (sw,w) |= ϕ

The updated world (sw,w) is identical to w in all features apart from the effectivity
function, which is interpreted as follows:

Definition 70 (Updated worlds for switches)

E((sw,w))(i) � E(w)( j) if sw(i) = j

The clause regulating the update deserves a short comment. It says that updating
a world means updating its effectivity function, following the given permutation.
In other words, if player j had choice setY at world w, then at world (sw,w) player
i will have Y whenever sw(i) = j. In turn the set X held by player i at w will be
assigned at (sw,w) to player sw−1(i).

As for the case of the subgame operator, coalition frames are special frames
that are closed under players permutations. The closure can be made precise in the
following way.

Definition 71 (Closure under players permutations) Let w ∈ W be a world,(sw,w)
its update according to permutation sw, and F = (W,E) be a coalition frame. F is said to be
closed under players permutations if and only if w ∈W implies that (sw,w) ∈W.

As for the closure under subgames, it is a frame condition that can be formally
characterized.

Proposition 48 Let F = (W,E) be a coalition frame. The following holds:
F |= �sw�� if and only if F is closed under players permutations.

Proof From right to left, it is straightforward. From left to right assume F |= �sw��.
Consider now a world w ∈ W and consider any permutation sw : N → N. We must have
that (sw,w) ∈W.

It is worth noticing that the switches we consider are total, while much attention
has been dedicated to partial agreements, that are instead based on partial permu-
tations (as in Definition 50). We shall see that, exploiting the features of outcome
monotonicity of effectivity function and some other mild assumptions, notions anal-
ogous to partial agreements can be defined even when using total permutations.
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Axioms

A1 [sw]p↔ p

A2 [sw]¬ϕ↔ ¬[sw]ϕ

A3 [sw](ϕ ∧ ψ)↔ ([sw]ϕ ∧ [sw]ψ)

A4 [sw][k]ϕ↔ [sw−1(k)]ϕ

A5 [sw]��i ϕ↔ �
�

i ϕ

A6 [sw�][sw]ϕ↔ [sw� ◦ sw]ϕ

Rules

R1 ϕ⇒ [sw]ϕ

Table 6.1: Axioms and rules for the switch operator

6.3.1 Validities
The switch operator shares many structural features with the subgame operator.
The most fundamental one is the presence of reduction axioms: also in this case
the introduction of the subgame operator does not add expressive power to the
language provided the models are closed under players permutations.

Proposition 49 (Reduction Axioms) The axioms and the rules displayed in Table 6.1 are
valid in Coalition Models.

A proof is to be found in the appendix (Section B.2).

To see more clearly how the reduction works it can be observed that any formula
with the switch operator occurring in it can be eventually rewritten as a formula
without the switch operator occurring in it, preserving validity. Similar arguments
are used in dynamic epistemic logics [69].

6.3.2 Characterization results
The coming results essentially concern the characterization power of the language
with respect to the notions defined at the structural level. With these characteriza-
tion results, which generalize the ones in Chapter 4 to rational choice for someone
else, we can make use of the logical language to express and reason about complex
interactions between preferences and choices in interdependence.
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To start with, Pareto optimal choices for someone else, introduced in Definition
65, can be characterized within the language provided in Definition 68.

Proposition 50 ϕM is Pareto optimal choice by i for j in w if and only if M,w |= [i]ϕ ∧
�i���j ϕ

The proof is a generalization of the one given in Chapter 4 (Proposition 23). We
only show one direction of the proof, to give the flavour of how the generalization
works. The other direction follows the same pattern of the proof of Proposition 23.

Proof (⇒)
Let us assume that ϕM is Pareto optimal choice by i for j in w , i.e. that ϕM is a Pareto

optimal choice for player j at world w in E(w)(i) according to the (∀,∀) preference lifting.
This means, by Definition 65, that for no X ∈ E(w)(i), X �(∀,∀)

j ϕM and that ϕM ∈ E(w)(i).
In turn this means that for all X ∈ E(w)(i) ∃x ∈ X,∃y ∈ ϕM, such that x � j y. By the
definition of effectivity functions, no set X ∈ E(w)(i) is such that X ⊆ (¬��j ϕ)M. So we can
conclude that M,w |= [i]ϕ ∧ �i���j ϕ.

Proposition 50 shows that saying that a choice ϕ is Pareto optimal for j boils
down to saying that it can be performed by a player (i.e. [i]ϕ) and that the player
cannot avoid ending up in a world that is worse for j than some ϕ world (i.e.
�i���j ϕ).

We know from Chapter 3 that Pareto optimal choices are particularly weak con-
structs that can however be refined by taking the opponents into account. Chapter
4 has moreover shown that the opponents’ possibilities can be made formal by
using the subgame operator (Section 4.2.2). In the present case its use, together
with the previous result, makes for the possibility of characterizing the notion of
undominated choice for someone else.

In the same fashion as what we have done with the notion of undominated choice
(Proposition 31 and following ones) we put forward a variety of characterization
results for undominated choice for someone else, where the generalizations apply
as sketched for the case of Pareto optimal choices.

Proposition 51 Let F be the class of Cooperative Game Frames with individual effectivity
functions closed under subgames and let F ∈ F be one of them. Let moreover E(w)(i) =�

E(w)( j)( for i � j) be a set of sets obtained by superadding the choice sets of all opponents
of player i. The following holds:

F |= [i]ϕ→ [i ↓ ψ]([i](ϕ ∧ ψ) ∧ �i�
�

i��j (ϕ ∧ ψ))
if and only if each X ∈ E(w)(i) is such that X is undominated choice by i for j at w

The proof is a straightforward generalization of the one for Proposition 31, and
it allows for similar observations: i) in characterizing undomination as a property
of the frames, we do not need any restriction on the choices of coalitions; ii) we can
characterize a much finer notion of undomination and Pareto optimality of choice:
we can talk about all sets in an effectivity function, and not only those that are the
truth set of some proposition.
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If instead we would like to characterize undomination for someone else at the
model level, we need some more restrictive assumptions, namely finiteness of
effectivity functions.

Proposition 52 Let POi�→ jϕ abbreviate the formula characterizing the fact that ϕ is a
Pareto optimal choices by i for j and let {ψ1, ...,ψn} = E(w)(i) =

�
E(w)( j)( for i � j) be the

effectivity function of i’s opponents. The following holds:
ϕM�i�→ j,w ⇔M,w |=

�
ψi∈{ψ1,...,ψn}

[i ↓ ψi]POi�→ j(ϕ ∧ ψi)

The proof is, once again, the generalization of the corresponding one for the
rational choice by a player for himself (Proposition 30). In the same line of that
proposition it shows that with finite effectivity functions, undomination for some-
one else can be written as a finite conjunction of formulas that make use of the
subgame operator and Pareto optimality for someone else. In other words it says
that an undominated choice for someone else is a Pareto optimal choice for some-
one else in every choice restriction. As the latter ones are finitely many a finite
conjunction is sufficient to express the formula in the language.

The coming part will characterize agreements inside the language, using all the
machinery that we have introduced so far. It is moreover convenient, to shorten
notation, to abbreviate the syntactical correspondents of ϕM�i�→ j,w characterized in
the previous propositions as [rational(i�→ j)]ϕ.

Characterizing agreements

As anticipated, the introduction of the switch operator in the framework makes
it possible to characterize agreements without explicitly defining modal operators
capturing rationality for someone else. We carry out the characterization assuming
finiteness of effectivity functions and the following definition will ease the presen-
tation of the result.

Definition 72 AC
�

i∈C ϕi :=
�

C∈P(sw)[sw]
�

i∈C[rational(i�→i)]ϕi

Recall that
�

C∈P(sw) means that the coalition C is a union of orbits of the cycle
induced by the permutation sw on N (as in Example 1). This definition draws in a
formal language what a set of players can agree upon: it says that a coalition can
agree on

�
i∈C ϕi whenever there is a coalition C that can generate

�
i∈C ϕi as a partial

agreement. Notice that the coalitional ability is defined in terms of a conjunction
of individually rational actions, which in turn quantify over all possible choices of
one’s opponents.

The syntactical and the model theoretical definition can now be related.

Proposition 53 Let M be a finite Coalitional Game Model closed under subgames and
players permutations. We have the following:

M,w |= AC
�

i∈C ϕi ⇔

there exists a permutation µ on C such that (
�

(ϕM
i )i∈C, µ) is an agreement for C in w.
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Proof The result follows from Definition 72, Definition 64, Definition 66 and Proposition
52.

Using Theorem 47 also the following result is straightforward, providing an
alternative characterization of agreements in terms of undominated choices for
someone else without the switch operator.

Proposition 54 Let M be a finite Coalitional Game Model closed under subgames and
players permutations. We have the following validity:
AC
�

i∈C ϕi ↔
�

C∈P(sw)
�

i∈C[rational(i�→sw(i))]ϕi

The series of syntactic expressions characterizing agreements has shown that the
language is powerful enough to account for transformations of players’ strategic
abilities following reciprocity cycles. The next section will label these transforma-
tions in a deontic logic fashion, aiming at pointing to the desirable ways of forming
coalitions via agreements.

6.4 Deontic Operators
In the previous chapter two views of norms have been put forward: an internal
perspective, following the viewpoint of [41], that interprets norms as statements
concerning coalitional rationality; and an external perspective, following the view-
point of [48], that interprets norms as statements concerning systemic rationality.
Our motivating example clearly emphasizes the external-systemic perspective, as it
describes a rational agreement going against desirable properties. On these grounds
the chapter will be focused on the external view. The section of related work will
briefly present the internal view of norms, more in line with the treatment in [41].

Along with the external view, outcomes will be labelled in accordance to their
deontic status and permutations will be judged against this labelling as follows:

• Permutations are forbidden if leading to undesired outcomes (violations);

• Permutations are permitted if not forbidden;

• Permutations are obliged in case all the other possible permutations are for-
bidden.

The resemblance of the present definition with the one given in Section 4.3 for
norms on coalitional choices shows that agreements are treated as one possible
coalitional choice, and their regulation is inserted in a more general framework.
However there is a notable point of difference: coalitional choices are sets of states,
while agreements are sets of states endowed with a permutation on players. What
is more, the latter may be defined on a subset of the set of players, giving rise to
partial agreements.

To bridge the gap we will exploit outcome monotonicity of effectivity functions.
We know that if a set X ⊆ violM in some model M belongs to the effectivity function
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of some player i at some world w then the set violM does as well. In other words if
a player can make a choice that, no matter how the other players choose, will lead
to a state in X ⊆ violM then it can also make a choice that, no matter how the other
players choose, will lead to a violation.

Making use of this feature, we can apply the standard deontic operators to
permutations.

Definition 73 (Deontic Operators on Agreements) Let PERMN be the set of all per-
mutations on N and let sw ∈ PERMN. The operators F(sw),P(sw),O(sw) indicate forbid-
dance, permission and obligation as follows.

F(sw) := [sw]
�

i∈N ¬[rationali]¬viol

P(sw) := ¬F(sw)

O(sw) :=
�

sw�∈PERMN�sw F(sw�)

Norms are here used to label players permutations. A permutation sw is for-
bidden if after the corresponding switch for some player the set ¬violM is not a
rational choice, it is permitted if it is not forbidden, and it is obligated if all other
permutations are forbidden.

The operator F(sw) and AC of Definition 72 show a form of duality. The cor-
respondence between the two will turn out to be even stricter when forbiddance
is applied to coalitions and not to permutations only. For now we can show some
relation between the two. The following proposition states that if some permutation
is forbidden then the players together can cooperate to achieve an undesirable state.

Proposition 55 Let F be a finite Coalitional Game Model closed under subgames and
players permutations. The following holds: F |= (

�
sw∈PERMN

F(sw))→ ANviol

Proof Assume M,w |= F(sw) for arbitrary M,w and for some permutation sw on N, that
is to say M,w |= [sw]

�
i∈N ¬[rationali]¬viol. By the interpretation of the modal operators,

there is a player sw−1(k) for which (¬viol)M is not an undominated choice, i.e. for each of
them there is a set X ∈ E(w)(sw−1(k)) for which X �sw−1(k) (¬viol)M. A fortiori X ⊆ violM
and by outcome monotonicity violM is undominated. As by outcome monotonicity �M is
undominated, too, for all j � sw−1(k), violM is a possible agreement of N. In other words
M,w |= ANviol.

The following proposition states that if some permutation is permitted then the
players together can cooperate to achieve a desirable state.

Proposition 56 Let F be a finite Coalitional Game Frame closed under subgames and
players permutations. The following holds:

F |= (
�

sw∈PERMN
P(sw))→ AN¬viol

Proof It follows the same pattern of the previous result.
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In both cases the converse does not hold, as violM can be identical with the whole
domain or N may not be able to agree upon a desirable property.

The validities in this section have shown that the desirability of a potential
agreement — as well as its undesirability — always have some implications in
terms of rational action. In particular Proposition 55 states that if some potential
agreement is undesirable the grand coalition can rationally choose an undesirable
state, while Proposition 56 states that if some potential agreement is permitted the
grand coalition can rationally choose a desirable state.

The next section will lift these operators from permutations to coalitions.

6.4.1 A deontic logic for coalition formation
Speculating on the results of the choices that can be agreed upon by a certain
coalition, it is immediate to apply the deontic statements to coalitions themselves.
The idea is that coalition C is forbidden to form if and only if all the agreements it
can give rise to might not lead to a desirable outcome.

Definition 74 (Deontic Operators on Coalitions)

F(C) :=
�

C∈P(sw)[sw]
�

i∈C ¬[rationali]¬viol

P(C) := ¬F(C)

O(C) := F(C)

The operator F(C) says, as anticipated, that a coalition C should not form if all
agreements it can give rise to might not lead a desirable outcome; it is permitted
when it is not forbidden and it is obligated when the opposite coalition is forbidden.

Notice that the expression
�

C∈P(sw)[sw]
�

i∈C ¬[rationali]¬viol due to the assump-
tion of finiteness of choices of coalitions can be described within the language.
The following reveals the intimate relation between the newly defined forbiddance
operator and the agreement modality:

Proposition 57 The following is a validity of any finite Coalitional Game Frame:
F(C)↔ ¬AC¬viol

Proof From left to right, take an arbitrary M,w such that M,w |= F(C). By definition of
F(C), M,w |=

�
C∈P(sw)[sw]

�
i∈C ¬[rationali]¬viol. This means that for all permutations sw

for which sw(C) = C there is some player sw(k) ∈ C for which (¬viol)M is not undominated
in E(w)(k), which in turn means that there is a set X ∈ E(w)(k) such that X �sw(k) (¬viol)M.
(Notice on the fly that X ⊆ violM.) But this means that M,w �|= AC¬viol, i.e. M,w |=
¬AC¬viol. From right to left, the proof is similar.

The previous proposition states that forbidding a coalition is equivalent to stating
that that coalition cannot avoid agreeing on an undesirable property. The following
section is devoted to applying the full-blown modal apparatus we have introduced
to the example of the strangers in the train.
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6.4.2 Colouring strangers

The deontic operators defined in terms of agreements can be fruitfully used to
succinctly reason on the relevant properties of strategic interaction. This section
makes use of the characterization results obtained so far to reason on the interaction
of Figure 6.1. The same type of reasoning can be extended to all interactions that
can be described using single player effectivity functions.

Proposition 58 Let M,w be a representation of the game in Figure 6.1. Let us assign the
atomic proposition viol to hold in the outcome (O,O). For G,B being Guy and Bruno,
x ∈ {G,B}, O,N,S the respective choices, the following formulas hold in M,w:

¬[rationalx]O players do not find it rational to kill the other player’s

significant other

¬[rationalx]S players do not find it rational to kill their own significant

other

[rationalx]N players do find it rational not to kill anyone

[(G,B), (B,G)][rationalx]O players can agree to kill each other’s significant other

F((G,B), (B,G)) it is forbidden to swap murders

O((G,G), (B,B)) it is obligatory not to swap murders

P((G,G), (B,B)) it is permitted not to swap murders

The deontic operators precisely identify the transformations of the game structure
leading to desirable and to undesirable consequences.

6.5 Discussion

6.5.1 Related work

To our knowledge, what is studied in the present chapter is the first attempt to
give a dependence-theoretic semantics of deontic operators. The effort is somewhat
related to what done in chapter 4, that has formulated a semantics of norms in terms
of effectivity functions. There two perspective have been taken:

• the internal one, inspired by the work in [41] and [44], treating the notion of
what a coalition ought to do in terms of what is rational for that coalition to
do.
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• the external one, inspired by the work in [48], treating the notion of what ought
to be done in terms of what actions comply with predetermined systemic
desiderata; or said otherwise, actions not leading to violations.

The present chapter has given a dependence-theoretic semantics for deontic
operators only following the external view. The focus of the analysis was not to un-
derstand the norms and values induced by agreements, for instance what becomes
obligatory after a contract is signed, but how agreements could be labelled if we
compare them against predetermined properties that we have set up in the begin-
ning. In other words, the present chapter has been focused on the regulation of
multi-agent systems and not on the study of the normative stances arising from
agreements.

It is then natural to ask what the internal side of the coin looks. We introduce
a notion of contract arising from agreements, analogous to the one in Definition
35. Contracts are here viewed as a set of obligations, forbiddances and permissions
applied to agreements.

Definition 75 (Contracts) Let i1, . . . , in be a set of players. The following operators define
norms resulting from rational agreements.

FA(i1 : ϕ1, . . . , in : ϕn) := ([i1]ϕ1 ∧ . . . ∧ [in]ϕn)→ ¬A�{i1,...,in}
�

1≤k≤n ϕik

PA(i1 : ϕ1, . . . , in : ϕn) := ¬FA(i1 : ϕ1, . . . , in : ϕn)

OA(i1 : ϕ1, . . . , in : ϕn) := FA(i1 : ¬ϕ1, . . . , in : ¬ϕn)

What the definition says is that a set of formulas, one for each player, are
forbidden for those players if they are not an agreement whenever they can be
executed. They are instead permitted if they are not forbidden and they are obligated
if the negation of those formulas is forbidden for the respective player.

Notice that forbiddance, permission and obligation are formulated simultane-
ously for the agreement’s stakeholders. In other words contracts behave as policies
in Definition 35.

The newly defined notion can be applied to our initial motivating example,
obviously permitting the swap of the strangers, as killing each other’s significant
other is a dominant strategy equilibrium of the permuted game. Hereby we notice
once more the conflict between the two related deontic perspectives, one indicating
what it is rational to do and the other indicating what it is required to do.

6.5.2 Open Issues
The main issue left open by the present chapter is of a logical nature, and it concerns
the semantics of the switch operator. From its definition we can observe that
the operator, introduced to reason on the permutations of effectivity functions,
is interpreted by making use of functions that update worlds, similarly to what
done for the subgame operator. However a substantial difference between the two



148 CHAPTER 6. STRATEGIC REASONING IN DEPENDENCE GAMES

operators can be observed. If the reduction axioms for the subgame operator did not
behave properly with a model update semantics (because of the high expressivity
of the global modality), this is not the case with the switch operator.

We can namely introduce a semantics for the switch operator that updates the
coalition models and not the worlds, and that validates the axioms in Table 6.1.
Here is the new interpretation:

Definition 76 (Switch with Model Update) Let M = (W,E,V) be a coalition model.
The operator [sw] is interpreted as follows:

M,w |= [sw]ϕ if and only if M|sw;w,w |= ϕ

The updated models M|sw;w are of the form M|sw;w,w = �W,E|sw;w,�i,V� where
the only modified element, the effectivity function E|sw;w is defined as follows:

Definition 77 (Updated Models for Switches)

E|sw;w(w)(k) � E(w)( j) for (k, j) ∈ sw

E|sw;w(w�)(k) � E(w)(k) for w � w�

Notice that the last condition corresponds to a sort of locality of updates, chang-
ing only the effectivity function at the current world. The axioms, proved in the
appendix for the original semantics, can be also proved for the present one, via an
immediate adaptation of the proofs.

This phenomenon poses two interesting research questions:

• What kind of expressivity of the modal language is needed to distinguish
between the two semantics?

• For what class of update operators are the two semantics equivalent?

In attempting to answer these questions, the first observation that can be made
concerns the role played by the global modality. In the nonconstructive case the
models are closed under taking players permutations (or under subgames), as a
consequence saying that the formula ϕ is globally true means that is true in the
original effectivity functions and in the updated ones. This is not the case in the
constructive semantics, where saying that a formula ϕ is globally true means that it
is true in the model, but it says nothing about its updates. It is no surprise that the
reduction axioms for the subgame operators, containing the global modality, do not
work in the constructive case. As a further evidence, they do work in the case of the
switch operator, that need not use the global modality to characterize its updates.

6.5.3 Conclusion
The contribution of the chapter consists in developing a modal logic to express
dependence relations as first formalized in [35]. To that we add the machinery of
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deontic logic, in order to discriminate between agreements that do and agreements
that do not reach some desirable properties set up in the beginning.

Unlike the standard logics to reason about coalitionally rational action, such as
ATL, STIT or CL, the capacity of a set of players to take a rational decision have been
restricted to what we have called agreements, and formalized as a transformation
of the interaction structure that exchanges favours, i.e. choices that are rational for
someone else, among players.

Our language is based on the one we have studied in Chapter 4, which extends
Pauly’s Coalition Logic with preferences, to account for undominated choices. We
generalize the notion of undominated choice to that of undominated choice for
someone else and we consequently generalize all related characterization results.
We introduced an explicit operator to talk about effectivity function permutations
and showed a reduction result to the language without this operator.

The deontic language has allowed us to identify in concise terms those agree-
ments that act accordingly or disaccordingly with the desirable properties set up
in the beginning, and has revealed, by logical reasoning, a variety of structural
properties of this type of collective action.
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Chapter 7

Conclusion

Most readers will by now have understood that, in my view, scientific theories are not to be
considered ”true” or ”false”. In constructing a theory, we are not trying to get at the truth, or even
to approximate to it: rather, we are trying to organize our thoughts and observations in a useful
manner.

Robert J. Aumann, What is game theory trying to accomplish? [6]

The overall aim of this work has been that of making the structure of coalitional
rationality explicit, emphasizing the reasons for self-interested individuals to join
forces and achieve a common goal. Chapter 3 and Chapter 4 have been concerned
with a classical representation of coalitional games, studying a notion of coalitional
rationality based on a standard model of coalitional power, the so-called effectivity
functions, and an order on it, obtained by lifting the preferences of the individuals
involved in the decision. Chapter 5 and 6 have added more structure to those
models, introducing the concept of dependence among individuals, and studying
it as a precondition for coalition formation.

The introductory chapter has put forward a number of research questions aimed
at understanding the structural and logical features of coalitional rationality. Those
questions have been answered in the following way:

Coalitions and rationality In cooperative game theory abstract models of coali-
tional choices and preferences are adopted, but no solution concept is studied
that, similarly to what done in non-cooperative game theory, identifies the
best choices for a given coalition. Chapter 3, building upon these models, has
studied a preference order over coalitional choices that classifies choices ac-
cording to what the members of the coalition prefer and how the individuals
outside the coalition can react. This order has been formally related to the
notion of dominant strategy, typical of strategic games.

Cooperation and competition It is well-known from the literature of cooperative
game theory how strategic games can be described as cooperative games, by
identifying the cooperative possibilities of the players involved in an inter-
action, e.g. what the players can do together. It is also well-known, for a
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restricted class of games, how a certain class of cooperative games can be
related to strategic games. Chapter 3 has generalized this result, correcting
a believed correspondence from [54]. Besides allowing a full description of
strategic games in terms of cooperative games, the results obtained have been
used to study the specificity of coalitional rationality in strategic games, the
object of study of the first research question.

Coalitions and interdependence The standard models of coalitional power assign
to coalitions the capacity of fully coordinating their members. In those models
no vestige is found on the reasons for players to work together. Chapter 5
has studied a model of coalitions that result from reciprocal favours among
their members. A new class of cooperative games have been defined, the
so-called dependence games, that lie between the individualistic approach of
non-cooperative games and the fully cooperative approach of cooperative
games.

Rationality and logic While Chapter 3 and Chapter 5 have dealt with a structural
analysis of notions like coalitional strategy and agreement, Chapter 4 and
Chapter 6 have analyzed those structures in terms of logical languages. The
added value of such formulation lies in the simplicity of these languages,
that capture the essential features of notions like undomination, preference
lifting, agreements, in a modal language consisting of relatively few opera-
tors. Once the bridge is laid between formal languages and game-theoretical
structures, results concerning the first (for instance decidability, final model
property, succinctness of representation, reducibility etc.) can immediately
be transferred to the second, shedding new light on the formal properties of
game-theoretical structures.

Rationality and norms One of the most fascinating problems of modelling coali-
tional action is that of its regulation. Chapter 3 and Chapter 5 have come up
with models of coalitional rationality, both for the classical account of coali-
tional power and for the one taking players’ interdependence into account.
In interaction however certain properties may be desirable and a language
can be constructed to express this desirability. Chapter 4 and Chapter 6 have
presented deontic languages to express what coalitions should do. First, inter-
preting norms as obligations (or forbiddance and permission) to act rationally
(or forbiddance not to act irrationally); second evaluating coalitional ratio-
nality against a given labelling of outcomes, to be understood as undesirable
ones.

All in all, our work has explored several aspects of coalitional rationality, where
players choose together according to their mutual interests.
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Representation Theorem

A.1 The Original Proof
The proof of correspondence in [54] is articulated in two main parts, corresponding
to both directions:

• The easy part of the proof in [54] is checking that the α-effectivity function
of strategic games is playable. This fact has already been noticed in the
preliminaries.

• The difficult part of the proof is constructive: the idea is that from a playable
effectivity function we can obtain a strategic game with the same α-effectivity
function.

The focus here is on the latter part. The argument given in [54] discusses a
procedure to construct from each playable effectivity function E a strategic game
G = (N,S,Σi, o) such that Eα

G
= E. The argument can be outlined in a few steps.

Step 1: the players and the domain remain the same The game (form) G =
(N,S,Σi, o) inherits the set of outcomes and the set of players from the coalitional
game (form) G = (N,S,E).

Step 2: coalitions choose a set from their effectivity function The second step
concerns the construction of the sets of strategies for each player. To do this a family
of functions is defined:

Fi = { fi : Ci → 2W
| for all C we have that fi(C) ∈ E(C)}

where Ci = {C ⊆ N | i ∈ C}. Each function fi assigns to the coalitions of which i is a
member an arbitrary choice in the coalitional effectivity function. Fi simply collects
all such functions.

The idea is to represents the strategies of a coalition C as the set
�
{Fi|i ∈ C}.

Notice already that F∅ = {∅}, i.e. the empty coalition has only the empty strategy.
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Step 3: coalitions are selected according to their choices The third step concerns
the construction of coalitional choices, using the family of functions defined in Step
2.

Let f = ( fi)i∈N, with fi ∈ Fi, be a tuple of such assignments, one per player. We
can now define the set P∞( f ) which results from iterative partitioning the coalitions
in the coarsest possible way such that players in the same part are assigned same
coalitional choices.

P0( f ) = �N�
P1( f ) = P( f ,N) = �C1

1, . . . ,C
1
k1
�

P2( f ) = �P( f ,C1
1), . . . ,P( f ,C1

k1
)) = �C2

2, . . . ,C
2
k2
�

...

P∞( f ) = Pr( f ) such that Pi( f ) = Pi+1( f ) for all i ≥ r,

where each P( f ,C) returns the coarsest partitioning �C1, . . . ,Cm) of coalition C such
that for all l ≤ m and for all i, j ∈ Cl it holds that fi(C) = fj(C).

Notice that what happens is that a subset of C is part of the partition P( f ,C) if its
members agree modulo f .

Step 4: an outcome is chosen in the intersection of coalitional choices Using the
partition process it is possible to define the strategies and the outcome function in
the game. Each player in N is given a set of strategies of the form ( fi, ti, hi) where
fi ∈ Fi, ti is a player (possibly different from i), and hi : 2W \ ∅ → W is a selector
function that picks an arbitrary element from each nonempty subset of W.

Given the process of partition P∞( f ), the outcome function of gameG is defined
as follows:

o(σN) = hi0

� k�

l=1

f (Cl)
�
,

where i0 is a uniquely chosen player, hi0 is the selector function for player i0, and
Cl are partitions taken from P∞( f ).

That concludes the construction of game G which α-corresponds to the effectivity
function E. The remaining two steps are supposed to prove that indeed E = Eα

G
.

The proof: choices are preserved in the game First, an attempt to prove E(C) ⊆
Eα
G

(C) for arbitrary coalition C is presented, i.e. the proof that all choices in the
original effectivity function are also choices in the derived game:

For the inclusion from left to right, assume that X ∈ E(C). Choose any
C-strategy σC = ( fi, ti, hi)i∈C such that for all i ∈ C and for all C� ⊇ C we
have fi(C�) = X.(*) By coalition monotonicity, such fi exists.(**) Take now
any C-strategy, σC = ( fi, ti, hi)i∈C. We need to show that o(σC, σC) ∈ X. To
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see this, note that C must be a subset of one of the partitions Cl in P∞( f ).
Hence, o(σN) = hi0 (G( f )) = hi0

�k
l=1 f (Cl) ∈ X. [54, p.29]

The deduction of the last sentence is where the proof goes wrong. The problem
is, for C = ∅, the only available strategy σ∅ is the empty strategy which vacuously
satisfies condition (*).1And, for any player i, a choice assignment fi satisfying the
condition must exist. However, there is no guarantee that any i will indeed choose fi in
its strategy since the coalition C for which we can fix its strategy does not include
any players. In consequence, we have no right to deduce that hi0

��k
l=1 f (Cl)

�
∈ X:

this could be only concluded if the intersection contains at least one player whose
choice fi(Cl) is X (or a subset of X).

To see this more clearly, let us go back to the counterexample of Section 3.3.1.
Note that σC = σ{a} = ( fa, a, ha) such that fa({a}) ∈ E({a}). Let us now take X =N \ {1},
fa({a}) = N, and ha(N) = 1. Now, o(σN) = o(σ{a}) = 1 � X, which invalidates the
argument from [54] quoted above.

The proof: choices are not added in the game The proof of the other direction
(Eα
G

(C) ⊆ E(C) i.e. that all choices in the derived game are also choices in the original
effectivity function) fails too, because in order to establish the inclusion for C = N,
it is reduced to inclusion (v) for C = ∅, and we have just shown that it does not
necessarily hold.

This concludes the analysis of the proof of Representation Theorem from [54].
The construction of the strategic game corresponding to a given effectivity function
fails because the game might endow the empty coalition and the grand coalition of
players with inappropriate powers.

A.2 The New Proof
Proof Given a strategic game G it is easy to see that its α-effectivity function EG is truly
playable (by Propositions 4 and 17).

For the other direction, given a truly playable effectivity function E, we slightly change
Pauly’s procedure that has been previously outlined (steps 1–4). That is, we impose an
additional constraint on players’ strategies σi = ( fi, ti, hi), namely, we require that hi(X) = x
for some {x} ∈ E(N). In other words, the selector functions only select the “jewels” in the
crown.

Note that for C � {∅,N} the new procedure yields gameG� with exactly the same EG(C)
as the original construction G from [54] because:

• We do not add any new choice sets to EG(C). Suppose that we do, then it can only
happen because the selectors chosen by players outside C are restricted to {x | {x} ∈
E(N)}, and hence we can have that X ∩ {x | {x} ∈ E(N)} ∈ EG� (C) in the new
construction for some X ∈ EG(C) from the previous construction. However, by true

1Notice the universal quantification over the members of the empty coalition.
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playability of E and Proposition 17 we have that {x | {x} ∈ E(N)} ∈ E(∅), and thus by
superadditivity all the states y � {x | {x} ∈ E(N)} can be removed from C’s strategies
that yielded X in G. But then these states will also be removed from the intersection�k

l=1 f (Cl), and so X∩ {x | {x} ∈ E(N)} ∈ EG(C) already in the previous construction.

• We do not remove any choice sets from EG(C). Suppose that we do, then it can be
only because of removing an X ∈ EG(C) which contains “superfluous” elements and
replacing it with X ∩ {x | {x} ∈ E(N)}. But then, X must also be in EG� (C) because
EG� (C) is closed under supersets.

It remains now to show that the procedure constructs a strategic game G such that
E(C) = EG(C) for all C ⊆ N, that is, to show that both directions work well in case of truly
playable structures.

The proof of E(C) ⊆ EG(C) We show that E(C) ⊆ EG(C) for C = ∅ and C = N, the only
cases in which the original proof failed for playable structures.

Assume that X ∈ E(∅). We need to prove that X ∈ EG(∅). By true playability and
Proposition 17 we know that there exists Y ∈ E(∅) such that Y ⊆ X, Enc(∅) = {{x | {x} ∈
E(N)}}. Now, consider any strategy profile σN. We have o(σN) = hi0

��k
l=1 f (Cl)

�
∈ Y

because every hi returns only elements in Y by construction.
For the case C = N, assume that X ∈ E(N). We need to prove that X ∈ EG(N). By true

playability we have that there exists x ∈ X such that {x} ∈ E(N). Now, let, σN consist of
strategies σi = ( fi, ti, hi) such that fi(N) = x for every i. It is easy to see that o(σN) = x, and
hence {x} ∈ EG(N). Thus, X ∈ EG(N) because EG(N) is closed under supersets.

The proof of EG(C) ⊆ E(C) We show that EG(C) ⊆ E(C), that is, we will assume that
X � E(C), and show that X � EG(N). We do it by a slight modification of the original proof
from [54].

Suppose first that C = N. Then, X ∈ E(∅) by N-maximality, and by (v) we have
X ∈ EG(∅). Since EG is truly playable, we have also that X � EG(N).

Assume now that C � N, and let j0 ∈ C. Let σC be any strategy for coalition C. We
must show that there is a strategy σC such that o(σC, σC) � X. To show this, we take
σC = ( fi, ti, hi)i∈C such that for all C� ⊇ C and for all i ∈ C we have fi(C�) = W. We also
choose tj0 such that ((t1 + . . . + tN) mod n) + 1 = j0. Note that C must be an element of one
of the partitions Cl in P∞( f ), say Cl0 . Moreover, there must be a partitioning �C1, . . . ,Ck)
of N \ Cl0 such that G( f ) = f (Cl0 ) ∩

�k
l=1 f (Cl) =

�k
l=1 f (Cl). Since f (Cl) ∈ E(Cl) we

get that G( f ) ∈ N \ Cl0 by superadditivity. By coalition-monotonicity and the fact that
N \ Cl0 ⊆ C, we also have G( f ) ∈ E(C). Finally, by (*) and superadditivity we obtain
G( f ) ∩ {x | {x} ∈ E(N)} ∈ E(C).

Since X � E(C) and E(C) is closed under supersets, it must hold that G( f ) ∩ {x | {x} ∈
E(N)} � X. Thus, there is some s0 ∈W such that: s0 ∈ G( f ), {s0} ∈ E(N), and s0 � X. Now
we fix hj0 so that hj0 (G( f )) = s0. Then, o(σC, σC) = hj0 (G( f )) = s0 � X which concludes the
proof.
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Selected Proofs

B.1 The subgame operator: validities
[C ↓ ξ]p↔ ([C]ξ→ p)

Proof Take an arbitrary tuple M,w. M,w |= [C ↓ ξ]p⇔M,w |= [C]ξ implies that M,w ↓(C,ξM)|=
p⇔M,w |= [C]ξ implies that M,w |= p⇔M,w |= [C]ξ→ p.

[C ↓ ξ]¬ϕ↔ ([C]ξ→ ¬[C ↓ ξ]ϕ)

Proof Take an arbitrary tuple M,w. M,w |= [C ↓ ξ]¬ϕ⇔M,w |= [C]ξ implies that M,w ↓(C,ξM)|=
¬ϕ ⇔ M,w |= [C]ξ implies that (M,w |= [C]ξ and M,w ↓(C,ξM,w)|= ¬ϕ) ⇔ M,w |=
[C]ξ implies that not(M,w |= [C]ξ implies M,w ↓(C,ξM) �|= ¬ϕ)⇔|= [C]ξ implies that not(M,w |=
[C]ξ implies M,w ↓(C,ξM)|= ϕ)⇔M,w |= [C]ξ
implies that M,w �|= [C ↓ ξ]ϕ⇔M,w |= [C]ξ→ ¬[C ↓ ξ]ϕ

[C ↓ ξ](ϕ ∧ ψ)↔ ([C ↓ ξ]ϕ ∧ [C ↓ ξ]ψ)

Proof Take an arbitrary tuple M,w. M,w |= [C ↓ ξ](ϕ∧ψ)⇔M,w |= [C]ξ implies that M,w ↓(C,ξM)|=
ϕ ∧ ψ ⇔ M,w |= [C]ξ implies that (M,w ↓(C,ξM)|= ϕ and M,w ↓(C,ξM)|= ψ) ⇔ (M,w |=
[C]ξ implies that M,w ↓(C,ξM)|= ϕ) and (M,w |= [C]ξ
implies that M,w ↓(C,ξM)|= ψ) ⇔ (M,w |= [C ↓ ξ]ϕ) and (M,w |= [C ↓ ξ]ψ) ⇔ M,w |=

([C ↓ ξ]ϕ ∧ [C ↓ ξ]ψ)

[C ↓ ξ]Aϕ↔ ([C]ξ→ Aϕ)

Proof Take an arbitrary tupleM,w. M,w |= [C ↓ ξ]Aϕ⇔M,w |= [C]ξ implies that M,w ↓(C,ξM)|=
Aϕ⇔M,w |= [C]ξ implies that M,w |= Aϕ⇔M,w |= [C]ξ→ Aϕ

[C ↓ ξ][C�]ϕ↔ ([C]ξ→ [C�](ξ→ ϕ))( for C� ∩ C = ∅ and C� � ∅)

157
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Proof ⇐: Suppose, for some C� � ∅, that [C]ξ→ [C�](ξ→ ϕ) and M,w �|= [C ↓ ξ][C�]ϕ
for some C such that (C ∩ C�) = ∅. The semantic clauses then tell us that (if ξM ∈ E(w)(C)
then (ξ → ϕ)M ∈ E(w)(C�)) and ξM ∈ E(w)(C) and ϕM � E�(w)(C�). [We write E� for
E ↓(C,ξM).] By modus ponens (ξ→ ϕ)M ∈ E(w)(C�).

By the definition of update, E�(w)(C�) = (E(w)(C�) � ξM)sup. So, ((ξ→ ϕ)M ∩ ξM) ∈
E�(w)(C�). By elementary set theory this just says that ϕM ∈ E�(w)(C�). Contradiction.

⇒: Suppose, for some C� � ∅, that M,w |= [C ↓ ξ][C�]ϕ and M,w �|= [C]ξ→ [C�](ξ→
ϕ) for some C such that (C∩C�) = ∅. The semantic clauses then tell us that (if ξM ∈ E(w)(C)
then ϕM ∈ E�(w)(C�)) and ξM ∈ E(w)(C) and (ξ→ ϕ)M � E(w)(C�). By modus ponens we
are assuming that ϕM ∈ E�(w)(C�) and (ξ→ ϕ)M � E(w)(C�).

By the definition of update, E�(w)(C�) = (E(w)(C�)�ξM)sup. Because ϕM ∈ E�(w)(C�),
there must be some X ∈ E(w)(C�), such that (X ∩ ξM) ⊆ ϕM. By elementary set theory, it
must be the case that X ⊆ (ξ→ ϕ)M.

Hence, by outcome monotonicity of E, if X ∈ E(w)(C�), then (ξ → ϕ)M ∈ E(w)(C�).
Contradiction.

[C ↓ ξ]([C�]ϕ↔ A(ξ→ ϕ))( for C� ∩ C � ∅)

Proof Take arbitrary tuple M,w, and ξM ∈ E(w)(C). Consider a coalition C� with C� ∩C �
∅. We have that E(w ↓(C,ξM))(C�) = (ξM)sup by semantics. This means that ξM ⊆ ϕM if
and only if ϕM ∈ E(w ↓(C,ξM))(C�). In conclusion M,w |= [C ↓ ξ]([C�]ϕ ↔ A(ξ → ϕ)).
Notice that this also means M,w |= [C ↓ ξ][C�]ϕ↔ A(ξ→ ϕ).

[C ↓ ξ][C�]ϕ↔ ([C]ξ→ [C�]ϕ)( for C� = ∅)

Proof It follows directly from the semantics of the update operator for the case of D = ∅.

B.2 The switch operator: validities
[sw]p↔ p

Proof Take arbitrary M,w. M,w |= [sw]p⇔M, (sw,w) |= p⇔M,w |= p.

[sw]¬ϕ↔ ¬[sw]ϕ

Proof Take arbitrary M,w. M,w |= [sw]¬ϕ ⇔ M, (sw,w) |= ¬ϕ ⇔ M, (sw,w) �|= ϕ ⇔
M,w �|= [sw]ϕ⇔M,w |= ¬[sw]ϕ

[sw](ϕ ∧ ψ)↔ ([sw]ϕ ∧ [sw]ψ)

Proof Take arbitrary M,w. M,w |= [sw](ϕ ∧ ψ)⇔ M, (sw,w) |= ϕ ∧ ψ⇔ M, (sw,w) |=
ϕ and M, (sw,w) |= ψ⇔M,w |= [sw]ϕ and M,w |= [sw]ψ⇔M,w |= [sw]ϕ ∧ [sw]ψ
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[sw]Aϕ↔ Aϕ

Proof Take arbitrary M,w. M,w |= [sw]Aϕ ⇔ M, (sw,w) |= Aϕ ⇔ ϕM = W ⇔ ϕM =
W ⇔M,w |= Aϕ.

[sw]��i ϕ↔ �
�

i ϕ

Proof Take arbitrary M,w. M,w |= [sw]��i ϕ ⇔ M, (sw,w) |= ��i ϕ ⇔ M, sw(v) |=
ϕ for every v such that w �i v⇔M, v |= ϕ for every v such that w �i v⇔M,w |= ��i ϕ.

[sw][k]ϕ↔ [sw−1(k)]ϕ

Proof Take arbitrary M,w. M,w |= [sw][k]ϕ⇔M, (sw,w) |= [k]ϕ⇔ ϕM ∈ E(sw(w))(k)⇔
ϕM ∈ E(w)( j), for sw(k) = j⇔M,w |= [sw−1k]ϕ.

[sw][k ↓ ψ]ϕ↔ [sw−1(k) ↓ ψ]ϕ

Proof Take arbitrary M,w. M,w |= [sw][k ↓ ψ]ϕ⇔M, (sw,w) |= [k ↓ ψ]ϕ⇔M, (sw,w) |=
[k]ψ implies M ↓k,ψ,w, (sw,w) |= ϕ ⇔ M |= [sw−1(k)]ψ implies M ↓sw−1(k)(w),ψM |= ϕ ⇔
M |= [sw−1(k) ↓ ψ]ϕ.

B.3 Completeness for TPCL
We will prove completeness of Truly Playable Coalition Logic, using canonical
model followed by filtration for monotone logics, partly using constructions from
[23] and [54]. Thus, we will also obtain finite model property for TPCL. Here
we only sketch the standard canonical model construction and refer the reader for
further details to [23] and [54].

To shorten the notation we hereafter denote the logic TPCL by L.
Given a TPCLLwe write �L ϕ forϕ ∈ L andΣ �L ϕ if there existsσ1, σ2, ..., σn ∈ Σ

with σ1 ∧ σ2 ∧ ... ∧ σn → ϕ ∈ L. As usual, omitting L is equivalent to considering
the smallest TPCL. A set of formulas Σ is L-inconsistent if ΣL � ⊥. A TPCL L is
sound with respect to a class of TPCL models K if Σ �L ϕ implies Σ |=K ϕ, and
complete if the converse holds. It is weakly complete if it is complete for Σ = ∅. As a
consequence, if a language L is weakly complete with respect to a class of models
K then every L-consistent formula can be satisfied in a model M ∈ K . Soundness
and weak completeness are equivalent to the fact that L = LK , with respect to a
class of modelsK . If moreoverK is a class of models with finite domain (or a class
of finite models) then L is said to have the finite model property.

Using a well-known argument [23], every L-consistent set of formulas Σ can be
extended to a maximally consistent set Σ∗

L
such that Σ ⊆ Σ∗

L
and for every formula
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ϕ ∈ L we have that either ϕ ∈ Σ∗
L

or ¬ϕ ∈ Σ∗
L

; ϕ ∨ ψ ∈ Σ∗
L

if and only if ϕ ∈ Σ∗
L

or
ψ ∈ Σ∗

L
; if Σ∗

L
�L ϕ then ϕ ∈ Σ∗

L
.

We take now the set WL of maximally consistent sets and we define ϕ∗ = {s ∈
WL | ϕ ∈ s} to be the proof set of ϕ.

Definition 78 (Canonical Model) The canonical model for TPCL is ML = (WL,EL,RL,VL)
where:

- w ∈ VL(p) if and only if p ∈ w;
- X ∈ EL(w)(C) if and only if ∃ψ∗ ⊆ X : [C]ψ ∈ w, for C � N
- X ∈ EL(w)(C) if and only if ∀ψ∗ if X ⊆ ψ∗ then [C]ψ ∈ w, for C = N
- wRLv if and only if ∀ψ, if ψ ∈ v then �O�ψ ∈ w.

Some remarks:

• That EL is playable and well-defined is proved in [54].

• The canonical relation for N is defined in [54] in the following slightly different,
but de facto equivalent, way: X ∈ EL(w)(N) if and only if [∅]ψ � w for
all ψ∗ such that ψ∗ ⊆ X. The equivalence follows easily from the fact that
�L [N]ϕ↔ ¬[∅]¬ϕ.

• The canonical relation for �O� is defined as a canonical relation for normal
modal logics [23].

Proposition 59 (Truth Lemma) For any w ∈WL we have that ML,w |= ϕ if and only if
ϕ ∈ w.

Proof By induction on the length of ϕ: standard for atomic propositions, boolean formulas,
and formulas of the form �O�ψ; proved in [54] for formulas of the form [C]ψ.

The canonical model is an extended coalition model, however it is not standard,
neither truly playable. The reason for that is the fact that for all ψ ∈ L,ψ ∈
v implies that [N]ψ ∈ w is not sufficient to conclude that {v} ∈ EL(w)(N) as states
are not characterized by unique formulas of the language of L. In order to obtain a
standard and truly playable model satisfying the given L-consistent formula δ we
are going to filter the canonical model with the finite set Σ(δ) obtained by taking
all subformulae of δ and closing under boolean operators, up to propositional
equivalence.

Filtrations First, we define a general notion of filtration for extended coalition
models and then a special filtration construction that preserves playability. Filtra-
tions of coalition models are introduced in [36] for the purpose of axiomatizing
Nash-consistent Coalition Logic. What we do here is to add the filtration for the
relation corresponding to the modality �O�.

Let M = (W,E,R,V) be an extended coalition model and Σ a subformula-closed
set of formulas over L. The equivalence classes induced by Σ on M are defined as
follows:

v ≡Σ w⇔ for all ϕ ∈ Σ : M, v |= ϕ if and only if M,w |= ϕ.
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We denote the equivalence class to which v belongs by |v| and the set {|v| | v ∈ X}
by |X| for any v ∈W and X ⊆W.

Definition 79 (Filtration) Let M = (W,E,R,V) be an extended coalition model and Σ a
subformula closed set of formulas over L. A coalition model Mf

Σ = (W f
Σ,E

f
Σ,R

f
Σ,V

f
Σ) is a

filtration of M through Σ whenever the following conditions are satisfied:

• W f
Σ = |W|.

• For all C ⊆ N and ϕ ∈ Σ, ϕM ∈ E(w)(C) implies {|v| |M, v |= ϕ} ∈ Ef
Σ(|w|)(C).

• For all C ⊆ N and Y ⊆ |W|: Y ∈ Ef
Σ(|w|)(C) implies that for all ϕ ∈ Σ if

ϕM ⊆ {v | |v| ∈ Y} then ϕM ∈ E(w)(C).

• If wRv then |w|R|v|.

• If |w|R|v| then for all �O�ϕ ∈ Σ, if M, v |= ϕ then M,w |= �O�ϕ.

• V f
Σ(p) = |V(p)| for all atoms p ∈ Σ.

The conditions above are needed to ensure the Filtration Lemma, as showed in
[36] for the neighbourhood functions and e.g. in [23] for the binary relation.

Proposition 60 (Filtration Lemma) If Mf
Σ =

(W f
Σ,E

f
Σ,R

f
Σ,V

f
Σ) is a filtration of M through Σ then for all ϕ ∈ Σ we have that M,w |= ϕ

if and only if Mf
Σ, |w| |= ϕ.

Definition 80 (Playable Filtration) Let M =
(W,E,R,V) be an extended coalition model and Σ(δ) the boolean closure of the set of
subformulas of δ, such that δ ∈ L, the language of TPCL. A coalition model MF

Σ(δ) =

(WF
Σ(δ),E

F
Σ(δ),R

F
Σ(δ),V

F
Σ(δ)) is a playable filtration of M throughΣ(δ) whenever the following

conditions are satisfied:

• WF
Σ(δ) = |W|.

• For all C ⊂ N,C � N, and Y ⊆ |W|: Y ∈ EF
Σ(δ)(|w|)(C) if and only if there exists

ϕ ∈ Σ(δ) such that ϕM ⊆ {v | |v| ∈ Y} and ϕM ∈ E(w)(C).

• For all Y ⊆ |W|: Y ∈ EF
Σ(δ)(|w|)(N) if and only if Y � EF

Σ(δ)(|w|)(∅).

• |w|RF
Σ(δ)|v| if and only if there exists w� ∈ |w|,∃v� ∈ |v| such that w�Rv�.

• VF
Σ(δ)(p) = |V(p)| for all atoms p ∈ Σ(δ).
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That MF
Σ(δ) is a filtration in the sense of Definition 79 is proved in [36] for the

coalitional modalities. We have added to that a minimal filtration for modality �O�.
So MF

Σ(δ) is a filtration in the sense of Definition 79. In [36] it is also shown that
playability is preserved by that filtration and that every subset of WF

Σ(δ) is definable
by a formula of Σ(δ) as follows. First, for every state |w| ∈ |W|we define

χF
Σ(δ)(|w|) :=

�
{ϕ ∈ Σ(δ) |MF

Σ(δ), |w| |= ϕ}.

Then, for every Y ⊆ |W|we put

χF
Σ(δ)(Y) :=

�
{χF
Σ(δ)(|w|) | |w| ∈ Y}.

It is straightforward to show, using the filtration lemma, that for every Y ⊆ |W|:

MF
Σ(δ), |w| |= χ

F
Σ(δ)(Y) if and only if |w| ∈ Y,

that is, χF
Σ(δ)(Y) indeed characterizes the set y in MF

Σ(δ).

Proposition 61 MF
Σ(δ) is standard and truly playable.

Proof To prove that ML,F
Σ(δ) is standard we have to show that for each w, v ∈ W, |v|RL,F

Σ(δ)|w|
if and only if {|v|} ∈ EL,F

Σ(δ)(|w|)(N). From right to left is straightforward. For the other
direction, suppose |v|RL,F

Σ(δ)|w|. Then ML,F
Σ(δ), |v| |= �O�χ

F
Σ(δ)(|w|) by definition of RL,F

Σ(δ) and
by the properties of filtrations. By the fact that RL,F

Σ(δ) is a minimal filtration we have that
∃w� ∈ |w|,∃v� ∈ |v| such that v�RLw�. By definition of RL and the Truth Lemma we have
that ML, v� |= �O�χF

Σ(δ)(|w|). By the axioms of L and the Truth Lemma we have ML, v� |=
[N]χF

Σ(δ)(|w|), hence ML, v� |= ¬[∅]¬χF
Σ(δ)(|w|). Then (¬χF

Σ(δ)(|w|))
ML � EL(v�)(∅) by the

definition of EL. But, by Definition 79 {(¬χF
Σ(δ)(|w|))

ML,F
Σ(δ) } � EL,F

Σ(δ)(|v|)(∅) and in turn

{(χF
Σ(δ)(|w|))

ML,F
Σ(δ) } ∈ EL,F

Σ(δ)(|v|)(N). Recall now that (χF
Σ(δ)(|w|))

ML,F
Σ(δ) = |w|.

Now, to prove that ML,F
Σ(δ) is truly playable, assume Y ∈ EL,F

Σ(δ)(|w|)(N). Then,

(¬χF
Σ(δ)(Y))ML,F

Σ(δ) � EL(w)(∅) by the definition of filtration, which means that for allϕ ∈ Σ(δ),

if {v | |v| ∈ (¬χF
Σ(δ)(Y))ML,F

Σ(δ) } ⊆ ϕM then ϕM � EL(w)(∅). In particular (¬χF
Σ(δ)(Y))ML �

EL(w)(∅). By the definition of EL we have that [∅]¬χF
Σ(δ)(Y) � w and by true playability

that �O�χF
Σ(δ)(Y) ∈ w. By the definition of canonical relation for �O� we have that there

exists v with wRLv such that χF
Σ(δ)(Y) ∈ v. By definition of filtration |w|RL,F

Σ(δ)|v| and by
the Filtration Lemma ML,F

Σ(δ), |v| |= χ
F
Σ(δ)(Y). Finally, {|v|} ∈ EL,F

Σ(δ)(|w|)(N) since ML,F
Σ(δ) is

standard.

This completes the proof of the Completeness theorem 37.

Corollary 62 (Finite Model Property) The logic TPCL has the finite model property
with respect to the class of models TrulyPlay.
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Strategic Reasoning in Interdependence:
Logical and Game-Theoretical Investigations — Summary

Game theory is the branch of economics that studies interactive decision making,
i.e. how entities that can reasonably be described as players of a game (e.g. a
company that needs to choose the price of a new product, a country that should
decide whether to withdraw from an occupied country, a PhD student who is about
to decide whether to apply for a Postdoc position etc.) should behave, given their
preferences and their information (e.g. the company wanting to attract a large
portion of population but knowing that the new product is not perceived as useful
by many potential customers, the country wanting to cut military spending but not
knowing whether the local government could alone secure its own territory, the
PhD student wanting to work in a sunny country and being aware of the weather
conditions of his future workplace). Game theory is usually divided into two main
branches: non-cooperative game theory, that studies the strategies that individuals
should employ to reach their own goals, and cooperative game theory, that studies
instead the effects of individuals joining their forces and getting the most out of
their collective strategies.

The present work lies somewhat in between the two sides of game theory and
studies the relation between the behaviour of individuals and the behaviour of coali-
tions to which they belong. The first part of the thesis, called Strategic Reasoning
and Coalitional Games, studies what it means for a coalition of players to choose
the best among the available alternatives, in particular what it means for a coalition
to prefer a strategy above another and in what circumstances are those strategies at a
coalition’s disposal. Think for instance of a chess player who is setting up an attack
against the opposite king. He knows that each of its pieces has invidual strengths
(e.g., the knight can go to a central square, the bishop can control an important
diagonal), but he is also aware that their real power lies in their combined forces
(e.g., the knight and the bishop can together control a central square on an important
diagonal). His reasoning starts from an individual perspective but it suddenly shifts
to a coalitional one, where notions such as preferences and strategies acquire a more
elaborated meaning and display specific formal properties. The thesis investigates
them adopting the standard tools of logic and game-theory. The second part of
the thesis, called Strategic Reasoning and Dependence Games, elaborates further
upon the study of coalitional reasoning, focusing on the network of interdependence
underlying each collective decision. Consider once again the chess player who is
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deciding what to move. He is perfectly aware that pieces do not always perfectly
and harmoniously coordinate. At times they actually obstruct each other while at
other times they may even need to sacrifice themselves for their king to survive a
mating attack. Their interaction displays a thick network of dependence relations
(i.e. what each piece can do for the others) which strongly influences the strategies
that can be played. In the classical account of cooperative game theory however
this important condition is simply not taken into account. The present work bridges
this gap, constructing a theory of coalitional rationality based on the resolution of
its underlying dependence relations. Concretely it studies the mathematical prop-
erties characterizing those coalitions that arise from their members taking mutual
advantage of each other. Finally, it relates those properties to the classical study of
collective decision making.



Strategische Redenering in Afhankelijkheid:
Logische en Speltheoretische Onderzoeken — Samenvatting

Speltheorie is de tak van economie die de interactieve besluitvorming bestudeert,
d.w.z. hoe individuen die beschreven kunnen worden als spelers (bijv. een bedrijf
dat de prijs moet bepalen voor een nieuw product, een land dat moet beslissen of
het zich terugtrekt uit een bezet land, een AIO die op het punt staat een beslissing
te nemen over de sollicitatie voor een Postdoc positie enz.) zich horen te gedragen,
gegeven hun voorkeuren en hun informatie (bijv. het bedrijf dat een groot gedeelte
van de bevolking wil aantrekken wetende dat dit nieuwe product niet ontvangen
zal worden als zijnde nuttig door veel potentiële klanten, het land dat wil snijden
in defensie uitgaven niet wetende of de locale bestuurders zelf hun grondgebied
zouden kunnen beschermen, de AIO die wil werken in een zonnig land en zich
bewust is van de weersomstandigheden van zijn toekomstige werkplek). Spelthe-
orie is gewoonlijk verdeeld in twee hoofdtakken: niet-coöperatieve speltheorie, die de
strategieën bestudeert die individuen moeten gebruiken om hun doelen te bereiken,
en coöperatieve speltheorie, die daarentegen de effecten bestudeert van individuen die
hun krachten bundelen en het beste halen uit hun collectieve strategieën.

Het huidige werk ligt enigszins in het midden van deze twee kanten van spelthe-
orie en bestudeert de relatie tussen het gedrag van individuen en het gedrag van
coalities waar ze toe behoren. Het eerste gedeelte van het proefschrift, genoemd
Strategische Redenering en Spellen van Coalities, bestudeert wat het betekent
voor een coalitie van spelers om de beste van de beschikbare alternatieven te kiezen,
in het bijzonder wat het betekent voor de coalitie om voorkeur te hebben voor de ene
strategie boven de andere en in wat voor omstandigheden deze strategieën tot de
beschikking staan van de coalitie. Denk bijvoorbeeld aan een schaakspeler die een
aanval aan het opzetten is tegen de koning van de tegenpartij. Hij weet dat elk
van de stukken individuele sterktes hebben (bijv., het paard kan naar een centraal
veld gaan, de loper kan een belangrijke diagonaal controleren), maar hij is zich ook
bewust dat hun echte sterkte in hun gecombineerde sterktes ligt (bijv., het paard en
de loper kunnen samen een centraal veld op een belangrijke diagonaal controleren).
Zijn redenering begint vanuit een individueel perspectief maar verschuift plotsel-
ing naar een coalitioneel perspectief, waar noties zoals voorkeuren en strategieën
een meer uitgewerkte betekenis verwerven en specifieke formele eigenschappen
ten toon spreiden. Het proefschrift onderzoekt deze, en maakt gebruik van de
standaard voorwerpen van logica en speltheorie. Het tweede gedeelte van dit
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proefschrift, genoemd Strategische Redenering en Spellen van Afhankelijkheid,
gaat verder in op de studie van redenering van coalities, en focust op het netwerk
van onderlinge afhankelijkheid dat een collectieve beslissing onderligt. Denk opnieuw
aan de schaakspeler die nadenkt over zijn zetten. Hij is zich er van bewust dat
stukken niet altijd perfect en harmonieus samenwerken. Nu en dan belemmeren
ze elkaar, terwijl ze zich in andere gevallen wellicht moeten opofferen om een
mat te voorkomen. Hun interacties tonen een dicht netwerk van afhankelijkhei-
drelaties (d.w.z. wat elk stuk kan doen voor de andere stukken) die de te spelen
strategieën sterk beïnvloed. In de klassieke modellen van speltheorie wordt deze
belangrijke voorwaarde simpelweg niet meegenomen. Het huidige werk overbrugt
dit en bouwt een theorie van coalitionele rationaliteit, gebaseerd op de oplossing
van de onderliggende afhankelijkheid relaties. Concreet gezien bestudeert het de
wiskundige eigenschappen van coalities die zijn ontstaan uit hun leden, welke
wederzijds voordeel halen uit hun samenwerking. Tenslotte relateert het deze
eigenschappen aan de klassieke modellen van collectieve besluitvorming.



Ragionamento Strategico in Interdipendenza:
Ricerche di Logica e Teoria dei Giochi — Riassunto

La Teoria dei Giochi è un ramo dell’Economia che studia le decisioni in interazione,
cioè il modo in cui tutti gli individui che possono ragionevolmente essere descritti
come dei giocatori (per esempio un’impresa che sceglie il prezzo di un nuovo
prodotto, uno Stato che deve decidere sul ritiro da uno stato occupato, uno studente
di dottorato che sta per decidere se fare domanda per un post-dottorato etc.) si
debbano comportare, date le loro preferenze e le loro informazioni (per esempio,
l’impresa che vuole attrarre una larga parte della popolazione ma che sa che il
nuovo prodotto non è percepito come utile da molti potenziali compratori, lo Stato
che vuole risparmiare sulle spese militari ma che non sa se il governo locale può
da solo riuscire a garantire la sicurezza del suo territorio, lo studente di dottorato
che vuole lavorare in uno luogo caldo e che sa quali sono le condizioni del meteo
presso il suo futuro posto di lavoro). La Teoria dei Giochi è di solito divisa in due
rami: la Teoria dei Giochi non cooperativa, che studia le strategie che gli individui
dovrebbero adottare per raggiungere i loro scopi; e la Teoria dei Giochi cooperativa,
che studia invece che cosa gli individui potrebbero raggiungere se unissero le forze
e adottassero strategie collettive.

Questo lavoro si trova nel mezzo delle due facce della Teoria dei Giochi e studia la
relazione tra il comportamento degli individui e quello delle coalizioni di cui questi
individui sono membri. La prima parte, che si intitola Ragionamento Strategico
e Giochi di Coalizione, studia cosa significa per una coalizione il fatto di dover
scegliere la migliore delle strategie disponibili, in particolare cosa significa preferire
una strategia ad un’altra, e in quali circostanze queste strategie sono disponibili. Si
pensi per esempio a un giocatore di scacchi che sta per attaccare il re nemico. Lui
sa che ogni suo pezzo ha dei punti di forza (per esempio, il cavallo può controllare
una casella centrale, l’alfiere può controllare un’importante diagonale), ma sa anche
bene che la loro vera forza sta nell’uso combinato delle loro abilita’ (per esempio, il
cavallo e l’alfiere possono insieme controllare una casella centrale in un’importante
diagonale). Il suo ragionamento inizia da una prospettiva individuale ma di colpo
si sposta a una prospettiva di coalizione, dove nozioni come preferenze e strategie
acquistano significati più elaborati e mostrano specifiche proprietà formali. La
tesi le discute, facendo uso di strumenti classici della Logica e della Teoria dei
Giochi. La seconda parte della Tesi, che si intitola Ragionamento Strategico e
Giochi di Dipendenza, elabora più a fondo lo studio della razionalità collettiva,
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concentrandosi sulla rete di interdipendenza che si trova al di sotto di ogni decisione
delle coalizioni. Si consideri di nuovo il giocatore di scacchi che sta decidendo cosa
muovere. Lui sa che non sempre i suoi pezzi sono perfettamente e armoniosamente
coordinati. A volte si ostruiscono a vicenda, altre volte addirittura devono essere
sacrificati per consentire al loro re di sopravvivere. La loro interazione mostra
una spessa rete di relazioni di dipendenza (ciò che ogni pezzo può fare per gli
altri) che influenza le strategie che possono essere giocate. Nella visione classica
della Teoria dei Giochi cooperativa però questa condizione non è assolutamente
considerata. Il presente lavoro colma questa mancanza, costruendo una teoria
della razionalità di coalizione basata sulla risoluzione delle sottostanti relazioni di
dipendenza. Concretamente, studia le proprietà matematiche che caratterizzano
quelle coalizioni che si formano dal muto vantaggio dei propri membri. In fine,
collega queste proprietà allo studio classico della teoria delle decisioni collettive.
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