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Outline

• Gaussian parameter estimation [Daskalakis et al, 2018]


• Regression & classification [Daskalakis et al, 2019; Ilyas et al, 2020 (forthcoming)]


• Extensions and Limitations [many works]

• Future work/open problems
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x ∉ S

Observe x

Goal: Obtain estimates  from samples( ̂μ, Σ̂) ≈ (μ, Σ)

Fig. 1 (Daskalakis et al, 2018): 1000 samples from 
 and from  truncated to 

. Which is which?
𝒩([0,1], I) 𝒩([0,1],4 I)

[−0.5,0.5] × [1.5,2.5]
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• No longer has a closed-form solution for the maximizer
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• Step 1: Re-parameterize: T = Σ−1, v = Σ−1μ

• Step 2: We get an unbiased estimate of the gradient from just truncated samples:

• Thus: can execute SGD on the truncated log-likelihood with oracle access to S
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• Step 3: SGD recovers the true parameters!

• Ingredients:

• Convexity always holds (not necessarily strong)

• Guaranteed constant probability  of a sample falling into α S

• Efficient projection algorithm into the set of valid parameters (defined by )α

• Strong convexity within the projection set: H ⪰ C ⋅ α4 ⋅ λm(T−1) ⋅ I

• Good initialization point (i.e., assigns constant mass to )S

• Result: Efficient algorithm for recovering parameters from truncated data!
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• Goal: infer the effect of height  
on basketball ability 


• Strategy: linear regression

xi
yi

Bias from truncation: an illustration
What we get:

Good 
enough 
for NBA!

NBA?

ε
zability

height

No

Player unobserved

Yes Observe yi

• Truncation: only observe data 
based on the value of yi
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Truncation in practice

Fig 1 [Hausman and Wise 1977] 

Corrected previous findings about 
education (x) vs income (y) affected 

by truncation on income (y)

Table 1 [Lin et al 1999] 

Found bias in income (x) vs child 
support (y) because respondence 

rate differs based on y 

Not a hypothetical problem (or a new one!)

Has inspired lots of prior work in statistics/econometrics

Our goal: unified efficient (polynomial in dimension) algorithm 

[Galton 1897; Pearson 1902; Lee 1914; Fisher 1931; Hotelling 1948; Tukey 1949; Tobin 1958; Amemiya 1973; Breen 1996; Balakrishnan, Cramer 2014]
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Truncated regression and classification

x ∼ D

Sample a 
covariate x

z = hθ*(x) + ε

ε ∼ DN

Sample noise ε, 
compute latent z

w.p. φ(z) T ∪ {(x, y)}

Add (x,y) to 
training set

Throw away (x,z) 
and restart

w.p. 1 - φ(z)

y := π(z)

Project z to 
a label y
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Parameter estimation
• We have a model  where , want estimate yi ∼ π (hθ*(xi) + ε) ε ∼ DN

̂θ  for θ*

• Standard (non-truncated) approach: maximize likelihood

        p(θ; x, y) = ∫z∈π−1(y)
DN(z − hθ(x)) dz

• Example: if  is a linear function, then:hθ

• If  and , MLE is ordinary least squares regressionπ(z) = z ε ∼ 𝒩(0,1)

• If  and , MLE is probit regressionπ(z) = 1z≥0 ε ∼ 𝒩(0,1)

• If  and , MLE is logistic regressionπ(z) = 1z≥0 ε ∼ Logistic(0,1)
• What about the truncated case?

Likelihood of latent under model

All possible latent variables corresponding to label
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Definition (Quasi-convexity): For all , we have f(y) ≤ f(x) ⟨∇f(x), y − x⟩ ≤ 0

[Hazan et al, 2015] define strict local quasi-convexity (SLQC) property: both stronger (inner product 
bounded away from zero) and weaker (  is constrained to a ball around ) than just QCy x*

Their result: normalized SGD with minimum batch size converges to global optimum for SLQC functions
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• Goal: show that NSGD on NLL 
converges to maximizer of the 
(population) log-likelihood

• As with estimation, we define a 
projection set where linear, 
probit, and logistic regression are 
all SLQC  NSGD converges ⟹

• In fact, linear regression was 
shown strongly convex by 
[Daskalakis et al, 2019]Theorem (informal): if for every , there is a non-zero ( ) probability that 

, then NSGD finds an -minimizer of the NLL in  steps.
x ∈ ℝd α > 0

y = {0,1} ε poly(1/α,1/ε, d)
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Extensions and Limitations
Mixture of two Gaussians [Nagarajan & Panageas, 2019]

• We saw how to estimate parameters of truncated Gaussian 
• Nagarajan & Panageas consider truncated mixture of two Gaussians

• Likelihood can be optimized using the standard expectation-
maximization method, gives local improvement guarantee

• Global convergence of EM for truncated mixtures is shown
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Extensions and Limitations
High-dimensional (sparse) setting [Daskalakis et al, 2020]

• For linear regression, we can also consider the setting where the 
covariates  are very high dimensional, but -sparsexi k

• In this setting, [Daskalakis et al, 2020] propose a modified LASSO 
algorithm for dealing with truncation

• Recovers parameters under truncation with error O( k log(d)/n
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Future Work

• Robustness to model mis-specification
• Connections to causal inference:
• Selection bias
• Truncated outcomes (e.g. death in medical trials, dropping out in 

school studies, non-response in surveys)
• Improving algorithms for censored statistics (where the learner 

observes the truncation)


