
Recent work in
Truncated Statistics
Andrew Ilyas

Motivation: Poincaré and the Baker

Motivation: Poincaré and the Baker

Motivation: Poincaré and the Baker

Claimed weight: 1 kg/loaf

Motivation: Poincaré and the Baker

Claimed weight: 1 kg/loaf

Average weight: 950 g/loaf

Motivation: Poincaré and the Baker

Claimed weight: 1 kg/loaf

Average weight: 1.05 kg/loaf

Motivation: Poincaré and the Baker

Claimed weight: 1 kg/loaf

Average weight: 1.05 kg/loaf

1 kg
Fr

eq
ue

nc
y

Outline

• Gaussian parameter estimation [Daskalakis et al, 2018]

• Regression & classification [Daskalakis et al, 2019; Ilyas et al, 2020 (forthcoming)]

• Extensions and Limitations [many works]

• Future work/open problems

Gaussian Estimation

Gaussian Estimation

x ∼ 𝒩(μ, Σ)

Sample x

Gaussian Estimation

x ∼ 𝒩(μ, Σ)

Sample x x ∈ S

Gaussian Estimation

x ∼ 𝒩(μ, Σ)

Sample x x ∈ S
Observe x

Gaussian Estimation

x ∼ 𝒩(μ, Σ)

Sample x x ∈ S

x ∉ S

Observe x

Gaussian Estimation

x ∼ 𝒩(μ, Σ)

Sample x x ∈ S

Throw away
and restart

x

x ∉ S

Observe x

Gaussian Estimation

x ∼ 𝒩(μ, Σ)

Sample x x ∈ S

Throw away
and restart

x

x ∉ S

Observe x

Goal: Obtain estimates from samples(̂μ, Σ̂) ≈ (μ, Σ)

Gaussian Estimation

x ∼ 𝒩(μ, Σ)

Sample x x ∈ S

Throw away
and restart

x

x ∉ S

Observe x

Goal: Obtain estimates from samples(̂μ, Σ̂) ≈ (μ, Σ)

Fig. 1 (Daskalakis et al, 2018): 1000 samples from
 and from truncated to

. Which is which?
𝒩([0,1], I) 𝒩([0,1],4 I)

[−0.5,0.5] × [1.5,2.5]

Theme: Maximum Likelihood Estimation
Projected Gradient Descent on the Negative Log-Likelihood (NLL)

Theme: Maximum Likelihood Estimation
Projected Gradient Descent on the Negative Log-Likelihood (NLL)

• Standard approach to estimating Gaussian parameters:

Theme: Maximum Likelihood Estimation
Projected Gradient Descent on the Negative Log-Likelihood (NLL)

• Standard approach to estimating Gaussian parameters:

(̂μ, Σ̂) = arg max
(μ,Σ) ∑

xi

log(fN(xi; μ, Σ)) = arg max
(μ,Σ) ∑

xi

(xi − μ)⊤Σ−1(xi − μ)

Theme: Maximum Likelihood Estimation
Projected Gradient Descent on the Negative Log-Likelihood (NLL)

• Standard approach to estimating Gaussian parameters:

(̂μ, Σ̂) = arg max
(μ,Σ) ∑

xi

log(fN(xi; μ, Σ)) = arg max
(μ,Σ) ∑

xi

(xi − μ)⊤Σ−1(xi − μ)

Theme: Maximum Likelihood Estimation
Projected Gradient Descent on the Negative Log-Likelihood (NLL)

• Standard approach to estimating Gaussian parameters:

• Take derivative, set to 0:

(̂μ, Σ̂) = arg max
(μ,Σ) ∑

xi

log(fN(xi; μ, Σ)) = arg max
(μ,Σ) ∑

xi

(xi − μ)⊤Σ−1(xi − μ)

Theme: Maximum Likelihood Estimation
Projected Gradient Descent on the Negative Log-Likelihood (NLL)

• Standard approach to estimating Gaussian parameters:

• Take derivative, set to 0:

(̂μ, Σ̂) = arg max
(μ,Σ) ∑

xi

log(fN(xi; μ, Σ)) = arg max
(μ,Σ) ∑

xi

(xi − μ)⊤Σ−1(xi − μ)

̂μ =
1
n ∑

xi

xi

Theme: Maximum Likelihood Estimation
Projected Gradient Descent on the Negative Log-Likelihood (NLL)

• Standard approach to estimating Gaussian parameters:

• Take derivative, set to 0:

(̂μ, Σ̂) = arg max
(μ,Σ) ∑

xi

log(fN(xi; μ, Σ)) = arg max
(μ,Σ) ∑

xi

(xi − μ)⊤Σ−1(xi − μ)

̂μ =
1
n ∑

xi

xi Σ̂ =
1
n ∑

xi

(xi − ̂μ)(xi − ̂μ)⊤

Theme: Maximum Likelihood Estimation
Projected Gradient Descent on the Negative Log-Likelihood (NLL)

Theme: Maximum Likelihood Estimation
Projected Gradient Descent on the Negative Log-Likelihood (NLL)

• In the truncated setting, the log-likelihood changes:

Theme: Maximum Likelihood Estimation
Projected Gradient Descent on the Negative Log-Likelihood (NLL)

• In the truncated setting, the log-likelihood changes:

f(x; μ, Σ, S) =
fN(x; μ, Σ)

∫
S

fN(z; μ, Σ) dz
 if x ∈ S else 0

Theme: Maximum Likelihood Estimation
Projected Gradient Descent on the Negative Log-Likelihood (NLL)

• In the truncated setting, the log-likelihood changes:

f(x; μ, Σ, S) =
fN(x; μ, Σ)

∫
S

fN(z; μ, Σ) dz
 if x ∈ S else 0

log(f(x; μ, Σ, S)) = log(fN(x; μ, Σ)) − log (∫S
fN(z; μ, Σ) dz)

Theme: Maximum Likelihood Estimation
Projected Gradient Descent on the Negative Log-Likelihood (NLL)

• In the truncated setting, the log-likelihood changes:

• No longer has a closed-form solution for the maximizer

f(x; μ, Σ, S) =
fN(x; μ, Σ)

∫
S

fN(z; μ, Σ) dz
 if x ∈ S else 0

log(f(x; μ, Σ, S)) = log(fN(x; μ, Σ)) − log (∫S
fN(z; μ, Σ) dz)

Theme: Maximum Likelihood Estimation
Projected Gradient Descent on the Negative Log-Likelihood (NLL)

Theme: Maximum Likelihood Estimation
Projected Gradient Descent on the Negative Log-Likelihood (NLL)

• Step 1: Re-parameterize: T = Σ−1, v = Σ−1μ

Theme: Maximum Likelihood Estimation
Projected Gradient Descent on the Negative Log-Likelihood (NLL)

• Step 1: Re-parameterize: T = Σ−1, v = Σ−1μ

• Step 2: We get an unbiased estimate of the gradient from just truncated samples:

Theme: Maximum Likelihood Estimation
Projected Gradient Descent on the Negative Log-Likelihood (NLL)

• Step 1: Re-parameterize: T = Σ−1, v = Σ−1μ

• Step 2: We get an unbiased estimate of the gradient from just truncated samples:
∇μlog(f(x; v, T, S)) = 𝔼z∼𝒩(μ,Σ)[z |z ∈ S] − x

Theme: Maximum Likelihood Estimation
Projected Gradient Descent on the Negative Log-Likelihood (NLL)

• Step 1: Re-parameterize: T = Σ−1, v = Σ−1μ

• Step 2: We get an unbiased estimate of the gradient from just truncated samples:
∇μlog(f(x; v, T, S)) = 𝔼z∼𝒩(μ,Σ)[z |z ∈ S] − x

∇Σlog(f(x; v, T, S)) =
1
2

xx⊤ −
1
2

𝔼z∼𝒩(μ,Σ) [zz⊤ |z ∈ S]

Theme: Maximum Likelihood Estimation
Projected Gradient Descent on the Negative Log-Likelihood (NLL)

• Step 1: Re-parameterize: T = Σ−1, v = Σ−1μ

• Step 2: We get an unbiased estimate of the gradient from just truncated samples:
∇μlog(f(x; v, T, S)) = 𝔼z∼𝒩(μ,Σ)[z |z ∈ S] − x

∇Σlog(f(x; v, T, S)) =
1
2

xx⊤ −
1
2

𝔼z∼𝒩(μ,Σ) [zz⊤ |z ∈ S]

Expected truncated mean/
covariance under current params

Theme: Maximum Likelihood Estimation
Projected Gradient Descent on the Negative Log-Likelihood (NLL)

• Step 1: Re-parameterize: T = Σ−1, v = Σ−1μ

• Step 2: We get an unbiased estimate of the gradient from just truncated samples:
∇μlog(f(x; v, T, S)) = 𝔼z∼𝒩(μ,Σ)[z |z ∈ S] − x

∇Σlog(f(x; v, T, S)) =
1
2

xx⊤ −
1
2

𝔼z∼𝒩(μ,Σ) [zz⊤ |z ∈ S]

Empirical (batch)
mean/covariance

Expected truncated mean/
covariance under current params

Theme: Maximum Likelihood Estimation
Projected Gradient Descent on the Negative Log-Likelihood (NLL)

• Step 1: Re-parameterize: T = Σ−1, v = Σ−1μ

• Step 2: We get an unbiased estimate of the gradient from just truncated samples:

• Thus: can execute SGD on the truncated log-likelihood with oracle access to S

∇μlog(f(x; v, T, S)) = 𝔼z∼𝒩(μ,Σ)[z |z ∈ S] − x

∇Σlog(f(x; v, T, S)) =
1
2

xx⊤ −
1
2

𝔼z∼𝒩(μ,Σ) [zz⊤ |z ∈ S]

Empirical (batch)
mean/covariance

Expected truncated mean/
covariance under current params

Theme: Maximum Likelihood Estimation
Projected Gradient Descent on the Negative Log-Likelihood (NLL)

Theme: Maximum Likelihood Estimation
Projected Gradient Descent on the Negative Log-Likelihood (NLL)

• Step 3: SGD recovers the true parameters!

Theme: Maximum Likelihood Estimation
Projected Gradient Descent on the Negative Log-Likelihood (NLL)

• Step 3: SGD recovers the true parameters!

• Ingredients:

Theme: Maximum Likelihood Estimation
Projected Gradient Descent on the Negative Log-Likelihood (NLL)

• Step 3: SGD recovers the true parameters!

• Ingredients:

• Convexity always holds (not necessarily strong)

Theme: Maximum Likelihood Estimation
Projected Gradient Descent on the Negative Log-Likelihood (NLL)

• Step 3: SGD recovers the true parameters!

• Ingredients:

• Convexity always holds (not necessarily strong)

• Guaranteed constant probability of a sample falling into α S

Theme: Maximum Likelihood Estimation
Projected Gradient Descent on the Negative Log-Likelihood (NLL)

• Step 3: SGD recovers the true parameters!

• Ingredients:

• Convexity always holds (not necessarily strong)

• Guaranteed constant probability of a sample falling into α S

• Efficient projection algorithm into the set of valid parameters (defined by)α

Theme: Maximum Likelihood Estimation
Projected Gradient Descent on the Negative Log-Likelihood (NLL)

• Step 3: SGD recovers the true parameters!

• Ingredients:

• Convexity always holds (not necessarily strong)

• Guaranteed constant probability of a sample falling into α S

• Efficient projection algorithm into the set of valid parameters (defined by)α

• Strong convexity within the projection set: H ⪰ C ⋅ α4 ⋅ λm(T−1) ⋅ I

Theme: Maximum Likelihood Estimation
Projected Gradient Descent on the Negative Log-Likelihood (NLL)

• Step 3: SGD recovers the true parameters!

• Ingredients:

• Convexity always holds (not necessarily strong)

• Guaranteed constant probability of a sample falling into α S

• Efficient projection algorithm into the set of valid parameters (defined by)α

• Strong convexity within the projection set: H ⪰ C ⋅ α4 ⋅ λm(T−1) ⋅ I

• Good initialization point (i.e., assigns constant mass to)S

Theme: Maximum Likelihood Estimation
Projected Gradient Descent on the Negative Log-Likelihood (NLL)

• Step 3: SGD recovers the true parameters!

• Ingredients:

• Convexity always holds (not necessarily strong)

• Guaranteed constant probability of a sample falling into α S

• Efficient projection algorithm into the set of valid parameters (defined by)α

• Strong convexity within the projection set: H ⪰ C ⋅ α4 ⋅ λm(T−1) ⋅ I

• Good initialization point (i.e., assigns constant mass to)S

• Result: Efficient algorithm for recovering parameters from truncated data!

Truncation bias in regression

Truncation bias in regression

• Goal: infer the effect of height
on basketball ability

xi
yi

Truncation bias in regression

• Goal: infer the effect of height
on basketball ability

xi
yi

• Strategy: linear regression

Truncation bias in regression

• Goal: infer the effect of height
on basketball ability

xi
yi

• Strategy: linear regression

What we expect:

Truncation bias in regression

• Goal: infer the effect of height
on basketball ability

xi
yi

• Strategy: linear regression

What we expect:

• Goal: infer the effect of height
on basketball ability

• Strategy: linear regression

xi
yi

Bias from truncation: an illustration
What we get:

z

• Goal: infer the effect of height
on basketball ability

• Strategy: linear regression

xi
yi

Bias from truncation: an illustration
What we get:

Good
enough
for NBA!

z

• Goal: infer the effect of height
on basketball ability

• Strategy: linear regression

xi
yi

Bias from truncation: an illustration
What we get:

Good
enough
for NBA!

zability

• Goal: infer the effect of height
on basketball ability

• Strategy: linear regression

xi
yi

Bias from truncation: an illustration
What we get:

Good
enough
for NBA!

zability
height

• Goal: infer the effect of height
on basketball ability

• Strategy: linear regression

xi
yi

Bias from truncation: an illustration
What we get:

Good
enough
for NBA!

ε
zability

height

• Goal: infer the effect of height
on basketball ability

• Strategy: linear regression

xi
yi

Bias from truncation: an illustration
What we get:

Good
enough
for NBA!

ε
zability

height

• Goal: infer the effect of height
on basketball ability

• Strategy: linear regression

xi
yi

Bias from truncation: an illustration
What we get:

Good
enough
for NBA!

NBA?

ε
zability

height

• Goal: infer the effect of height
on basketball ability

• Strategy: linear regression

xi
yi

Bias from truncation: an illustration
What we get:

Good
enough
for NBA!

NBA?

ε
zability

height
Yes Observe yi

• Goal: infer the effect of height
on basketball ability

• Strategy: linear regression

xi
yi

Bias from truncation: an illustration
What we get:

Good
enough
for NBA!

NBA?

ε
zability

height

No

Player unobserved

Yes Observe yi

• Goal: infer the effect of height
on basketball ability

• Strategy: linear regression

xi
yi

Bias from truncation: an illustration
What we get:

Good
enough
for NBA!

NBA?

ε
zability

height

No

Player unobserved

Yes Observe yi

• Truncation: only observe data
based on the value of yi

Truncation in practice
Not a hypothetical problem (or a new one!)

Truncation in practice

Fig 1 [Hausman and Wise 1977]

Not a hypothetical problem (or a new one!)

Truncation in practice

Fig 1 [Hausman and Wise 1977]

Corrected previous findings about
education (x) vs income (y) affected

by truncation on income (y)

Not a hypothetical problem (or a new one!)

Truncation in practice

Fig 1 [Hausman and Wise 1977]

Corrected previous findings about
education (x) vs income (y) affected

by truncation on income (y)

Table 1 [Lin et al 1999]

Not a hypothetical problem (or a new one!)

Truncation in practice

Fig 1 [Hausman and Wise 1977]

Corrected previous findings about
education (x) vs income (y) affected

by truncation on income (y)

Table 1 [Lin et al 1999]

Found bias in income (x) vs child
support (y) because respondence

rate differs based on y

Not a hypothetical problem (or a new one!)

Truncation in practice

Fig 1 [Hausman and Wise 1977]

Corrected previous findings about
education (x) vs income (y) affected

by truncation on income (y)

Table 1 [Lin et al 1999]

Found bias in income (x) vs child
support (y) because respondence

rate differs based on y

Not a hypothetical problem (or a new one!)

Has inspired lots of prior work in statistics/econometrics

Our goal: unified efficient (polynomial in dimension) algorithm

[Galton 1897; Pearson 1902; Lee 1914; Fisher 1931; Hotelling 1948; Tukey 1949; Tobin 1958; Amemiya 1973; Breen 1996; Balakrishnan, Cramer 2014]

Truncated regression and classification

Truncated regression and classification

x ∼ D

Sample a
covariate x

Truncated regression and classification

x ∼ D

Sample a
covariate x

Truncated regression and classification

x ∼ D

Sample a
covariate x

z = hθ*(x) + ε

ε ∼ DN

Sample noise ε,
compute latent z

Truncated regression and classification

x ∼ D

Sample a
covariate x

z = hθ*(x) + ε

ε ∼ DN

Sample noise ε,
compute latent z

w.p. 1 - φ(z)

Truncated regression and classification

x ∼ D

Sample a
covariate x

z = hθ*(x) + ε

ε ∼ DN

Sample noise ε,
compute latent z

Throw away (x,z)
and restart

w.p. 1 - φ(z)

Truncated regression and classification

x ∼ D

Sample a
covariate x

z = hθ*(x) + ε

ε ∼ DN

Sample noise ε,
compute latent z

Throw away (x,z)
and restart

w.p. 1 - φ(z)

Truncated regression and classification

x ∼ D

Sample a
covariate x

z = hθ*(x) + ε

ε ∼ DN

Sample noise ε,
compute latent z

w.p. φ(z)

Throw away (x,z)
and restart

w.p. 1 - φ(z)

Truncated regression and classification

x ∼ D

Sample a
covariate x

z = hθ*(x) + ε

ε ∼ DN

Sample noise ε,
compute latent z

w.p. φ(z)

Throw away (x,z)
and restart

w.p. 1 - φ(z)

y := π(z)

Project z to
a label y

Truncated regression and classification

x ∼ D

Sample a
covariate x

z = hθ*(x) + ε

ε ∼ DN

Sample noise ε,
compute latent z

w.p. φ(z)

Throw away (x,z)
and restart

w.p. 1 - φ(z)

y := π(z)

Project z to
a label y

Truncated regression and classification

x ∼ D

Sample a
covariate x

z = hθ*(x) + ε

ε ∼ DN

Sample noise ε,
compute latent z

w.p. φ(z) T ∪ {(x, y)}

Add (x,y) to
training set

Throw away (x,z)
and restart

w.p. 1 - φ(z)

y := π(z)

Project z to
a label y

Parameter estimation

Parameter estimation
• We have a model where , want estimate yi ∼ π (hθ*(xi) + ε) ε ∼ DN

̂θ for θ*

Parameter estimation
• We have a model where , want estimate yi ∼ π (hθ*(xi) + ε) ε ∼ DN

̂θ for θ*

• Standard (non-truncated) approach: maximize likelihood

Parameter estimation
• We have a model where , want estimate yi ∼ π (hθ*(xi) + ε) ε ∼ DN

̂θ for θ*

• Standard (non-truncated) approach: maximize likelihood

 p(θ; x, y) = ∫z∈π−1(y)
DN(z − hθ(x)) dz

Parameter estimation
• We have a model where , want estimate yi ∼ π (hθ*(xi) + ε) ε ∼ DN

̂θ for θ*

• Standard (non-truncated) approach: maximize likelihood

 p(θ; x, y) = ∫z∈π−1(y)
DN(z − hθ(x)) dz

All possible latent variables corresponding to label

Parameter estimation
• We have a model where , want estimate yi ∼ π (hθ*(xi) + ε) ε ∼ DN

̂θ for θ*

• Standard (non-truncated) approach: maximize likelihood

 p(θ; x, y) = ∫z∈π−1(y)
DN(z − hθ(x)) dz

Likelihood of latent under model

All possible latent variables corresponding to label

Parameter estimation
• We have a model where , want estimate yi ∼ π (hθ*(xi) + ε) ε ∼ DN

̂θ for θ*

• Standard (non-truncated) approach: maximize likelihood

 p(θ; x, y) = ∫z∈π−1(y)
DN(z − hθ(x)) dz

• Example: if is a linear function, then:hθ

Likelihood of latent under model

All possible latent variables corresponding to label

Parameter estimation
• We have a model where , want estimate yi ∼ π (hθ*(xi) + ε) ε ∼ DN

̂θ for θ*

• Standard (non-truncated) approach: maximize likelihood

 p(θ; x, y) = ∫z∈π−1(y)
DN(z − hθ(x)) dz

• Example: if is a linear function, then:hθ

• If and , MLE is ordinary least squares regressionπ(z) = z ε ∼ 𝒩(0,1)

Likelihood of latent under model

All possible latent variables corresponding to label

Parameter estimation
• We have a model where , want estimate yi ∼ π (hθ*(xi) + ε) ε ∼ DN

̂θ for θ*

• Standard (non-truncated) approach: maximize likelihood

 p(θ; x, y) = ∫z∈π−1(y)
DN(z − hθ(x)) dz

• Example: if is a linear function, then:hθ

• If and , MLE is ordinary least squares regressionπ(z) = z ε ∼ 𝒩(0,1)

• If and , MLE is probit regressionπ(z) = 1z≥0 ε ∼ 𝒩(0,1)

Likelihood of latent under model

All possible latent variables corresponding to label

Parameter estimation
• We have a model where , want estimate yi ∼ π (hθ*(xi) + ε) ε ∼ DN

̂θ for θ*

• Standard (non-truncated) approach: maximize likelihood

 p(θ; x, y) = ∫z∈π−1(y)
DN(z − hθ(x)) dz

• Example: if is a linear function, then:hθ

• If and , MLE is ordinary least squares regressionπ(z) = z ε ∼ 𝒩(0,1)

• If and , MLE is probit regressionπ(z) = 1z≥0 ε ∼ 𝒩(0,1)

• If and , MLE is logistic regressionπ(z) = 1z≥0 ε ∼ Logistic(0,1)

Likelihood of latent under model

All possible latent variables corresponding to label

Parameter estimation
• We have a model where , want estimate yi ∼ π (hθ*(xi) + ε) ε ∼ DN

̂θ for θ*

• Standard (non-truncated) approach: maximize likelihood

 p(θ; x, y) = ∫z∈π−1(y)
DN(z − hθ(x)) dz

• Example: if is a linear function, then:hθ

• If and , MLE is ordinary least squares regressionπ(z) = z ε ∼ 𝒩(0,1)

• If and , MLE is probit regressionπ(z) = 1z≥0 ε ∼ 𝒩(0,1)

• If and , MLE is logistic regressionπ(z) = 1z≥0 ε ∼ Logistic(0,1)
• What about the truncated case?

Likelihood of latent under model

All possible latent variables corresponding to label

Parameter estimation from truncated data

Parameter estimation from truncated data
Main idea: maximization of the truncated log-likelihood

Parameter estimation from truncated data

• Truncated likelihood:

Main idea: maximization of the truncated log-likelihood

Parameter estimation from truncated data

• Truncated likelihood:

p(θ; x, y) = ∫z∈π−1(y)
DN(z − hθ(x)) dz

Main idea: maximization of the truncated log-likelihood

Parameter estimation from truncated data

• Truncated likelihood:

p(θ; x, y) = ∫z∈π−1(y)
DN(z − hθ(x)) dz

Main idea: maximization of the truncated log-likelihood

Parameter estimation from truncated data

• Truncated likelihood:

p(θ; x, y) =
∫

z∈π−1(y)
DN(z − hθ(x))ϕ(z) dz

∫
z
DN(z − hθ(x))ϕ(z) dz

p(θ; x, y) = ∫z∈π−1(y)
DN(z − hθ(x)) dz

Main idea: maximization of the truncated log-likelihood

Parameter estimation from truncated data

• Truncated likelihood:

p(θ; x, y) =
∫

z∈π−1(y)
DN(z − hθ(x))ϕ(z) dz

∫
z
DN(z − hθ(x))ϕ(z) dz

p(θ; x, y) = ∫z∈π−1(y)
DN(z − hθ(x)) dz

Main idea: maximization of the truncated log-likelihood

Parameter estimation from truncated data

• Truncated likelihood:

p(θ; x, y) =
∫

z∈π−1(y)
DN(z − hθ(x))ϕ(z) dz

∫
z
DN(z − hθ(x))ϕ(z) dz

p(θ; x, y) = ∫z∈π−1(y)
DN(z − hθ(x)) dz

Main idea: maximization of the truncated log-likelihood

Parameter estimation from truncated data

• Truncated likelihood:

• Again, we can compute a stochastic gradient of the log-likelihood with only
oracle access to Leads to another SGD-based algorithmϕ ⟹

p(θ; x, y) =
∫

z∈π−1(y)
DN(z − hθ(x))ϕ(z) dz

∫
z
DN(z − hθ(x))ϕ(z) dz

p(θ; x, y) = ∫z∈π−1(y)
DN(z − hθ(x)) dz

Main idea: maximization of the truncated log-likelihood

Parameter estimation from truncated data

• Truncated likelihood:

• Again, we can compute a stochastic gradient of the log-likelihood with only
oracle access to Leads to another SGD-based algorithmϕ ⟹

• However: this time the loss can actually be non-convex

p(θ; x, y) =
∫

z∈π−1(y)
DN(z − hθ(x))ϕ(z) dz

∫
z
DN(z − hθ(x))ϕ(z) dz

p(θ; x, y) = ∫z∈π−1(y)
DN(z − hθ(x)) dz

Main idea: maximization of the truncated log-likelihood

Parameter estimation from truncated data

• However: this time the loss can actually be non-convex

Parameter estimation from truncated data

• However: this time the loss can actually be non-convex

Parameter estimation from truncated data

θ

ℓ(θ)

• However: this time the loss can actually be non-convex

• Example: 1D logistic regression, S = [−1, 3]

Parameter estimation from truncated data

θ

ℓ(θ)

• However: this time the loss can actually be non-convex

• Example: 1D logistic regression, S = [−1, 3]

• Instead, we will use quasi-convexity:

Parameter estimation from truncated data

θ

ℓ(θ)

• However: this time the loss can actually be non-convex

• Example: 1D logistic regression, S = [−1, 3]

• Instead, we will use quasi-convexity:

Parameter estimation from truncated data

θ

ℓ(θ)

Definition (Quasi-convexity): For all , we have f(y) ≤ f(x) ⟨∇f(x), y − x⟩ ≤ 0

• However: this time the loss can actually be non-convex

• Example: 1D logistic regression, S = [−1, 3]

• Instead, we will use quasi-convexity:

Parameter estimation from truncated data

θ

ℓ(θ)

Definition (Quasi-convexity): For all , we have f(y) ≤ f(x) ⟨∇f(x), y − x⟩ ≤ 0

[Hazan et al, 2015] define strict local quasi-convexity (SLQC) property: both stronger (inner product
bounded away from zero) and weaker (is constrained to a ball around) than just QCy x*

• However: this time the loss can actually be non-convex

• Example: 1D logistic regression, S = [−1, 3]

• Instead, we will use quasi-convexity:

Parameter estimation from truncated data

θ

ℓ(θ)

Definition (Quasi-convexity): For all , we have f(y) ≤ f(x) ⟨∇f(x), y − x⟩ ≤ 0

[Hazan et al, 2015] define strict local quasi-convexity (SLQC) property: both stronger (inner product
bounded away from zero) and weaker (is constrained to a ball around) than just QCy x*

Their result: normalized SGD with minimum batch size converges to global optimum for SLQC functions

Analysis

Analysis
• Goal: show that NSGD on NLL

converges to maximizer of the
(population) log-likelihood

Analysis
• Goal: show that NSGD on NLL

converges to maximizer of the
(population) log-likelihood

• As with estimation, we define a
projection set where linear,
probit, and logistic regression are
all SLQC NSGD converges ⟹

Analysis
• Goal: show that NSGD on NLL

converges to maximizer of the
(population) log-likelihood

• As with estimation, we define a
projection set where linear,
probit, and logistic regression are
all SLQC NSGD converges ⟹

• In fact, linear regression was
shown strongly convex by
[Daskalakis et al, 2019]

Analysis
x ∼ D
Sample a

covariate x

• Goal: show that NSGD on NLL
converges to maximizer of the
(population) log-likelihood

• As with estimation, we define a
projection set where linear,
probit, and logistic regression are
all SLQC NSGD converges ⟹

• In fact, linear regression was
shown strongly convex by
[Daskalakis et al, 2019]

Analysis
x ∼ D
Sample a

covariate x

• Goal: show that NSGD on NLL
converges to maximizer of the
(population) log-likelihood

• As with estimation, we define a
projection set where linear,
probit, and logistic regression are
all SLQC NSGD converges ⟹

• In fact, linear regression was
shown strongly convex by
[Daskalakis et al, 2019]

Analysis
x ∼ D
Sample a

covariate x
Pass to linear model,

sample normal/logistic

z = hθ(x) + ε

w⊤
* x

0• Goal: show that NSGD on NLL
converges to maximizer of the
(population) log-likelihood

• As with estimation, we define a
projection set where linear,
probit, and logistic regression are
all SLQC NSGD converges ⟹

• In fact, linear regression was
shown strongly convex by
[Daskalakis et al, 2019]

Analysis
x ∼ D
Sample a

covariate x
Pass to linear model,

sample normal/logistic

z = hθ(x) + ε

w⊤
* x

0

Truncate to interval [a,b]

z = hθ(x) + ε

w⊤
* x

ϕ(z)

0 ba

• Goal: show that NSGD on NLL
converges to maximizer of the
(population) log-likelihood

• As with estimation, we define a
projection set where linear,
probit, and logistic regression are
all SLQC NSGD converges ⟹

• In fact, linear regression was
shown strongly convex by
[Daskalakis et al, 2019]

Analysis
x ∼ D
Sample a

covariate x
Pass to linear model,

sample normal/logistic

z = hθ(x) + ε

w⊤
* x

0

Truncate to interval [a,b]

z = hθ(x) + ε

w⊤
* x

ϕ(z)

0 ba

• Goal: show that NSGD on NLL
converges to maximizer of the
(population) log-likelihood

• As with estimation, we define a
projection set where linear,
probit, and logistic regression are
all SLQC NSGD converges ⟹

• In fact, linear regression was
shown strongly convex by
[Daskalakis et al, 2019]

Analysis
x ∼ D
Sample a

covariate x
Pass to linear model,

sample normal/logistic

z = hθ(x) + ε

w⊤
* x

0

Truncate to interval [a,b]

z = hθ(x) + ε

w⊤
* x

ϕ(z)

0 ba

Project to get a label

z = hθ(x) + ε

w⊤
* x

0

y = 1y = 0

π(z)

• Goal: show that NSGD on NLL
converges to maximizer of the
(population) log-likelihood

• As with estimation, we define a
projection set where linear,
probit, and logistic regression are
all SLQC NSGD converges ⟹

• In fact, linear regression was
shown strongly convex by
[Daskalakis et al, 2019]

Analysis
x ∼ D
Sample a

covariate x
Pass to linear model,

sample normal/logistic

z = hθ(x) + ε

w⊤
* x

0

Truncate to interval [a,b]

z = hθ(x) + ε

w⊤
* x

ϕ(z)

0 ba

Project to get a label

z = hθ(x) + ε

w⊤
* x

0

y = 1y = 0

π(z)

• Goal: show that NSGD on NLL
converges to maximizer of the
(population) log-likelihood

• As with estimation, we define a
projection set where linear,
probit, and logistic regression are
all SLQC NSGD converges ⟹

• In fact, linear regression was
shown strongly convex by
[Daskalakis et al, 2019]Theorem (informal): if for every , there is a non-zero () probability that

, then NSGD finds an -minimizer of the NLL in steps.
x ∈ ℝd α > 0

y = {0,1} ε poly(1/α,1/ε, d)

Experiments
Synthetic data

Experiments
Synthetic data

Setup:

Experiments
Synthetic data

Setup:

• θ* ∼ 𝒰([−1,1]10)

Experiments
Synthetic data

Setup:

• θ* ∼ 𝒰([−1,1]10)

• X ∼ 𝒰([0,1]10×n)

Experiments
Synthetic data

Setup:

• θ* ∼ 𝒰([−1,1]10)

• X ∼ 𝒰([0,1]10×n)

• (normal/log)ε ∼ DN

Experiments
Synthetic data

Setup:

• θ* ∼ 𝒰([−1,1]10)

• X ∼ 𝒰([0,1]10×n)

• (normal/log)ε ∼ DN

• Z := θ⊤
* X + ε

Experiments
Synthetic data

Setup:

• θ* ∼ 𝒰([−1,1]10)

• X ∼ 𝒰([0,1]10×n)

• (normal/log)ε ∼ DN

• Z := θ⊤
* X + ε

• Truncation [C, ∞)

Experiments
Synthetic data

Setup:

• θ* ∼ 𝒰([−1,1]10)

• X ∼ 𝒰([0,1]10×n)

• (normal/log)ε ∼ DN

• Z := θ⊤
* X + ε

• Truncation [C, ∞)

• Y = 1Z≥0

Experiments
Synthetic data

�2 �1 0
0

0.2

0.4

0.6

0.8

1

Truncation parameter C

C
os

in
e

si
m

ila
ri

ty
w

ith
q ⇤

Setup:

• θ* ∼ 𝒰([−1,1]10)

• X ∼ 𝒰([0,1]10×n)

• (normal/log)ε ∼ DN

• Z := θ⊤
* X + ε

• Truncation [C, ∞)

• Y = 1Z≥0

1,985 1,990 1,995 2,000
45

55

65

75

Truncation parameter C

Te
st

se
ta

cc
ur

ac
y

Standard regression
Truncated regression

Experiments
Synthetic data

�2 �1 0
0

0.2

0.4

0.6

0.8

1

Truncation parameter C

C
os

in
e

si
m

ila
ri

ty
w

ith
q ⇤

�2 �1 0
0

0.2

0.4

0.6

0.8

1

Truncation parameter C

Setup:

• θ* ∼ 𝒰([−1,1]10)

• X ∼ 𝒰([0,1]10×n)

• (normal/log)ε ∼ DN

• Z := θ⊤
* X + ε

• Truncation [C, ∞)

• Y = 1Z≥0

1,985 1,990 1,995 2,000
45

55

65

75

Truncation parameter C

Te
st

se
ta

cc
ur

ac
y

Standard regression
Truncated regression

Experiments
UCI MSD dataset

Experiments
UCI MSD dataset

Setup:

Experiments
UCI MSD dataset

Setup:

• song attributesX :

Experiments
UCI MSD dataset

Setup:

• song attributesX :

• year recordedZ :

Experiments
UCI MSD dataset

Setup:

• song attributesX :

• year recordedZ :

• Truncation [C, ∞)

Experiments
UCI MSD dataset

Setup:

• song attributesX :

• year recordedZ :

• Truncation [C, ∞)

• recorded before ’96?Y :

Experiments
UCI MSD dataset

Setup:

• song attributesX :

• year recordedZ :

• Truncation [C, ∞)

• recorded before ’96?Y :
1,985 1,990 1,995 2,000

45

55

65

75

Truncation parameter C
Te

st
se

ta
cc

ur
ac

y

Standard regression
Truncated regression

Extensions and Limitations
Mixture of two Gaussians [Nagarajan & Panageas, 2019]

Extensions and Limitations
Mixture of two Gaussians [Nagarajan & Panageas, 2019]

• We saw how to estimate parameters of truncated Gaussian

Extensions and Limitations
Mixture of two Gaussians [Nagarajan & Panageas, 2019]

• We saw how to estimate parameters of truncated Gaussian
• Nagarajan & Panageas consider truncated mixture of two Gaussians

Extensions and Limitations
Mixture of two Gaussians [Nagarajan & Panageas, 2019]

• We saw how to estimate parameters of truncated Gaussian
• Nagarajan & Panageas consider truncated mixture of two Gaussians

1
2

𝒩(μ, Σ) +
1
2

𝒩(−μ, Σ)

Extensions and Limitations
Mixture of two Gaussians [Nagarajan & Panageas, 2019]

• We saw how to estimate parameters of truncated Gaussian
• Nagarajan & Panageas consider truncated mixture of two Gaussians

• Likelihood can be optimized using the standard expectation-
maximization method, gives local improvement guarantee

1
2

𝒩(μ, Σ) +
1
2

𝒩(−μ, Σ)

Extensions and Limitations
Mixture of two Gaussians [Nagarajan & Panageas, 2019]

• We saw how to estimate parameters of truncated Gaussian
• Nagarajan & Panageas consider truncated mixture of two Gaussians

• Likelihood can be optimized using the standard expectation-
maximization method, gives local improvement guarantee

• Global convergence of EM for truncated mixtures is shown

1
2

𝒩(μ, Σ) +
1
2

𝒩(−μ, Σ)

Extensions and Limitations
Unknown truncation set [Kontonis et al, 2019]

Extensions and Limitations
Unknown truncation set [Kontonis et al, 2019]

• For general truncation sets , estimating parameters is impossibleS

Extensions and Limitations
Unknown truncation set [Kontonis et al, 2019]

• For general truncation sets , estimating parameters is impossibleS
• However, [Kontonis et al, 2019] show that learning is possible if

the space of possible sets has bounded VC dimension, or Gaussian
surface area (measures of complexity):

S

Extensions and Limitations
Unknown truncation set [Kontonis et al, 2019]

• For general truncation sets , estimating parameters is impossibleS
• However, [Kontonis et al, 2019] show that learning is possible if

the space of possible sets has bounded VC dimension, or Gaussian
surface area (measures of complexity):

S

Extensions and Limitations
High-dimensional (sparse) setting [Daskalakis et al, 2020]

Extensions and Limitations
High-dimensional (sparse) setting [Daskalakis et al, 2020]

• For linear regression, we can also consider the setting where the
covariates are very high dimensional, but -sparsexi k

Extensions and Limitations
High-dimensional (sparse) setting [Daskalakis et al, 2020]

• For linear regression, we can also consider the setting where the
covariates are very high dimensional, but -sparsexi k

• In this setting, [Daskalakis et al, 2020] propose a modified LASSO
algorithm for dealing with truncation

Extensions and Limitations
High-dimensional (sparse) setting [Daskalakis et al, 2020]

• For linear regression, we can also consider the setting where the
covariates are very high dimensional, but -sparsexi k

• In this setting, [Daskalakis et al, 2020] propose a modified LASSO
algorithm for dealing with truncation

• Recovers parameters under truncation with error O(k log(d)/n

Future Work

Future Work

• Robustness to model mis-specification

Future Work

• Robustness to model mis-specification
• Connections to causal inference:

Future Work

• Robustness to model mis-specification
• Connections to causal inference:
• Selection bias

Future Work

• Robustness to model mis-specification
• Connections to causal inference:
• Selection bias
• Truncated outcomes (e.g. death in medical trials, dropping out in

school studies, non-response in surveys)

Future Work

• Robustness to model mis-specification
• Connections to causal inference:
• Selection bias
• Truncated outcomes (e.g. death in medical trials, dropping out in

school studies, non-response in surveys)
• Improving algorithms for censored statistics (where the learner

observes the truncation)

