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What is this Conjecture?

For f : {0, 1}n → {+1,−1}, its Fourier coefficients are denoted {f̂(S) : S ⊆ [n]}.∑
S

f̂2(S) = 1. So, f̂2(·) defines a distribution on {S : S ⊆ [n]}.

The (Shannon) entropy of this distribution is the Fourier Entropy of f :

H(f) :=
∑
S⊆[n]

f̂2(S) log
1

f̂2(S)
.

The Influence of f , Inf(f), is the expected number of coordinates of a random input
which, when flipped, will cause the value of f to be changed.
Fourier Entropy Influence Conjecture (Friedgut-Kalai, 1996) :
There exists a universal constant C such that for all f : {0, 1}n → {+1,−1},

H(f) 6 C · Inf(f).
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Statement

Fourier Transforms of Boolean Functions

Vector space of all f : {0, 1}n −→ R; Inner Product: 〈f, g〉 := 2−n
∑

x∈{0,1}n
f(x)g(x)

Orthonormal basis of characters: χS(x) := (−1)
∑

i∈S xi for S ⊆ [n] – Parity on S

Fourier Coefficient: f̂(S) = 〈f, χS〉 = 2−n
∑

x∈{0,1}n
f(x)χS(x)

– Correlation with Parity on S
Fourier expansion: f(x) =

∑
S

f̂(S)χS(x)

Norm: ‖f‖ =
√
〈f, f〉 = Ex[f(x)2]

Parseval: ‖f‖2 =
∑
S

f̂2(S)

For Boolean f : {0, 1}n → {+1,−1},
∑
S

f̂2(S) = ‖f‖2 = 1
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Statement

Influence and Sensitivity of Boolean Functions

The influence of f in the i-th direction:

Infi(f) = Pr[x ∈ {0, 1}n : f(x) 6= f(x⊕ ei)] ,

where x⊕ ei is obtained from x by flipping the i-th bit of x.

The (total) influence of f : Inf(f) =

n∑
i=1

Infi(f).

Kahn-Kalai-Linial – KKL88: Infi(f) =
∑
S3i

f̂(S)2 and hence Inf(f) =
∑
S⊆[n]

|S|f̂(S)2

For x ∈ {0, 1}n, the sensitivity of f at x: sf (x) := |{i : f(x) 6= f(x⊕ ei), 1 6 i 6 n}|,
The average sensitivity of f : as(f) := 2−n

∑
x∈{0,1}n

sf (x).

Easy: Inf(f) = as(f) and hence as(f) =
∑
S⊆[n]

|S|f̂(S)2.
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Statement

Fourier-Entropy Influence (FEI) Conjecture

Friedgut and Kalai 1996:
There exists a universal constant C such that for all f : {0, 1}n → {+1,−1},∑

S⊆[n]

f̂2(S) log
1

f̂2(S)
6 C · as(f) = C ·

∑
S⊆[n]

|S|f̂(S)2.

If the spectrum of a Boolean function appears “smeared,” then its total influence must be
large, it must spread well into “high” degree coefficients.
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Motivation

Why prove this Conjecture?

Sharp Thresholds for monotone random graph properties
Implies KKL theorem
Implies Mansour’s Conjecture: A DNF with m terms can be well-approximated by
mO(1) Fourier coefficients.

Agnostic Learning of DNF’s
PRG’s for depth-2 circuits

Satya Lokam (Microsoft Research Bangalore) On the Fourier Entropy Influence Conjecture 19 December 2015 9 / 37



Symmetric

Outline

1 Statement of the Conjecture

2 Why prove this Conjecture?

3 Symmetric Functions satisfy FEI

4 Read-Once Formulas satisfy FEI

5 Weak Variants of FEI

6 FEI as a Coding Problem

7 Summary and Conclusions

Satya Lokam (Microsoft Research Bangalore) On the Fourier Entropy Influence Conjecture 19 December 2015 10 / 37



Symmetric

FEI holds for Symmetric Functions

Theorem (O’Donnell, Wright, and Zhou, 2011)

If f : {0, 1}n → {+1,−1} is a symmetric Boolean function, i.e., f(x) = f(σ(x)) for any
permutation σ on [n], the H(f) 6 C Inf(f) for a universal constant C.

Generalizes to d-part symmetric f , i.e., f is invariant under Sn1 × · · · × Snd
, where d is a

constant.
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Symmetric

Splitting the Entropy

H(f) =
∑
S

f̂2(S) log
1

f̂2(S)

Define Wk(f) :=
∑
|S|=k

f̂2(S)

=

n∑
k=0

Wk(f)
∑
|S|=k

f̂2(S)

Wk(f)
log

Wk(f)

f̂2(S)
+

n∑
k=0

Wk(f) log
1

Wk(f)

=

n∑
k=0

Wk(f)H(fk) + H(W(f)) where fk is f̂2(.) restricted and normalized to k-sets

= Expected Level-wise Entropy + Entropy Across Levels
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Symmetric

Entropy Across Levels

H(W(f))

=

n∑
k=0

Wk(f) log
1

Wk(f)

= (1−W0(f))

n∑
k=1

Wk(f)

(1−W0(f))
log

(1−W0(f))

Wk(f)
+ H(W0(f))

= (1−W0(f))H(W1(f), . . . ,Wn(f)) + H(W0(f))

Let p := Pr
x

[f(x) = −1] and q = 1− p. Then W0(f) = 1− 4pq = 1−Var(f).
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Symmetric

Entropy Across Levels

Lemma
Let X be a positive integer r.v. Then H(X) 6 E[X].

It follows that H(W1(f), . . . ,Wn(f)) 6 EW [k] =

n∑
k=1

k ·Wk(f) = Inf(f).

Lemma
By the isoperimetric inequality for the Boolean cube, H(4pq) 6 2 Inf(f).

Theorem
For any f : {0, 1}n → {+1,−1}, H(W(f)) 6 3 Inf(f).
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Symmetric

Level-wise Entropy

n∑
k=0

Wk(f)H(fk)

6
n∑
k=0

Wk(f) log

(
n

k

)
= for symmetric f .

6
n∑
k=0

Wk(f)(k log e + k log
n

k
)

= (log e) Inf(f) +

n∑
k=0

Wk(f)k log
n

k

Immediately implies H(f) = O(Inf(f) log n).
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Symmetric

Level-wise Entropy

Let gi = Dif so Infi(f) = E[g2i ].
For symmetric f , all Infi are equal. Let g := Dnf .
Then, Inf(f) = nE[g2] and k ·Wk(f) = n ·Wk−1(g).

n∑
k=1

Wk(f)k ln
n

k
=

n∑
k=1

Wk−1(g)n ln
n

k

= O(n)

n∑
k=1

Wk−1(g)

 n∑
j=k

1

j

 since lnm ≈
m∑
j=0

1

j
.

= O(n)

n∑
j=1

1

j

(
j−1∑
k=0

Wk(g)

)
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Symmetric

Noise Stability

(x, y) is a ρ-correlated pair if (i) x is uniformly random in {0, 1}n and (ii) for each i
independently, Pr[yi = xi] = (1 + ρ)/2 and Pr[yi 6= xi] = (1− ρ)/2.
Noise Stability of f with noise parameter ρ:

Stabρ(f) = E(x,y)ρ−correlated[f(x)f(y)].

Fourier expression: Stabρ(f) =
∑
S

ρ|S|f̂2(S).
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Symmetric

Level-wise Entropy

Stabδ(g) =
∑
S

δ|S|ĝ2(S) =

n∑
k=0

δkWk(g) > δj−1
j−1∑
k=0

Wk(g).

With δ = 1− 1

2j
, we thus get

j−1∑
k=0

Wk(g) 6

(
1− 1

2j

)−j+1

Stab1−1/2j(g) 6 e · Stab1−1/2j(g).

Lemma

For g = Dnf , where f is symmetric, Stab1−θ/n(g) 6 (2/
√
π) · (1/

√
θ) · E[g2].
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Symmetric

Level-wise Entropy

n∑
j=1

1

j

(
j−1∑
k=0

Wk(g)

)

6
n∑
j=1

1

j
(2/
√
π) · (

√
2j/
√
n) · E[g2]

6 c/
√
n · E[g2]

n∑
j=1

1√
j

6 c E[g2] using
n∑
j=1

1√
j
6 2
√
n.
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Symmetric

Summarizing the proof for symmetric f

Show entropy across levels is at most Inf(f) – applies to all functions
Relate the expected level-wise entropy to its expectation w.r.t. Fourier mass on levels
of Discrete Derivatives of f

Reduce to bounding
j−1∑
k=0

1

j
W<j(Dnf) for 1 6 j 6 n

Relate to Noise Stability and bound
j−1∑
k=0

1

j
Stab1−1/2j(Dnf)

Bound on Stabδ(g) when g is symmetric
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Read-Once

Parity composition preserves FEI Inequality

Lemma

Let f = g1 ⊕ g2 for gi : {0, 1}Vi → {−1,+1}, where [n] = V1∪̇V2. Then,
H(f) = H(g1) + H(g2)

Inf(f) = Inf(g1) + Inf(g2)

Proof: If S = S1∪̇S2, Si ⊆ Vi, f̂(S) = ĝ1(S1) · ĝ2(S2).
It follows that H(f⊕t) = t ·H(f) and Inf(f⊕t) = t · Inf(f).

Corollary (FEI inequality tensorizes under parity composition.)

If, for all f : {0, 1}n → {+1,−1}, H(f) 6 C · Inf(f) + o(n), then the FEI conjecture holds.
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Read-Once

{+1,−1} vs. {0, 1}

For f : {0, 1}n → {+1,−1}, let fB denote its 0-1 counterpart: fB ≡
1− f

2
.

Let p = Pr[fB = 1] = f̂B(∅), q := 1− p. Note Var(fB) = pq =
∑
S 6=∅

f̂B
2
(S).

Define

H(fB) :=
∑
S

f̂B
2
(S) log

1

f̂B
2
(S)

. (1)

To translate between H(f) and H(fB):

H(f) = 4 ·H(fB) + ϕ(p), where (2)
ϕ(p) := H(4pq)− 4p(H(p)− log p). (3)

Note ϕ(p) 6 H(4pq) 6 Inf(f).
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Read-Once

{0, 1}-version of FEI Inequality

FEI01 Inequality: H(fB) 6 c · Inf(f) + ψ(p), (4)

where c is a constant to be fixed later and

ψ(p) := p2 log
1

p2
− 2 H(p). (5)

Note that ψ(p) 6 Inf(f).
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Read-Once

AND Composition preserves FEI01 Inequality

Let f = AND(g1, g2) with gi : {0, 1}Vi → {−1,+1}, and V = V1∪̇V2.
Obvious: fB ≡ g1B · g2B.

Lemma

For all S ⊆ V , f̂B(S) = ĝ1B(S ∩ V1) · ĝ2B(S ∩ V2)
H(fB) = p2 ·H(g1B) + p1 ·H(g2B)

Inf(f) = p2 · Inf(g1) + p1 · Inf(g2)
For p1, p2 ∈ [0, 1], p1 · ψ(p2) + p2 · ψ(p1) 6 ψ(p1p2).

Lemma (AND composition preserves FEI01 inequality)

Suppose fB = AND(g1B, g2B), where the gi depend on disjoint sets of variables. If each of
the gi satisfies the FEI01 Inequality (4), then so does f .
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Read-Once

FEI01 is preserved by NOT and OR composition

Lemma

If fB satisfies FEI01 inequality (4), then so does 1− fB.

Proof.

H(1− fB)−H(fB) = ψ(q)− ψ(p) = −p2 log
1

p2
+ q2 log

1

q2
.

Corollary

Suppose fB = OR(g1B, g2B), where the gi depend on disjoint sets of variables. If each of
the gi satisfies the FEI01 Inequality (4), then so does f .

Proof.
1− fB = (1− g1B) · (1− g2B).
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Read-Once

FEI01 holds for Read-Once De Morgan Formulas

Theorem (CKLS ’15)

The FEI01 inequality (4) holds for all read-once Boolean formulas using AND, OR, and
NOT gates, with constant c = 5/2.

Can be extended to include XOR gates.

Theorem (CKLS ’15)

If f is computed by a read-once formula using AND, OR, XOR, and NOT gates, then
H(f) 6 10 Inf(f).
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Read-Once

O’Donnell-Tan ’15: FEI for Read-Once formulas with arbitrary
bounded arity gates

Consider µ-biased Fourier transform for a product distribution µ.
Generalize the FEI statement to FEIµ.
Informal Theorem: Given f = h(g1, . . . , gl), where gi are defined on disjoint sets of

variables, and each gi satisfies FEIµi and h satisfies FEIη, with η =

l∏
i=1

ηi and

E ηi = Eµi gi, then f satisfies FEIµ.
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Weak Variants

Subcube Partitions

Given α : [n]→ {−1,+1, ∗}, subcube Cα := {x ∈ {0, 1}n : α(i) 6= ∗ =⇒ xi = α(i)}.
If A := {i ∈ [n] : α(i) 6= ∗}, we also denote Cα by (A,α). The co-dimension of
Cα = (A,α) is |A|.
A subcube partition C = {C1, . . . , Cm} of {0, 1}n computes a function
f : {0, 1}n → {+1,−1} if f is constant on each Ci.
We denote by L(f) the minimum number of subcubes in a subcube partition that
computes f .
Leaves of a decision tree computing f define a subcube partition that computes f .
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Weak Variants

Entropy from Concentration

Theorem

Let f : {0, 1}n → {+1,−1} depend on all its variables and be computed by a subcube
partition C of size L(f). Then, for some absolute constant c > 1,

H(f) 6 c · logL(f).

It is well-known and easy to see that Inf(f) 6 logL(f) for all f .
Proof idea:

Show most Fourier mass is concentrated in a small set B of coefficients.
Entropy within that set is bounded above by logB.
If the leftover mass is small, say < 1/n, the leftover entropy is at most 1.
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Weak Variants

A (weak) concentration bound for subcube partitions

Lemma: Let C = {(Ai, αi) : 1 6 i 6 L} compute f . Then ∀t, ∃Bt ⊆ 2[n] such that
(i) |Bt| 6 22t and (ii)

∑
S 6∈Bt

f̂2(S) 6 L · 2−t.

Proof:
Bt := {S : ∃ i |Ai| 6 t such that S ⊆ Ai}
Main point: only sets AI ⊇ S contribute to f̂(S)

g ≡
∑
|Ai|>t

βiφi : restriction of f to subcubes with |Ai| > t∑
S 6∈Bt

f̂2(S) =
∑
S 6∈Bt

ĝ2(S) 6
∑
S

ĝ2(S) = 2−n
∑
|Ai|>t

|Ci| =
∑
|Ai|>t

2−|Ai| < 2−tL.

Since
∑
i

2−|Ai| = 1, |{i : |Ai| 6 t}| 6 2t

|Bt| 6
∑
|Ai|6t

2|Ai| 6 2t · |{i : |Ai| 6 t}| 6 22t
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Weak Variants

Entropy upper bound on subcube partitions

Fix t := log(Ln) in the lemma

H(f) =
∑
S

f̂2(S) log
1

f̂2(S)

= (1− 1/n)H(f̂2(S) : S ∈ Bt) + (1/n)H(f̂2(S) : S 6∈ Bt) + H(1/n)

6 (1− 1/n) log |Bt|+ 1/n · n+ H(1/n)

6 2t+ 1 + H(1/n)

6 2 logL+ 2 log n+ 2.

Lemma: Suppose f : {0, 1}n → {+1,−1} depends on all its variables. Then any
subcube partition that computes f must have at least n+ 1 subcubes in it. That is
L > n+ 1.
Thus, H(f) 6 4 logL+ 2.
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Coding

FEI as a Coding Problem
Wan, Wright, Wu 2014 :

Construct a prefix-free code c over alphabet Σ to minimize the expected length of a
codeword under the distribution f̂2(S): Ef̂2 |c(S)|.
Shannon’s Source Coding Theorem: H(f) log |Σ| 6 Ef̂2 |c(S)|.
Goal: construct such code with expected length O(Inf(f)).
By using the dlog ne-bit rep for each i ∈ S and appending a terminating symbol, we
get a prefix-free code with |Σ| = 3. The expected length of this code is
dlog ne · Ef̂2 |S|+ 1 = dlog ne · Inf(f) + 1. This gives H(f) 6 dlog ne · Inf(f) + 1.
WWW 2014 give a protocol for encoding a S using a decision tree for f and prove
that the expected length of the resulting prefix code is O(average depth of the DT).
Note that Inf(f) 6 average depth of a DT computing f . This reproduces a result from
[CKLS 2013].
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Conclusions

Summary

Bounds on Noise Stability of Derivatives – symmetric functions
Composability properties of the FEI conjecture – read-once formulas
Concentration Bounds – weaker forms of the conjecture using DT and subcube
partition complexities instead of Influence
Coding – weaker forms using DT complexity
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