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The Fourier Transform
Conversion between time and frequency domains

Time Domain Frequency Domain

Fourier Transform

Displacement of Air Concert A
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The Fourier Transform is Ubiquitous

Audio Video Medical Imaging

Radar GPS Oil Exploration
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Computing the Discrete Fourier Transform

How to compute x̂ = Fx?

Naive multiplication: O(n2).
Fast Fourier Transform: O(n log n) time. [Cooley-Tukey, 1965]

[T]he method greatly reduces the tediousness of mechanical
calculations.

– Carl Friedrich Gauss, 1805

By hand: 22n log n seconds. [Danielson-Lanczos, 1942]
Can we do better?

When can we compute the Fourier
Transform in sublinear time?
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Idea: Leverage Sparsity
Often the Fourier transform is dominated by a small number of peaks:

Time Signal Frequency
(Exactly sparse)

Frequency
(Approximately sparse)

Sparsity is common:

Audio Video Medical
Imaging

Radar GPS Oil Exploration

Goal of this talk: sparse Fourier transforms
Faster Fourier Transform on sparse data.
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Recent Theory and Applied Work
Sparse Fourier Transform in the Discrete Setting

I Gilbert-Guha-Indyk-Muthukrishnan-Strauss, 02
I Gilbert-Muthukrishnan-Strauss, 05
I Hassanieh-Indyk-Katabi-Price, 12
I Indyk-Kapralov, 14

Sparse Fourier Transform in the Continuous Setting
I Boufounos-Cevher-Gilbert-Li-Strauss, 12
I Price-Song, 15

Applications

Faster GPS ... Fourier ...
Hassanieh et al.
MOBICOM’12

... Fourier ... Chip ...
Abari et al.
ISSCC’12

... Chemical ... Imaging ...
Andronesi et al.

ENC’14

Light ... Continuous Fourier...
Shi et al.

SIGGRAPH’15
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Kinds of discrete Fourier transform

1d Fourier transform: x ∈ Cn, ω = e2πi/n, want

x̂i =

n∑
j=1

ωijxj

2d Fourier Transform: x ∈ Cn1×n2 , ωi = e2πi/ni , want

x̂i1,i2 =

n1∑
j1=1

n2∑
j2=1

ω
i1j1
1 ω

i2j2
2 xj1,j2

I If n1,n2 are relatively prime, equivalent to 1d transform of Cn1n2

Hadamard transform: x ∈ C2×2×···×2:

x̂i =

n∑
j

(−1)〈i,j〉xj
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Generic Algorithm Outline

Goal: given access to x , compute x ≈ x̂
I Exact case: x̂ is k -sparse, x = x̂ (maybe to log n bits of precision)

I Approximate case:

‖x − x̂‖2 6 (1 + ε) min
k -sparse x̂k

‖x̂ − x̂k‖2

I With “good” probability.

1 Algorithm for k = 1 (exact or approximate)
2 Method to reduce to k = 1 case

I Split x̂ into O(k) “random” parts
I Can sample time domain of the parts.

F O(k log k) time to get one sample from each of the k parts.

3 Finds “most” of signal; repeat on residual
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Talk Outline

1 Algorithm for k = 1

2 Reducing k to 1

3 Putting it together

4 Continuous setting
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Algorithm for k = 1: one dimension, exact case

x̂ :

t

aLemma
We can compute a 1-sparse x̂ in O(1) time.

x̂i =

{
a if i = t
0 otherwise

Then x = (a,aωt ,aω2t ,aω3t , . . . ,aω(n−1)t).

x0 = a x1 = aωt

x1/x0 = ωt =⇒ t . �

(Related to OFDM, Prony’s method, matrix pencil.)
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Algorithm for k = 1: one dimension, approximate case
Lemma
Suppose x̂ is approximately 1-sparse:

|x̂t |/‖x̂‖2 > 90%.

Then we can recover it with O(log n) samples and O(log2 n) time.

With exact sparsity: log n bits in a single measurement.
With noise: only constant number of useful bits.
Choose Θ(log n) time shifts c to recover i .
Error correcting code with efficient recovery =⇒ lemma. �
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Algorithm for general k

Reduce general k to k = 1.

“Filters”: partition frequencies into
O(k) buckets.

I Sample from time domain of each
bucket with O(log n) overhead.

I Recovered by k = 1 algorithm

Most frequencies alone in bucket.
Random permutation

Permute Filters O(k)

1-sparse recovery

1-sparse recovery

1-sparse recovery

1-sparse recovery

x x̂ ′

Recovers most of x̂ :

Lemma (Partial sparse recovery)
In O(k log n) expected time, we can compute an estimate x̂ ′ such that
x̂ − x̂ ′ is k/2-sparse.
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Going from finding most coordinates to finding allx̂

Permute Filters O(k)

1-sparse recovery

1-sparse recovery

1-sparse recovery

1-sparse recovery

Partial k -sparse recovery

x x̂ ′

Lemma (Partial sparse recovery)
In O(k log n) expected time, we can compute an estimate x̂ ′ such that
x̂ − x̂ ′ is k/2-sparse.

Repeat, k → k/2→ k/4→ · · ·

Theorem
We can compute x̂ in O(k log n) expected time.

Eric Price Sparse Fourier Transforms 15 / 36



Going from finding most coordinates to finding allx̂ − x̂ ′

Permute Filters O(k)

1-sparse recovery

1-sparse recovery

1-sparse recovery

1-sparse recovery

Partial k -sparse recovery

x x̂ ′

Lemma (Partial sparse recovery)
In O(k log n) expected time, we can compute an estimate x̂ ′ such that
x̂ − x̂ ′ is k/2-sparse.

Repeat, k → k/2→ k/4→ · · ·

Theorem
We can compute x̂ in O(k log n) expected time.

Eric Price Sparse Fourier Transforms 15 / 36



Going from finding most coordinates to finding allx̂ − x̂ ′

Permute Filters O(k)

1-sparse recovery

1-sparse recovery

1-sparse recovery

1-sparse recovery

Partial k -sparse recovery

x x̂ ′

Lemma (Partial sparse recovery)
In O(k log n) expected time, we can compute an estimate x̂ ′ such that
x̂ − x̂ ′ is k/2-sparse.

Repeat, k → k/2→ k/4→ · · ·

Theorem
We can compute x̂ in O(k log n) expected time.

Eric Price Sparse Fourier Transforms 15 / 36



Going from finding most coordinates to finding allx̂ − x̂ ′

Permute Filters O(k)

1-sparse recovery

1-sparse recovery

1-sparse recovery

1-sparse recovery

Partial k -sparse recovery

x x̂ ′

Lemma (Partial sparse recovery)
In O(k log n) expected time, we can compute an estimate x̂ ′ such that
x̂ − x̂ ′ is k/2-sparse.

Repeat, k → k/2→ k/4→ · · ·

Theorem
We can compute x̂ in O(k log n) expected time.

Eric Price Sparse Fourier Transforms 15 / 36



Going from finding most coordinates to finding allx̂ − x̂ ′

Permute Filters O(k)

1-sparse recovery

1-sparse recovery

1-sparse recovery

1-sparse recovery

Partial k -sparse recovery

x x̂ ′

Lemma (Partial sparse recovery)
In O(k log n) expected time, we can compute an estimate x̂ ′ such that
x̂ − x̂ ′ is k/2-sparse.

Repeat, k → k/2→ k/4→ · · ·

Theorem
We can compute x̂ in O(k log n) expected time.

Eric Price Sparse Fourier Transforms 15 / 36



Going from finding most coordinates to finding allx̂ − x̂ ′

Permute Filters O(k)

1-sparse recovery

1-sparse recovery

1-sparse recovery

1-sparse recovery

Partial k -sparse recovery

x x̂ ′

Lemma (Partial sparse recovery)
In O(k log n) expected time, we can compute an estimate x̂ ′ such that
x̂ − x̂ ′ is k/2-sparse.

Repeat, k → k/2→ k/4→ · · ·

Theorem
We can compute x̂ in O(k log n) expected time.

Eric Price Sparse Fourier Transforms 15 / 36



Going from finding most coordinates to finding allx̂ − x̂ ′

Permute Filters O(k)

1-sparse recovery

1-sparse recovery

1-sparse recovery

1-sparse recovery

Partial k -sparse recovery

x x̂ ′

Lemma (Partial sparse recovery)
In O(k log n) expected time, we can compute an estimate x̂ ′ such that
x̂ − x̂ ′ is k/2-sparse.

Repeat, k → k/2→ k/4→ · · ·

Theorem
We can compute x̂ in O(k log n) expected time.

Eric Price Sparse Fourier Transforms 15 / 36



Going from finding most coordinates to finding allx̂ − x̂ ′

Permute Filters O(k)

1-sparse recovery

1-sparse recovery

1-sparse recovery

1-sparse recovery

Partial k -sparse recovery

x x̂ ′

Lemma (Partial sparse recovery)
In O(k log n) expected time, we can compute an estimate x̂ ′ such that
x̂ − x̂ ′ is k/2-sparse.

Repeat, k → k/2→ k/4→ · · ·

Theorem
We can compute x̂ in O(k log n) expected time.

Eric Price Sparse Fourier Transforms 15 / 36
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1 Algorithm for k = 1

2 Reducing k to 1

3 Putting it together
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How can you hope for sublinear time?
Time Frequency

×

=

∗

=

Eric Price Sparse Fourier Transforms 17 / 36

n-dimensional DFT:
O(n log n)
x → x̂

n-dimensional DFT of first
k terms: O(n log n)
x · rect→ x̂ ∗ sinc.

k -dimensional DFT of
first k terms: O(B log B)
alias(x · rect)→
subsample(x̂ ∗ sinc).
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Use a better filter
GMS05, HIKP12, IKP14, IK14

Filter (time): Gaussian · sinc Filter (frequency): Gaussian * rectangle

Filter: sparse F for which F̂ is large on an interval.

We can permute the frequencies:

x ′i = xσi =⇒ x̂i = x̂σ−1i

Allows us to convert worst case to random case.
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Algorithm for exactly sparse signals
Original signal x Goal x̂

Lemma
If t is isolated in its bucket and in the “super-pass” region, the value b
we compute for its bucket satisfies

b = x̂t .

Computing the b for all O(k) buckets takes O(k log n) time.
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Algorithm for exactly sparse signals
F ·x aliased to k terms Computed samples of F̂ ∗x̂
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Algorithm for exactly sparse signals
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Algorithm
Lemma
For most t, the value b we compute for its bucket satisfies

b = x̂t .

Computing the b for all O(k) buckets takes O(k log n) time.

Time-shift x by one and repeat: b ′ = x̂tω
t .

Divide to get b ′/b = ωt

=⇒ can compute t .
I Just like our 1-sparse recovery algorithm, x1/x0 = ωt .

Gives partial sparse recovery: x̂ ′ such that x̂ − x̂ ′ is k/2-sparse.

Permute Filters O(k)

1-sparse recovery

1-sparse recovery

1-sparse recovery

1-sparse recovery

x x̂ ′

Repeat k → k/2→ k/4→ · · ·
O(k log n) time sparse Fourier transform. �

Eric Price Sparse Fourier Transforms 20 / 36



Algorithm
Lemma
For most t, the value b we compute for its bucket satisfies

b = x̂t .

Computing the b for all O(k) buckets takes O(k log n) time.

Time-shift x by one and repeat: b ′ = x̂tω
t .

Divide to get b ′/b = ωt

=⇒ can compute t .
I Just like our 1-sparse recovery algorithm, x1/x0 = ωt .

Gives partial sparse recovery: x̂ ′ such that x̂ − x̂ ′ is k/2-sparse.

Permute Filters O(k)

1-sparse recovery

1-sparse recovery

1-sparse recovery

1-sparse recovery

x x̂ ′

Repeat k → k/2→ k/4→ · · ·
O(k log n) time sparse Fourier transform. �

Eric Price Sparse Fourier Transforms 20 / 36



Algorithm
Lemma
For most t, the value b we compute for its bucket satisfies

b = x̂t .

Computing the b for all O(k) buckets takes O(k log n) time.

Time-shift x by one and repeat: b ′ = x̂tω
t .

Divide to get b ′/b = ωt =⇒ can compute t .

I Just like our 1-sparse recovery algorithm, x1/x0 = ωt .
Gives partial sparse recovery: x̂ ′ such that x̂ − x̂ ′ is k/2-sparse.

Permute Filters O(k)

1-sparse recovery

1-sparse recovery

1-sparse recovery

1-sparse recovery

x x̂ ′

Repeat k → k/2→ k/4→ · · ·
O(k log n) time sparse Fourier transform. �

Eric Price Sparse Fourier Transforms 20 / 36



Algorithm
Lemma
For most t, the value b we compute for its bucket satisfies

b = x̂t .

Computing the b for all O(k) buckets takes O(k log n) time.

Time-shift x by one and repeat: b ′ = x̂tω
t .

Divide to get b ′/b = ωt =⇒ can compute t .
I Just like our 1-sparse recovery algorithm, x1/x0 = ωt .

Gives partial sparse recovery: x̂ ′ such that x̂ − x̂ ′ is k/2-sparse.

Permute Filters O(k)

1-sparse recovery

1-sparse recovery

1-sparse recovery

1-sparse recovery

x x̂ ′

Repeat k → k/2→ k/4→ · · ·
O(k log n) time sparse Fourier transform. �

Eric Price Sparse Fourier Transforms 20 / 36



Algorithm
Lemma
For most t, the value b we compute for its bucket satisfies

b = x̂t .

Computing the b for all O(k) buckets takes O(k log n) time.

Time-shift x by one and repeat: b ′ = x̂tω
t .

Divide to get b ′/b = ωt =⇒ can compute t .
I Just like our 1-sparse recovery algorithm, x1/x0 = ωt .

Gives partial sparse recovery: x̂ ′ such that x̂ − x̂ ′ is k/2-sparse.

Permute Filters O(k)

1-sparse recovery

1-sparse recovery

1-sparse recovery

1-sparse recovery

x x̂ ′

Repeat k → k/2→ k/4→ · · ·
O(k log n) time sparse Fourier transform. �

Eric Price Sparse Fourier Transforms 20 / 36



Algorithm
Lemma
For most t, the value b we compute for its bucket satisfies

b = x̂t .

Computing the b for all O(k) buckets takes O(k log n) time.

Time-shift x by one and repeat: b ′ = x̂tω
t .

Divide to get b ′/b = ωt =⇒ can compute t .
I Just like our 1-sparse recovery algorithm, x1/x0 = ωt .

Gives partial sparse recovery: x̂ ′ such that x̂ − x̂ ′ is k/2-sparse.

Permute Filters O(k)

1-sparse recovery

1-sparse recovery

1-sparse recovery

1-sparse recovery

x x̂ ′

Repeat k → k/2→ k/4→ · · ·

O(k log n) time sparse Fourier transform. �

Eric Price Sparse Fourier Transforms 20 / 36



Algorithm
Lemma
For most t, the value b we compute for its bucket satisfies

b = x̂t .

Computing the b for all O(k) buckets takes O(k log n) time.

Time-shift x by one and repeat: b ′ = x̂tω
t .

Divide to get b ′/b = ωt =⇒ can compute t .
I Just like our 1-sparse recovery algorithm, x1/x0 = ωt .

Gives partial sparse recovery: x̂ ′ such that x̂ − x̂ ′ is k/2-sparse.

Permute Filters O(k)

1-sparse recovery

1-sparse recovery

1-sparse recovery

1-sparse recovery

x x̂ ′

Repeat k → k/2→ k/4→ · · ·
O(k log n) time sparse Fourier transform. �
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Summary (DFT setting)

Given access to x for which x̂ is sparse.

Recover x such that

‖x − x̂‖2 6 (1 + ε) min
k -sparse x̂k

‖x̂ − x̂k‖2

“Optimal” is O(k log(n/k)) samples and O(k log(n/k) log n) time

I Optimal samples [IK ’14] OR optimal time [HIKP ’12] OR
logc log n-competitive mixture [IKP ’14].
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Talk Outline

1 Algorithm for k = 1

2 Reducing k to 1

3 Putting it together

4 Continuous setting
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The Continuous Fourier Transform
Conversion between time and frequency domains

Time Domain Frequency Domain

Fourier Transform

The Fourier Transform x̂ of an integrable function x : R→ C is

x̂(f ) =
∫+∞
−∞ x(t)e−2πiftdt

The Inverse Transform is:

x(t) =
∫+∞
−∞ x̂(f )e2πiftdf
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Why Continuous?
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Thought Experiments

Frequency

Time
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Thought Experiments

Frequency
η

Time

T = 1
2η
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Thought Experiments

Frequency
η

Time

T = 1
2η

inifinitely small η
T > 1000 years
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Thought Experiments 2
x(t) = sink−1(ηt)

Frequency
η

Time

T = 1
2η
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What Guarantee Do We Want?

Frequency

Time

x̂(f )

x(t) = e−2πift x ′(t) = x(t) · e−t/10000

x̂ ′(f )

Discrete FT ‖x̂ ′ − x̂‖2 . min
k -sparsex̂k

‖x̂ − x̂k‖2

For red signal : min
k -sparse x̂k

‖x̂ − x̂k‖2 = ‖x̂‖2

DFT preserve the `2 norm‖x ′ − x‖2 . min
k -sparse x̂k

‖x − xk‖2

1
T

∫T
0 |x ′(t) − x(t)|2dt . min

k -sparse x̂k(t)

1
T

∫T
0 |x(t) − xk (t)|2dt
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Guarantee

Sample from x(t), which is approximated by a k -Fourier sparse
xk (t) with η frequency separation.
We recover an x ′(t) such that

E
t∈[0,T ]

|x ′(t) − x(t)|2 . E
t∈[0,T ]

|x(t) − xk (t)|2

As long as:
I T > O( log2(FT)

η
)

I Time, # samples > O(k log(FT ) log2(k)).
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Previous Works and Our Results
Algorithm Duration Robust Sample/Time
BCGLS, 12 k ·optimal poor sublinear
Moitra, 15 optimal poly(k) linear
Ours log2(k)·optimal O(1) sublinear

2
η

log(k)
η

log2(k)
η
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Main Results
Frequency

Time

x̂k (f )

F

xk (t)

T

x̂k (f ) ,x̂ ′(f )

xk (t) ,x ′(t)

1
T

k∑
i=1

∫T
0 | vie2πifi t − v ′i e2πif ′i t |2dt . N2

1
T

∫T
0 |

k∑
i=1

vie2πifi t − v ′i e2πif ′i t |2dt . N2

T =
log(k)
η , T =

log2(k)
η

O(k log(FT ) log2(k))
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Tone Estimation to Signal Estimation

Frequency

x̂(f )

Define ∆i(t) = ai(t) − a ′i (t) = vie2πifi t − v ′i e2πif ′i t

∑k
i=1

1
T
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0 |∆i(t)|2dtN2 & Tone Estimation

N2& 1
T
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0 |
∑k

i=1∆i(t)|2dt Signal Estimation

= 1
T
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0 | xk (t) − x ′(t)|2dt

Eric Price Sparse Fourier Transforms 31 / 36



Tone Estimation to Signal Estimation

Frequency

x̂(f )

Define ∆i(t) = ai(t) − a ′i (t) = vie2πifi t − v ′i e2πif ′i t

∑k
i=1

1
T

∫T
0 |∆i(t)|2dtN2 & Tone Estimation

N2& 1
T

∫T
0 |
∑k

i=1∆i(t)|2dt Signal Estimation

= 1
T

∫T
0 | xk (t) − x ′(t)|2dt

Eric Price Sparse Fourier Transforms 31 / 36



Tone Estimation to Signal Estimation

Frequency

x̂(f )

Define ∆i(t) = ai(t) − a ′i (t) = vie2πifi t − v ′i e2πif ′i t

∑k
i=1

1
T

∫T
0 |∆i(t)|2dtN2 & Tone Estimation

N2& 1
T

∫T
0 |
∑k

i=1∆i(t)|2dt Signal Estimation

= 1
T

∫T
0 | xk (t) − x ′(t)|2dt

Eric Price Sparse Fourier Transforms 31 / 36



Tone Estimation to Signal Estimation

Frequency

x̂(f )

Define ∆i(t) = ai(t) − a ′i (t) = vie2πifi t − v ′i e2πif ′i t

1
T

∫T
0 |a1(t) - a ′1(t)|

2dt
∑k

i=1
1
T

∫T
0 |∆i(t)|2dtN2 & Tone Estimation

N2& 1
T

∫T
0 |
∑k

i=1∆i(t)|2dt Signal Estimation

= 1
T

∫T
0 | xk (t) − x ′(t)|2dt

Eric Price Sparse Fourier Transforms 31 / 36



Tone Estimation to Signal Estimation

Frequency

x̂(f )

Define ∆i(t) = ai(t) − a ′i (t) = vie2πifi t − v ′i e2πif ′i t

1
T

∫T
0 |a1(t) - a ′1(t)|

2dt 1
T

∫T
0 |a2(t) - a ′2(t)|

2dt
∑k

i=1
1
T

∫T
0 |∆i(t)|2dtN2 & Tone Estimation

N2& 1
T

∫T
0 |
∑k

i=1∆i(t)|2dt Signal Estimation

= 1
T

∫T
0 | xk (t) − x ′(t)|2dt

Eric Price Sparse Fourier Transforms 31 / 36



Tone Estimation to Signal Estimation

Frequency

x̂(f )

Define ∆i(t) = ai(t) − a ′i (t) = vie2πifi t − v ′i e2πif ′i t

1
T

∫T
0 |a1(t) - a ′1(t)|

2dt 1
T

∫T
0 |a2(t) - a ′2(t)|

2dt 1
T

∫T
0 |a3(t) - a ′3(t)|

2dt
∑k

i=1
1
T

∫T
0 |∆i(t)|2dtN2 & Tone Estimation

N2& 1
T

∫T
0 |
∑k

i=1∆i(t)|2dt Signal Estimation

= 1
T

∫T
0 | xk (t) − x ′(t)|2dt

Eric Price Sparse Fourier Transforms 31 / 36



Tone Estimation to Signal Estimation

Frequency

x̂(f )

Define ∆i(t) = ai(t) − a ′i (t) = vie2πifi t − v ′i e2πif ′i t

1
T

∫T
0 |a1(t) - a ′1(t)|

2dt 1
T

∫T
0 |a2(t) - a ′2(t)|

2dt 1
T

∫T
0 |a3(t) - a ′3(t)|

2dt+ +
∑k

i=1
1
T

∫T
0 |∆i(t)|2dtN2 & Tone Estimation

N2& 1
T

∫T
0 |
∑k

i=1∆i(t)|2dt Signal Estimation

= 1
T

∫T
0 | xk (t) − x ′(t)|2dt

Eric Price Sparse Fourier Transforms 31 / 36



Tone Estimation to Signal Estimation

Frequency

x̂(f )

Define ∆i(t) = ai(t) − a ′i (t) = vie2πifi t − v ′i e2πif ′i t

∑k
i=1

1
T

∫T
0 |ai(t) - a ′i (t)|

2dt
∑k

i=1
1
T

∫T
0 |∆i(t)|2dtN2 & Tone Estimation

N2& 1
T

∫T
0 |
∑k

i=1∆i(t)|2dt Signal Estimation

= 1
T

∫T
0 | xk (t) − x ′(t)|2dt

Eric Price Sparse Fourier Transforms 31 / 36



Tone Estimation to Signal Estimation

Frequency

x̂(f )

Define ∆i(t) = ai(t) − a ′i (t) = vie2πifi t − v ′i e2πif ′i t

∑k
i=1

1
T

∫T
0 |∆i(t)|2dtN2 & Tone Estimation

N2& 1
T

∫T
0 |
∑k

i=1∆i(t)|2dt Signal Estimation

= 1
T

∫T
0 | xk (t) − x ′(t)|2dt

Eric Price Sparse Fourier Transforms 31 / 36



Tone Estimation to Signal Estimation

Frequency

x̂(f )

Define ∆i(t) = ai(t) − a ′i (t) = vie2πifi t − v ′i e2πif ′i t

∑k
i=1

1
T

∫T
0 |∆i(t)|2dtN2 & Tone Estimation

N2& 1
T

∫T
0 |
∑k

i=1∆i(t)|2dt Signal Estimation

= 1
T

∫T
0 | xk (t) − x ′(t)|2dt

Eric Price Sparse Fourier Transforms 31 / 36



Tone Estimation to Signal Estimation

Frequency

x̂(f )

Define ∆i(t) = ai(t) − a ′i (t) = vie2πifi t − v ′i e2πif ′i t

∑k
i=1

1
T

∫T
0 |∆i(t)|2dtN2 & Tone Estimation

N2& 1
T

∫T
0 |
∑k

i=1∆i(t)|2dt Signal Estimation

= 1
T

∫T
0 | xk (t) − x ′(t)|2dt

Eric Price Sparse Fourier Transforms 31 / 36



Tone Estimation to Signal Estimation

Frequency

x̂(f )

Define ∆i(t) = ai(t) − a ′i (t) = vie2πifi t − v ′i e2πif ′i t

∑k
i=1

1
T

∫T
0 |∆i(t)|2dtN2 & Tone Estimation

N2& 1
T

∫T
0 |
∑k

i=1∆i(t)|2dt Signal Estimation

= 1
T

∫T
0 | xk (t) − x ′(t)|2dt

Eric Price Sparse Fourier Transforms 31 / 36



Extremely Simplified Proof

Goal : k
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Open questions

2
η

log(k)
η

log2(k)
η

Can we reconstruct a signal x ′(t) without recovering each (vi , fi) nicely?
Noise is exponentially small in k , how small duration T can we pick?
Improve our constant approximation result to (1± ε) approximation by
increasing the sample duration T?
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Summary

DFT setting: logd log n far from optimal in d dimensions.
Continuous setting: more to learn.

Thank You
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