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The Fourier Transform

Conversion between time and frequency domains

Time Domain Frequency Domain

100 Tyf Piano, 440 Hz

Displacement of Air Concert A
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The Fourier Transform is Ubiquitous

Audio Video Medical Imaging

Oil Exploration
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Computing the Discrete Fourier Transform

o How to compute X = Fx?
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Computing the Discrete Fourier Transform

©

How to compute X = Fx?
Naive multiplication: O(r?).

© ©

Fast Fourier Transform: O(nlog n) time. [Cooley-Tukey, 1965]

[T]he method greatly reduces the tediousness of mechanical
calculations.

— Carl Friedrich Gauss, 1805

©

By hand: 22nlog n seconds. [Danielson-Lanczos, 1942]
Can we do much better?

©

When can we compute the Fourier
Transform in sublinear time? J
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|dea: Leverage Sparsity

Often the Fourier transform is dominated by a small number of peaks:

Time Signal Frequency Frequency
(Exactly sparse)  (Approximately sparse)
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Time Signal Frequency Frequency
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|dea: Leverage Sparsity

Often the Fourier transform is dominated by a small number of peaks:

Time Signal Frequency Frequency
(Exactly sparse)  (Approximately sparse)

Sparsity is common:

Goal of this talk: sparse Fourier transforms
Faster Fourier Transform on sparse data. J
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Recent Theory and Applied Work

o Sparse Fourier Transform in the Discrete Setting
Gilbert-Guha-Indyk-Muthukrishnan-Strauss, 02
Gilbert-Muthukrishnan-Strauss, 05
Hassanieh-Indyk-Katabi-Price, 12
Indyk-Kapralov, 14

vV vy vYy
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o Sparse Fourier Transform in the Continuous Setting
» Boufounos-Cevher-Gilbert-Li-Strauss, 12
» Price-Song, 15

vV vy vYy

o Applications

Faster GPS ... Fourier ... ... Fourier ... Chip ... ... Chemical ... Imaging ... Light ... Continuous Fourier...
Hassanieh et al. Abari et al. Andronesi et al. Shi et al.
MOBICOM'12 ISSCC'12 ENC'14 SIGGRAPH'15
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Kinds of discrete Fourier transform (TTTTT]

o 1d Fourier transform: x € C", w = e®>™/" want

n
?,' = Z w”xj
J=1
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Kinds of discrete Fourier transform

o 1d Fourier transform: x € C", w = e®>™/" want
n
v, — §y.
=) _why
i—
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Kinds of discrete Fourier transform

o 1d Fourier transform: x € C", w = e®>™/" want
n
Xj = Z w’ x;
i—

o 2d Fourier Transform: x € C"*"%2 w; = ¢2™/N want

m
S i efay,
Xl1,12 - Z Z w4~ Wy Xh,lz

Ji=1p=1

» If ny, no are relatively prime, equivalent to 1d transform of C™ "
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Kinds of discrete Fourier transform
o 1d Fourier transform: x € C", w = e®>™/" want
n .
?,' = Z w”xj
i—
o 2d Fourier Transform: x € C"*"%2 w; = ¢2™/N want
?H,iz = Z Z “)111/1 wl22]2X/1 2
fi=1jo=1

» If ny, no are relatively prime, equivalentto 1d transform of C™ ™
o Hadamard transform: x € C2%2xx2:

%= (1)
j

Eric Price Sparse Fourier Transforms 7/36



Generic Algorithm Outline

o Goal: given access to x, compute X ~ X
» Exact case: X is k-sparse, X = X (maybe to log n bits of precision)
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Generic Algorithm Outline

X m‘ N
\ —

@ Algorithm for k = 1 (exact or approximate)
@ Method to reduce to k = 1 case

» Split X into O(k) “random” parts
» Can sample time domain of the parts.
* O(klog k) time to get one sample from each of the k parts.
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Generic Algorithm Outline

~ m‘ .
\ —

@ Algorithm for k = 1 (exact or approximate)
@ Method to reduce to k = 1 case

» Split X into O(k) “random” parts
» Can sample time domain of the parts.
* O(klog k) time to get one sample from each of the k parts.

@ Finds “most” of signal; repeat on residual
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Talk QOutline

Q Algorithm for k =1
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Talk QOutline

Q Algorithm for k = 1
@ Reducing k to 1
@ Putting it together

Q Continuous setting
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Talk QOutline

Q Algorithm for k =1
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Algorithm for k = 1: one dimension, exact case

Lemma a
We can compute a 1-sparse X in O(1) time.J

o [aifi=t
=1 0 otherwise t
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o Then x = (a aw!, aw?, aw?!, ..., aw(n—11),
Xo=a X1 = aw!
Eric Price Sparse Fourier Transforms

11/36
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Algorithm for kK = 1: one dimension, exact case

Lemma a
We can compute a 1-sparse X in O(1) time.J %
5.l a ifi=t
"~ 0 otherwise t
o Then x = (a aw!, aw?, aw?!, ..., aw(n—11),
Xo=a X1 = aw!
o x1/x =w! =t |

o (Related to OFDM, Prony’s method, matrix pencil.)
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Algorithm for kK = 1: one dimension, approximate case
Lemma
Suppose X is approximately 1-sparse:

Xt/ [1X|2 = 90%.

Then we can recover it with O(log n) samples and O(log® n) time.
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Algorithm for kK = 1: one dimension, approximate case
Lemma
Suppose X is approximately 1-sparse:

Xt/ [1X|2 = 90%.

Then we can recover it with O(log n) samples and O(log® n) time.
/\ Xe,/ Xo = W%l + noise

o With exact sparsity: log n bits in a single measurement.
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Algorithm for kK = 1: one dimension, approximate case
Lemma
Suppose X is approximately 1-sparse:

Xt/ [1X|2 = 90%.

Then we can recover it with O(log n) samples and O(log® n) time.
/\ Xe,/ Xo = W%l + noise

o With exact sparsity: log n bits in a single measurement.

o With noise: only constant number of useful bits.

@ Choose O(log n) time shifts ¢ to recover i.

@ Error correcting code with efficient recovery — lemma. [ |
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Talk QOutline

@ Reducing k to 1
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Algorithm for general k

o Reduce general kto k = 1.
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Algorithm for general k

o Reduce general kto k = 1.
o “Filters”: partition frequencies into
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» Sample from time domain of each
bucket with O(log n) overhead.
» Recovered by k = 1 algorithm

o Most frequencies alone in bucket.
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Algorithm for general k

o Reduce general kto k = 1.

o “Filters”: partition frequencies into
O(k) buckets.
» Sample from time domain of each
bucket with O(log n) overhead.
» Recovered by k = 1 algorithm

o Most frequencies alone in bucket.

@ Random permutation H
(e o

Recovers most of X:

Lemma (Partial sparse recovery)
In O(k log n) expected time, we can compute an estimate X’ such that
X — X' is k/2-sparse.
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Going from finding most coordinates to findigg all

Partial k-sparse recovery

e U o

Lemma (Partial sparse recovery)

In O(klog n) expected time, we can compute an estimate X’ such that
X — X' is k/2-sparse.
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Going from finding most coordinates to finging-all

Partial k-sparse recovery

e oy ‘“H

Lemma (Partial sparse recovery)

In O(klog n) expected time, we can compute an estimate X’ such that
X — X' is k/2-sparse.
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f— |
mx
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Talk QOutline

@ Putting it together
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How can you hope for sublinear time?

Time Frequency

n-dimensional DFT:
O(nlog n)
X =X
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How can you hope for sublinear time?

Time

Eric Price

Frequency

O(nlog n)
X=X

Sparse Fourier Transforms

n-dimensional DFT:

n-dimensional DFT of first
k terms: O(nlog n)
X - rect — X x sinc.
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Use a better filter
GMSO05, HIKP12, IKP14, IK14

Filter (time): Gaussian - sinc Filter (frequency): Gaussian * rectangle

o Filter: sparse F for which Fis large on an interval.
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Use a better filter
GMSO05, HIKP12, IKP14, IK14

Filter (time): Gaussian - sinc Filter (frequency): Gaussian * rectangle

o Filter: sparse F for which Fis large on an interval.
o We can permute the frequencies:

’ ~ ~
X; = Xgj == Xj = Xg—1j

o Allows us to convert worst case to random case.
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Algorithm for exactly sparse signals

Original signal z Goal 2
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Algorithm for exactly sparse signals
Computed F-z Filtered signal Fxz

i
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Algorithm for exactly sparse signals

F.x aliased to k terms Filtered signal Fxz

I
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Algorithm for exactly sparse signals

F.x aliased to k terms Computed samples of F'xz

M
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Algorithm for exactly sparse signals

F.z aliased to k terms Knowledge about 2
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Algorithm for exactly sparse signals

F.x aliased to k terms Knowledge about 2

Lemma

If t is isolated in its bucket and in the “super-pass” region, the value b
we compute for its bucket satisfies

b = X;.

Computing the b for all O(k) buckets takes O(k log n) time.
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o Divide to get b’/b = w!
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o Gives partial sparse recovery: X’ such that X — x’ is k/2-sparse.
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Summary (DFT setting)

o Given access to x for which X is sparse.
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Summary (DFT setting)

o Given access to x for which X is sparse.
o Recover X such that

X—%l2< (1+€) min _|X— Xl
k-sparse Xy

o “Optimal” is O(klog(n/k)) samples and O(k log(n/k)log n) time
» Optimal samples [IK *14] OR optimal time [HIKP '12] OR
log® log n-competitive mixture [IKP '14].
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Talk QOutline

Q Continuous setting
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The Continuous Fourier Transform

Conversion between time and frequency domains

Time Domain Frequency Domain

o The Fourier Transform X of an integrable function x : R — C is

X(f) = roo x(t)e 2miftg¢

—00
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Why Continuous?
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Thought Experiments
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Thought Experiments

Frequency

1

T=12
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Thought Experiments 2

x(t) = sin""(mt)

Frequency

n

Time

5=
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What Guarantee Do We Want?

Frequency: 1)
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Guarantee

o Sample from x(t), which is approximated by a k-Fourier sparse
Xk (1) with 1 frequency separation.

o We recover an x’(t) such that

E_|x'(t) = x(t)? <

~

te(0,T] te(0,T]

o Aslong as:
>T>OWﬁWH
= n
» Time, # samples > O(k log(FT)log?(k)).
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Previous Works and Our Results

Algorithm | Duration Robust | Sample/Time
BCGLS, 12 | k-optimal poor sublinear
Moitra, 15 | optimal poly(k) | linear

Ours log?(k)-optimal | O(1) sublinear
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Simplifed Proof
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Simplifed Proof

Define A;(t) = a;(t) — al(t) = v;e?mit — v/ 27t
Goal : Y K 1Tj0 |A;(1)2dt > }jo|z, ; Aj()[Pdt

T.[O|ZI 1A |2dt

= diagonal terms + off-diagonal terms

= T 3 Jo | D) Rt + 33 fo A(DA(D) dt
S Y E 1L At Rt for T > log?(k)/m

T is large enough, A;(t) is more likely orthogonal to ( Vi £ |
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Open questions

—— Ours, Upper bound
2Q(k)  f-o----o- . - - - Moitra, 15 Upper bound
' - - - Moitra, 15 Lower bound
ko(1 ) - \\ e — — — —
Ollogk) t "
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1 1

log (k) log? (k)

n n

N

o Can we reconstruct a signal x’(t) without recovering each (v;, f;) nicely?
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Open questions
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o Can we reconstruct a signal x’(t) without recovering each (v;, f;) nicely?
@ Noise is exponentially small in k, how small duration T can we pick?
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Open questions

Ours, Upper bound
2Q(k)  f-o----o- . - - - Moitra, 15 Upper bound
' - - - Moitra, 15 Lower bound
ko(1 ) - \\ e — — — —
O(logk) + |

1 1

]
2 log(k) log? (k)
n

n n

o Can we reconstruct a signal x’(t) without recovering each (v;, f;) nicely?
@ Noise is exponentially small in k, how small duration T can we pick?

O Improve our constant approximation result to (1 £ €) approximation by
increasing the sample duration T?
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Summary

o DFT setting: log? log n far from optimal in d dimensions.
o Continuous setting: more to learn.

Thank You
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