
Sparse Fourier Transforms

Eric Price

UT Austin

Eric Price Sparse Fourier Transforms 1 / 36



The Fourier Transform
Conversion between time and frequency domains

Time Domain Frequency Domain

Fourier Transform

Displacement of Air Concert A

Eric Price Sparse Fourier Transforms 2 / 36



The Fourier Transform is Ubiquitous

Audio Video Medical Imaging

Radar GPS Oil Exploration

Eric Price Sparse Fourier Transforms 3 / 36



Computing the Discrete Fourier Transform

How to compute x̂ = Fx?

Naive multiplication: O(n2).
Fast Fourier Transform: O(n log n) time. [Cooley-Tukey, 1965]

[T]he method greatly reduces the tediousness of mechanical
calculations.

– Carl Friedrich Gauss, 1805

By hand: 22n log n seconds. [Danielson-Lanczos, 1942]
Can we do better?

When can we compute the Fourier
Transform in sublinear time?

Eric Price Sparse Fourier Transforms 4 / 36



Computing the Discrete Fourier Transform

How to compute x̂ = Fx?
Naive multiplication: O(n2).

Fast Fourier Transform: O(n log n) time. [Cooley-Tukey, 1965]

[T]he method greatly reduces the tediousness of mechanical
calculations.

– Carl Friedrich Gauss, 1805

By hand: 22n log n seconds. [Danielson-Lanczos, 1942]
Can we do better?

When can we compute the Fourier
Transform in sublinear time?

Eric Price Sparse Fourier Transforms 4 / 36



Computing the Discrete Fourier Transform

How to compute x̂ = Fx?
Naive multiplication: O(n2).
Fast Fourier Transform: O(n log n) time. [Cooley-Tukey, 1965]

[T]he method greatly reduces the tediousness of mechanical
calculations.

– Carl Friedrich Gauss, 1805

By hand: 22n log n seconds. [Danielson-Lanczos, 1942]
Can we do better?

When can we compute the Fourier
Transform in sublinear time?

Eric Price Sparse Fourier Transforms 4 / 36



Computing the Discrete Fourier Transform

How to compute x̂ = Fx?
Naive multiplication: O(n2).
Fast Fourier Transform: O(n log n) time. [Cooley-Tukey, 1965]

[T]he method greatly reduces the tediousness of mechanical
calculations.

– Carl Friedrich Gauss, 1805

By hand: 22n log n seconds. [Danielson-Lanczos, 1942]
Can we do better?

When can we compute the Fourier
Transform in sublinear time?

Eric Price Sparse Fourier Transforms 4 / 36



Computing the Discrete Fourier Transform

How to compute x̂ = Fx?
Naive multiplication: O(n2).
Fast Fourier Transform: O(n log n) time. [Cooley-Tukey, 1965]

[T]he method greatly reduces the tediousness of mechanical
calculations.

– Carl Friedrich Gauss, 1805

By hand: 22n log n seconds. [Danielson-Lanczos, 1942]

Can we do better?

When can we compute the Fourier
Transform in sublinear time?

Eric Price Sparse Fourier Transforms 4 / 36



Computing the Discrete Fourier Transform

How to compute x̂ = Fx?
Naive multiplication: O(n2).
Fast Fourier Transform: O(n log n) time. [Cooley-Tukey, 1965]

[T]he method greatly reduces the tediousness of mechanical
calculations.

– Carl Friedrich Gauss, 1805

By hand: 22n log n seconds. [Danielson-Lanczos, 1942]
Can we do better?

When can we compute the Fourier
Transform in sublinear time?

Eric Price Sparse Fourier Transforms 4 / 36



Computing the Discrete Fourier Transform

How to compute x̂ = Fx?
Naive multiplication: O(n2).
Fast Fourier Transform: O(n log n) time. [Cooley-Tukey, 1965]

[T]he method greatly reduces the tediousness of mechanical
calculations.

– Carl Friedrich Gauss, 1805

By hand: 22n log n seconds. [Danielson-Lanczos, 1942]
Can we do much better?

When can we compute the Fourier
Transform in sublinear time?

Eric Price Sparse Fourier Transforms 4 / 36



Computing the Discrete Fourier Transform

How to compute x̂ = Fx?
Naive multiplication: O(n2).
Fast Fourier Transform: O(n log n) time. [Cooley-Tukey, 1965]

[T]he method greatly reduces the tediousness of mechanical
calculations.

– Carl Friedrich Gauss, 1805

By hand: 22n log n seconds. [Danielson-Lanczos, 1942]
Can we do much better?

When can we compute the Fourier
Transform in sublinear time?

Eric Price Sparse Fourier Transforms 4 / 36



Idea: Leverage Sparsity
Often the Fourier transform is dominated by a small number of peaks:

Time Signal Frequency
(Exactly sparse)

Frequency
(Approximately sparse)

Sparsity is common:

Audio Video Medical
Imaging

Radar GPS Oil Exploration

Goal of this talk: sparse Fourier transforms
Faster Fourier Transform on sparse data.

Eric Price Sparse Fourier Transforms 5 / 36



Idea: Leverage Sparsity
Often the Fourier transform is dominated by a small number of peaks:

Time Signal Frequency
(Exactly sparse)

Frequency
(Approximately sparse)

Sparsity is common:

Audio Video Medical
Imaging

Radar GPS Oil Exploration

Goal of this talk: sparse Fourier transforms
Faster Fourier Transform on sparse data.

Eric Price Sparse Fourier Transforms 5 / 36



Idea: Leverage Sparsity
Often the Fourier transform is dominated by a small number of peaks:

Time Signal Frequency
(Exactly sparse)

Frequency
(Approximately sparse)

Sparsity is common:

Audio Video Medical
Imaging

Radar GPS Oil Exploration

Goal of this talk: sparse Fourier transforms
Faster Fourier Transform on sparse data.

Eric Price Sparse Fourier Transforms 5 / 36



Recent Theory and Applied Work
Sparse Fourier Transform in the Discrete Setting

I Gilbert-Guha-Indyk-Muthukrishnan-Strauss, 02
I Gilbert-Muthukrishnan-Strauss, 05
I Hassanieh-Indyk-Katabi-Price, 12
I Indyk-Kapralov, 14

Sparse Fourier Transform in the Continuous Setting
I Boufounos-Cevher-Gilbert-Li-Strauss, 12
I Price-Song, 15

Applications

Faster GPS ... Fourier ...
Hassanieh et al.
MOBICOM’12

... Fourier ... Chip ...
Abari et al.
ISSCC’12

... Chemical ... Imaging ...
Andronesi et al.

ENC’14

Light ... Continuous Fourier...
Shi et al.

SIGGRAPH’15

Eric Price Sparse Fourier Transforms 6 / 36



Recent Theory and Applied Work
Sparse Fourier Transform in the Discrete Setting

I Gilbert-Guha-Indyk-Muthukrishnan-Strauss, 02
I Gilbert-Muthukrishnan-Strauss, 05
I Hassanieh-Indyk-Katabi-Price, 12
I Indyk-Kapralov, 14

Sparse Fourier Transform in the Continuous Setting
I Boufounos-Cevher-Gilbert-Li-Strauss, 12
I Price-Song, 15

Applications

Faster GPS ... Fourier ...
Hassanieh et al.
MOBICOM’12

... Fourier ... Chip ...
Abari et al.
ISSCC’12

... Chemical ... Imaging ...
Andronesi et al.

ENC’14

Light ... Continuous Fourier...
Shi et al.

SIGGRAPH’15

Eric Price Sparse Fourier Transforms 6 / 36



Recent Theory and Applied Work
Sparse Fourier Transform in the Discrete Setting

I Gilbert-Guha-Indyk-Muthukrishnan-Strauss, 02
I Gilbert-Muthukrishnan-Strauss, 05
I Hassanieh-Indyk-Katabi-Price, 12
I Indyk-Kapralov, 14

Sparse Fourier Transform in the Continuous Setting
I Boufounos-Cevher-Gilbert-Li-Strauss, 12
I Price-Song, 15

Applications

Faster GPS ... Fourier ...
Hassanieh et al.
MOBICOM’12

... Fourier ... Chip ...
Abari et al.
ISSCC’12

... Chemical ... Imaging ...
Andronesi et al.

ENC’14

Light ... Continuous Fourier...
Shi et al.

SIGGRAPH’15

Eric Price Sparse Fourier Transforms 6 / 36



Kinds of discrete Fourier transform

1d Fourier transform: x ∈ Cn, ω = e2πi/n, want

x̂i =

n∑
j=1

ωijxj

2d Fourier Transform: x ∈ Cn1×n2 , ωi = e2πi/ni , want

x̂i1,i2 =

n1∑
j1=1

n2∑
j2=1

ω
i1j1
1 ω

i2j2
2 xj1,j2

I If n1,n2 are relatively prime, equivalent to 1d transform of Cn1n2

Hadamard transform: x ∈ C2×2×···×2:

x̂i =

n∑
j

(−1)〈i,j〉xj

Eric Price Sparse Fourier Transforms 7 / 36



Kinds of discrete Fourier transform

1d Fourier transform: x ∈ Cn, ω = e2πi/n, want

x̂i =

n∑
j=1

ωijxj

2d Fourier Transform: x ∈ Cn1×n2 , ωi = e2πi/ni , want

x̂i1,i2 =

n1∑
j1=1

n2∑
j2=1

ω
i1j1
1 ω

i2j2
2 xj1,j2

I If n1,n2 are relatively prime, equivalent to 1d transform of Cn1n2

Hadamard transform: x ∈ C2×2×···×2:

x̂i =

n∑
j

(−1)〈i,j〉xj

Eric Price Sparse Fourier Transforms 7 / 36



Kinds of discrete Fourier transform

1d Fourier transform: x ∈ Cn, ω = e2πi/n, want

x̂i =

n∑
j=1

ωijxj

2d Fourier Transform: x ∈ Cn1×n2 , ωi = e2πi/ni , want

x̂i1,i2 =

n1∑
j1=1

n2∑
j2=1

ω
i1j1
1 ω

i2j2
2 xj1,j2

I If n1,n2 are relatively prime, equivalent to 1d transform of Cn1n2

Hadamard transform: x ∈ C2×2×···×2:

x̂i =

n∑
j

(−1)〈i,j〉xj

Eric Price Sparse Fourier Transforms 7 / 36



Kinds of discrete Fourier transform

1d Fourier transform: x ∈ Cn, ω = e2πi/n, want

x̂i =

n∑
j=1

ωijxj

2d Fourier Transform: x ∈ Cn1×n2 , ωi = e2πi/ni , want

x̂i1,i2 =

n1∑
j1=1

n2∑
j2=1

ω
i1j1
1 ω

i2j2
2 xj1,j2

I If n1,n2 are relatively prime, equivalent to 1d transform of Cn1n2

Hadamard transform: x ∈ C2×2×···×2:

x̂i =

n∑
j

(−1)〈i,j〉xj

Eric Price Sparse Fourier Transforms 7 / 36



Kinds of discrete Fourier transform

1d Fourier transform: x ∈ Cn, ω = e2πi/n, want

x̂i =

n∑
j=1

ωijxj

2d Fourier Transform: x ∈ Cn1×n2 , ωi = e2πi/ni , want

x̂i1,i2 =

n1∑
j1=1

n2∑
j2=1

ω
i1j1
1 ω

i2j2
2 xj1,j2

I If n1,n2 are relatively prime, equivalent to 1d transform of Cn1n2

Hadamard transform: x ∈ C2×2×···×2:

x̂i =

n∑
j

(−1)〈i,j〉xj

Eric Price Sparse Fourier Transforms 7 / 36



Kinds of discrete Fourier transform

1d Fourier transform: x ∈ Cn, ω = e2πi/n, want

x̂i =

n∑
j=1

ωijxj

2d Fourier Transform: x ∈ Cn1×n2 , ωi = e2πi/ni , want

x̂i1,i2 =

n1∑
j1=1

n2∑
j2=1

ω
i1j1
1 ω

i2j2
2 xj1,j2

I If n1,n2 are relatively prime, equivalent to 1d transform of Cn1n2

Hadamard transform: x ∈ C2×2×···×2:

x̂i =

n∑
j

(−1)〈i,j〉xj

Eric Price Sparse Fourier Transforms 7 / 36



Generic Algorithm Outline

Goal: given access to x , compute x ≈ x̂
I Exact case: x̂ is k -sparse, x = x̂ (maybe to log n bits of precision)

I Approximate case:

‖x − x̂‖2 6 (1 + ε) min
k -sparse x̂k

‖x̂ − x̂k‖2

I With “good” probability.

1 Algorithm for k = 1 (exact or approximate)
2 Method to reduce to k = 1 case

I Split x̂ into O(k) “random” parts
I Can sample time domain of the parts.

F O(k log k) time to get one sample from each of the k parts.

3 Finds “most” of signal; repeat on residual

Eric Price Sparse Fourier Transforms 8 / 36



Generic Algorithm Outline

Goal: given access to x , compute x ≈ x̂
I Exact case: x̂ is k -sparse, x = x̂ (maybe to log n bits of precision)
I Approximate case:

‖x − x̂‖2 6 (1 + ε) min
k -sparse x̂k

‖x̂ − x̂k‖2

I With “good” probability.

1 Algorithm for k = 1 (exact or approximate)
2 Method to reduce to k = 1 case

I Split x̂ into O(k) “random” parts
I Can sample time domain of the parts.

F O(k log k) time to get one sample from each of the k parts.

3 Finds “most” of signal; repeat on residual

Eric Price Sparse Fourier Transforms 8 / 36



Generic Algorithm Outline

Goal: given access to x , compute x ≈ x̂
I Exact case: x̂ is k -sparse, x = x̂ (maybe to log n bits of precision)
I Approximate case:

‖x − x̂‖2 6 (1 + ε) min
k -sparse x̂k

‖x̂ − x̂k‖2

I With “good” probability.

1 Algorithm for k = 1 (exact or approximate)
2 Method to reduce to k = 1 case

I Split x̂ into O(k) “random” parts
I Can sample time domain of the parts.

F O(k log k) time to get one sample from each of the k parts.

3 Finds “most” of signal; repeat on residual

Eric Price Sparse Fourier Transforms 8 / 36



Generic Algorithm Outline

Goal: given access to x , compute x ≈ x̂
I Exact case: x̂ is k -sparse, x = x̂ (maybe to log n bits of precision)
I Approximate case:

‖x − x̂‖2 6 (1 + ε) min
k -sparse x̂k

‖x̂ − x̂k‖2

I With “good” probability.

1 Algorithm for k = 1 (exact or approximate)

2 Method to reduce to k = 1 case

I Split x̂ into O(k) “random” parts
I Can sample time domain of the parts.

F O(k log k) time to get one sample from each of the k parts.

3 Finds “most” of signal; repeat on residual

Eric Price Sparse Fourier Transforms 8 / 36



Generic Algorithm Outline

Goal: given access to x , compute x ≈ x̂
I Exact case: x̂ is k -sparse, x = x̂ (maybe to log n bits of precision)
I Approximate case:

‖x − x̂‖2 6 (1 + ε) min
k -sparse x̂k

‖x̂ − x̂k‖2

I With “good” probability.

1 Algorithm for k = 1 (exact or approximate)
2 Method to reduce to k = 1 case

I Split x̂ into O(k) “random” parts
I Can sample time domain of the parts.

F O(k log k) time to get one sample from each of the k parts.

3 Finds “most” of signal; repeat on residual

Eric Price Sparse Fourier Transforms 8 / 36



Generic Algorithm Outline

Goal: given access to x , compute x ≈ x̂
I Exact case: x̂ is k -sparse, x = x̂ (maybe to log n bits of precision)
I Approximate case:

‖x − x̂‖2 6 (1 + ε) min
k -sparse x̂k

‖x̂ − x̂k‖2

I With “good” probability.

1 Algorithm for k = 1 (exact or approximate)
2 Method to reduce to k = 1 case

I Split x̂ into O(k) “random” parts
I Can sample time domain of the parts.

F O(k log k) time to get one sample from each of the k parts.

3 Finds “most” of signal; repeat on residual

Eric Price Sparse Fourier Transforms 8 / 36



Generic Algorithm Outline

Permute Filters O(k)

1-sparse recovery

1-sparse recovery

1-sparse recovery

1-sparse recovery

x x̂ ′

Goal: given access to x , compute x ≈ x̂
I Exact case: x̂ is k -sparse, x = x̂ (maybe to log n bits of precision)
I Approximate case:

‖x − x̂‖2 6 (1 + ε) min
k -sparse x̂k

‖x̂ − x̂k‖2

I With “good” probability.

1 Algorithm for k = 1 (exact or approximate)
2 Method to reduce to k = 1 case

I Split x̂ into O(k) “random” parts
I Can sample time domain of the parts.

F O(k log k) time to get one sample from each of the k parts.

3 Finds “most” of signal; repeat on residual

Eric Price Sparse Fourier Transforms 8 / 36



Generic Algorithm Outline

Permute Filters O(k)

1-sparse recovery

1-sparse recovery

1-sparse recovery

1-sparse recovery

x x̂ ′

Goal: given access to x , compute x ≈ x̂
I Exact case: x̂ is k -sparse, x = x̂ (maybe to log n bits of precision)
I Approximate case:

‖x − x̂‖2 6 (1 + ε) min
k -sparse x̂k

‖x̂ − x̂k‖2

I With “good” probability.

1 Algorithm for k = 1 (exact or approximate)
2 Method to reduce to k = 1 case

I Split x̂ into O(k) “random” parts

I Can sample time domain of the parts.

F O(k log k) time to get one sample from each of the k parts.

3 Finds “most” of signal; repeat on residual

Eric Price Sparse Fourier Transforms 8 / 36



Generic Algorithm Outline

Permute Filters O(k)

1-sparse recovery

1-sparse recovery

1-sparse recovery

1-sparse recovery

x x̂ ′

Goal: given access to x , compute x ≈ x̂
I Exact case: x̂ is k -sparse, x = x̂ (maybe to log n bits of precision)
I Approximate case:

‖x − x̂‖2 6 (1 + ε) min
k -sparse x̂k

‖x̂ − x̂k‖2

I With “good” probability.

1 Algorithm for k = 1 (exact or approximate)
2 Method to reduce to k = 1 case

I Split x̂ into O(k) “random” parts
I Can sample time domain of the parts.

F O(k log k) time to get one sample from each of the k parts.

3 Finds “most” of signal; repeat on residual

Eric Price Sparse Fourier Transforms 8 / 36



Generic Algorithm Outline

Permute Filters O(k)

1-sparse recovery

1-sparse recovery

1-sparse recovery

1-sparse recovery

x x̂ ′

Goal: given access to x , compute x ≈ x̂
I Exact case: x̂ is k -sparse, x = x̂ (maybe to log n bits of precision)
I Approximate case:

‖x − x̂‖2 6 (1 + ε) min
k -sparse x̂k

‖x̂ − x̂k‖2

I With “good” probability.

1 Algorithm for k = 1 (exact or approximate)
2 Method to reduce to k = 1 case

I Split x̂ into O(k) “random” parts
I Can sample time domain of the parts.

F O(k log k) time to get one sample from each of the k parts.

3 Finds “most” of signal; repeat on residual

Eric Price Sparse Fourier Transforms 8 / 36



Generic Algorithm Outline

Permute Filters O(k)

1-sparse recovery

1-sparse recovery

1-sparse recovery

1-sparse recovery

x x̂ ′

Goal: given access to x , compute x ≈ x̂
I Exact case: x̂ is k -sparse, x = x̂ (maybe to log n bits of precision)
I Approximate case:

‖x − x̂‖2 6 (1 + ε) min
k -sparse x̂k

‖x̂ − x̂k‖2

I With “good” probability.

1 Algorithm for k = 1 (exact or approximate)
2 Method to reduce to k = 1 case

I Split x̂ into O(k) “random” parts
I Can sample time domain of the parts.

F O(k log k) time to get one sample from each of the k parts.

3 Finds “most” of signal; repeat on residual

Eric Price Sparse Fourier Transforms 8 / 36



Talk Outline

1 Algorithm for k = 1

2 Reducing k to 1

3 Putting it together

4 Continuous setting

Eric Price Sparse Fourier Transforms 9 / 36



Talk Outline

1 Algorithm for k = 1

2 Reducing k to 1

3 Putting it together

4 Continuous setting

Eric Price Sparse Fourier Transforms 9 / 36



Talk Outline

1 Algorithm for k = 1

2 Reducing k to 1

3 Putting it together

4 Continuous setting

Eric Price Sparse Fourier Transforms 9 / 36



Talk Outline

1 Algorithm for k = 1

2 Reducing k to 1

3 Putting it together

4 Continuous setting

Eric Price Sparse Fourier Transforms 9 / 36



Talk Outline

1 Algorithm for k = 1

2 Reducing k to 1

3 Putting it together

4 Continuous setting

Eric Price Sparse Fourier Transforms 10 / 36



Algorithm for k = 1: one dimension, exact case

x̂ :

t

aLemma
We can compute a 1-sparse x̂ in O(1) time.

x̂i =

{
a if i = t
0 otherwise

Then x = (a,aωt ,aω2t ,aω3t , . . . ,aω(n−1)t).

x0 = a x1 = aωt

x1/x0 = ωt =⇒ t . �

(Related to OFDM, Prony’s method, matrix pencil.)

Eric Price Sparse Fourier Transforms 11 / 36



Algorithm for k = 1: one dimension, exact case

x̂ :

t

aLemma
We can compute a 1-sparse x̂ in O(1) time.

x̂i =

{
a if i = t
0 otherwise

Then x = (a,aωt ,aω2t ,aω3t , . . . ,aω(n−1)t).

x0 = a x1 = aωt

x1/x0 = ωt =⇒ t .

�

(Related to OFDM, Prony’s method, matrix pencil.)

Eric Price Sparse Fourier Transforms 11 / 36



Algorithm for k = 1: one dimension, exact case

x̂ :

t

aLemma
We can compute a 1-sparse x̂ in O(1) time.

x̂i =

{
a if i = t
0 otherwise

Then x = (a,aωt ,aω2t ,aω3t , . . . ,aω(n−1)t).

x0 = a

x1 = aωt

x1/x0 = ωt =⇒ t .

�

(Related to OFDM, Prony’s method, matrix pencil.)

Eric Price Sparse Fourier Transforms 11 / 36



Algorithm for k = 1: one dimension, exact case

x̂ :

t

aLemma
We can compute a 1-sparse x̂ in O(1) time.

x̂i =

{
a if i = t
0 otherwise

Then x = (a,aωt ,aω2t ,aω3t , . . . ,aω(n−1)t).

x0 = a x1 = aωt

x1/x0 = ωt =⇒ t .

�

(Related to OFDM, Prony’s method, matrix pencil.)

Eric Price Sparse Fourier Transforms 11 / 36



Algorithm for k = 1: one dimension, exact case

x̂ :

t

aLemma
We can compute a 1-sparse x̂ in O(1) time.

x̂i =

{
a if i = t
0 otherwise

Then x = (a,aωt ,aω2t ,aω3t , . . . ,aω(n−1)t).

x0 = a x1 = aωt

x1/x0 = ωt =⇒ t .

�

(Related to OFDM, Prony’s method, matrix pencil.)

Eric Price Sparse Fourier Transforms 11 / 36



Algorithm for k = 1: one dimension, exact case

x̂ :

t

aLemma
We can compute a 1-sparse x̂ in O(1) time.

x̂i =

{
a if i = t
0 otherwise

Then x = (a,aωt ,aω2t ,aω3t , . . . ,aω(n−1)t).

x0 = a x1 = aωt

x1/x0 = ωt =⇒ t . �

(Related to OFDM, Prony’s method, matrix pencil.)

Eric Price Sparse Fourier Transforms 11 / 36



Algorithm for k = 1: one dimension, exact case

x̂ :

t

aLemma
We can compute a 1-sparse x̂ in O(1) time.

x̂i =

{
a if i = t
0 otherwise

Then x = (a,aωt ,aω2t ,aω3t , . . . ,aω(n−1)t).

x0 = a x1 = aωt

x1/x0 = ωt =⇒ t . �

(Related to OFDM, Prony’s method, matrix pencil.)

Eric Price Sparse Fourier Transforms 11 / 36



Algorithm for k = 1: one dimension, approximate case
Lemma
Suppose x̂ is approximately 1-sparse:

|x̂t |/‖x̂‖2 > 90%.

Then we can recover it with O(log n) samples and O(log2 n) time.

With exact sparsity: log n bits in a single measurement.
With noise: only constant number of useful bits.
Choose Θ(log n) time shifts c to recover i .
Error correcting code with efficient recovery =⇒ lemma. �

Eric Price Sparse Fourier Transforms 12 / 36



Algorithm for k = 1: one dimension, approximate case
Lemma
Suppose x̂ is approximately 1-sparse:

|x̂t |/‖x̂‖2 > 90%.

Then we can recover it with O(log n) samples and O(log2 n) time.

x1/x0 = ωt

With exact sparsity: log n bits in a single measurement.

With noise: only constant number of useful bits.
Choose Θ(log n) time shifts c to recover i .
Error correcting code with efficient recovery =⇒ lemma. �

Eric Price Sparse Fourier Transforms 12 / 36



Algorithm for k = 1: one dimension, approximate case
Lemma
Suppose x̂ is approximately 1-sparse:

|x̂t |/‖x̂‖2 > 90%.

Then we can recover it with O(log n) samples and O(log2 n) time.

x1/x0 = ωt + noise

With exact sparsity: log n bits in a single measurement.
With noise: only constant number of useful bits.

Choose Θ(log n) time shifts c to recover i .
Error correcting code with efficient recovery =⇒ lemma. �

Eric Price Sparse Fourier Transforms 12 / 36



Algorithm for k = 1: one dimension, approximate case
Lemma
Suppose x̂ is approximately 1-sparse:

|x̂t |/‖x̂‖2 > 90%.

Then we can recover it with O(log n) samples and O(log2 n) time.

x1/x0 = ωt + noise

With exact sparsity: log n bits in a single measurement.
With noise: only constant number of useful bits.
Choose Θ(log n) time shifts c to recover i .

Error correcting code with efficient recovery =⇒ lemma. �

Eric Price Sparse Fourier Transforms 12 / 36



Algorithm for k = 1: one dimension, approximate case
Lemma
Suppose x̂ is approximately 1-sparse:

|x̂t |/‖x̂‖2 > 90%.

Then we can recover it with O(log n) samples and O(log2 n) time.

xc2/x0 = ωc2t + noise

With exact sparsity: log n bits in a single measurement.
With noise: only constant number of useful bits.
Choose Θ(log n) time shifts c to recover i .

Error correcting code with efficient recovery =⇒ lemma. �

Eric Price Sparse Fourier Transforms 12 / 36



Algorithm for k = 1: one dimension, approximate case
Lemma
Suppose x̂ is approximately 1-sparse:

|x̂t |/‖x̂‖2 > 90%.

Then we can recover it with O(log n) samples and O(log2 n) time.

xc3/x0 = ωc3t + noise

With exact sparsity: log n bits in a single measurement.
With noise: only constant number of useful bits.
Choose Θ(log n) time shifts c to recover i .

Error correcting code with efficient recovery =⇒ lemma. �

Eric Price Sparse Fourier Transforms 12 / 36



Algorithm for k = 1: one dimension, approximate case
Lemma
Suppose x̂ is approximately 1-sparse:

|x̂t |/‖x̂‖2 > 90%.

Then we can recover it with O(log n) samples and O(log2 n) time.

xc3/x0 = ωc3t + noise

With exact sparsity: log n bits in a single measurement.
With noise: only constant number of useful bits.
Choose Θ(log n) time shifts c to recover i .
Error correcting code with efficient recovery =⇒ lemma. �

Eric Price Sparse Fourier Transforms 12 / 36



Talk Outline

1 Algorithm for k = 1

2 Reducing k to 1

3 Putting it together

4 Continuous setting

Eric Price Sparse Fourier Transforms 13 / 36



Algorithm for general k

Reduce general k to k = 1.

“Filters”: partition frequencies into
O(k) buckets.

I Sample from time domain of each
bucket with O(log n) overhead.

I Recovered by k = 1 algorithm

Most frequencies alone in bucket.
Random permutation

Permute Filters O(k)

1-sparse recovery

1-sparse recovery

1-sparse recovery

1-sparse recovery

x x̂ ′

Recovers most of x̂ :

Lemma (Partial sparse recovery)
In O(k log n) expected time, we can compute an estimate x̂ ′ such that
x̂ − x̂ ′ is k/2-sparse.

Eric Price Sparse Fourier Transforms 14 / 36



Algorithm for general k

Reduce general k to k = 1.
“Filters”: partition frequencies into
O(k) buckets.

I Sample from time domain of each
bucket with O(log n) overhead.

I Recovered by k = 1 algorithm

Most frequencies alone in bucket.
Random permutation

Permute Filters O(k)

1-sparse recovery

1-sparse recovery

1-sparse recovery

1-sparse recovery

x x̂ ′

Recovers most of x̂ :

Lemma (Partial sparse recovery)
In O(k log n) expected time, we can compute an estimate x̂ ′ such that
x̂ − x̂ ′ is k/2-sparse.

Eric Price Sparse Fourier Transforms 14 / 36



Algorithm for general k

Reduce general k to k = 1.
“Filters”: partition frequencies into
O(k) buckets.

I Sample from time domain of each
bucket with O(log n) overhead.

I Recovered by k = 1 algorithm

Most frequencies alone in bucket.
Random permutation

Permute Filters O(k)

1-sparse recovery

1-sparse recovery

1-sparse recovery

1-sparse recovery

x x̂ ′

Recovers most of x̂ :

Lemma (Partial sparse recovery)
In O(k log n) expected time, we can compute an estimate x̂ ′ such that
x̂ − x̂ ′ is k/2-sparse.

Eric Price Sparse Fourier Transforms 14 / 36



Algorithm for general k

Reduce general k to k = 1.
“Filters”: partition frequencies into
O(k) buckets.

I Sample from time domain of each
bucket with O(log n) overhead.

I Recovered by k = 1 algorithm

Most frequencies alone in bucket.
Random permutation

Permute Filters O(k)

1-sparse recovery

1-sparse recovery

1-sparse recovery

1-sparse recovery

x x̂ ′

Recovers most of x̂ :

Lemma (Partial sparse recovery)
In O(k log n) expected time, we can compute an estimate x̂ ′ such that
x̂ − x̂ ′ is k/2-sparse.

Eric Price Sparse Fourier Transforms 14 / 36



Algorithm for general k

Reduce general k to k = 1.
“Filters”: partition frequencies into
O(k) buckets.

I Sample from time domain of each
bucket with O(log n) overhead.

I Recovered by k = 1 algorithm

Most frequencies alone in bucket.
Random permutation

Permute Filters O(k)

1-sparse recovery

1-sparse recovery

1-sparse recovery

1-sparse recovery

x x̂ ′

Recovers most of x̂ :

Lemma (Partial sparse recovery)
In O(k log n) expected time, we can compute an estimate x̂ ′ such that
x̂ − x̂ ′ is k/2-sparse.

Eric Price Sparse Fourier Transforms 14 / 36



Algorithm for general k

Reduce general k to k = 1.
“Filters”: partition frequencies into
O(k) buckets.

I Sample from time domain of each
bucket with O(log n) overhead.

I Recovered by k = 1 algorithm

Most frequencies alone in bucket.
Random permutation

Permute Filters O(k)

1-sparse recovery

1-sparse recovery

1-sparse recovery

1-sparse recovery

x x̂ ′

Recovers most of x̂ :

Lemma (Partial sparse recovery)
In O(k log n) expected time, we can compute an estimate x̂ ′ such that
x̂ − x̂ ′ is k/2-sparse.

Eric Price Sparse Fourier Transforms 14 / 36



Algorithm for general k

Reduce general k to k = 1.
“Filters”: partition frequencies into
O(k) buckets.

I Sample from time domain of each
bucket with O(log n) overhead.

I Recovered by k = 1 algorithm

Most frequencies alone in bucket.

Random permutation

Permute Filters O(k)

1-sparse recovery

1-sparse recovery

1-sparse recovery

1-sparse recovery

x x̂ ′

Recovers most of x̂ :

Lemma (Partial sparse recovery)
In O(k log n) expected time, we can compute an estimate x̂ ′ such that
x̂ − x̂ ′ is k/2-sparse.

Eric Price Sparse Fourier Transforms 14 / 36



Algorithm for general k

Reduce general k to k = 1.
“Filters”: partition frequencies into
O(k) buckets.

I Sample from time domain of each
bucket with O(log n) overhead.

I Recovered by k = 1 algorithm

Most frequencies alone in bucket.

Random permutation

Permute Filters O(k)

1-sparse recovery

1-sparse recovery

1-sparse recovery

1-sparse recovery

x x̂ ′

Recovers most of x̂ :

Lemma (Partial sparse recovery)
In O(k log n) expected time, we can compute an estimate x̂ ′ such that
x̂ − x̂ ′ is k/2-sparse.

Eric Price Sparse Fourier Transforms 14 / 36



Algorithm for general k

Reduce general k to k = 1.
“Filters”: partition frequencies into
O(k) buckets.

I Sample from time domain of each
bucket with O(log n) overhead.

I Recovered by k = 1 algorithm

Most frequencies alone in bucket.

Random permutation

Permute Filters O(k)

1-sparse recovery

1-sparse recovery

1-sparse recovery

1-sparse recovery

x x̂ ′

Recovers most of x̂ :

Lemma (Partial sparse recovery)
In O(k log n) expected time, we can compute an estimate x̂ ′ such that
x̂ − x̂ ′ is k/2-sparse.

Eric Price Sparse Fourier Transforms 14 / 36



Algorithm for general k

Reduce general k to k = 1.
“Filters”: partition frequencies into
O(k) buckets.

I Sample from time domain of each
bucket with O(log n) overhead.

I Recovered by k = 1 algorithm

Most frequencies alone in bucket.

Random permutation

Permute Filters O(k)

1-sparse recovery

1-sparse recovery

1-sparse recovery

1-sparse recovery

x x̂ ′

Recovers most of x̂ :

Lemma (Partial sparse recovery)
In O(k log n) expected time, we can compute an estimate x̂ ′ such that
x̂ − x̂ ′ is k/2-sparse.

Eric Price Sparse Fourier Transforms 14 / 36



Algorithm for general k

Reduce general k to k = 1.
“Filters”: partition frequencies into
O(k) buckets.

I Sample from time domain of each
bucket with O(log n) overhead.

I Recovered by k = 1 algorithm

Most frequencies alone in bucket.
Random permutation

Permute Filters O(k)

1-sparse recovery

1-sparse recovery

1-sparse recovery

1-sparse recovery

x x̂ ′

Recovers most of x̂ :

Lemma (Partial sparse recovery)
In O(k log n) expected time, we can compute an estimate x̂ ′ such that
x̂ − x̂ ′ is k/2-sparse.

Eric Price Sparse Fourier Transforms 14 / 36



Algorithm for general k

Reduce general k to k = 1.
“Filters”: partition frequencies into
O(k) buckets.

I Sample from time domain of each
bucket with O(log n) overhead.

I Recovered by k = 1 algorithm

Most frequencies alone in bucket.
Random permutation

Permute Filters O(k)

1-sparse recovery

1-sparse recovery

1-sparse recovery

1-sparse recovery

x x̂ ′

Recovers most of x̂ :

Lemma (Partial sparse recovery)
In O(k log n) expected time, we can compute an estimate x̂ ′ such that
x̂ − x̂ ′ is k/2-sparse.

Eric Price Sparse Fourier Transforms 14 / 36



Algorithm for general k

Reduce general k to k = 1.
“Filters”: partition frequencies into
O(k) buckets.

I Sample from time domain of each
bucket with O(log n) overhead.

I Recovered by k = 1 algorithm

Most frequencies alone in bucket.
Random permutation

Permute Filters O(k)

1-sparse recovery

1-sparse recovery

1-sparse recovery

1-sparse recovery

x x̂ ′

Recovers most of x̂ :

Lemma (Partial sparse recovery)
In O(k log n) expected time, we can compute an estimate x̂ ′ such that
x̂ − x̂ ′ is k/2-sparse.

Eric Price Sparse Fourier Transforms 14 / 36



Algorithm for general k

Reduce general k to k = 1.
“Filters”: partition frequencies into
O(k) buckets.

I Sample from time domain of each
bucket with O(log n) overhead.

I Recovered by k = 1 algorithm

Most frequencies alone in bucket.
Random permutation

Permute Filters O(k)

1-sparse recovery

1-sparse recovery

1-sparse recovery

1-sparse recovery

x x̂ ′

Recovers most of x̂ :

Lemma (Partial sparse recovery)
In O(k log n) expected time, we can compute an estimate x̂ ′ such that
x̂ − x̂ ′ is k/2-sparse.

Eric Price Sparse Fourier Transforms 14 / 36



Going from finding most coordinates to finding allx̂

Permute Filters O(k)

1-sparse recovery

1-sparse recovery

1-sparse recovery

1-sparse recovery

Partial k -sparse recovery

x x̂ ′

Lemma (Partial sparse recovery)
In O(k log n) expected time, we can compute an estimate x̂ ′ such that
x̂ − x̂ ′ is k/2-sparse.

Repeat, k → k/2→ k/4→ · · ·

Theorem
We can compute x̂ in O(k log n) expected time.

Eric Price Sparse Fourier Transforms 15 / 36



Going from finding most coordinates to finding allx̂ − x̂ ′

Permute Filters O(k)

1-sparse recovery

1-sparse recovery

1-sparse recovery

1-sparse recovery

Partial k -sparse recovery

x x̂ ′

Lemma (Partial sparse recovery)
In O(k log n) expected time, we can compute an estimate x̂ ′ such that
x̂ − x̂ ′ is k/2-sparse.

Repeat, k → k/2→ k/4→ · · ·

Theorem
We can compute x̂ in O(k log n) expected time.

Eric Price Sparse Fourier Transforms 15 / 36



Going from finding most coordinates to finding allx̂ − x̂ ′

Permute Filters O(k)

1-sparse recovery

1-sparse recovery

1-sparse recovery

1-sparse recovery

Partial k -sparse recovery

x x̂ ′

Lemma (Partial sparse recovery)
In O(k log n) expected time, we can compute an estimate x̂ ′ such that
x̂ − x̂ ′ is k/2-sparse.

Repeat, k → k/2→ k/4→ · · ·

Theorem
We can compute x̂ in O(k log n) expected time.

Eric Price Sparse Fourier Transforms 15 / 36



Going from finding most coordinates to finding allx̂ − x̂ ′

Permute Filters O(k)

1-sparse recovery

1-sparse recovery

1-sparse recovery

1-sparse recovery

Partial k -sparse recovery

x x̂ ′

Lemma (Partial sparse recovery)
In O(k log n) expected time, we can compute an estimate x̂ ′ such that
x̂ − x̂ ′ is k/2-sparse.

Repeat, k → k/2→ k/4→ · · ·

Theorem
We can compute x̂ in O(k log n) expected time.

Eric Price Sparse Fourier Transforms 15 / 36



Going from finding most coordinates to finding allx̂ − x̂ ′

Permute Filters O(k)

1-sparse recovery

1-sparse recovery

1-sparse recovery

1-sparse recovery

Partial k -sparse recovery

x x̂ ′

Lemma (Partial sparse recovery)
In O(k log n) expected time, we can compute an estimate x̂ ′ such that
x̂ − x̂ ′ is k/2-sparse.

Repeat, k → k/2→ k/4→ · · ·

Theorem
We can compute x̂ in O(k log n) expected time.

Eric Price Sparse Fourier Transforms 15 / 36



Going from finding most coordinates to finding allx̂ − x̂ ′

Permute Filters O(k)

1-sparse recovery

1-sparse recovery

1-sparse recovery

1-sparse recovery

Partial k -sparse recovery

x x̂ ′

Lemma (Partial sparse recovery)
In O(k log n) expected time, we can compute an estimate x̂ ′ such that
x̂ − x̂ ′ is k/2-sparse.

Repeat, k → k/2→ k/4→ · · ·

Theorem
We can compute x̂ in O(k log n) expected time.

Eric Price Sparse Fourier Transforms 15 / 36



Going from finding most coordinates to finding allx̂ − x̂ ′

Permute Filters O(k)

1-sparse recovery

1-sparse recovery

1-sparse recovery

1-sparse recovery

Partial k -sparse recovery

x x̂ ′

Lemma (Partial sparse recovery)
In O(k log n) expected time, we can compute an estimate x̂ ′ such that
x̂ − x̂ ′ is k/2-sparse.

Repeat, k → k/2→ k/4→ · · ·

Theorem
We can compute x̂ in O(k log n) expected time.

Eric Price Sparse Fourier Transforms 15 / 36



Going from finding most coordinates to finding allx̂ − x̂ ′

Permute Filters O(k)

1-sparse recovery

1-sparse recovery

1-sparse recovery

1-sparse recovery

Partial k -sparse recovery

x x̂ ′

Lemma (Partial sparse recovery)
In O(k log n) expected time, we can compute an estimate x̂ ′ such that
x̂ − x̂ ′ is k/2-sparse.

Repeat, k → k/2→ k/4→ · · ·

Theorem
We can compute x̂ in O(k log n) expected time.

Eric Price Sparse Fourier Transforms 15 / 36



Talk Outline

1 Algorithm for k = 1

2 Reducing k to 1

3 Putting it together

4 Continuous setting

Eric Price Sparse Fourier Transforms 16 / 36



How can you hope for sublinear time?
Time Frequency

×

=

∗

=

Eric Price Sparse Fourier Transforms 17 / 36

n-dimensional DFT:
O(n log n)
x → x̂

n-dimensional DFT of first
k terms: O(n log n)
x · rect→ x̂ ∗ sinc.

k -dimensional DFT of
first k terms: O(B log B)
alias(x · rect)→
subsample(x̂ ∗ sinc).



How can you hope for sublinear time?
Time Frequency

×

=

∗

=

Eric Price Sparse Fourier Transforms 17 / 36

n-dimensional DFT:
O(n log n)
x → x̂

n-dimensional DFT of first
k terms: O(n log n)
x · rect→ x̂ ∗ sinc.

k -dimensional DFT of
first k terms: O(B log B)
alias(x · rect)→
subsample(x̂ ∗ sinc).



How can you hope for sublinear time?
Time Frequency

×

=

∗

=

Eric Price Sparse Fourier Transforms 17 / 36

n-dimensional DFT:
O(n log n)
x → x̂

n-dimensional DFT of first
k terms: O(n log n)
x · rect→ x̂ ∗ sinc.

k -dimensional DFT of
first k terms: O(B log B)
alias(x · rect)→
subsample(x̂ ∗ sinc).



How can you hope for sublinear time?
Time Frequency

×

=

∗

=

Eric Price Sparse Fourier Transforms 17 / 36

n-dimensional DFT:
O(n log n)
x → x̂

n-dimensional DFT of first
k terms: O(n log n)
x · rect→ x̂ ∗ sinc.

k -dimensional DFT of
first k terms: O(B log B)
alias(x · rect)→
subsample(x̂ ∗ sinc).



How can you hope for sublinear time?
Time Frequency

×

=

∗

=

Eric Price Sparse Fourier Transforms 17 / 36

n-dimensional DFT:
O(n log n)
x → x̂

n-dimensional DFT of first
k terms: O(n log n)
x · rect→ x̂ ∗ sinc.

k -dimensional DFT of
first k terms: O(B log B)
alias(x · rect)→
subsample(x̂ ∗ sinc).



How can you hope for sublinear time?
Time Frequency

×

=

∗

=

Eric Price Sparse Fourier Transforms 17 / 36

n-dimensional DFT:
O(n log n)
x → x̂

n-dimensional DFT of first
k terms: O(n log n)
x · rect→ x̂ ∗ sinc.

k -dimensional DFT of
first k terms: O(B log B)
alias(x · rect)→
subsample(x̂ ∗ sinc).



Use a better filter
GMS05, HIKP12, IKP14, IK14

Filter (time): Gaussian · sinc Filter (frequency): Gaussian * rectangle

Filter: sparse F for which F̂ is large on an interval.

We can permute the frequencies:

x ′i = xσi =⇒ x̂i = x̂σ−1i

Allows us to convert worst case to random case.

Eric Price Sparse Fourier Transforms 18 / 36



Use a better filter
GMS05, HIKP12, IKP14, IK14

Filter (time): Gaussian · sinc Filter (frequency): Gaussian * rectangle

Filter: sparse F for which F̂ is large on an interval.
We can permute the frequencies:

x ′i = xσi =⇒ x̂i = x̂σ−1i

Allows us to convert worst case to random case.

Eric Price Sparse Fourier Transforms 18 / 36



Use a better filter
GMS05, HIKP12, IKP14, IK14

Filter (time): Gaussian · sinc Filter (frequency): Gaussian * rectangle

Filter: sparse F for which F̂ is large on an interval.
We can permute the frequencies:

x ′i = xσi =⇒ x̂i = x̂σ−1i

Allows us to convert worst case to random case.

Eric Price Sparse Fourier Transforms 18 / 36



Algorithm for exactly sparse signals
Original signal x Goal x̂

Lemma
If t is isolated in its bucket and in the “super-pass” region, the value b
we compute for its bucket satisfies

b = x̂t .

Computing the b for all O(k) buckets takes O(k log n) time.

Eric Price Sparse Fourier Transforms 19 / 36



Algorithm for exactly sparse signals
Computed F ·x Filtered signal F̂ ∗x̂

Lemma
If t is isolated in its bucket and in the “super-pass” region, the value b
we compute for its bucket satisfies

b = x̂t .

Computing the b for all O(k) buckets takes O(k log n) time.

Eric Price Sparse Fourier Transforms 19 / 36



Algorithm for exactly sparse signals
F ·x aliased to k terms Filtered signal F̂ ∗x̂

Lemma
If t is isolated in its bucket and in the “super-pass” region, the value b
we compute for its bucket satisfies

b = x̂t .

Computing the b for all O(k) buckets takes O(k log n) time.

Eric Price Sparse Fourier Transforms 19 / 36



Algorithm for exactly sparse signals
F ·x aliased to k terms Computed samples of F̂ ∗x̂

Lemma
If t is isolated in its bucket and in the “super-pass” region, the value b
we compute for its bucket satisfies

b = x̂t .

Computing the b for all O(k) buckets takes O(k log n) time.

Eric Price Sparse Fourier Transforms 19 / 36



Algorithm for exactly sparse signals
F ·x aliased to k terms Computed samples of F̂ ∗x̂

Lemma
If t is isolated in its bucket and in the “super-pass” region, the value b
we compute for its bucket satisfies

b = x̂t .

Computing the b for all O(k) buckets takes O(k log n) time.

Eric Price Sparse Fourier Transforms 19 / 36



Algorithm for exactly sparse signals
F ·x aliased to k terms Knowledge about x̂

Lemma
If t is isolated in its bucket and in the “super-pass” region, the value b
we compute for its bucket satisfies

b = x̂t .

Computing the b for all O(k) buckets takes O(k log n) time.

Eric Price Sparse Fourier Transforms 19 / 36



Algorithm for exactly sparse signals
F ·x aliased to k terms Knowledge about x̂

Lemma
If t is isolated in its bucket and in the “super-pass” region, the value b
we compute for its bucket satisfies

b = x̂t .

Computing the b for all O(k) buckets takes O(k log n) time.

Eric Price Sparse Fourier Transforms 19 / 36



Algorithm for exactly sparse signals
F ·x aliased to k terms Knowledge about x̂

Lemma
If t is isolated in its bucket and in the “super-pass” region, the value b
we compute for its bucket satisfies

b = x̂t .

Computing the b for all O(k) buckets takes O(k log n) time.

Eric Price Sparse Fourier Transforms 19 / 36



Algorithm
Lemma
For most t, the value b we compute for its bucket satisfies

b = x̂t .

Computing the b for all O(k) buckets takes O(k log n) time.

Time-shift x by one and repeat: b ′ = x̂tω
t .

Divide to get b ′/b = ωt

=⇒ can compute t .
I Just like our 1-sparse recovery algorithm, x1/x0 = ωt .

Gives partial sparse recovery: x̂ ′ such that x̂ − x̂ ′ is k/2-sparse.

Permute Filters O(k)

1-sparse recovery

1-sparse recovery

1-sparse recovery

1-sparse recovery

x x̂ ′

Repeat k → k/2→ k/4→ · · ·
O(k log n) time sparse Fourier transform. �

Eric Price Sparse Fourier Transforms 20 / 36



Algorithm
Lemma
For most t, the value b we compute for its bucket satisfies

b = x̂t .

Computing the b for all O(k) buckets takes O(k log n) time.

Time-shift x by one and repeat: b ′ = x̂tω
t .

Divide to get b ′/b = ωt

=⇒ can compute t .
I Just like our 1-sparse recovery algorithm, x1/x0 = ωt .

Gives partial sparse recovery: x̂ ′ such that x̂ − x̂ ′ is k/2-sparse.

Permute Filters O(k)

1-sparse recovery

1-sparse recovery

1-sparse recovery

1-sparse recovery

x x̂ ′

Repeat k → k/2→ k/4→ · · ·
O(k log n) time sparse Fourier transform. �

Eric Price Sparse Fourier Transforms 20 / 36



Algorithm
Lemma
For most t, the value b we compute for its bucket satisfies

b = x̂t .

Computing the b for all O(k) buckets takes O(k log n) time.

Time-shift x by one and repeat: b ′ = x̂tω
t .

Divide to get b ′/b = ωt =⇒ can compute t .

I Just like our 1-sparse recovery algorithm, x1/x0 = ωt .
Gives partial sparse recovery: x̂ ′ such that x̂ − x̂ ′ is k/2-sparse.

Permute Filters O(k)

1-sparse recovery

1-sparse recovery

1-sparse recovery

1-sparse recovery

x x̂ ′

Repeat k → k/2→ k/4→ · · ·
O(k log n) time sparse Fourier transform. �

Eric Price Sparse Fourier Transforms 20 / 36



Algorithm
Lemma
For most t, the value b we compute for its bucket satisfies

b = x̂t .

Computing the b for all O(k) buckets takes O(k log n) time.

Time-shift x by one and repeat: b ′ = x̂tω
t .

Divide to get b ′/b = ωt =⇒ can compute t .
I Just like our 1-sparse recovery algorithm, x1/x0 = ωt .

Gives partial sparse recovery: x̂ ′ such that x̂ − x̂ ′ is k/2-sparse.

Permute Filters O(k)

1-sparse recovery

1-sparse recovery

1-sparse recovery

1-sparse recovery

x x̂ ′

Repeat k → k/2→ k/4→ · · ·
O(k log n) time sparse Fourier transform. �

Eric Price Sparse Fourier Transforms 20 / 36



Algorithm
Lemma
For most t, the value b we compute for its bucket satisfies

b = x̂t .

Computing the b for all O(k) buckets takes O(k log n) time.

Time-shift x by one and repeat: b ′ = x̂tω
t .

Divide to get b ′/b = ωt =⇒ can compute t .
I Just like our 1-sparse recovery algorithm, x1/x0 = ωt .

Gives partial sparse recovery: x̂ ′ such that x̂ − x̂ ′ is k/2-sparse.

Permute Filters O(k)

1-sparse recovery

1-sparse recovery

1-sparse recovery

1-sparse recovery

x x̂ ′

Repeat k → k/2→ k/4→ · · ·
O(k log n) time sparse Fourier transform. �

Eric Price Sparse Fourier Transforms 20 / 36



Algorithm
Lemma
For most t, the value b we compute for its bucket satisfies

b = x̂t .

Computing the b for all O(k) buckets takes O(k log n) time.

Time-shift x by one and repeat: b ′ = x̂tω
t .

Divide to get b ′/b = ωt =⇒ can compute t .
I Just like our 1-sparse recovery algorithm, x1/x0 = ωt .

Gives partial sparse recovery: x̂ ′ such that x̂ − x̂ ′ is k/2-sparse.

Permute Filters O(k)

1-sparse recovery

1-sparse recovery

1-sparse recovery

1-sparse recovery

x x̂ ′

Repeat k → k/2→ k/4→ · · ·

O(k log n) time sparse Fourier transform. �

Eric Price Sparse Fourier Transforms 20 / 36



Algorithm
Lemma
For most t, the value b we compute for its bucket satisfies

b = x̂t .

Computing the b for all O(k) buckets takes O(k log n) time.

Time-shift x by one and repeat: b ′ = x̂tω
t .

Divide to get b ′/b = ωt =⇒ can compute t .
I Just like our 1-sparse recovery algorithm, x1/x0 = ωt .

Gives partial sparse recovery: x̂ ′ such that x̂ − x̂ ′ is k/2-sparse.

Permute Filters O(k)

1-sparse recovery

1-sparse recovery

1-sparse recovery

1-sparse recovery

x x̂ ′

Repeat k → k/2→ k/4→ · · ·
O(k log n) time sparse Fourier transform. �

Eric Price Sparse Fourier Transforms 20 / 36



Summary (DFT setting)

Given access to x for which x̂ is sparse.

Recover x such that

‖x − x̂‖2 6 (1 + ε) min
k -sparse x̂k

‖x̂ − x̂k‖2

“Optimal” is O(k log(n/k)) samples and O(k log(n/k) log n) time

I Optimal samples [IK ’14] OR optimal time [HIKP ’12] OR
logc log n-competitive mixture [IKP ’14].

Eric Price Sparse Fourier Transforms 21 / 36



Summary (DFT setting)

Given access to x for which x̂ is sparse.
Recover x such that

‖x − x̂‖2 6 (1 + ε) min
k -sparse x̂k

‖x̂ − x̂k‖2

“Optimal” is O(k log(n/k)) samples and O(k log(n/k) log n) time

I Optimal samples [IK ’14] OR optimal time [HIKP ’12] OR
logc log n-competitive mixture [IKP ’14].

Eric Price Sparse Fourier Transforms 21 / 36



Summary (DFT setting)

Given access to x for which x̂ is sparse.
Recover x such that

‖x − x̂‖2 6 (1 + ε) min
k -sparse x̂k

‖x̂ − x̂k‖2

“Optimal” is O(k log(n/k)) samples and O(k log(n/k) log n) time

I Optimal samples [IK ’14] OR optimal time [HIKP ’12] OR
logc log n-competitive mixture [IKP ’14].

Eric Price Sparse Fourier Transforms 21 / 36



Summary (DFT setting)

Given access to x for which x̂ is sparse.
Recover x such that

‖x − x̂‖2 6 (1 + ε) min
k -sparse x̂k

‖x̂ − x̂k‖2

“Optimal” is O(k log(n/k)) samples and O(k log(n/k) log n) time
I Optimal samples [IK ’14] OR optimal time [HIKP ’12] OR

logc log n-competitive mixture [IKP ’14].

Eric Price Sparse Fourier Transforms 21 / 36



Talk Outline

1 Algorithm for k = 1

2 Reducing k to 1

3 Putting it together

4 Continuous setting

Eric Price Sparse Fourier Transforms 22 / 36



The Continuous Fourier Transform
Conversion between time and frequency domains

Time Domain Frequency Domain

Fourier Transform

The Fourier Transform x̂ of an integrable function x : R→ C is

x̂(f ) =
∫+∞
−∞ x(t)e−2πiftdt

The Inverse Transform is:

x(t) =
∫+∞
−∞ x̂(f )e2πiftdf

Eric Price Sparse Fourier Transforms 23 / 36



The Continuous Fourier Transform
Conversion between time and frequency domains

Time Domain Frequency Domain

Fourier Transform

The Fourier Transform x̂ of an integrable function x : R→ C is

x̂(f ) =
∫+∞
−∞ x(t)e−2πiftdt

The Inverse Transform is:

x(t) =
∫+∞
−∞ x̂(f )e2πiftdf

Eric Price Sparse Fourier Transforms 23 / 36



Why Continuous?

Eric Price Sparse Fourier Transforms 24 / 36



Why Continuous?

Eric Price Sparse Fourier Transforms 24 / 36



Why Continuous?

Eric Price Sparse Fourier Transforms 24 / 36



Why Continuous?

Eric Price Sparse Fourier Transforms 24 / 36



Thought Experiments

Frequency

Time

Eric Price Sparse Fourier Transforms 25 / 36



Thought Experiments

Frequency
η

Time

T = 1
2η

Eric Price Sparse Fourier Transforms 25 / 36



Thought Experiments

Frequency
η

Time

T = 1
2η

Eric Price Sparse Fourier Transforms 25 / 36



Thought Experiments

Frequency
η

Time

T = 1
2η

Eric Price Sparse Fourier Transforms 25 / 36



Thought Experiments

Frequency
η

Time

T = 1
2η

inifinitely small η
T > 1000 years

Eric Price Sparse Fourier Transforms 25 / 36



Thought Experiments 2
x(t) = sink−1(ηt)

Frequency
η

Time

T = 1
2η

Eric Price Sparse Fourier Transforms 26 / 36



What Guarantee Do We Want?

Frequency

Time

x̂(f )

x(t) = e−2πift x ′(t) = x(t) · e−t/10000

x̂ ′(f )

Discrete FT ‖x̂ ′ − x̂‖2 . min
k -sparsex̂k

‖x̂ − x̂k‖2

For red signal : min
k -sparse x̂k

‖x̂ − x̂k‖2 = ‖x̂‖2

DFT preserve the `2 norm‖x ′ − x‖2 . min
k -sparse x̂k

‖x − xk‖2

1
T

∫T
0 |x ′(t) − x(t)|2dt . min

k -sparse x̂k(t)

1
T

∫T
0 |x(t) − xk (t)|2dt

Eric Price Sparse Fourier Transforms 27 / 36



What Guarantee Do We Want?

Frequency

Time

x̂(f )

x(t) = e−2πift x ′(t) = x(t) · e−t/10000

x̂ ′(f )

Discrete FT ‖x̂ ′ − x̂‖2 . min
k -sparsex̂k

‖x̂ − x̂k‖2

For red signal : min
k -sparse x̂k

‖x̂ − x̂k‖2 = ‖x̂‖2

DFT preserve the `2 norm‖x ′ − x‖2 . min
k -sparse x̂k

‖x − xk‖2

1
T

∫T
0 |x ′(t) − x(t)|2dt . min

k -sparse x̂k(t)

1
T

∫T
0 |x(t) − xk (t)|2dt

Eric Price Sparse Fourier Transforms 27 / 36



What Guarantee Do We Want?

Frequency

Time

x̂(f )

x(t) = e−2πift x ′(t) = x(t) · e−t/10000

x̂ ′(f )

Discrete FT ‖x̂ ′ − x̂‖2 . min
k -sparsex̂k

‖x̂ − x̂k‖2

For red signal : min
k -sparse x̂k

‖x̂ − x̂k‖2 = ‖x̂‖2

DFT preserve the `2 norm‖x ′ − x‖2 . min
k -sparse x̂k

‖x − xk‖2

1
T

∫T
0 |x ′(t) − x(t)|2dt . min

k -sparse x̂k(t)

1
T

∫T
0 |x(t) − xk (t)|2dt

Eric Price Sparse Fourier Transforms 27 / 36



What Guarantee Do We Want?

Frequency

Time

x̂(f )

x(t) = e−2πift x ′(t) = x(t) · e−t/10000

x̂ ′(f )

Discrete FT ‖x̂ ′ − x̂‖2 . min
k -sparsex̂k

‖x̂ − x̂k‖2

For red signal : min
k -sparse x̂k

‖x̂ − x̂k‖2 = ‖x̂‖2

DFT preserve the `2 norm‖x ′ − x‖2 . min
k -sparse x̂k

‖x − xk‖2

1
T

∫T
0 |x ′(t) − x(t)|2dt . min

k -sparse x̂k(t)

1
T

∫T
0 |x(t) − xk (t)|2dt

Eric Price Sparse Fourier Transforms 27 / 36



What Guarantee Do We Want?

Frequency

Time

x̂(f )

x(t) = e−2πift x ′(t) = x(t) · e−t/10000

x̂ ′(f )

Discrete FT ‖x̂ ′ − x̂‖2 . min
k -sparsex̂k

‖x̂ − x̂k‖2

For red signal : min
k -sparse x̂k

‖x̂ − x̂k‖2 = ‖x̂‖2

DFT preserve the `2 norm‖x ′ − x‖2 . min
k -sparse x̂k

‖x − xk‖2

1
T

∫T
0 |x ′(t) − x(t)|2dt . min

k -sparse x̂k(t)

1
T

∫T
0 |x(t) − xk (t)|2dt

Eric Price Sparse Fourier Transforms 27 / 36



What Guarantee Do We Want?

Frequency

Time

x̂(f )

x(t) = e−2πift x ′(t) = x(t) · e−t/10000

x̂ ′(f )

Discrete FT ‖x̂ ′ − x̂‖2 . min
k -sparsex̂k

‖x̂ − x̂k‖2

For red signal : min
k -sparse x̂k

‖x̂ − x̂k‖2 = ‖x̂‖2

DFT preserve the `2 norm‖x ′ − x‖2 . min
k -sparse x̂k

‖x − xk‖2

1
T

∫T
0 |x ′(t) − x(t)|2dt . min

k -sparse x̂k(t)

1
T

∫T
0 |x(t) − xk (t)|2dt

Eric Price Sparse Fourier Transforms 27 / 36



What Guarantee Do We Want?

Frequency

Time

x̂(f )

x(t) = e−2πift x ′(t) = x(t) · e−t/10000

x̂ ′(f )

Discrete FT ‖x̂ ′ − x̂‖2 . min
k -sparsex̂k

‖x̂ − x̂k‖2

For red signal : min
k -sparse x̂k

‖x̂ − x̂k‖2 = ‖x̂‖2

DFT preserve the `2 norm‖x ′ − x‖2 . min
k -sparse x̂k

‖x − xk‖2

1
T

∫T
0 |x ′(t) − x(t)|2dt . min

k -sparse x̂k(t)

1
T

∫T
0 |x(t) − xk (t)|2dt

Eric Price Sparse Fourier Transforms 27 / 36



What Guarantee Do We Want?

Frequency

Time

x̂(f )

x(t) = e−2πift x ′(t) = x(t) · e−t/10000

x̂ ′(f )

Discrete FT ‖x̂ ′ − x̂‖2 . min
k -sparsex̂k

‖x̂ − x̂k‖2

For red signal : min
k -sparse x̂k

‖x̂ − x̂k‖2 = ‖x̂‖2

DFT preserve the `2 norm‖x ′ − x‖2 . min
k -sparse x̂k

‖x − xk‖2

1
T

∫T
0 |x ′(t) − x(t)|2dt . min

k -sparse x̂k(t)

1
T

∫T
0 |x(t) − xk (t)|2dt

Eric Price Sparse Fourier Transforms 27 / 36



What Guarantee Do We Want?

Frequency

Time

x̂(f )

x(t) = e−2πift x ′(t) = x(t) · e−t/10000

x̂ ′(f )

Discrete FT ‖x̂ ′ − x̂‖2 . min
k -sparsex̂k

‖x̂ − x̂k‖2

For red signal : min
k -sparse x̂k

‖x̂ − x̂k‖2 = ‖x̂‖2

DFT preserve the `2 norm‖x ′ − x‖2 . min
k -sparse x̂k

‖x − xk‖2

1
T

∫T
0 |x ′(t) − x(t)|2dt . min

k -sparse x̂k(t)

1
T

∫T
0 |x(t) − xk (t)|2dt

Eric Price Sparse Fourier Transforms 27 / 36



Guarantee

Sample from x(t), which is approximated by a k -Fourier sparse
xk (t) with η frequency separation.
We recover an x ′(t) such that

E
t∈[0,T ]

|x ′(t) − x(t)|2 . E
t∈[0,T ]

|x(t) − xk (t)|2

As long as:
I T > O( log2(FT)

η
)

I Time, # samples > O(k log(FT ) log2(k)).

Eric Price Sparse Fourier Transforms 28 / 36



Previous Works and Our Results
Algorithm Duration Robust Sample/Time
BCGLS, 12 k ·optimal poor sublinear
Moitra, 15 optimal poly(k) linear
Ours log2(k)·optimal O(1) sublinear

2
η

log(k)
η

log2(k)
η

Eric Price Sparse Fourier Transforms 29 / 36



Previous Works and Our Results
Algorithm Duration Robust Sample/Time
BCGLS, 12 k ·optimal poor sublinear
Moitra, 15 optimal poly(k) linear
Ours log2(k)·optimal O(1) sublinear

2Ω(k)

kO(1)

O(log k)

O(1)

2
η

log(k)
η

log2(k)
η

Ours, Upper bound
Moitra, 15 Upper bound
Moitra, 15 Lower bound

Eric Price Sparse Fourier Transforms 29 / 36



Previous Works and Our Results
Algorithm Duration Robust Sample/Time
BCGLS, 12 k ·optimal poor sublinear
Moitra, 15 optimal poly(k) linear
Ours log2(k)·optimal O(1) sublinear

2Ω(k)

kO(1)

O(log k)

O(1)

2
η

log(k)
η

log2(k)
η

Ours, Upper bound
Moitra, 15 Upper bound
Moitra, 15 Lower bound

Eric Price Sparse Fourier Transforms 29 / 36



Previous Works and Our Results
Algorithm Duration Robust Sample/Time
BCGLS, 12 k ·optimal poor sublinear
Moitra, 15 optimal poly(k) linear
Ours log2(k)·optimal O(1) sublinear

2Ω(k)

kO(1)

O(log k)

O(1)

2
η

log(k)
η

log2(k)
η

Ours, Upper bound
Moitra, 15 Upper bound
Moitra, 15 Lower bound

Eric Price Sparse Fourier Transforms 29 / 36



Previous Works and Our Results
Algorithm Duration Robust Sample/Time
BCGLS, 12 k ·optimal poor sublinear
Moitra, 15 optimal poly(k) linear
Ours log2(k)·optimal O(1) sublinear

2Ω(k)

kO(1)

O(log k)

O(1)

2
η

log(k)
η

log2(k)
η

Ours, Upper bound
Moitra, 15 Upper bound
Moitra, 15 Lower bound

Eric Price Sparse Fourier Transforms 29 / 36



Main Results
Frequency

Time

x̂k (f )

F

xk (t)

T

x̂k (f ) ,x̂ ′(f )

xk (t) ,x ′(t)

1
T

k∑
i=1

∫T
0 | vie2πifi t − v ′i e2πif ′i t |2dt . N2

1
T

∫T
0 |

k∑
i=1

vie2πifi t − v ′i e2πif ′i t |2dt . N2

T =
log(k)
η , T =

log2(k)
η

O(k log(FT ) log2(k))

Eric Price Sparse Fourier Transforms 30 / 36



Main Results
Frequency

Time N2 := 1
T

∫T
0 |g(t)|2dt + δ

k∑
i=1

|vi |
2

x̂(f )

F

x(t)

T

x̂k (f ) ,x̂ ′(f )

xk (t) ,x ′(t)

1
T

k∑
i=1

∫T
0 | vie2πifi t − v ′i e2πif ′i t |2dt . N2

1
T

∫T
0 |

k∑
i=1

vie2πifi t − v ′i e2πif ′i t |2dt . N2

T =
log(k)
η , T =

log2(k)
η

O(k log(FT ) log2(k))

Eric Price Sparse Fourier Transforms 30 / 36



Main Results
Frequency

Time N2 := 1
T

∫T
0 |g(t)|2dt + δ

k∑
i=1

|vi |
2

x̂ ′(f )

F

x ′(t)

T

x̂k (f ) ,x̂ ′(f )

xk (t) ,x ′(t)

1
T

k∑
i=1

∫T
0 | vie2πifi t − v ′i e2πif ′i t |2dt . N2

1
T

∫T
0 |

k∑
i=1

vie2πifi t − v ′i e2πif ′i t |2dt . N2

T =
log(k)
η , T =

log2(k)
η

O(k log(FT ) log2(k))

Eric Price Sparse Fourier Transforms 30 / 36



Main Results
Frequency

Time N2 := 1
T

∫T
0 |g(t)|2dt + δ

k∑
i=1

|vi |
2

F

T

x̂k (f ) ,x̂ ′(f )

xk (t) ,x ′(t)

Tone Estimation 1
T

k∑
i=1

∫T
0 | vie2πifi t − v ′i e2πif ′i t |2dt . N2

1
T

∫T
0 |

k∑
i=1

vie2πifi t − v ′i e2πif ′i t |2dt . N2

T =
log(k)
η , T =

log2(k)
η

O(k log(FT ) log2(k))

Eric Price Sparse Fourier Transforms 30 / 36



Main Results
Frequency

Time N2 := 1
T

∫T
0 |g(t)|2dt + δ

k∑
i=1

|vi |
2

F

T

x̂k (f ) ,x̂ ′(f )

xk (t) ,x ′(t)

Tone Estimation 1
T

k∑
i=1

∫T
0 | vie2πifi t − v ′i e2πif ′i t |2dt . N2

1
T

∫T
0 |

k∑
i=1

vie2πifi t − v ′i e2πif ′i t |2dt . N2

T =
log(k)
η , T =

log2(k)
η

O(k log(FT ) log2(k))

Eric Price Sparse Fourier Transforms 30 / 36



Main Results
Frequency

Time N2 := 1
T

∫T
0 |g(t)|2dt + δ

k∑
i=1

|vi |
2

F

T

x̂k (f ) ,x̂ ′(f )

xk (t) ,x ′(t)

Tone Estimation 1
T

k∑
i=1

∫T
0 | vie2πifi t − v ′i e2πif ′i t |2dt . N2

Frequency Estimation

1
T

∫T
0 |

k∑
i=1

vie2πifi t − v ′i e2πif ′i t |2dt . N2

T =
log(k)
η , T =

log2(k)
η

O(k log(FT ) log2(k))

Eric Price Sparse Fourier Transforms 30 / 36



Main Results
Frequency

Time N2 := 1
T

∫T
0 |g(t)|2dt + δ

k∑
i=1

|vi |
2

F

T

x̂k (f ) ,x̂ ′(f )

xk (t) ,x ′(t)

Tone Estimation 1
T

k∑
i=1

∫T
0 | vie2πifi t − v ′i e2πif ′i t |2dt . N2

Frequency Estimation |fi − f ′i | .
1

Tρ , ρ2 := SNR :=
∑

i |vi |
2

N2

1
T

∫T
0 |

k∑
i=1

vie2πifi t − v ′i e2πif ′i t |2dt . N2

T =
log(k)
η , T =

log2(k)
η

O(k log(FT ) log2(k))

Eric Price Sparse Fourier Transforms 30 / 36



Main Results
Frequency

Time N2 := 1
T

∫T
0 |g(t)|2dt + δ

k∑
i=1

|vi |
2

F

T

x̂k (f ) ,x̂ ′(f )

xk (t) ,x ′(t)

Tone Estimation 1
T

k∑
i=1

∫T
0 | vie2πifi t − v ′i e2πif ′i t |2dt . N2

Frequency Estimation |fi − f ′i | .
1

Tρ , ρ2 := SNR :=
∑

i |vi |
2

N2

Signal Estimation 1
T

∫T
0 |

k∑
i=1

vie2πifi t − v ′i e2πif ′i t |2dt . N2

T =
log(k)
η , T =

log2(k)
η

O(k log(FT ) log2(k))

Eric Price Sparse Fourier Transforms 30 / 36



Main Results
Frequency

Time N2 := 1
T

∫T
0 |g(t)|2dt + δ

k∑
i=1

|vi |
2

F

T

x̂k (f ) ,x̂ ′(f )

xk (t) ,x ′(t)

Tone Estimation 1
T

k∑
i=1

∫T
0 | vie2πifi t − v ′i e2πif ′i t |2dt . N2

Frequency Estimation |fi − f ′i | .
1

Tρ , ρ2 := SNR :=
∑

i |vi |
2

N2

Signal Estimation 1
T

∫T
0 |

k∑
i=1

vie2πifi t − v ′i e2πif ′i t |2dt . N2

T =
log(k)
η , T =

log2(k)
η

O(k log(FT ) log2(k))

Eric Price Sparse Fourier Transforms 30 / 36



Main Results
Frequency

Time N2 := 1
T

∫T
0 |g(t)|2dt + δ

k∑
i=1

|vi |
2

F

T

x̂k (f ) ,x̂ ′(f )

xk (t) ,x ′(t)

Tone Estimation 1
T

k∑
i=1

∫T
0 | vie2πifi t − v ′i e2πif ′i t |2dt . N2

Frequency Estimation |fi − f ′i | .
1

Tρ , ρ2 := SNR :=
∑

i |vi |
2

N2

Signal Estimation 1
T

∫T
0 |

k∑
i=1

vie2πifi t − v ′i e2πif ′i t |2dt . N2

Duration T =
log(k)
η , T =

log2(k)
η

O(k log(FT ) log2(k))

Eric Price Sparse Fourier Transforms 30 / 36



Main Results
Frequency

Time N2 := 1
T

∫T
0 |g(t)|2dt + δ

k∑
i=1

|vi |
2

F

T

x̂k (f ) ,x̂ ′(f )

xk (t) ,x ′(t)

Tone Estimation 1
T

k∑
i=1

∫T
0 | vie2πifi t − v ′i e2πif ′i t |2dt . N2

Frequency Estimation |fi − f ′i | .
1

Tρ , ρ2 := SNR :=
∑

i |vi |
2

N2

Signal Estimation 1
T

∫T
0 |

k∑
i=1

vie2πifi t − v ′i e2πif ′i t |2dt . N2

Duration T =
log(k)
η , T =

log2(k)
η

O(k log(FT ) log2(k))

Eric Price Sparse Fourier Transforms 30 / 36



Main Results
Frequency

Time N2 := 1
T

∫T
0 |g(t)|2dt + δ

k∑
i=1

|vi |
2

F

T

x̂k (f ) ,x̂ ′(f )

xk (t) ,x ′(t)

Tone Estimation 1
T

k∑
i=1

∫T
0 | vie2πifi t − v ′i e2πif ′i t |2dt . N2

Frequency Estimation |fi − f ′i | .
1

Tρ , ρ2 := SNR :=
∑

i |vi |
2

N2

Signal Estimation 1
T

∫T
0 |

k∑
i=1

vie2πifi t − v ′i e2πif ′i t |2dt . N2

Duration T =
log(k)
η , T =

log2(k)
η

Samples/Time O(k log(FT ) log2(k))

Eric Price Sparse Fourier Transforms 30 / 36



Main Results
Frequency

Time N2 := 1
T

∫T
0 |g(t)|2dt + δ

k∑
i=1

|vi |
2

F

T

x̂k (f ) ,x̂ ′(f )

xk (t) ,x ′(t)

Tone Estimation 1
T

k∑
i=1

∫T
0 | vie2πifi t − v ′i e2πif ′i t |2dt . N2

Frequency Estimation |fi − f ′i | .
1

Tρ , ρ2 := SNR :=
∑

i |vi |
2

N2

Signal Estimation 1
T

∫T
0 |

k∑
i=1

vie2πifi t − v ′i e2πif ′i t |2dt . N2

Duration T =
log(k)
η , T =

log2(k)
η

Samples/Time O(k log(FT ) log2(k))

Eric Price Sparse Fourier Transforms 30 / 36



Tone Estimation to Signal Estimation

Frequency

x̂(f )

Define ∆i(t) = ai(t) − a ′i (t) = vie2πifi t − v ′i e2πif ′i t

∑k
i=1

1
T

∫T
0 |∆i(t)|2dtN2 & Tone Estimation

N2& 1
T

∫T
0 |
∑k

i=1∆i(t)|2dt Signal Estimation

= 1
T

∫T
0 | xk (t) − x ′(t)|2dt

Eric Price Sparse Fourier Transforms 31 / 36



Tone Estimation to Signal Estimation

Frequency

x̂(f )

Define ∆i(t) = ai(t) − a ′i (t) = vie2πifi t − v ′i e2πif ′i t

∑k
i=1

1
T

∫T
0 |∆i(t)|2dtN2 & Tone Estimation

N2& 1
T

∫T
0 |
∑k

i=1∆i(t)|2dt Signal Estimation

= 1
T

∫T
0 | xk (t) − x ′(t)|2dt

Eric Price Sparse Fourier Transforms 31 / 36



Tone Estimation to Signal Estimation

Frequency

x̂(f )

Define ∆i(t) = ai(t) − a ′i (t) = vie2πifi t − v ′i e2πif ′i t

∑k
i=1

1
T

∫T
0 |∆i(t)|2dtN2 & Tone Estimation

N2& 1
T

∫T
0 |
∑k

i=1∆i(t)|2dt Signal Estimation

= 1
T

∫T
0 | xk (t) − x ′(t)|2dt

Eric Price Sparse Fourier Transforms 31 / 36



Tone Estimation to Signal Estimation

Frequency

x̂(f )

Define ∆i(t) = ai(t) − a ′i (t) = vie2πifi t − v ′i e2πif ′i t

1
T

∫T
0 |a1(t) - a ′1(t)|

2dt
∑k

i=1
1
T

∫T
0 |∆i(t)|2dtN2 & Tone Estimation

N2& 1
T

∫T
0 |
∑k

i=1∆i(t)|2dt Signal Estimation

= 1
T

∫T
0 | xk (t) − x ′(t)|2dt

Eric Price Sparse Fourier Transforms 31 / 36



Tone Estimation to Signal Estimation

Frequency

x̂(f )

Define ∆i(t) = ai(t) − a ′i (t) = vie2πifi t − v ′i e2πif ′i t

1
T

∫T
0 |a1(t) - a ′1(t)|

2dt 1
T

∫T
0 |a2(t) - a ′2(t)|

2dt
∑k

i=1
1
T

∫T
0 |∆i(t)|2dtN2 & Tone Estimation

N2& 1
T

∫T
0 |
∑k

i=1∆i(t)|2dt Signal Estimation

= 1
T

∫T
0 | xk (t) − x ′(t)|2dt

Eric Price Sparse Fourier Transforms 31 / 36



Tone Estimation to Signal Estimation

Frequency

x̂(f )

Define ∆i(t) = ai(t) − a ′i (t) = vie2πifi t − v ′i e2πif ′i t

1
T

∫T
0 |a1(t) - a ′1(t)|

2dt 1
T

∫T
0 |a2(t) - a ′2(t)|

2dt 1
T

∫T
0 |a3(t) - a ′3(t)|

2dt
∑k

i=1
1
T

∫T
0 |∆i(t)|2dtN2 & Tone Estimation

N2& 1
T

∫T
0 |
∑k

i=1∆i(t)|2dt Signal Estimation

= 1
T

∫T
0 | xk (t) − x ′(t)|2dt

Eric Price Sparse Fourier Transforms 31 / 36



Tone Estimation to Signal Estimation

Frequency

x̂(f )

Define ∆i(t) = ai(t) − a ′i (t) = vie2πifi t − v ′i e2πif ′i t

1
T

∫T
0 |a1(t) - a ′1(t)|

2dt 1
T

∫T
0 |a2(t) - a ′2(t)|

2dt 1
T

∫T
0 |a3(t) - a ′3(t)|

2dt+ +
∑k

i=1
1
T

∫T
0 |∆i(t)|2dtN2 & Tone Estimation

N2& 1
T

∫T
0 |
∑k

i=1∆i(t)|2dt Signal Estimation

= 1
T

∫T
0 | xk (t) − x ′(t)|2dt

Eric Price Sparse Fourier Transforms 31 / 36



Tone Estimation to Signal Estimation

Frequency

x̂(f )

Define ∆i(t) = ai(t) − a ′i (t) = vie2πifi t − v ′i e2πif ′i t

∑k
i=1

1
T

∫T
0 |ai(t) - a ′i (t)|

2dt
∑k

i=1
1
T

∫T
0 |∆i(t)|2dtN2 & Tone Estimation

N2& 1
T

∫T
0 |
∑k

i=1∆i(t)|2dt Signal Estimation

= 1
T

∫T
0 | xk (t) − x ′(t)|2dt

Eric Price Sparse Fourier Transforms 31 / 36



Tone Estimation to Signal Estimation

Frequency

x̂(f )

Define ∆i(t) = ai(t) − a ′i (t) = vie2πifi t − v ′i e2πif ′i t

∑k
i=1

1
T

∫T
0 |∆i(t)|2dtN2 & Tone Estimation

N2& 1
T

∫T
0 |
∑k

i=1∆i(t)|2dt Signal Estimation

= 1
T

∫T
0 | xk (t) − x ′(t)|2dt

Eric Price Sparse Fourier Transforms 31 / 36



Tone Estimation to Signal Estimation

Frequency

x̂(f )

Define ∆i(t) = ai(t) − a ′i (t) = vie2πifi t − v ′i e2πif ′i t

∑k
i=1

1
T

∫T
0 |∆i(t)|2dtN2 & Tone Estimation

N2& 1
T

∫T
0 |
∑k

i=1∆i(t)|2dt Signal Estimation

= 1
T

∫T
0 | xk (t) − x ′(t)|2dt

Eric Price Sparse Fourier Transforms 31 / 36



Tone Estimation to Signal Estimation

Frequency

x̂(f )

Define ∆i(t) = ai(t) − a ′i (t) = vie2πifi t − v ′i e2πif ′i t

∑k
i=1

1
T

∫T
0 |∆i(t)|2dtN2 & Tone Estimation

N2& 1
T

∫T
0 |
∑k

i=1∆i(t)|2dt Signal Estimation

= 1
T

∫T
0 | xk (t) − x ′(t)|2dt

Eric Price Sparse Fourier Transforms 31 / 36



Tone Estimation to Signal Estimation

Frequency

x̂(f )

Define ∆i(t) = ai(t) − a ′i (t) = vie2πifi t − v ′i e2πif ′i t

∑k
i=1

1
T

∫T
0 |∆i(t)|2dtN2 & Tone Estimation

N2& 1
T

∫T
0 |
∑k

i=1∆i(t)|2dt Signal Estimation

= 1
T

∫T
0 | xk (t) − x ′(t)|2dt

Eric Price Sparse Fourier Transforms 31 / 36



Extremely Simplified Proof

Goal : k
∑k

i=1 y2
i > (

∑k
i=1 yi)

2

(
∑k

i=1 yi)
2

= diagonal terms + off-diagonal terms

=
∑k

i=1 y2
i +
∑

i 6=j yiyj

6
∑k

i=1 y2
i +
∑

i 6=j
1
2(y

2
i + y2

j )

= k
∑k

i=1 y2
i

Eric Price Sparse Fourier Transforms 32 / 36



Extremely Simplified Proof

Goal : k
∑k

i=1 y2
i > (

∑k
i=1 yi)

2

(
∑k

i=1 yi)
2

= diagonal terms + off-diagonal terms

=
∑k

i=1 y2
i +
∑

i 6=j yiyj

6
∑k

i=1 y2
i +
∑

i 6=j
1
2(y

2
i + y2

j )

= k
∑k

i=1 y2
i

Eric Price Sparse Fourier Transforms 32 / 36



Extremely Simplified Proof

Goal : k
∑k

i=1 y2
i > (

∑k
i=1 yi)

2

(
∑k

i=1 yi)
2

= diagonal terms + off-diagonal terms

=
∑k

i=1 y2
i +
∑

i 6=j yiyj

6
∑k

i=1 y2
i +
∑

i 6=j
1
2(y

2
i + y2

j )

= k
∑k

i=1 y2
i

Eric Price Sparse Fourier Transforms 32 / 36



Extremely Simplified Proof

Goal : k
∑k

i=1 y2
i > (

∑k
i=1 yi)

2

(
∑k

i=1 yi)
2

= diagonal terms + off-diagonal terms

=
∑k

i=1 y2
i +
∑

i 6=j yiyj

6
∑k

i=1 y2
i +
∑

i 6=j
1
2(y

2
i + y2

j )

= k
∑k

i=1 y2
i

Eric Price Sparse Fourier Transforms 32 / 36



Extremely Simplified Proof

Goal : k
∑k

i=1 y2
i > (

∑k
i=1 yi)

2

(
∑k

i=1 yi)
2

= diagonal terms + off-diagonal terms

=
∑k

i=1 y2
i +
∑

i 6=j yiyj

6
∑k

i=1 y2
i +
∑

i 6=j
1
2(y

2
i + y2

j )

= k
∑k

i=1 y2
i

Eric Price Sparse Fourier Transforms 32 / 36



Simplifed Proof

Define ∆i(t) = ai(t) − a ′i (t) = vie2πifi t − v ′i e2πif ′i t

Goal :
∑k

i=1
1
T

∫T
0 |∆i(t)|2dt & 1

T

∫T
0 |
∑k

i=1 ∆i(t)|2dt

1
T

∫T
0 |
∑k

i=1∆i(t)|2dt

= diagonal terms + off-diagonal terms

T is large enough, ∆i(t) is more likely orthogonal to ∆j(t), ∀i 6= j

Eric Price Sparse Fourier Transforms 33 / 36



Simplifed Proof

Define ∆i(t) = ai(t) − a ′i (t) = vie2πifi t − v ′i e2πif ′i t

Goal :
∑k

i=1
1
T

∫T
0 |∆i(t)|2dt & 1

T

∫T
0 |
∑k

i=1 ∆i(t)|2dt

1
T

∫T
0 |
∑k

i=1∆i(t)|2dt

= diagonal terms + off-diagonal terms

T is large enough, ∆i(t) is more likely orthogonal to ∆j(t), ∀i 6= j

Eric Price Sparse Fourier Transforms 33 / 36



Simplifed Proof

Define ∆i(t) = ai(t) − a ′i (t) = vie2πifi t − v ′i e2πif ′i t

Goal :
∑k

i=1
1
T

∫T
0 |∆i(t)|2dt & 1

T

∫T
0 |
∑k

i=1 ∆i(t)|2dt

1
T

∫T
0 |
∑k

i=1∆i(t)|2dt

= diagonal terms + off-diagonal terms

T is large enough, ∆i(t) is more likely orthogonal to ∆j(t), ∀i 6= j

Eric Price Sparse Fourier Transforms 33 / 36



Simplifed Proof

Define ∆i(t) = ai(t) − a ′i (t) = vie2πifi t − v ′i e2πif ′i t

Goal :
∑k

i=1
1
T

∫T
0 |∆i(t)|2dt & 1

T

∫T
0 |
∑k

i=1 ∆i(t)|2dt

1
T

∫T
0 |
∑k

i=1∆i(t)|2dt

= diagonal terms + off-diagonal terms

=
∑k

i=1
1
T

∫T
0 | ∆i(t) |2dt +

∑
i 6=j

1
T

∫T
0 ∆i(t)∆j(t) dt

T is large enough, ∆i(t) is more likely orthogonal to ∆j(t), ∀i 6= j

Eric Price Sparse Fourier Transforms 33 / 36



Simplifed Proof

Define ∆i(t) = ai(t) − a ′i (t) = vie2πifi t − v ′i e2πif ′i t

Goal :
∑k

i=1
1
T

∫T
0 |∆i(t)|2dt & 1

T

∫T
0 |
∑k

i=1 ∆i(t)|2dt

1
T

∫T
0 |
∑k

i=1∆i(t)|2dt

= diagonal terms + off-diagonal terms

=
∑k

i=1
1
T

∫T
0 | ∆i(t) |2dt +

∑
i 6=j

1
T

∫T
0 ∆i(t)∆j(t) dt

. (1+ log2(k)
Tη ) ·

∑k
i=1

1
T

∫T
0 | ∆i(t) |2dt

for T > log2(k)/η

T is large enough, ∆i(t) is more likely orthogonal to ∆j(t), ∀i 6= j

Eric Price Sparse Fourier Transforms 33 / 36



Simplifed Proof

Define ∆i(t) = ai(t) − a ′i (t) = vie2πifi t − v ′i e2πif ′i t

Goal :
∑k

i=1
1
T

∫T
0 |∆i(t)|2dt & 1

T

∫T
0 |
∑k

i=1 ∆i(t)|2dt

1
T

∫T
0 |
∑k

i=1∆i(t)|2dt

= diagonal terms + off-diagonal terms

=
∑k

i=1
1
T

∫T
0 | ∆i(t) |2dt +

∑
i 6=j

1
T

∫T
0 ∆i(t)∆j(t) dt

.

(1+ log2(k)
Tη ) ·

∑k
i=1

1
T

∫T
0 | ∆i(t) |2dt for T > log2(k)/η

T is large enough, ∆i(t) is more likely orthogonal to ∆j(t), ∀i 6= j

Eric Price Sparse Fourier Transforms 33 / 36



Simplifed Proof

Define ∆i(t) = ai(t) − a ′i (t) = vie2πifi t − v ′i e2πif ′i t

Goal :
∑k

i=1
1
T

∫T
0 |∆i(t)|2dt & 1

T

∫T
0 |
∑k

i=1 ∆i(t)|2dt

1
T

∫T
0 |
∑k

i=1∆i(t)|2dt

= diagonal terms + off-diagonal terms

=
∑k

i=1
1
T

∫T
0 | ∆i(t) |2dt +

∑
i 6=j

1
T

∫T
0 ∆i(t)∆j(t) dt

.

(1+ log2(k)
Tη ) ·

∑k
i=1

1
T

∫T
0 | ∆i(t) |2dt for T > log2(k)/η

T is large enough, ∆i(t) is more likely orthogonal to ∆j(t), ∀i 6= j

Eric Price Sparse Fourier Transforms 33 / 36



Open questions

2
η

log(k)
η

log2(k)
η

Can we reconstruct a signal x ′(t) without recovering each (vi , fi) nicely?
Noise is exponentially small in k , how small duration T can we pick?
Improve our constant approximation result to (1± ε) approximation by
increasing the sample duration T?

Eric Price Sparse Fourier Transforms 34 / 36



Open questions

2Ω(k)

kO(1)

O(log k)

O(1)

2
η

log(k)
η

log2(k)
η

Ours, Upper bound
Moitra, 15 Upper bound
Moitra, 15 Lower bound

Can we reconstruct a signal x ′(t) without recovering each (vi , fi) nicely?
Noise is exponentially small in k , how small duration T can we pick?
Improve our constant approximation result to (1± ε) approximation by
increasing the sample duration T?

Eric Price Sparse Fourier Transforms 34 / 36



Open questions

2Ω(k)

kO(1)

O(log k)

O(1)

2
η

log(k)
η

log2(k)
η

Ours, Upper bound
Moitra, 15 Upper bound
Moitra, 15 Lower bound

Can we reconstruct a signal x ′(t) without recovering each (vi , fi) nicely?
Noise is exponentially small in k , how small duration T can we pick?
Improve our constant approximation result to (1± ε) approximation by
increasing the sample duration T?

Eric Price Sparse Fourier Transforms 34 / 36



Open questions

2Ω(k)

kO(1)

O(log k)

O(1)

2
η

log(k)
η

log2(k)
η

Ours, Upper bound
Moitra, 15 Upper bound
Moitra, 15 Lower bound

Can we reconstruct a signal x ′(t) without recovering each (vi , fi) nicely?
Noise is exponentially small in k , how small duration T can we pick?
Improve our constant approximation result to (1± ε) approximation by
increasing the sample duration T?

Eric Price Sparse Fourier Transforms 34 / 36



Open questions

2Ω(k)

kO(1)

O(log k)

O(1)

2
η

log(k)
η

log2(k)
η

Ours, Upper bound
Moitra, 15 Upper bound
Moitra, 15 Lower bound

Can we reconstruct a signal x ′(t) without recovering each (vi , fi) nicely?
Noise is exponentially small in k , how small duration T can we pick?
Improve our constant approximation result to (1± ε) approximation by
increasing the sample duration T?

Eric Price Sparse Fourier Transforms 34 / 36



Open questions

2Ω(k)

kO(1)

O(log k)

O(1)

2
η

log(k)
η

log2(k)
η

Ours, Upper bound
Moitra, 15 Upper bound
Moitra, 15 Lower bound

Can we reconstruct a signal x ′(t) without recovering each (vi , fi) nicely?

Noise is exponentially small in k , how small duration T can we pick?
Improve our constant approximation result to (1± ε) approximation by
increasing the sample duration T?

Eric Price Sparse Fourier Transforms 34 / 36



Open questions

2Ω(k)

kO(1)

O(log k)

O(1)

2
η

log(k)
η

log2(k)
η

Ours, Upper bound
Moitra, 15 Upper bound
Moitra, 15 Lower bound

Can we reconstruct a signal x ′(t) without recovering each (vi , fi) nicely?
Noise is exponentially small in k , how small duration T can we pick?

Improve our constant approximation result to (1± ε) approximation by
increasing the sample duration T?

Eric Price Sparse Fourier Transforms 34 / 36



Open questions

2Ω(k)

kO(1)

O(log k)

O(1)

2
η

log(k)
η

log2(k)
η

Ours, Upper bound
Moitra, 15 Upper bound
Moitra, 15 Lower bound

Can we reconstruct a signal x ′(t) without recovering each (vi , fi) nicely?
Noise is exponentially small in k , how small duration T can we pick?
Improve our constant approximation result to (1± ε) approximation by
increasing the sample duration T ?

Eric Price Sparse Fourier Transforms 34 / 36



Summary

DFT setting: logd log n far from optimal in d dimensions.
Continuous setting: more to learn.

Thank You

Eric Price Sparse Fourier Transforms 35 / 36



Eric Price Sparse Fourier Transforms 36 / 36



Eric Price Sparse Fourier Transforms 36 / 36


	Algorithm for k=1
	Reducing k to 1
	Putting it together
	Continuous setting
	Appendix

