Sparse Fourier Transforms

Eric Price

UT Austin

Eric Price Sparse Fourier Transforms 1/36

The Fourier Transform

Conversion between time and frequency domains

Time Domain Frequency Domain

100 Tyf Piano, 440 Hz

Displacement of Air Concert A

Eric Price Sparse Fourier Transforms 2/36

The Fourier Transform is Ubiquitous

Audio Video Medical Imaging

Oil Exploration

Eric Price Sparse Fourier Transforms 3/36

Computing the Discrete Fourier Transform

o How to compute X = Fx?

Eric Price Sparse Fourier Transforms 4/36

Computing the Discrete Fourier Transform

o How to compute X = Fx?
o Naive multiplication: O(n?).

Eric Price Sparse Fourier Transforms 4/36

Computing the Discrete Fourier Transform
© How to compute X = Fx?

o Naive multiplication: O(n?).
o Fast Fourier Transform: O(nlog n) time. [Cooley-Tukey, 1965]

Eric Price Sparse Fourier Transforms 4/36

Computing the Discrete Fourier Transform

© How to compute X = Fx?
o Naive multiplication: O(n?).
o Fast Fourier Transform: O(nlog n) time. [Cooley-Tukey, 1965]

[T]he method greatly reduces the tediousness of mechanical

calculations.

— Carl Friedrich Gauss, 1805

Eric Price Sparse Fourier Transforms 4/36

Computing the Discrete Fourier Transform

© How to compute X = Fx?
o Naive multiplication: O(n?).
o Fast Fourier Transform: O(nlog n) time. [Cooley-Tukey, 1965]

[T]he method greatly reduces the tediousness of mechanical
calculations.

— Carl Friedrich Gauss, 1805

@ By hand: 22nlog n seconds. [Danielson-Lanczos, 1942]

Eric Price Sparse Fourier Transforms 4/36

Computing the Discrete Fourier Transform

©

How to compute X = Fx?
Naive multiplication: O(r?).
Fast Fourier Transform: O(nlog n) time. [Cooley-Tukey, 1965]

© ©

[T]he method greatly reduces the tediousness of mechanical
calculations.

— Carl Friedrich Gauss, 1805

©

By hand: 22nlog n seconds. [Danielson-Lanczos, 1942]
Can we do better?

©

Eric Price Sparse Fourier Transforms 4/36

Computing the Discrete Fourier Transform

©

How to compute X = Fx?
Naive multiplication: O(r?).
Fast Fourier Transform: O(nlog n) time. [Cooley-Tukey, 1965]

© ©

[T]he method greatly reduces the tediousness of mechanical
calculations.

— Carl Friedrich Gauss, 1805

©

By hand: 22nlog n seconds. [Danielson-Lanczos, 1942]
Can we do much better?

©

Eric Price Sparse Fourier Transforms 4/36

Computing the Discrete Fourier Transform

©

How to compute X = Fx?
Naive multiplication: O(r?).

© ©

Fast Fourier Transform: O(nlog n) time. [Cooley-Tukey, 1965]

[T]he method greatly reduces the tediousness of mechanical
calculations.

— Carl Friedrich Gauss, 1805

©

By hand: 22nlog n seconds. [Danielson-Lanczos, 1942]
Can we do much better?

©

When can we compute the Fourier
Transform in sublinear time? J

Eric Price Sparse Fourier Transforms 4/36

|dea: Leverage Sparsity

Often the Fourier transform is dominated by a small number of peaks:

Time Signal Frequency Frequency
(Exactly sparse) (Approximately sparse)

Eric Price Sparse Fourier Transforms 5/36

|dea: Leverage Sparsity

Often the Fourier transform is dominated by a small number of peaks:

Time Signal Frequency Frequency
(Exactly sparse) (Approximately sparse)

Sparsity is common:

Video Medical
Imaging

Oil Exploration

Eric Price Sparse Fourier Transforms 5/36

|dea: Leverage Sparsity

Often the Fourier transform is dominated by a small number of peaks:

Time Signal Frequency Frequency
(Exactly sparse) (Approximately sparse)

Sparsity is common:

Goal of this talk: sparse Fourier transforms
Faster Fourier Transform on sparse data. J

Eric Price Sparse Fourier Transforms 5/36

Recent Theory and Applied Work

o Sparse Fourier Transform in the Discrete Setting
Gilbert-Guha-Indyk-Muthukrishnan-Strauss, 02
Gilbert-Muthukrishnan-Strauss, 05
Hassanieh-Indyk-Katabi-Price, 12
Indyk-Kapralov, 14

vV vy vYy

Eric Price Sparse Fourier Transforms 6/36

Recent Theory and Applied Work

o Sparse Fourier Transform in the Discrete Setting
» Gilbert-Guha-Indyk-Muthukrishnan-Strauss, 02
» Gilbert-Muthukrishnan-Strauss, 05
» Hassanieh-Indyk-Katabi-Price, 12
» Indyk-Kapralov, 14
o Sparse Fourier Transform in the Continuous Setting
» Boufounos-Cevher-Gilbert-Li-Strauss, 12
» Price-Song, 15

Eric Price Sparse Fourier Transforms 6/36

Recent Theory and Applied Work

o Sparse Fourier Transform in the Discrete Setting
Gilbert-Guha-Indyk-Muthukrishnan-Strauss, 02
Gilbert-Muthukrishnan-Strauss, 05
Hassanieh-Indyk-Katabi-Price, 12
Indyk-Kapralov, 14
o Sparse Fourier Transform in the Continuous Setting
» Boufounos-Cevher-Gilbert-Li-Strauss, 12
» Price-Song, 15

vV vy vYy

o Applications

Faster GPS ... Fourier Fourier ... Chip Chemical ... Imaging ... Light ... Continuous Fourier...
Hassanieh et al. Abari et al. Andronesi et al. Shi et al.
MOBICOM'12 ISSCC'12 ENC'14 SIGGRAPH'15

Eric Price Sparse Fourier Transforms 6/36

Kinds of discrete Fourier transform (TTTTT]

o 1d Fourier transform: x € C", w = e®>™/" want

n
?,' = Z w”xj
J=1

Eric Price Sparse Fourier Transforms 7136

Kinds of discrete Fourier transform

o 1d Fourier transform: x € C", w = e®>™/" want
n
v, — §y.
=) _why
i—
o 2d Fourier Transform: x € C™*M2 w; = 2™/Mi want

. i1fi dofo
Xiy ,ip ZZ“H W Xjy jo

f=1j=1

Eric Price Sparse Fourier Transforms 7/36

Kinds of discrete Fourier transform

o 1d Fourier transform: x € C", w = e2™/"_ want
n
X = Z w’x;
=1
o 2d Fourier Transform: x € C"*"%2 w; = ¢2™/N want

v. i1, lej2
Xiy ,ip ZZ‘U W3 Xy o

f=1j=1

Eric Price Sparse Fourier Transforms 7/36

Kinds of discrete Fourier transform

o 1d Fourier transform: x € C", w = e2™/"_ want
n
X = Z w’x;
=1
o 2d Fourier Transform: x € C"*"%2 w; = ¢2™/N want

v. i1, lej2
Xiy ,ip ZZ‘U W3 Xy o

f=1j=1

Eric Price Sparse Fourier Transforms 7/36

Kinds of discrete Fourier transform

o 1d Fourier transform: x € C", w = e®>™/" want
n
Xj = Z w’ x;
i—

o 2d Fourier Transform: x € C"*"%2 w; = ¢2™/N want

m
S i efay,
Xl1,12 - Z Z w4~ Wy Xh,lz

Ji=1p=1

» If ny, no are relatively prime, equivalent to 1d transform of C™ "

Eric Price Sparse Fourier Transforms 7/36

Kinds of discrete Fourier transform
o 1d Fourier transform: x € C", w = e®>™/" want
n .
?,' = Z w”xj
i—
o 2d Fourier Transform: x € C"*"%2 w; = ¢2™/N want
?H,iz = Z Z “)111/1 wl22]2X/1 2
fi=1jo=1

» If ny, no are relatively prime, equivalentto 1d transform of C™ ™
o Hadamard transform: x € C2%2xx2:

%= (1)
j

Eric Price Sparse Fourier Transforms 7/36

Generic Algorithm Outline

o Goal: given access to x, compute X ~ X
» Exact case: X is k-sparse, X = X (maybe to log n bits of precision)

Eric Price Sparse Fourier Transforms 8/36

Generic Algorithm Outline

o Goal: given access to x, compute X ~ X
» Exact case: X is k-sparse, X = X (maybe to log n bits of precision)
» Approximate case:

X =X[2<(1+€) min_|X — X2
k-sparse Xy

Eric Price Sparse Fourier Transforms 8/36

Generic Algorithm Outline

o Goal: given access to x, compute X ~ X
» Exact case: X is k-sparse, X = X (maybe to log n bits of precision)
» Approximate case:

X =X[2<(1+€) min_|X — X2
k-sparse Xy

» With “good” probability.

Eric Price Sparse Fourier Transforms 8/36

Generic Algorithm Outline

o Goal: given access to x, compute X ~ X
» Exact case: X is k-sparse, X = X (maybe to log n bits of precision)
» Approximate case:

X=Xl < (1+¢€) min _[X — X2
k-sparse Xy

» With “good” probability.

@ Algorithm for k = 1 (exact or approximate)

Eric Price Sparse Fourier Transforms 8/36

Generic Algorithm Outline

o Goal: given access to x, compute X ~ X
» Exact case: X is k-sparse, X = X (maybe to log n bits of precision)
» Approximate case:

X=Xl < (1+¢€) min _[X — X2
k-sparse Xy

» With “good” probability.

@ Algorithm for k = 1 (exact or approximate)
@ Method to reduce to k = 1 case

Eric Price Sparse Fourier Transforms 8/36

Generic Algorithm Outline

@ Algorithm for k = 1 (exact or approximate)
@ Method to reduce to k = 1 case

Eric Price Sparse Fourier Transforms 8/36

Generic Algorithm Outline

X)m‘ N
\ —

@ Algorithm for k = 1 (exact or approximate)
@ Method to reduce to k = 1 case

Eric Price Sparse Fourier Transforms 8/36

Generic Algorithm Outline

X)m‘ N
\ —

@ Algorithm for k = 1 (exact or approximate)
@ Method to reduce to kK = 1 case
» Split X into O(k) “random” parts

Eric Price Sparse Fourier Transforms 8/36

Generic Algorithm Outline

X m‘ N
\ —

@ Algorithm for k = 1 (exact or approximate)
@ Method to reduce to k = 1 case

» Split X into O(k) “random” parts
» Can sample time domain of the parts.

Eric Price Sparse Fourier Transforms

8/36

Generic Algorithm Outline

X m‘ N
\ —

@ Algorithm for k = 1 (exact or approximate)
@ Method to reduce to k = 1 case

» Split X into O(k) “random” parts
» Can sample time domain of the parts.
* O(klog k) time to get one sample from each of the k parts.

Eric Price Sparse Fourier Transforms 8/36

Generic Algorithm Outline

~ m‘ .
\ —

@ Algorithm for k = 1 (exact or approximate)
@ Method to reduce to k = 1 case

» Split X into O(k) “random” parts
» Can sample time domain of the parts.
* O(klog k) time to get one sample from each of the k parts.

@ Finds “most” of signal; repeat on residual

Eric Price Sparse Fourier Transforms 8/36

Talk QOutline

Q Algorithm for k =1

Eric Price Sparse Fourier Transforms 9/36

Talk QOutline

Q Algorithm for k =1

@ Reducing k to 1

Eric Price Sparse Fourier Transforms 9/36

Talk QOutline

Q Algorithm for k =1
Q Reducing k to 1

@ Putting it together

Eric Price Sparse Fourier Transforms

9/36

Talk QOutline

Q Algorithm for k = 1
@ Reducing k to 1
@ Putting it together

Q Continuous setting

Eric Price Sparse Fourier Transforms

9/36

Talk QOutline

Q Algorithm for k =1

Eric Price Sparse Fourier Transforms 10/36

Algorithm for k = 1: one dimension, exact case

Lemma a
We can compute a 1-sparse X in O(1) time.J

o [aifi=t
=1 0 otherwise t

Eric Price Sparse Fourier Transforms 11/36

Algorithm for kK = 1: one dimension, exact case

Lemma a
We can compute a 1-sparse X in O(1) time.J

o [aifi=t
=1 0 otherwise t

o Then x = (a aw!, aw?, aw?!, ..., aw(n—11),

Eric Price Sparse Fourier Transforms 11/36

Algorithm for kK = 1: one dimension, exact case

Lemma
We can compute a 1-sparse X in O(1) time.J

L _[aifi=t
"1 0 otherwise

o Then x = (a aw!, aw?, aw?!, ..., aw(n—11),
Xo=a
Eric Price Sparse Fourier Transforms

11/36

Algorithm for kK = 1: one dimension, exact case

Lemma
We can compute a 1-sparse X in O(1) time.J

L _[aifi=t
"1 0 otherwise

o Then x = (a aw!, aw?, aw?!, ..., aw(n—11),
Xo=a X1 = aw!
Eric Price Sparse Fourier Transforms

11/36

Algorithm for kK = 1: one dimension, exact case

Lemma
We can compute a 1-sparse X in O(1) time.J

L _[aifi=t
"1 0 otherwise

o Then x = (a aw!, aw?, aw?!, ..., aw(n—11),
Xo=a X1 = aw

Q X1/X0:wt = [

Eric Price Sparse Fourier Transforms

Algorithm for kK = 1: one dimension, exact case

Lemma
We can compute a 1-sparse X in O(1) time.J

L _[aifi=t
"1 0 otherwise

o Then x = (a aw!, aw?, aw?!, ..., aw(n—11),
Xo=a X1 = aw

Q X1/X0:wt = [

Eric Price Sparse Fourier Transforms

Algorithm for kK = 1: one dimension, exact case

Lemma a
We can compute a 1-sparse X in O(1) time.J %
5.l a ifi=t
"~ 0 otherwise t
o Then x = (a aw!, aw?, aw?!, ..., aw(n—11),
Xo=a X1 = aw!
o x1/x =w! =t |

o (Related to OFDM, Prony’s method, matrix pencil.)

Eric Price Sparse Fourier Transforms 11/36

Algorithm for kK = 1: one dimension, approximate case
Lemma
Suppose X is approximately 1-sparse:

Xt/ [1X|2 = 90%.

Then we can recover it with O(log n) samples and O(log® n) time.

Eric Price Sparse Fourier Transforms 12/36

Algorithm for kK = 1: one dimension, approximate case
Lemma
Suppose X is approximately 1-sparse:

Xt/ [1X|2 = 90%.

Then we can recover it with O(log n) samples and O(log® n) time.

K -
NI

o With exact sparsity: log n bits in a single measurement.

Eric Price Sparse Fourier Transforms 12/36

Algorithm for kK = 1: one dimension, approximate case
Lemma
Suppose X is approximately 1-sparse:

Xt/ [1X|2 = 90%.

Then we can recover it with O(log n) samples and O(log® n) time.

K LN X1/Xo = w! + noise

o With exact sparsity: log n bits in a single measurement.
o With noise: only constant number of useful bits.

Eric Price Sparse Fourier Transforms 12/36

Algorithm for kK = 1: one dimension, approximate case
Lemma
Suppose X is approximately 1-sparse:

Xt/ [1X|2 = 90%.

Then we can recover it with O(log n) samples and O(log® n) time.

/ LN X1/Xo = w! + noise

o With exact sparsity: log n bits in a single measurement.
o With noise: only constant number of useful bits.
@ Choose O(log n) time shifts ¢ to recover i.

Eric Price Sparse Fourier Transforms 12/36

Algorithm for kK = 1: one dimension, approximate case
Lemma
Suppose X is approximately 1-sparse:

Xt/ [1X|2 = 90%.

Then we can recover it with O(log n) samples and O(log® n) time.

\ Xop/Xo = W + noise

o With exact sparsity: log n bits in a single measurement.
o With noise: only constant number of useful bits.
@ Choose O(log n) time shifts ¢ to recover i.

Eric Price Sparse Fourier Transforms 12/36

Algorithm for kK = 1: one dimension, approximate case
Lemma
Suppose X is approximately 1-sparse:

Xt/ [1X|2 = 90%.

Then we can recover it with O(log n) samples and O(log® n) time.
/\ Xe,/ Xo = W%l + noise

o With exact sparsity: log n bits in a single measurement.
o With noise: only constant number of useful bits.
@ Choose O(log n) time shifts ¢ to recover i.

Eric Price Sparse Fourier Transforms 12/36

Algorithm for kK = 1: one dimension, approximate case
Lemma
Suppose X is approximately 1-sparse:

Xt/ [1X|2 = 90%.

Then we can recover it with O(log n) samples and O(log® n) time.
/\ Xe,/ Xo = W%l + noise

o With exact sparsity: log n bits in a single measurement.

o With noise: only constant number of useful bits.

@ Choose O(log n) time shifts ¢ to recover i.

@ Error correcting code with efficient recovery — lemma. [|

Eric Price Sparse Fourier Transforms 12/36

Talk QOutline

@ Reducing k to 1

Eric Price Sparse Fourier Transforms 13/36

Algorithm for general k

o Reduce general kto k = 1.

S - m’ A
\ —

Eric Price Sparse Fourier Transforms 14 /36

Algorithm for general k

o Reduce general kto k = 1.

o “Filters”: partition frequencies into
O(k) buckets.

S - “’ \
\ —

Eric Price Sparse Fourier Transforms 14 /36

Algorithm for general k

o Reduce general kto k = 1.

o “Filters”: partition frequencies into
O(k) buckets.

S - m’ A
\ —

Eric Price Sparse Fourier Transforms 14 /36

Algorithm for general k

o Reduce general kto k = 1.

o “Filters”: partition frequencies into
O(k) buckets.

S - m’ A
\ —

Eric Price Sparse Fourier Transforms 14 /36

Algorithm for general k

o Reduce general kto k = 1.

o “Filters”: partition frequencies into
O(k) buckets.
» Sample from time domain of each
bucket with O(log n) overhead.

S - “’ \
\ —

Eric Price Sparse Fourier Transforms 14 /36

Algorithm for general k

@ Reduce general kto k = 1.
o “Filters”: partition frequencies into
O(k) buckets.
» Sample from time domain of each
bucket with O(log n) overhead.
» Recovered by k = 1 algorithm

S - “’ \
\ —

Eric Price Sparse Fourier Transforms 14/36

Algorithm for general k

@ Reduce general kto k = 1.

o “Filters”: partition frequencies into
O(k) buckets.

» Sample from time domain of each
bucket with O(log n) overhead.
» Recovered by k = 1 algorithm

o Most frequencies alone in bucket.

S - “’ \
\ —

Eric Price Sparse Fourier Transforms 14/36

Algorithm for general k

@ Reduce general kto k = 1.

o “Filters”: partition frequencies into
O(k) buckets.

» Sample from time domain of each
bucket with O(log n) overhead.
» Recovered by k = 1 algorithm

o Most frequencies alone in bucket.

S - “’ \
\ —

Eric Price Sparse Fourier Transforms 14/36

Algorithm for general k

@ Reduce general kto k = 1.

o “Filters”: partition frequencies into
O(k) buckets.

» Sample from time domain of each
bucket with O(log n) overhead.
» Recovered by k = 1 algorithm

o Most frequencies alone in bucket.

S - “’ \
\ —

Eric Price Sparse Fourier Transforms 14/36

Algorithm for general k

@ Reduce general kto k = 1.

o “Filters”: partition frequencies into
O(k) buckets.

» Sample from time domain of each
bucket with O(log n) overhead.
» Recovered by k = 1 algorithm

o Most frequencies alone in bucket.

S - “’ \
\ —

Eric Price Sparse Fourier Transforms 14/36

Algorithm for general k

@ Reduce general kto k = 1.

o “Filters”: partition frequencies into
O(k) buckets.
» Sample from time domain of each
bucket with O(log n) overhead.
» Recovered by k = 1 algorithm

o Most frequencies alone in bucket.

o Random permutation

m’ A
\ —

Eric Price Sparse Fourier Transforms 14/36

Algorithm for general k

@ Reduce general kto k = 1.

o “Filters”: partition frequencies into
O(k) buckets.
» Sample from time domain of each
bucket with O(log n) overhead.
» Recovered by k = 1 algorithm

o Most frequencies alone in bucket.

o Random permutation

m’ A
\ —

Eric Price Sparse Fourier Transforms 14/36

Algorithm for general k

o Reduce general kto k = 1.
o “Filters”: partition frequencies into
O(k) buckets.
» Sample from time domain of each
bucket with O(log n) overhead.
» Recovered by k = 1 algorithm

o Most frequencies alone in bucket.

= v
(=1

o Random permutation

Eric Price Sparse Fourier Transforms 14/36

Algorithm for general k

o Reduce general kto k = 1.

o “Filters”: partition frequencies into
O(k) buckets.
» Sample from time domain of each
bucket with O(log n) overhead.
» Recovered by k = 1 algorithm

o Most frequencies alone in bucket.

@ Random permutation H
(e o

Recovers most of X:

Lemma (Partial sparse recovery)
In O(k log n) expected time, we can compute an estimate X’ such that
X — X' is k/2-sparse.

Eric Price Sparse Fourier Transforms 14/36

Going from finding most coordinates to findigg all

Partial k-sparse recovery

e U o

Lemma (Partial sparse recovery)

In O(klog n) expected time, we can compute an estimate X’ such that
X — X' is k/2-sparse.

Eric Price Sparse Fourier Transforms 15/36

Going from finding most coordinates to finging-all

Partial k-sparse recovery

e oy ‘“H

Lemma (Partial sparse recovery)

In O(klog n) expected time, we can compute an estimate X’ such that
X — X' is k/2-sparse.

Eric Price Sparse Fourier Transforms 15/36

Going from finding most coordinates to finging-all

Partial k-sparse recovery

e oy u

Lemma (Partial sparse recovery)

In O(klog n) expected time, we can compute an estimate X’ such that
X — X' is k/2-sparse.

Repeat, kK — k/2 — k/4 — - --

Eric Price Sparse Fourier Transforms 15/36

Going from finding most coordinates to finging-all

Partial k-sparse recovery

e oy u

Lemma (Partial sparse recovery)

In O(klog n) expected time, we can compute an estimate X’ such that
X — X' is k/2-sparse.

Repeat, kK — k/2 — k/4 — - --

Eric Price Sparse Fourier Transforms 15/36

Going from finding most coordinates to finging-all

Partial k-sparse recovery

e o

Lemma (Partial sparse recovery)

In O(klog n) expected time, we can compute an estimate X’ such that
X — X' is k/2-sparse.

Repeat, kK — k/2 — k/4 — - --

Eric Price Sparse Fourier Transforms 15/36

Going from finding most coordinates to finging-all

Partial k-sparse recovery

e o

Lemma (Partial sparse recovery)

In O(klog n) expected time, we can compute an estimate X’ such that
X — X' is k/2-sparse.

Repeat, kK — k/2 — k/4 — - --

Eric Price Sparse Fourier Transforms 15/36

Going from finding most coordinates to finging-all

Partial k-sparse recovery

e U o

Lemma (Partial sparse recovery)

In O(klog n) expected time, we can compute an estimate X’ such that
X — X' is k/2-sparse.

Repeat, kK — k/2 — k/4 — - --

Theorem
We can compute X in O(k log n) expected time. J

Eric Price Sparse Fourier Transforms 15/36

Going from finding most coordinates to finging-all

Partial k-sparse recovery

f— |
mx

Lemma (Partial sparse recovery)

In O(klog n) expected time, we can compute an estimate X’ such that
X — X' is k/2-sparse.

Repeat, kK — k/2 — k/4 — - --

Theorem
We can compute X in O(k log n) expected time. J

Eric Price Sparse Fourier Transforms 15/36

Talk QOutline

@ Putting it together

Eric Price Sparse Fourier Transforms 16 /36

How can you hope for sublinear time?

Time Frequency

n-dimensional DFT:
O(nlog n)
X =X

Eric Price Sparse Fourier Transforms 17/36

How can you hope for sublinear time?

Time Frequency

n-dimensional DFT:
O(nlog n)
X =X

Eric Price Sparse Fourier Transforms 17/36

How can you hope for sublinear time?

Time

Eric Price

Frequency

O(nlog n)
X=X

Sparse Fourier Transforms

n-dimensional DFT:

n-dimensional DFT of first
k terms: O(nlog n)
X - rect — X x sinc.

How can you hope for sublinear time?

Time Frequency

n-dimensional DFT:
O(nlog n)
X — X

n-dimensional DFT of first
k terms: O(nlog n)
X - rect — X x sinc.

Eric Price Sparse Fourier Transforms 17/36

How can you hope for sublinear time?

Time Frequency

n-dimensional DFT:
O(nlog n)
X — X

n-dimensional DFT of first
k terms: O(nlog n)
X - rect — X x sinc.

k-dimensional DFT of
first k terms: O(Blog B)
alias(x - rect) —
subsample(X * sinc).

Eric Price Sparse Fourier Transforms 17/36

How can you hope for sublinear time?

Time Frequency

n-dimensional DFT:
O(nlog n)
X — X

n-dimensional DFT of first
k terms: O(nlog n)
X - rect — X x sinc.

k-dimensional DFT of
first k terms: O(Blog B)
alias(x - rect) —
subsample(X * sinc).

Eric Price Sparse Fourier Transforms 17/36

Use a better filter
GMSO05, HIKP12, IKP14, IK14

Filter (time): Gaussian - sinc Filter (frequency): Gaussian * rectangle

o Filter: sparse F for which Fis large on an interval.

Eric Price Sparse Fourier Transforms 18/36

Use a better filter
GMSO05, HIKP12, IKP14, IK14

Filter (time): Gaussian - sinc Filter (frequency): Gaussian * rectangle

o Filter: sparse F for which Fis large on an interval.
o We can permute the frequencies:

’ ~ ~
X,~ = Xgi = Xj = Xg—1;

Eric Price Sparse Fourier Transforms 18/36

Use a better filter
GMSO05, HIKP12, IKP14, IK14

Filter (time): Gaussian - sinc Filter (frequency): Gaussian * rectangle

o Filter: sparse F for which Fis large on an interval.
o We can permute the frequencies:

’ ~ ~
X; = Xgj == Xj = Xg—1j

o Allows us to convert worst case to random case.

Eric Price Sparse Fourier Transforms 18/36

Algorithm for exactly sparse signals

Original signal z Goal 2

Eric Price Sparse Fourier Transforms 19/36

Algorithm for exactly sparse signals
Computed F-z Filtered signal Fxz

i

Eric Price Sparse Fourier Transforms 19/36

Algorithm for exactly sparse signals

F.x aliased to k terms Filtered signal Fxz

I

Eric Price Sparse Fourier Transforms 19/36

Algorithm for exactly sparse signals

F.x aliased to k terms Computed samples of F'xz

M

Eric Price Sparse Fourier Transforms 19/36

Algorithm for exactly sparse signals

F.x aliased to k terms Computed samples of F'xz

Eric Price Sparse Fourier Transforms 19/36

Algorithm for exactly sparse signals

F.z aliased to k terms Knowledge about 2

Eric Price Sparse Fourier Transforms 19/36

Algorithm for exactly sparse signals

F.z aliased to k terms Knowledge about 2

Eric Price Sparse Fourier Transforms 19/36

Algorithm for exactly sparse signals

F.x aliased to k terms Knowledge about 2

Lemma

If t is isolated in its bucket and in the “super-pass” region, the value b
we compute for its bucket satisfies

b = X;.

Computing the b for all O(k) buckets takes O(k log n) time.

Eric Price Sparse Fourier Transforms 19/36

Algorithm

Lemma
For most t, the value b we compute for its bucket satisfies

b = X;.

Computing the b for all O(k) buckets takes O(k log n) time.

Eric Price Sparse Fourier Transforms 20/36

Algorithm

Lemma
For most t, the value b we compute for its bucket satisfies

b = X;.

Computing the b for all O(k) buckets takes O(k log n) time.

o Time-shift x by one and repeat: b’ = x;w!.
o Divide to get b’/b = w!

Eric Price Sparse Fourier Transforms 20/36

Algorithm

Lemma
For most t, the value b we compute for its bucket satisfies

b = X;.

Computing the b for all O(k) buckets takes O(k log n) time.

o Time-shift x by one and repeat: b’ = x;w!.
o Divide to get b’/b = w! = can compute t.

Eric Price Sparse Fourier Transforms 20/36

Algorithm

Lemma
For most t, the value b we compute for its bucket satisfies

b = X;.

Computing the b for all O(k) buckets takes O(k log n) time.

o Time-shift x by one and repeat: b’ = X;w!.
o Divide to get b’/b = w! = can compute t.
» Just like our 1-sparse recovery algorithm, x; /xo = w!.

Eric Price Sparse Fourier Transforms 20/36

Algorithm

Lemma
For most t, the value b we compute for its bucket satisfies

b = X;.

Computing the b for all O(k) buckets takes O(k log n) time.

o Time-shift x by one and repeat: b’ = X;w!.
o Divide to get b’/b = w! = can compute t.
» Just like our 1-sparse recovery algorithm, x; /xo = w!.

o Gives partial sparse recovery: X’ such that X — x’ is k/2-sparse.

X

Eric Price Sparse Fourier Transforms 20/36

Algorithm

Lemma
For most t, the value b we compute for its bucket satisfies

b = X;.

Computing the b for all O(k) buckets takes O(k log n) time.

o Time-shift x by one and repeat: b’ = X;w!.
o Divide to get b’/b = w! = can compute t.
» Just like our 1-sparse recovery algorithm, x; /xo = w!.

o Gives partial sparse recovery: X’ such that X — x’ is k/2-sparse.

X

o Repeatk — k/2 — k/4 — - -

Eric Price Sparse Fourier Transforms 20/36

Algorithm

Lemma
For most t, the value b we compute for its bucket satisfies

b = X;.

Computing the b for all O(k) buckets takes O(k log n) time.

o Time-shift x by one and repeat: b’ = X;w!.
o Divide to get b’/b = w! = can compute t.
» Just like our 1-sparse recovery algorithm, x; /xo = w!.

o Gives partial sparse recovery: X’ such that X — x’ is k/2-sparse.

X

o Repeatk — k/2 — k/4 — - -
o O(klog n) time sparse Fourier transform. n

Eric Price Sparse Fourier Transforms 20/36

Summary (DFT setting)

o Given access to x for which X is sparse.

Eric Price Sparse Fourier Transforms 21/36

Summary (DFT setting)

o Given access to x for which X is sparse.
@ Recover X such that

X~ X2 < (1+¢€) min |~ X2
k-sparse X,

Eric Price Sparse Fourier Transforms 21/36

Summary (DFT setting)

o Given access to x for which X is sparse.
o Recover X such that

X—%l2< (1+€) min _|X— Xl
k-sparse Xy

o “Optimal” is O(klog(n/k)) samples and O(k log(n/k) log n) time

Eric Price Sparse Fourier Transforms 21/36

Summary (DFT setting)

o Given access to x for which X is sparse.
o Recover X such that

X—%l2< (1+€) min _|X— Xl
k-sparse Xy

o “Optimal” is O(klog(n/k)) samples and O(k log(n/k)log n) time
» Optimal samples [IK *14] OR optimal time [HIKP '12] OR
log® log n-competitive mixture [IKP '14].

Eric Price Sparse Fourier Transforms 21/36

Talk QOutline

Q Continuous setting

Eric Price Sparse Fourier Transforms 22/36

The Continuous Fourier Transform

Conversion between time and frequency domains

Time Domain Frequency Domain

o The Fourier Transform X of an integrable function x : R — C is

X(f) = roo x(t)e 2miftg¢

—00

Eric Price Sparse Fourier Transforms 23/36

The Continuous Fourier Transform

Conversion between time and frequency domains

Time Domain Frequency Domain

o The Fourier Transform X of an integrable function x : R — C is

X(f) = roo x(t)e 2miftg¢

—00

x(t) = J o X(f) 2 qf

—0o0

Eric Price Sparse Fourier Transforms 23/36

Why Continuous?

100 Tyi Piano, 440 Hz
80+
601
0
20
1z
1 L Il 14y I b
1 2 3 4 *mﬁl
Eric Price Sparse Fourier Transforms

24 /36

Why Continuous?

Approximating an off-grid frequency with on-grid ones
? _ True signal
100 Ty Piano, 440 Hz ¢ Discrete approx
80 T
60 T E
]
0t Z
20T
1 Hz
" (Y I b
1 2 3 a 103 [I
srrrrt] BERERREE)

Frequency

Eric Price Sparse Fourier Transforms 24/36

Why Continuous?

Approximating an off-grid frequency with on-grid ones
? _ True signal
100 Ty Piano, 440 Hz ¢ Discrete approx
80 T
60 T E
]
0t Z
20T
1 Hz
" (Y I b
1 2 3 a 103 [I
srrrrt] BERERREE)
[empep——
Remains problematic for large n
_® _ True signal
¢ Discrete approx
g
=
=]
4

Frequency

Eric Price Sparse Fourier Transforms 24/36

Why Continuous?

Approximating an off-grid frequency with on-grid ones
? _ True signal
100 Ty Piano, 440 Hz ¢ Discrete approx
80 T
60 T E
]
0t Z
20T
fHz
1 " (Y It b
1 2 3 a 103 [I
srrrrt] BERERREE)
[empep——
E).Rrgy in discrete approximation as a function of sparsity Remains problematic for large n
_® _ True signal
¢ Discrete approx
0.8
>
1]
g
o
£06
5 E
§ z
304
S
<3
I
H
0.2
00 2 3 4 5 6 7 8 9 10

Sparsity Frequency

Eric Price Sparse Fourier Transforms 24/36

Thought Experiments

Frequency

Eric Price Sparse Fourier Transforms 25/36

Thought Experiments

Frequency

Eric Price Sparse Fourier Transforms 25/36

Thought Experiments

Frequency

Eric Price Sparse Fourier Transforms 25/36

Thought Experiments

Frequency

Eric Price

Sparse Fourier Transforms

Thought Experiments

Frequency

1

T=12
inifinitely small n <
T>1000 years <o

Eric Price Sparse Fourier Transforms 25/36

Thought Experiments 2

x(t) = sin""(mt)

Frequency

n

Time

5=

Eric Price Sparse Fourier Transforms 26/36

What Guarantee Do We Want?

Frequency: 1)

e VAP
VvV VUV \

X(t) _ 6727rift

Eric Price Sparse Fourier Transforms

27/36

What Guarantee Do We Want?

Frequency: T

COAANAN ANAAN
VAVAVANEERVAVAVAY

x(t) = g 2rift X/(t) =x(t) - g—1/10000

Eric Price Sparse Fourier Transforms 27/36

What Guarantee Do We Want?

Frequency: T /\

e DNAAN DA
VAVAVAWEERVAVAVAY

x(t) = g 2rift X/(t) =x(t) - g—1/10000

Eric Price Sparse Fourier Transforms 27/36

What Guarantee Do We Want?

Frequency: T /\

e DNAAN DA
VAVAVAWEERVAVAVAY

x(t) = g 2rift X/(t) =x(t) - g—1/10000

Discrete FT |[x’ —X[2 < min_[|X — Xl|2
k-sparsex

Eric Price Sparse Fourier Transforms 27/36

What Guarantee Do We Want?

Frequency: T /\

ONNANDN DA N
VAVAVAWEERVAVAVAY

x(t) = g 2rift X/(t) =x(t) - g—1/10000

Discrete FT |[x’ —X[2 < min_[|X — Xl|2
k-sparsexy

Forred signal: min ||x Xkllz = |IX]|2
k-sparse

Eric Price Sparse Fourier Transforms 27/36

What Guarantee Do We Want?

Frequency T /\

ONNANDN DA N
VAVAVAWEERVAVAVAY

x(t) = g 2rift X/(t) =x(t) - g—1/10000

Discrete FT |[x’ —X[2 < min_[|X — Xl|2
k-sparsexy

Forred signal: min ||x Xkllz = |IX]|2
k-sparse

DFT preserve the £, norm

Eric Price Sparse Fourier Transforms 27/36

What Guarantee Do We Want?

Frequency: T /\

ONNANDN DA N
VAVAVAWEERVAVAVAY

x(t) = g 2rift X/(t) =x(t) - g—1/10000

Discrete FT |[x’ —X[2 < min_[|X — Xl|2
k-sparsexy

Forred signal: min ||x Xkllz = |IX]|2
k-sparse

¥/ = xll2 <, min _[lx—xio
k-sparse

Eric Price Sparse Fourier Transforms 27/36

What Guarantee Do We Want?

Frequency: T /\

ONNANDN DA N
VAVAVAWEERVAVAVAY

x(t) = g 2rift X/(t) =x(t) - g—1/10000

Discrete FT ||’ —X[2 < min_||X — X2
k-sparsexy

Forred signal: min ||x Xkllz = |IX]|2
k-sparse

¥/ = xll2 <, min _[lx—xio
k-sparse

lTjOT|x’(t) —x(H)2dt < min leoT|x(t)—xk(t)|2dt

k-sparse Xk (t)

Eric Price Sparse Fourier Transforms 27/36

What Guarantee Do We Want?

Frequency: T /\

ONNANDN DA N
VAVAVAWEERVAVAVAY

x(t) = g 2rift X/(t) =x(t) - g—1/10000

Discrete FT ||’ —X[2 < min_||X — X2
k-sparsexy

Forred signal: min ||x Xkllz = |IX]|2
k-sparse

¥/ = xll2 <, min _[lx—xio
k-sparse

lTjOT|x’(t) —x(H)2dt < min leoT|x(t)—xk(t)|2dt

k-sparse Xk (t)

Eric Price Sparse Fourier Transforms 27/36

Guarantee

o Sample from x(t), which is approximated by a k-Fourier sparse
Xk (1) with 1 frequency separation.

o We recover an x’(t) such that

E_|x'(t) = x(t)? <

~

te(0,T] te(0,T]

o Aslong as:
>T>OWﬁWH
= n
» Time, # samples > O(k log(FT)log?(k)).

Eric Price Sparse Fourier Transforms 28/36

Previous Works and Our Results

Algorithm | Duration Robust | Sample/Time
BCGLS, 12 | k-optimal poor sublinear
Moitra, 15 | optimal poly(k) | linear

Ours log?(k)-optimal | O(1) sublinear

Eric Price

Sparse Fourier Transforms 29/36

Previous Works and Our Results

Algorithm | Duration Robust | Sample/Time
BCGLS, 12 | k-optimal poor sublinear
Moitra, 15 | optimal poly(k) | linear
Ours log®(k)-optimal | O(1) sublinear
—— OQurs, Upper bound
o2Q(k) - - - Moitra, 15 Upper bound
- - - Moitra, 15 Lower bound
kO(1) L
O(logk) +
o)

Eric Price

3

log (k) log? (k)

n n

Sparse Fourier Transforms 29/36

Previous Works and Our Results

Algorithm | Duration Robust | Sample/Time
BCGLS, 12 | k-optimal poor sublinear
Moitra, 15 | optimal poly(k) | linear
Ours log®(k)-optimal | O(1) sublinear
—— OQurs, Upper bound

2Q(k) f-o----o- . - - - Moitra, 15 Upper bound

' - - - Moitra, 15 Lower bound
ko(1) - \\

Ollogk) +

o) + \

\l 1 1

2 log(k) log? (k)

n n n
Eric Price

Sparse Fourier Transforms

29/36

Previous Works and Our Results

Algorithm | Duration Robust | Sample/Time
BCGLS, 12 | k-optimal poor sublinear
Moitra, 15 | optimal poly(k) | linear
Ours log®(k)-optimal | O(1) sublinear
Ours, Upper bound
2Q(k) f-o----o- . - - - Moitra, 15 Upper bound
' - - - Moitra, 15 Lower bound
kO(1) - \\ o — — — —
Ollogk) |
o) + \
\l 1 1
2 log(k) log? (k)
n n n
Eric Price

Sparse Fourier Transforms

29/36

Previous Works and Our Results

Algorithm | Duration Robust | Sample/Time
BCGLS, 12 | k-optimal poor sublinear
Moitra, 15 | optimal poly(k) | linear
Ours log®(k)-optimal | O(1) sublinear
Ours, Upper bound
2Q(k) f-o----o- . - - - Moitra, 15 Upper bound
' - - - Moitra, 15 Lower bound
kO(1) - \\ o — — — —
Ollogk) | "
o) + \
\l 1 1
2 log(k) log? (k)
n n n
Eric Price

Sparse Fourier Transforms

29/36

Main Results

Frequency
Xk (f)
Time A /\ T
Xk (1) /\

v OV

Eric Price Sparse Fourier Transforms 30/36

Main Results

Frequenc
q y F

Tlme Nz = TIO |g |2dt—|—5Z|V,|2

Eric Price Sparse Fourier Transforms 30/36

Main Results

Frequenc
q y F

Tlme Nz = TIO |g |2dt—|—5Z|V,|2

Eric Price Sparse Fourier Transforms 30/36

Main Results

Frequency

X, (f) ,)?,(f) c il ‘ aullua e Ll H AITIIIAR \ RN TR TR J Ll "

Time/\N2 =1 (lg(t) I2dt‘+25£|v,l2 /\
Xk (1) ,x'(1) \/ v \//\\

Tone Estimation

Eric Price Sparse Fourier Transforms 30/36

Main Results

Frequency

)a((f) ,)/(\’(f) Ll ‘ wedlanl Dl Ll H N ITAIITTA \MH TR TTRTINNY J st]

Time/\Nz—Tfo lg(t I2dt+6Z|v,|2/\ .
Xk (1) ,x'(1) \/ v \/ N\

k . .
Tone Estimation =3 foT| v;e2mifit — v/ 2miit 2qt < N?
i

Eric Price Sparse Fourier Transforms 30/36

Main Results

Frequency

X, (f) ,)?/(f) I ‘ NTRRIARTNRIARE H AMITTAARDY mH TN J Ll "

Time/\Nz—Tfo lg(t I2dt+6Z|v,|2/\ .
Xk (1) ,x'(1) \/ v \/ N\

k . .
Tone Estimation =3 for| v;e2mifit — v/ 2miit 2qt < N?
i

Frequency Estimation

Eric Price Sparse Fourier Transforms 30/36

Main Results

Frequency

X, (f) ,)?/(f) I ‘ NTRRIARTNRIARE H AMITTAARDY mH TN J Ll "

Time/\Nz—Tfo lg(t I2dt+6Z|v,|2/\ .
Xk (1) ,x'(1) \/ v \/ N\

k . .
Tone Estimation %Z for| v;e2mifit — v/ 2miit 2qt < N?

i=1 vil2
/1< 5. 02 == SNR = 270

Frequency Estimation |f; — f,

Eric Price Sparse Fourier Transforms 30/36

Main Results

Frequency

X, (f) ,)?/(f) I ‘ NTRRIARTNRIARE H AMITTAARDY mH TN J Ll "

TimeANz _Tfo lg(t) |2dt+6Z|v,|2 /\
Xk (1) ,x'(t) \/ \\/ \//\\

Tone Estimation Z fo | v;e?Tifit — vl 2milft 24t < NP

. . i |2
Frequency Estimation |f — 157 5P 2.= SNR = Z_!N#

Signal Estimation

Eric Price Sparse Fourier Transforms 30/36

Main Results

Frequency

X, (f) ,)?/(f) T ‘ aullad bt L, H Al L mH RN J Ll "

Time ANZ —1101g(t) |2dt+6Z|v,|2 /\
Xk (1) ,x'(1) \/ \\/ \//\\
k . o
Tone Estimation %Z jOTI v, @27t — ! 2Tl 29t < N2

. i vil?
Tp’ p? := SNR := ZTZ

Signal Estimation leo > v,-ezm” — v/eznifi’t Pdt < N2
i=1

1=
Frequency Estimation | 1<

Eric Price Sparse Fourier Transforms 30/36

Main Results

Frequency

X, (f) ,)?/(f) T ‘ aullad bt L, H Al L mH RN J Ll "

Time ANZ = Tfo lg(t) |2dt+6Z|v,|2 /\
Xk (£) ,x' (1) \/ \\/ \//\\
K . .
Tone Estimation %Z jOTI v, @27t — ! 2Tl 29t < N2

. i vil?
Tp’ p? := SNR := ZTZ

Signal Estimation leo > v,-ezm” — v/esz/t Pdt < N2
i=1

1=
Frequency Estimation | 1<

Duration

Eric Price Sparse Fourier Transforms 30/36

Main Results

Frequency

X, (f) ,)?/(f) T ‘ aullad bt L, H Al L mH RN J Ll "

Time /\Nz =1/s1g(|2d1‘+232|v,|2 /\
Xk (1) ,x"(1) \/ \\/ \//\\
K . e
Tone Estimation %Z jOTI v, @27t — ! 2Tl 29t < N2
2 _ 2ilvil?
Tp, —_— SNR o T
Signal Estimation fo 1S vePmifit v/esz/t Pdt < N2

- log(k)' =1 _ log?(k)
Duration T = o ’T_T

1=
Frequency Estimation | 1<

Eric Price Sparse Fourier Transforms 30/36

Main Results

Frequency

X, (f) ,)?/(f) T ‘ aullad bt L, H Al L mH RN J Ll "

Time /\Nz =1/s1g(|2d1‘+232|v,|2 /\
Xk (1) ,x"(1) \/ \\/ \//\\
K . e
Tone Estimation %Z jOTI v, @27t — ! 2Tl 29t < N2
2 _ 2ilvil?
Tp, —_— SNR o T
Signal Estimation fo 1S vePmifit v/e2”ifi’t Pdt < N2

- log(k)' =1 _ log?(k)
Duration T = o ’T_T

1=
Frequency Estimation | 1<

Samples/Time

Eric Price Sparse Fourier Transforms 30/36

Main Results

Frequency

X, (f) ,)?/(f) T ‘ aullad bt L, H Al L mH RN J Ll "

TimeANz _Tfo lg(t) |2dt+6Z|v,|2 /\
Xk (£) ,x' (1) \/ \\/ \//\\

K . -
Tone Estimation %Z jOTI v, @27t — ! 2Tl 29t < N2
2 _ 2l
Tp, = SNR := =Lz~
Signal Estimation fo |Z v;e2mifit _ v-/e2”ifi’t Pdt < N2
=1
Duration T = 99k), T — log’(k)

n n
Samples/Time O(k log(FT) Iogz(k))

1=
Frequency Estimation | 1<

Eric Price Sparse Fourier Transforms 30/36

Tone Estimation to Signal Estimation

Frequency

Eric Price Sparse Fourier Transforms 31/36

Tone Estimation to Signal Estimation

Frequency

Eric Price Sparse Fourier Transforms 31/36

Tone Estimation to Signal Estimation

Define A;(t) = ag(t) — al(t) = v;e?mit — v/ 27t

Frequency

Eric Price Sparse Fourier Transforms 31/36

Tone Estimation to Signal Estimation

Define A;(1) = a;(t) — a/(t) = v;e?™ht — v/e2milt
Frequency

x(f)

0o las(t) - aj(t)2dt

Eric Price Sparse Fourier Transforms 31/36

Tone Estimation to Signal Estimation

Define A;(1) = a;(t) — a/(t) = v;e?™ht — v/e2milt
Frequency

x(f)

L la(t) - al(nRdt L[] lap(t) - aj(1)Rdt

Eric Price Sparse Fourier Transforms 31/36

Tone Estimation to Signal Estimation

Define A;(1) = a;(t) — a/(t) = v;e?™ht — v/e2milt
Frequency

x(f)

Lila(t) - aj(Rdt [T lao(t) - aj(t)Rdt L[] |as(t) - aj(t)Rdt

Eric Price Sparse Fourier Transforms 31/36

Tone Estimation to Signal Estimation

Define A;(t) = ag(t) — al(t) = v;e?mit — v/ 27t

Frequency
X(f)

1 [y lan(t) - aj ()Rt +1 [laz(t) - aj(n)Pdt+1 [las(t) - ay(1)Pdt

Eric Price Sparse Fourier Transforms 31/36

Tone Estimation to Signal Estimation

Define A;(t) = ag(t) — al(t) = v;e?mit — v/ 27t

Frequency

x(f)

P Tfo lai(t) - aj(1)Pdt

Eric Price Sparse Fourier Transforms 31/36

Tone Estimation to Signal Estimation

Define A;(t) = ag(t) — al(t) = v;e?mit — v/ 27t

Frequency

T [It Pat

Eric Price Sparse Fourier Transforms 31/36

Tone Estimation to Signal Estimation

Define A(t) = a(t) — a/(t) = v;?™it — v/

Frequency

?(f) T TR L PP Y O PRV L. X T P DO PO PP X U ROPPO O 1| R R Y

N2 >yk, HOT |A;(1)[2dt Tone Estimation

Eric Price Sparse Fourier Transforms 31/36

Tone Estimation to Signal Estimation

Define A;(t) = ag(t) — al(t) = v;e?mit — v/ 27t

Frequency

~

X(f) T TR L PP Y O PRV L. X T P DO PO PP X U ROPPO O 1| R R Y

N2>y 1 fo |A;(1)[2dt Tone Estimation

> 1 [l Ik, Ai(t)Rdt Signal Estimation

Eric Price Sparse Fourier Transforms 31/36

Tone Estimation to Signal Estimation

Define A;(t) = ag(t) — al(t) = v;e?mit — v/ 27t

Frequency

~

X(f) T TR L PP Y O PRV L. X T P DO PO PP X U ROPPO O 1| R R Y

N2>y 1 fo |A;(1)[2dt Tone Estimation
> 1 [l Ik, Ai(t)Rdt Signal Estimation

= 171 x(t) — x'(t)dt

Eric Price Sparse Fourier Transforms 31/36

Extremely Simplified Proof

Goal : kY K, y2 > (5k, yi)?

(X1 y)?

Eric Price Sparse Fourier Transforms 32/36

Extremely Simplified Proof

Goal : kY K, y2 > (5k, yi)?

(X1 y)?

= diagonal terms + off-diagonal terms

Eric Price Sparse Fourier Transforms

32/36

Extremely Simplified Proof

Goal : kY K y2> (YK, y)2

(X1 y)?

= diagonal terms + off-diagonal terms

=Yy iz ViV

Eric Price Sparse Fourier Transforms

32/36

Extremely Simplified Proof

Goal : k [y y? > (L1)
(X1)2
= diagonal terms + off-diagonal terms
=Y+ 2 iz YiYj

ST+ Y iz s WE+¥P)

Eric Price Sparse Fourier Transforms

32/36

Extremely Simplified Proof

Goal : kY K y2> (YK, y)2
(X1 yi)?
= diagonal terms + off-diagonal terms
=Y+ 2 iz YiYj
ST+ Y iz s WE+¥P)

= kZL1 Yi2

Eric Price Sparse Fourier Transforms

32/36

Simplifed Proof

Define A;(t) = g(t) — a/(t) = v;e?mit — v/ e?milt

Goal: Y%, 1 [l iainRat = 1 [l 1Sk, Ait)at

Eric Price Sparse Fourier Transforms 33/36

Simplifed Proof

Define A;(t) = ai(t) — a/(t) = v;e?™it — v/ g2mift
Goal : YI 4 4 [o Iai(0Pdt 2 § fo | ZiCq A1) Rdt

T.[O|ZI 1A |2dt

Eric Price Sparse Fourier Transforms 33/36

Simplifed Proof

Define A;(t) = a;(t) — al(t) = v;e?mit — v/ 27t
Goal : YI 4 4 [o Iai(0Pdt 2 § fo | ZiCq A1) Rdt

T.[O|ZI 1A |2dt

= diagonal terms + off-diagonal terms

Eric Price Sparse Fourier Transforms 33/36

Simplifed Proof

Define A;(t) = a;(t) — al(t) = v;e?mit — v/ 27t
Goal : YI 4 4 [o Iai(0Pdt 2 § fo | ZiCq A1) Rdt

T.[O|ZI 1A |2dt

= diagonal terms + off-diagonal terms

= T 3 Jo | D) Rt + 33 fo A(DA(D) dt

Eric Price Sparse Fourier Transforms 33/36

Simplifed Proof

Define A;(t) = a;(t) — al(t) = v;e?mit — v/ 27t
Goal : YI 4 4 [o Iai(0Pdt 2 § fo | ZiCq A1) Rdt

T.[O|ZI 1A |2dt

= diagonal terms + off-diagonal terms

= T 3 Jo | D) Rt + 33 fo A(DA(D) dt

SO+ Tl LA Pat

Eric Price Sparse Fourier Transforms 33/36

Simplifed Proof

Define A;(t) = a;(t) — al(t) = v;e?mit — v/ 27t
Goal : YI 4 4 [o Iai(0Pdt 2 § fo | ZiCq A1) Rdt

T.[O|ZI 1A |2dt

= diagonal terms + off-diagonal terms

= T 3 Jo | D) Rt + 33 fo A(DA(D) dt

< K L a 1At dt for T > log?(k)/n

Eric Price Sparse Fourier Transforms 33/36

Simplifed Proof

Define A;(t) = a;(t) — al(t) = v;e?mit — v/ 27t
Goal : Y K 1Tj0 |A;(1)2dt > }jo|z, ; Aj()[Pdt

T.[O|ZI 1A |2dt

= diagonal terms + off-diagonal terms

= T 3 Jo | D) Rt + 33 fo A(DA(D) dt
S Y E 1L At Rt for T > log?(k)/m

T is large enough, A;(t) is more likely orthogonal to (Vi £ |

Eric Price Sparse Fourier Transforms 33/36

Open questions

Eric Price Sparse Fourier Transforms 34 /36

Open questions

—— Qurs, Upper bound
20Q(k) | - - - Moitra, 15 Upper bound
- - - Moitra, 15 Lower bound
kO(1) L
O(logk) +
o)
2 log(k) log? (k)
n mn n
Eric Price

Sparse Fourier Transforms 34/36

Open questions

—— Qurs, Upper bound
20 (k) f-o------ l - - - Moitra, 15 Upper bound
' - - - Moitra, 15 Lower bound
KO \\
Ollogk) |
o(1) + \
\\ Il Il
2 log(k) log? (k)
n n n

Eric Price

Sparse Fourier Transforms 34/36

Open questions

—— Qurs, Upper bound
20 (k) f-o------ l - - - Moitra, 15 Upper bound
' - - - Moitra, 15 Lower bound
KO e
Ollog k) + \
o(1) + \
\\ Il Il
2 log(k) log? (k)
n n n

Eric Price Sparse Fourier Transforms

34/36

Open questions

Ours, Upper bound
20 (k) f-o------ l - - - Moitra, 15 Upper bound
' - - - Moitra, 15 Lower bound
KO R
O(logk) + |

S F----

log (k) log? (k)
n n

Eric Price Sparse Fourier Transforms

34/36

Open questions

—— Ours, Upper bound
2Q(k) f-o----o- . - - - Moitra, 15 Upper bound
' - - - Moitra, 15 Lower bound
ko(1) - \\ e — — — —
Ollogk) t "
o) + \

1 1

log (k) log? (k)

n n

N

o Can we reconstruct a signal x’(t) without recovering each (v;, f;) nicely?

Eric Price

Sparse Fourier Transforms 34/36

Open questions

—— Ours, Upper bound
2Q(k) f-o----o- . - - - Moitra, 15 Upper bound
' - - - Moitra, 15 Lower bound
ko(1) - \\ e — — — —
O(logk) + |

o1) | \

1

1

1

|

\

2 log(k) log? (k)
n

n n

1

o Can we reconstruct a signal x’(t) without recovering each (v;, f;) nicely?
@ Noise is exponentially small in k, how small duration T can we pick?

Eric Price

Sparse Fourier Transforms 34/36

Open questions

Ours, Upper bound
2Q(k) f-o----o- . - - - Moitra, 15 Upper bound
' - - - Moitra, 15 Lower bound
ko(1) - \\ e — — — —
O(logk) + |

1 1

]
2 log(k) log? (k)
n

n n

o Can we reconstruct a signal x’(t) without recovering each (v;, f;) nicely?
@ Noise is exponentially small in k, how small duration T can we pick?

O Improve our constant approximation result to (1 £ €) approximation by
increasing the sample duration T?

Eric Price Sparse Fourier Transforms

34/36

Summary

o DFT setting: log? log n far from optimal in d dimensions.
o Continuous setting: more to learn.

Thank You

Eric Price Sparse Fourier Transforms 35/36

Eric Price Sparse Fourier Transforms 36/36

Eric Price Sparse Fourier Transforms 36/36

	Algorithm for k=1
	Reducing k to 1
	Putting it together
	Continuous setting
	Appendix

