Algorithmic Questions in
Higher-Order Fourier Analysis

Madhur Tulsiani
TTI Chicago

Based on joint works with

Arnab Bhattacharyya, Eli
Ben-Sasson, Pooya Hatami
Noga Ron-Zewi, Luca
Trevisan, Salil Vadhan and
Julia Wolf

DA

Decomposition Theorems

Decomposition Theorems

Object of study Family of
algorithms or

functions

Decomposition Theorems

4 N
= -
< _ J
Object of study Family of Structured No apparent
algorithms or structure

functions (Pseudorandom)

Decomposition Theorems

Q 77/‘
Object of study Family of
algorithms or

functions

f R
_ J
Structured

No apparent

structure
(Pseudorandom)

- Decompose an object in to structured and pseudorandom parts.

Decomposition Theorems

.)
= -
- J
Object of study Family of Structured No apparent
algorithms or structure
functions (Pseudorandom)

- Decompose an object in to structured and pseudorandom parts.

- Can often ignore the pseudorandom part for many applications.
Structured part easier to study.

Fourier analysis

- Space of functions g : F§ — R.

Fourier analysis

- Space of functions g : F; — R.

- Functions

Xal) = (-1 = (-1

form an orthonormal basis under the inner product
(f.g) = Ex[f(x)g(x)].

Fourier analysis

- Space of functions g : F; — R.

- Functions

Yolx) = (F1)™ = (~1)2
form an orthonormal basis under the inner product
(f.g) = Ex[f(x)g(x)].

- Any function g can be written as

g = Y &a)xa-

acky

Fourier analysis

- Space of functions g : F; — R.

Functions

Yolx) = (F1)™ = (~1)2
form an orthonormal basis under the inner product
(f.g) = Ex[f(x)g(x)].

- Any function g can be written as

g = Y &a)xa-

acky

[Parseval]: [|lg]* = (g.8) = Ex[(g(x))?] = . (&(a))*.

A basic decomposition in Fourier analysis

«O>» «Fr «=»

« =)

DA

A basic decomposition in Fourier analysis

) = (1) = ()T

a € Fj

& = Zg(a)Xa }
S

or 3 - = T 9Dae

A basic decomposition in Fourier analysis

) = (1) = ()T

aecFj
k
g =) B@)xa = Y E@xat Y BE@Xa = D> CiXe+Ff
s [8()| > O i=1

DA

A basic decomposition in Fourier analysis

) = (1) = ()T

aecFj
k
g =) B@)xa = Y E@xat Y BE@Xa = D> CiXe+Ff
s ()| >e 2| <e i=1
- k<1/é.

simple structure

DA

A basic decomposition in Fourier analysis

Xo(x) = (=1)** = (_1)2,- ajx;

g :F1 = [-1,1] o € R

g = 8axa = Y Eaxat+ Y E@)xa = Zc,xa i

s \E(a)\>e lg(a)l<e =t
- k<1/e. simple structure
- f has small correlation with linear functions. pseudorandom

Ve, [(f, Xa) | = [Ex [F(X)xa(x)]] < €

Getting high: Quadratic Fourier Analysis [Gowers 98, Green 07]

- “Fourier pseudorandomness” often insufficient for many applications
(e.g. counting 4-term APs in a set).

Getting high: Quadratic Fourier Analysis [Gowers 98, Green 07]

- “Fourier pseudorandomness” often insufficient for many applications
(e.g. counting 4-term APs in a set).

- [Gowers 98]: Defined uniformity norms (Gowers norms). “Right”
notion of pseudorandomness for many applications.

1F1ITe = Exy.e [F(x) - Fx +y) - F(x +2) - F(x +y + 2)].

Think f = indicator of a set. ||f|| . counts 2-dimensional "boxes" in
set.

Getting high: Quadratic Fourier Analysis [Gowers 98, Green 07]

- “Fourier pseudorandomness” often insufficient for many applications
(e.g. counting 4-term APs in a set).

- [Gowers 98]: Defined uniformity norms (Gowers norms). “Right”
notion of pseudorandomness for many applications.

1F1ITe = Exy.e [F(x) - Fx +y) - F(x +2) - F(x +y + 2)].

Think f = indicator of a set. ||f|| . counts 2-dimensional "boxes" in
set.
- Can define higher norms similarly

12, = E f(x) f(x+y) f(x+z) f(x+y+z)
us VB f(x4w) f(xty+w) f(x+z4w) f(x+y-+z+w)

Norms, Shnorms... so what?

- ||f]| 2 measures correlation with Fourier characters (linear phase
functions).

(maxp@)])" < 71, < (max|f@)])’

Norms, Shnorms... so what?

- ||f]| 2 measures correlation with Fourier characters (linear phase
functions).

(max[f@])" < 191t < (max i)’

- [Green-Tao 05, Samorodnitsky 07]: Gowers U3 norm approximately
measures correlation with the set of quadratic phase functions.
((—1)9%) for Q(x) = xTAx + bTx + ¢).

Norms, Shnorms... so what?

- ||f]| 2 measures correlation with Fourier characters (linear phase
functions).

(max[f@])" < 191t < (max i)’

- [Green-Tao 05, Samorodnitsky 07]: Gowers U3 norm approximately
measures correlation with the set of quadratic phase functions.
((—1)9%) for Q(x) = xTAx + bTx +¢). For f : F§ — [-1,1],

- fllys <e = forall Q,[{f,(-1)?)| <e

Norms, Shnorms... so what?

- ||f]| 2 measures correlation with Fourier characters (linear phase
functions).

(max[f@])" < 191t < (max i)’

- [Green-Tao 05, Samorodnitsky 07]: Gowers U3 norm approximately
measures correlation with the set of quadratic phase functions.
((—1)9%) for Q(x) = xTAx + bTx +¢). For f : F§ — [-1,1],

- |[fllys £ e = forall Q, |<f,(—1)Q>| <e.
- [[flys > € = for some Q, |<f,(—1)Q>| > n(e).

Decompositions in Quadratic Fourier Analysis

Theorem (Gowers-Wolf 09)
Given ¢ > 0, any g : F3 — [—1,1] can be decomposed as

K
g = Zc,-(—l)o" +f+e

i=1
for quadratic functions @, ..., Qx such that

Decompositions in Quadratic Fourier Analysis

Theorem (Gowers-Wolf 09)
Given ¢ > 0, any g : F3 — [—1,1] can be decomposed as

k
g = Zc,-(—l)o" +f+e
i=1
for quadratic functions @, ..., Qx such that

- fllys <e

ell; <e pseudorandom

Decompositions in Quadratic Fourier Analysis

Theorem (Gowers-Wolf 09)

Given ¢ > 0, any g : F3 — [—1,1] can be decomposed as

k
g = Zc,-(—l)o" +f+e
i=1
for quadratic functions @, ..., Qx such that
- fllys <e

- il < M(e) for M(e) = exp(1 €©). structure
1

ell; <e pseudorandom

4

Decompositions in Quadratic Fourier Analysis

Theorem (Gowers-Wolf 09)

Given ¢ > 0, any g : F3 — [—1,1] can be decomposed as
k
g = Zc,-(—l)o" +f+e
i=1
for quadratic functions @, ..., Qx such that
- [l L6 lelly L€ pseudorandom
- Yl < M(e) for M(e) = exp(1/€C). structure

4

Similar to basic Fourier decomposition, where we get
k
g=) ciXa(x) +F,
i=1

with |[(f,xa)| < e for all v and k < 1/€? (also implies 3, |ci| < 1/e).

Decompositions in Higher-Order Fourier Analysis

Theorem (Gowers-Wolf 10)

Given e > 0 and p > d, there exists M(e, p) such that any
g :F; — [~1,1] can be decomposed as

k
g = Zc,-~wp"+f—|—e

i=1
for P1, ..., Px € Py (polynomials of degree at most d) such that

- ||f||Ud+1 <e
- 2l < M(e, p).

ell; <e

Decompositions in Higher-Order Fourier Analysis

Theorem (Gowers-Wolf 10)

Given e > 0 and p > d, there exists M(e, p) such that any
g : Fp — [~1,1] can be decomposed as

g = Zk:c,-~wp"+f—|—e
for Py,..., Py € Py (po/ynomiia:/s1 of degree at most d) such that
- [Ifllgan <€
- i lal < M(e, p).

ell; <e

- Stronger decomposition theorems proved by [HL 11] and
[BFL 12].

- Decomposition theorems for the case when p < d require
non-classical polynomials.

Q1: Can we compute these decompositions
efficiently?

Algorithmic version of the basic Fourier decomposition

Theorem (Goldreich-Levin 89)

There is a randomized algorithm, which given ¢, > 0 and oracle access
to g : F3 — [—1,1], runs in time O (n®logn - (1/€?) - log(1/4)) and
outputs a decomposition

k
g = Zci'Xa;+f
i=1

such that

Algorithmic version of the basic Fourier decomposition

Theorem (Goldreich-Levin 89)

There is a randomized algorithm, which given ¢, > 0 and oracle access
to g : F3 — [—1,1], runs in time O (n®logn - (1/€?) - log(1/4)) and
outputs a decomposition

k
g = Zci'Xa;+f
i=1

such that
- k= 0(1/¢)

Algorithmic version of the basic Fourier decomposition

Theorem (Goldreich-Levin 89)
There is a randomized algorithm, which given ¢, > 0 and oracle access
to g : F3 — [—1,1], runs in time O (n®logn - (1/€?) - log(1/4)) and
outputs a decomposition
k
g = Z Ci* Xoy T f
i=1
such that
- k=0(1/€%)
- P[3i such that |¢; — g(a;)| > €] <6

Algorithmic version of the basic Fourier decomposition

Theorem (Goldreich-Levin 89)

There is a randomized algorithm, which given ¢, > 0 and oracle access
to g : F3 — [—1,1], runs in time O (n®logn - (1/€?) - log(1/4)) and
outputs a decomposition

k
g = Zci'Xa;+f
i=1

such that
- k=0(1/€%)
- P[3i such that |¢; — g(a;)| > €] <6

P[3« such that ‘?(a)’ >e <6

- Finding large Fourier coefficients has many applications.

What's so different about quadratics?

- Set of quadratic phase functions ((—1)?) is not an orthonormal
basis. No Parseval's identity.

What's so different about quadratics?

- Set of quadratic phase functions ((—1)®) is not an orthonormal
basis. No Parseval's identity.

- Proof of decomposition by Gowers and Wolf is non-constructive
(using the Hahn-Banach theorem).

What's so different about quadratics?

- Set of quadratic phase functions ((—1)?) is not an orthonormal
basis. No Parseval's identity.

- Proof of decomposition by Gowers and Wolf is non-constructive
(using the Hahn-Banach theorem).

DA

What's so different about quadratics?

- Set of quadratic phase functions ((—1)?) is not an orthonormal
basis. No Parseval's identity.

- Proof of decomposition by Gowers and Wolf is non-constructive
(using the Hahn-Banach theorem).

DA

What's so different about quadratics?

- Set of quadratic phase functions ((—1)?) is not an orthonormal
basis. No Parseval's identity.

- Proof of decomposition by Gowers and Wolf is non-constructive
(using the Hahn-Banach theorem).

DA

What's so different about quadratics?

- Set of quadratic phase functions ((—1)?) is not an orthonormal
basis. No Parseval's identity.

- Proof of decomposition by Gowers and Wolf is non-constructive
(using the Hahn-Banach theorem).

- Use inverse theorem for Gowers norm to get a contradiction.

DA

A quadratic Goldreich-Levin Theorem

Theorem (T, Wolf 11)

For M(e) = exp(1/€©), can compute in time poly(n, M(e), log(1/)), a
decomposition K
g=> a(-1)%+f+e

i=1

such that

- with probability 1 — 6,

fllys <€ and e, <e.

- Xilail < M(e) and k < (M(e))>.

Improved quadratic Goldreich-Levin Theorem

Theorem (BRTW 12)

For M(e) = O(exp(log®(1/¢))), can compute in time
poly(n, M(e), log(1/4)), a decomposition
k
g= Zc;(—l)Q’ +f+e

i=1

such that

- with probability 1 — 6, ||f]| s < € and ||e||; < e.

- ¥, lail < M(e) and k < (M(e))2.

A constructive proof of decomposition [TTV 09]

Goal: Given g : F§ — [—1,1], find a decomposition g = >, ¢;(—1)@ + f
such that ||f][s < e.

A constructive proof of decomposition [TTV 09]

Goal: Given g : F§ — [—1,1], find a decomposition g = >, ¢;(—1)@ + f
such that ||f][s < e.

Algorithm:
- hg=0,fo=g— hy,t =1.

A constructive proof of decomposition [TTV 09]

Goal: Given g : F§ — [—1,1], find a decomposition g = >, ¢;(—1)@ + f
such that ||f][s < e.

Algorithm:
- hg =0, fb:g—ho,t:]..

- while there is a quadratic function Q; such that (f,_1,(—1)@) > n

A constructive proof of decomposition [TTV 09]

Goal: Given g : F§ — [—1,1], find a decomposition g = >, ¢;(—1)@ + f
such that ||f][s < e.

Algorithm:
- hy =0, fb:g—ho,t:]..
- while there is a quadratic function Q; such that (f,_1,(—1)@) > n

- he = heatn- (D)@ = X ()@
- =g—h
= t41

[TTV 09]

A constructive proof of decomposition

Goal: Given g : F§ — [—1,1], find a decomposition g = >, ¢;(—1)@ + f

such that ||f][s < e.

Algorithm:

- hy =0, fb:g—ho,t:]..
- while there is a quadratic function Q; such that (f,_1,(—1)@) > n

= hea+0- (- = YL (-1

- h =
-f=g—h
-t =t+1

- return h

A constructive proof of decomposition [TTV 09]

Goal: Given g : F§ — [—1,1], find a decomposition g = >, ¢;(—1)@ + f
such that ||f][s < e.

Algorithm:
=0 fo=g—hot =1
- while there is a quadratic function Q; such that (f,_1,(—1)@) > n
- he = heatn (FD% = Y- (1)@

-fi = g—ht
-t =t+1
- return h

Convergence: [[fi_a >~ [£1° = 20 (fiis, (1)) 12 > o2,

A constructive proof of decomposition [TTV 09]

Goal: Given g : F§ — [—1,1], find a decomposition g = >, ¢;(—1)@ + f
such that ||f][s < e.

Algorithm:
=0 fo=g—hot =1
- while there is a quadratic function Q; such that (f,_1,(—1)@) > n
- he = heatn (FD% = Y- (1)@

-fi = g—ht
-t =t+1
- return h

Convergence: [[fi_a >~ [£1° = 20 (fiis, (1)) 12 > o2,

[Samorodnitsky 07]: VQ [((—1)?,)| <n(e) = |l <.

A constructive proof of decomposition [TTV 09]

Goal: Given g : F§ — [—1,1], find a decomposition g = >, ¢;(—1)@ + f

such that ||f][s < e.

Algorithm:
- hg=0,fo=g— hy,t =1.
is a quadratic function @; such that <ft_1, (fl)Qf> >

- while there
he = heatn(C)% = Sl (-1)@
- =g—h
-t =t+1
- return h
= 2 (fi1, (-1)%) —n? > 2

Convergence: ||fi_1|® — |||
[Samorodnitsky 07]: VQ [((—1)?,)| <n(e) = |l <.

The algorithmic problem

Question: Given f :] — {—1,1}, does there exist Q such that
(f,(—1)?) > €? If yes, find one.

The algorithmic problem

Question: Given f :] — {—1,1}, does there exist Q such that
(f,(—1)?) > €? If yes, find one.

Truth-tables of functions (—1)® form the Reed-Muller code of order 2.

The algorithmic problem

Question: Given f : F§ — {—1,1}, does there exist Q such that
(f,(~1)?) > €? If yes, find one.

Truth-tables of functions (—1)® form the Reed-Muller code of order 2.

Want a codeword inside a ball of distance 1/2 — ¢/2 around f (if one
exists).

u}
o)
1
n
it

DA

Q2: Decoding beyond the list-decoding radius

Finding codewords at large distances

Finding codewords at large distances

Finding codewords at large distances

- List decoding radius is 1.
[GKZ 08, Gopalan 10, BL 14]

Finding codewords at large distances

- List decoding radius is 1.
[GKZ 08, Gopalan 10, BL 14]

- Number of codewords within
distance 3

— € may be exponential

DA

Finding codewords at large distances

- List decoding radius is 1.
[GKZ 08, Gopalan 10, BL 14]

- Number of codewords within
distance 3

— € may be exponential

- But we only need to find one
codeword! In time poly(n)
(polylogarithmic in code length).

DA

Finding codewords at large distances

- Given (the coefficients of) a degree-d polynomial P : F} — [, the
Reed-Muller encoding of P is of length p” and is given by the table
of values {P(x)}

x€Fp-

Finding codewords at large distances

- Given (the coefficients of) a degree-d polynomial P : F} — [, the
Reed-Muller encoding of P is of length p" and is given by the table
of values {P(x)}, cpn-

- Problem: Given F : IFI’; — Iy, if there exists P € Py such that

A(Fv’D) S 1-—

T

find a P’ € Py such that

1
A(F,P) <1-=—7q

Finding codewords at large distances

- Given (the coefficients of) a degree-d polynomial P : F} — [, the
Reed-Muller encoding of P is of length p" and is given by the table
of values {P(x)}

x€Fp-

- Problem: Given F : IFI’; — Iy, if there exists P € Py such that

A(F,P) < 1—%—6

find a P’ € Py such that

1
A(F,P) < 1-= -y
p

- If there exists a Reed-Muller codeword within a ball of radius
1-— % — ¢, find one within a ball of radius 1 — % —.

Finding a single codeword: the quadratic case

DA

Finding a single codeword: the quadratic case

- [Samorodnitsky 07]: Approximate solution
to testing problem using Gowers norm.

DA

Finding a single codeword: the quadratic case

- [Samorodnitsky 07]: Approximate solution
to testing problem using Gowers norm.

39 (f,(-1)% 2 = |fllys >e

DA

Finding a single codeword: the quadratic case

- [Samorodnitsky 07]: Approximate solution
—————— . to testing problem using Gowers norm.

~ 3 (F-)) 2c = [l
Ll z e = 3Q (A (1) 2 0(0)

1
1
1
1
1

DA

Finding a single codeword: the quadratic case

- [Samorodnitsky 07]: Approximate solution
to testing problem using Gowers norm.

39 (f,(-1)% 2 = |fllys >e
= Ifllys > e = 3Q (£,(=1)¢) = n(e)

- [TW 11] convert Samorodnitsky's proof
into an algorithm. Find codeword within
distance § — 1 if there is one within 1 —¢.

DA

u}

o)
1
n

it

Finding a single codeword: the quadratic case

- [Samorodnitsky 07]: Approximate solution
to testing problem using Gowers norm.

=39 (F,(-D=ze = |fllys =
= Ifllys > e = 3Q (£,(=1)¢) = n(e)

- [TW 11] convert Samorodnitsky's proof

into an algorithm. Find codeword within
distance § — 1 if there is one within 1 —¢.

- First example of any kind of decoding
beyond the list decoding radius.

DA

Algorithmic versions of combinatorial theorems
-

~

1\

J
- Samorodnitsky’s proof applies various combinatorial theorems (e.g.
Balog-Szemerédi-Gowers) to “nice” subsets of FJ.

Algorithmic versions of combinatorial theorems

r

~

1\

J

- Samorodnitsky’s proof applies various combinatorial theorems (e.g
Balog-Szemerédi-Gowers) to “nice” subsets of FJ.

- [BSG]: If S C IFf satisfies Py yes [x +y € S] > ¢, then there exists
A C S with certain additive properties.

Algorithmic versions of combinatorial theorems

4)

. J

- Samorodnitsky’s proof applies various combinatorial theorems (e.g.
Balog-Szemerédi-Gowers) to “nice” subsets of F4.

- [BSG]: If S C IFf satisfies Py yes [x +y € S] > ¢, then there exists
A C S with certain additive properties.

- S and A are exponential in size. Need to work with randomized
membership oracles. Gives a noisy version of the set S.

Algorithmic versions of combinatorial theorems

~

. J

- Samorodnitsky’s proof applies various combinatorial theorems (e.g.
Balog-Szemerédi-Gowers) to “nice” subsets of FJ.

- [BSG]: If S C IFf satisfies Py yes [x +y € S] > ¢, then there exists
A C S with certain additive properties.

- S and A are exponential in size. Need to work with randomized
membership oracles. Gives a noisy version of the set S.

Algorithmic versions of combinatorial theorems

~

J
- Modify proofs of combinatorial theorems to go from algorithms in
the hypothesis to algorithms in conclusion.

Algorithmic versions of combinatorial theorems

()

. J

- Modify proofs of combinatorial theorems to go from algorithms in
the hypothesis to algorithms in conclusion.

- Statements of the form: “Given (approximate) membership oracle
for S, it can be converted to an oracle A whose output is
sandwiched between A; and A, with certain additive properties.”

Algorithmic versions of combinatorial theorems

()

. J

- Modify proofs of combinatorial theorems to go from algorithms in
the hypothesis to algorithms in conclusion.

- Statements of the form: “Given (approximate) membership oracle
for S, it can be converted to an oracle A whose output is
sandwiched between A; and A, with certain additive properties.”

- Prove “robust” versions of theorems from additive combinatorics.

Finding subspace structure

Most combinatorial results used here find and refine subspace structure in
S C 3.

- [BSG]: If Py yes[x +y € S] > € then JAC S sit.

|A| > 9D and |A+ A] < e PW)A].

Finding subspace structure

Most combinatorial results used here find and refine subspace structure in
S C 3.

- [BSG]: f Py yes[x+y € S] > ¢ then JAC S s.t.
Wy
|A| > 9D and |A+ A] < e PW)A].

- [Freiman-Ruzsa]: |A+ A < K-]A] = Span(A) < 20(K) . Al

Finding subspace structure

Most combinatorial results used here find and refine subspace structure in
S C 3.

- [BSG]: If Py yes[x +y € S] > € then JAC S sit.
Al > CO[S] and |4+ A| < 00,
- [Freiman-Ruzsa]: |A+ A < K-]A] = Span(A) < 20(K) . Al

- [CS09]: If |[A+ Al < K -|A|, then 1414 has a large set of “almost
periods” i.e., there is a large set X C] s.t

1ax1a(-) 14 1a(-+x) Vxe X

14 % 14(+) = distribution of sum of two random elements from A.

Finding subspace structure

- [Sanders 10]: Stronger inverse theorem for U3-norm using almost
periodicity from [CS 09].

Finding subspace structure

- [Sanders 10]: Stronger inverse theorem for U3-norm using almost
periodicity from [CS 09].

- [BRTW 14]: Sampling-based proof of [CS 09]. Improved quadratic
Goldreich-Levin.

Finding subspace structure

- [Sanders 10]: Stronger inverse theorem for U3-norm using almost
periodicity from [CS 09].

- [BRTW 14]: Sampling-based proof of [CS 09]. Improved quadratic
Goldreich-Levin.

- Question: Can sampling based proofs be used to find better
subspace structure?

Decompositions for higher-degrees

- Question: Given F : IF,’; — Fp,, does there exist a polynomial P € Py
such that ‘(wF,wP>| > €? If yes, find one.

Decompositions for higher-degrees

- Question: Given F : F} — Fp, does there exist a polynomial P € Py
such that |<wF,wP>| > €? If yes, find one.

DA

Decompositions for higher-degrees

- Question: Given F : F} — Fp, does there exist a polynomial P € Py
such that ‘(wF,wP>| > €? If yes, find one.

- Can be solved for the special case when F € Py and p > k,
theorem by [GT 09].

inverse

DA

Decomposition Theorems and Regularity

- [GT 09]: Actually prove a decomposition theorem when F € Py:
wF:r(Pla"')Pm)+)c2

where Py, ..., Py € Pg and [|f|| ja < €.

Decomposition Theorems and Regularity
- [GT 09]: Actually prove a decomposition theorem when F € Py:
W =T(P1,....,Py)+ 1
where Py, ..., Py € Pg and [|f|| ja < €.

- Here, I : F' — R. By (linear) Fourier analysis

T(Py,y...,Pn) = Z F(cl,...,cm)~wzfcip’

C15---5Cm

which gives decomposition in the required form.

Decomposition Theorems and Regularity
- [GT 09]: Actually prove a decomposition theorem when F € Py:
W =T(P1,....,Py)+ 1
where Py, ..., Py € Pg and [|f|| ja < €.

- Here, I : F' — R. By (linear) Fourier analysis

T(Py,y...,Pn) = Z F(cl,...,cm)~wzfcip"

C15---5Cm

which gives decomposition in the required form.

- Proof by [GT 09] and many other applications require the factor
B={P1,...,Pny} to satisfy certain “regularity” properties.
Obtaining regularity is the main challenge in converting their proof
to an algorithm.

Polynomial Regularity Lemmas

- Regulariy lemmas for polynomials are useful for several applications
of higher-order Fourier analysis.

- Analogues of Szemerédi regularity lemma. Regular partition a graph
is highly structured. So is a regular collection of polynomials.

Polynomial Regularity Lemmas

- Regulariy lemmas for polynomials are useful for several applications
of higher-order Fourier analysis.

- Analogues of Szemerédi regularity lemma. Regular partition a graph
is highly structured. So is a regular collection of polynomials.

- Different notions of regulariy for a factor B={Py,...,Pn}:

Polynomial Regularity Lemmas

- Regulariy lemmas for polynomials are useful for several applications
of higher-order Fourier analysis.

- Analogues of Szemerédi regularity lemma. Regular partition a graph
is highly structured. So is a regular collection of polynomials.

- Different notions of regulariy for a factor B={Py,...,Pn}:

- [GT 09]: For all (c1,...,cm) € Fy'\ {07},
rankg—1(ciP1+ - -+ cmPm) > N(m).

Polynomial Regularity Lemmas

- Regulariy lemmas for polynomials are useful for several applications
of higher-order Fourier analysis.

- Analogues of Szemerédi regularity lemma. Regular partition a graph
is highly structured. So is a regular collection of polynomials.

- Different notions of regulariy for a factor B={Py,...,Pn}:
- [GT 09]: For all (c1,...,cm) € Fy'\ {07},
rankg—1(ciP1+ - -+ cmPm) > N(m).
- [KL 08]: For all (c1,...,cm) € F\ {0}, >_ciP; and it's
derivatiives have high-rank.

- Polynomial Regularity Lemmas: Given B = {P1,..., Py}, it can be
refined to B’ = {Pj, ..., P/, } which is regular.

Polynomial Regularity Lemmas

- Regulariy lemmas for polynomials are useful for several applications
of higher-order Fourier analysis.

- Analogues of Szemerédi regularity lemma. Regular partition a graph
is highly structured. So is a regular collection of polynomials.

- Different notions of regulariy for a factor B={Py,...,Pn}:
- [GT 09]: For all (c1,...,cm) € Fy'\ {07},
rankg—1(ciP1+ - -+ cmPm) > N(m).
- [KL 08]: For all (c1,...,cm) € F\ {0}, >_ciP; and it's
derivatiives have high-rank.

- Polynomial Regularity Lemmas: Given B = {P1,..., Py}, it can be
refined to B’ = {Pj, ..., P/, } which is regular.

- Like Szemerédi's regularity lemma, proofs find a certificate of
non-regularity and make progress by local modification.

Q3: Algorithmic Regularity Lemmas

Algorithmic notions of regularity

- Algorithmic step in the regularity lemma is finding a certificate of
non-regularity.

Algorithmic notions of regularity

- Algorithmic step in the regularity lemma is finding a certificate of
non-regularity.

- [BHT 15]: Slightly modified notions of regularity (equivalent up to
some loss of parameters) and corresponding algorithmic lemmas.

Algorithmic notions of regularity

- Algorithmic step in the regularity lemma is finding a certificate of
non-regularity.

- [BHT 15]: Slightly modified notions of regularity (equivalent up to
some loss of parameters) and corresponding algorithmic lemmas.
- [GT 09]: For all (c1,...,cm) € Fy'\ {07},
lc1Pr+ -+ cmPmllys < d(m).

Algorithmic notions of regularity

- Algorithmic step in the regularity lemma is finding a certificate of
non-regularity.

- [BHT 15]: Slightly modified notions of regularity (equivalent up to
some loss of parameters) and corresponding algorithmic lemmas.
- [GT 09]: For all (c1,...,cm) € Fy'\ {07},
lc1Pr+ -+ cmPmllys < d(m).
- [KL 08]: For all (c1,...,cm) € F\{0™}, >"ciP; and it's
derivatiives have small-bias.

Algorithmic notions of regularity

- Algorithmic step in the regularity lemma is finding a certificate of
non-regularity.

- [BHT 15]: Slightly modified notions of regularity (equivalent up to
some loss of parameters) and corresponding algorithmic lemmas.
- [GT 09]: For all (c1,...,cm) € Fy'\ {07},
lc1Pr+ -+ cmPmllys < d(m).

- [KL 08]: For all (c1,...,cm) € F\{0™}, >"ciP; and it's
derivatiives have small-bias.

- Show these notions provide required equidistribution for various
known applications.

Further questions

- Higher-degree decomposition theorems.

Further questions

- Higher-degree decomposition theorems.

- (Approximate) Decoding beyond the list decoding radius for other
codes. Even for distances slightly beyond the list-decoding radius.

Further questions

- Higher-degree decomposition theorems.

- (Approximate) Decoding beyond the list decoding radius for other
codes. Even for distances slightly beyond the list-decoding radius.

- Do algorithms really need to be derived from proofs of existence?
Can there be a simpler algorithm for which a solution is guaranteed
by the proof?

Further questions

- Higher-degree decomposition theorems.

- (Approximate) Decoding beyond the list decoding radius for other
codes. Even for distances slightly beyond the list-decoding radius.

- Do algorithms really need to be derived from proofs of existence?
Can there be a simpler algorithm for which a solution is guaranteed
by the proof?

- Regularity lemmas give terrible quantitative bounds. Is there a way
to use weaker regularity properties and obtain better bounds?

Thank You

Questions?

