
Algorithmic Questions in
Higher-Order Fourier Analysis

f

1
2 − ε1

2 − η

Madhur Tulsiani
TTI Chicago

Based on joint works with
Arnab Bhattacharyya, Eli

Ben-Sasson, Pooya Hatami,
Noga Ron-Zewi and Julia

Wolf

Decomposition Theorems

Object of study Family of
algorithms or
functions

=

Structured

+

No apparent
structure

(Pseudorandom)

- Decompose an object in to structured and pseudorandom parts.

- Can often ignore the pseudorandom part for many applications.
Structured part easier to study.

Decomposition Theorems

Object of study Family of
algorithms or
functions

=

Structured

+

No apparent
structure

(Pseudorandom)

- Decompose an object in to structured and pseudorandom parts.

- Can often ignore the pseudorandom part for many applications.
Structured part easier to study.

Decomposition Theorems

Object of study Family of
algorithms or
functions

=

Structured

+

No apparent
structure

(Pseudorandom)

- Decompose an object in to structured and pseudorandom parts.

- Can often ignore the pseudorandom part for many applications.
Structured part easier to study.

Decomposition Theorems

Object of study Family of
algorithms or
functions

=

Structured

+

No apparent
structure

(Pseudorandom)

- Decompose an object in to structured and pseudorandom parts.

- Can often ignore the pseudorandom part for many applications.
Structured part easier to study.

Decomposition Theorems

Object of study Family of
algorithms or
functions

=

Structured

+

No apparent
structure

(Pseudorandom)

- Decompose an object in to structured and pseudorandom parts.

- Can often ignore the pseudorandom part for many applications.
Structured part easier to study.

A basic decomposition in Fourier analysis

g : Fn
2 → [−1, 1]

χα(x) = (−1)α·x = (−1)
∑

i
αj xj

α ∈ Fn
2

g =
∑

S
ĝ(α)χα

=
∑
|̂g(α)|>ε

ĝ(α)χα +
∑
|̂g(α)|≤ε

ĝ(α)χα =
k∑

i=1
ciχαi + f

- k ≤ 1/ε2.

- f has small correlation with linear functions. For any α,
|〈f , χα〉| = |Ex [f (x)χα(x)]| ≤ ε

- f is pseudorandom and can be ignored in many applications of
Fourier analysis.

A basic decomposition in Fourier analysis

g : Fn
2 → [−1, 1]

χα(x) = (−1)α·x = (−1)
∑

i
αj xj

α ∈ Fn
2

g =
∑

S
ĝ(α)χα

=
∑
|̂g(α)|>ε

ĝ(α)χα +
∑
|̂g(α)|≤ε

ĝ(α)χα =
k∑

i=1
ciχαi + f

- k ≤ 1/ε2.

- f has small correlation with linear functions. For any α,
|〈f , χα〉| = |Ex [f (x)χα(x)]| ≤ ε

- f is pseudorandom and can be ignored in many applications of
Fourier analysis.

A basic decomposition in Fourier analysis

g : Fn
2 → [−1, 1]

χα(x) = (−1)α·x = (−1)
∑

i
αj xj

α ∈ Fn
2

g =
∑

S
ĝ(α)χα =

∑
|̂g(α)|>ε

ĝ(α)χα +
∑
|̂g(α)|≤ε

ĝ(α)χα =
k∑

i=1
ciχαi + f

- k ≤ 1/ε2.

- f has small correlation with linear functions. For any α,
|〈f , χα〉| = |Ex [f (x)χα(x)]| ≤ ε

- f is pseudorandom and can be ignored in many applications of
Fourier analysis.

A basic decomposition in Fourier analysis

g : Fn
2 → [−1, 1]

χα(x) = (−1)α·x = (−1)
∑

i
αj xj

α ∈ Fn
2

g =
∑

S
ĝ(α)χα =

∑
|̂g(α)|>ε

ĝ(α)χα +
∑
|̂g(α)|≤ε

ĝ(α)χα =
k∑

i=1
ciχαi + f

- k ≤ 1/ε2.

- f has small correlation with linear functions. For any α,
|〈f , χα〉| = |Ex [f (x)χα(x)]| ≤ ε

- f is pseudorandom and can be ignored in many applications of
Fourier analysis.

A basic decomposition in Fourier analysis

g : Fn
2 → [−1, 1]

χα(x) = (−1)α·x = (−1)
∑

i
αj xj

α ∈ Fn
2

g =
∑

S
ĝ(α)χα =

∑
|̂g(α)|>ε

ĝ(α)χα +
∑
|̂g(α)|≤ε

ĝ(α)χα =
k∑

i=1
ciχαi + f

- k ≤ 1/ε2.

- f has small correlation with linear functions. For any α,
|〈f , χα〉| = |Ex [f (x)χα(x)]| ≤ ε

- f is pseudorandom and can be ignored in many applications of
Fourier analysis.

A basic decomposition in Fourier analysis

g : Fn
2 → [−1, 1]

χα(x) = (−1)α·x = (−1)
∑

i
αj xj

α ∈ Fn
2

g =
∑

S
ĝ(α)χα =

∑
|̂g(α)|>ε

ĝ(α)χα +
∑
|̂g(α)|≤ε

ĝ(α)χα =
k∑

i=1
ciχαi + f

- k ≤ 1/ε2.

- f has small correlation with linear functions. For any α,
|〈f , χα〉| = |Ex [f (x)χα(x)]| ≤ ε

- f is pseudorandom and can be ignored in many applications of
Fourier analysis.

Quadratic Fourier Analysis [Gowers 98, Green 07]

- “Fourier pseudorandomness” often insufficient for many applications
(e.g. counting 4-term APs in a set).

- [Gowers 98]: Defined uniformity norms (Gowers norms). “Right”
notion of pseudorandomness for many applications.

‖f ‖8
U3 = Ex ,y ,z,w

[
f(x) f(x+y) f(x+z) f(x+y+z)
f(x+w) f(x+y+w) f(x+z+w) f(x+y+z+w)

]
- ‖f ‖U2 ≤ η ⇔ “Fourier pseudorandomness”. Measures
correlation with Fourier characters (linear phase functions).

- [Green-Tao 05, Samorodnitsky 07]: Gowers U3 norm approximately
measures correlation with the set of quadratic phase functions.
((−1)Q(x) for Q(x) = xT Ax + bT x + c).

For f : Fn
2 → [−1, 1],

- ‖f ‖U3 ≤ ε =⇒ for all Q,
∣∣〈f , (−1)Q〉∣∣ ≤ ε.

- ‖f ‖U3 ≥ ε =⇒ for some Q,
∣∣〈f , (−1)Q〉∣∣ ≥ η(ε).

Quadratic Fourier Analysis [Gowers 98, Green 07]

- “Fourier pseudorandomness” often insufficient for many applications
(e.g. counting 4-term APs in a set).

- [Gowers 98]: Defined uniformity norms (Gowers norms). “Right”
notion of pseudorandomness for many applications.

‖f ‖8
U3 = Ex ,y ,z,w

[
f(x) f(x+y) f(x+z) f(x+y+z)
f(x+w) f(x+y+w) f(x+z+w) f(x+y+z+w)

]

- ‖f ‖U2 ≤ η ⇔ “Fourier pseudorandomness”. Measures
correlation with Fourier characters (linear phase functions).

- [Green-Tao 05, Samorodnitsky 07]: Gowers U3 norm approximately
measures correlation with the set of quadratic phase functions.
((−1)Q(x) for Q(x) = xT Ax + bT x + c).

For f : Fn
2 → [−1, 1],

- ‖f ‖U3 ≤ ε =⇒ for all Q,
∣∣〈f , (−1)Q〉∣∣ ≤ ε.

- ‖f ‖U3 ≥ ε =⇒ for some Q,
∣∣〈f , (−1)Q〉∣∣ ≥ η(ε).

Quadratic Fourier Analysis [Gowers 98, Green 07]

- “Fourier pseudorandomness” often insufficient for many applications
(e.g. counting 4-term APs in a set).

- [Gowers 98]: Defined uniformity norms (Gowers norms). “Right”
notion of pseudorandomness for many applications.

‖f ‖8
U3 = Ex ,y ,z,w

[
f(x) f(x+y) f(x+z) f(x+y+z)
f(x+w) f(x+y+w) f(x+z+w) f(x+y+z+w)

]
- ‖f ‖U2 ≤ η ⇔ “Fourier pseudorandomness”. Measures
correlation with Fourier characters (linear phase functions).

- [Green-Tao 05, Samorodnitsky 07]: Gowers U3 norm approximately
measures correlation with the set of quadratic phase functions.
((−1)Q(x) for Q(x) = xT Ax + bT x + c).

For f : Fn
2 → [−1, 1],

- ‖f ‖U3 ≤ ε =⇒ for all Q,
∣∣〈f , (−1)Q〉∣∣ ≤ ε.

- ‖f ‖U3 ≥ ε =⇒ for some Q,
∣∣〈f , (−1)Q〉∣∣ ≥ η(ε).

Quadratic Fourier Analysis [Gowers 98, Green 07]

- “Fourier pseudorandomness” often insufficient for many applications
(e.g. counting 4-term APs in a set).

- [Gowers 98]: Defined uniformity norms (Gowers norms). “Right”
notion of pseudorandomness for many applications.

‖f ‖8
U3 = Ex ,y ,z,w

[
f(x) f(x+y) f(x+z) f(x+y+z)
f(x+w) f(x+y+w) f(x+z+w) f(x+y+z+w)

]
- ‖f ‖U2 ≤ η ⇔ “Fourier pseudorandomness”. Measures
correlation with Fourier characters (linear phase functions).

- [Green-Tao 05, Samorodnitsky 07]: Gowers U3 norm approximately
measures correlation with the set of quadratic phase functions.
((−1)Q(x) for Q(x) = xT Ax + bT x + c). For f : Fn

2 → [−1, 1],
- ‖f ‖U3 ≤ ε =⇒ for all Q,

∣∣〈f , (−1)Q〉∣∣ ≤ ε.

- ‖f ‖U3 ≥ ε =⇒ for some Q,
∣∣〈f , (−1)Q〉∣∣ ≥ η(ε).

Quadratic Fourier Analysis [Gowers 98, Green 07]

- “Fourier pseudorandomness” often insufficient for many applications
(e.g. counting 4-term APs in a set).

- [Gowers 98]: Defined uniformity norms (Gowers norms). “Right”
notion of pseudorandomness for many applications.

‖f ‖8
U3 = Ex ,y ,z,w

[
f(x) f(x+y) f(x+z) f(x+y+z)
f(x+w) f(x+y+w) f(x+z+w) f(x+y+z+w)

]
- ‖f ‖U2 ≤ η ⇔ “Fourier pseudorandomness”. Measures
correlation with Fourier characters (linear phase functions).

- [Green-Tao 05, Samorodnitsky 07]: Gowers U3 norm approximately
measures correlation with the set of quadratic phase functions.
((−1)Q(x) for Q(x) = xT Ax + bT x + c). For f : Fn

2 → [−1, 1],
- ‖f ‖U3 ≤ ε =⇒ for all Q,

∣∣〈f , (−1)Q〉∣∣ ≤ ε.
- ‖f ‖U3 ≥ ε =⇒ for some Q,

∣∣〈f , (−1)Q〉∣∣ ≥ η(ε).

Decompositions in Quadratic Fourier Analysis

Theorem (Gowers-Wolf 09)
Given ε > 0, any g : Fn

2 → [−1, 1] can be decomposed as

g =
k∑

i=1
ci (−1)Qi + f + e

for quadratic functions Q1, . . . ,Qk such that

- ‖f ‖U3 ≤ ε, ‖e‖1 ≤ ε

-
∑

i |ci | ≤ M(ε) for M(ε) = exp(1/εC).

Similar to basic Fourier decomposition, where we get

g =
k∑

i=1
ciχαi (x) + f ,

with |〈f , χα〉| ≤ ε for all α and k ≤ 1/ε2 (also implies
∑

i |ci | ≤ 1/ε).

Decompositions in Quadratic Fourier Analysis

Theorem (Gowers-Wolf 09)
Given ε > 0, any g : Fn

2 → [−1, 1] can be decomposed as

g =
k∑

i=1
ci (−1)Qi + f + e

for quadratic functions Q1, . . . ,Qk such that

- ‖f ‖U3 ≤ ε, ‖e‖1 ≤ ε

-
∑

i |ci | ≤ M(ε) for M(ε) = exp(1/εC).

Similar to basic Fourier decomposition, where we get

g =
k∑

i=1
ciχαi (x) + f ,

with |〈f , χα〉| ≤ ε for all α and k ≤ 1/ε2 (also implies
∑

i |ci | ≤ 1/ε).

Decompositions in Quadratic Fourier Analysis

Theorem (Gowers-Wolf 09)
Given ε > 0, any g : Fn

2 → [−1, 1] can be decomposed as

g =
k∑

i=1
ci (−1)Qi + f + e

for quadratic functions Q1, . . . ,Qk such that

- ‖f ‖U3 ≤ ε, ‖e‖1 ≤ ε

-
∑

i |ci | ≤ M(ε) for M(ε) = exp(1/εC).

Similar to basic Fourier decomposition, where we get

g =
k∑

i=1
ciχαi (x) + f ,

with |〈f , χα〉| ≤ ε for all α and k ≤ 1/ε2 (also implies
∑

i |ci | ≤ 1/ε).

Decompositions in Quadratic Fourier Analysis

Theorem (Gowers-Wolf 09)
Given ε > 0, any g : Fn

2 → [−1, 1] can be decomposed as

g =
k∑

i=1
ci (−1)Qi + f + e

for quadratic functions Q1, . . . ,Qk such that

- ‖f ‖U3 ≤ ε, ‖e‖1 ≤ ε

-
∑

i |ci | ≤ M(ε) for M(ε) = exp(1/εC).

Similar to basic Fourier decomposition, where we get

g =
k∑

i=1
ciχαi (x) + f ,

with |〈f , χα〉| ≤ ε for all α and k ≤ 1/ε2 (also implies
∑

i |ci | ≤ 1/ε).

Decompositions in Higher-Order Fourier Analysis
Theorem (Gowers-Wolf 10)
Given ε > 0 and p > d, there exists M(ε, p) such that any
g : Fn

p → [−1, 1] can be decomposed as

g =
k∑

i=1
ci · ωPi + f + e

for P1, . . . ,Pk ∈ Pd (polynomials of degree at most d) such that

- ‖f ‖Ud+1 ≤ ε, ‖e‖1 ≤ ε

-
∑

i |ci | ≤ M(ε, p).

- Stronger decomposition theorems proved by [HL 11] and
[BFL 12].

- Decomposition theorems for the case when p ≤ d require
non-classical polynomials.

Decompositions in Higher-Order Fourier Analysis
Theorem (Gowers-Wolf 10)
Given ε > 0 and p > d, there exists M(ε, p) such that any
g : Fn

p → [−1, 1] can be decomposed as

g =
k∑

i=1
ci · ωPi + f + e

for P1, . . . ,Pk ∈ Pd (polynomials of degree at most d) such that

- ‖f ‖Ud+1 ≤ ε, ‖e‖1 ≤ ε

-
∑

i |ci | ≤ M(ε, p).

- Stronger decomposition theorems proved by [HL 11] and
[BFL 12].

- Decomposition theorems for the case when p ≤ d require
non-classical polynomials.

Q1: Can we compute these decompositions
efficiently?

Algorithmic version of the basic Fourier decomposition

Theorem (Goldreich-Levin 89)
There is a randomized algorithm, which given ε, δ > 0 and oracle access
to g : Fn

2 → [−1, 1], runs in time O
(
n2 log n · (1/ε2) · log(1/δ)

)
and

outputs a decomposition

g =
k∑

i=1
ci · χαi + f

such that

- k = O(1/ε2)

- P[∃i such that |ci − ĝ(αi)| ≥ ε] ≤ δ

- P[∃α such that
∣∣∣f̂ (α)

∣∣∣ ≥ ε] ≤ δ
- Finding large Fourier coefficients has many applications.

Algorithmic version of the basic Fourier decomposition

Theorem (Goldreich-Levin 89)
There is a randomized algorithm, which given ε, δ > 0 and oracle access
to g : Fn

2 → [−1, 1], runs in time O
(
n2 log n · (1/ε2) · log(1/δ)

)
and

outputs a decomposition

g =
k∑

i=1
ci · χαi + f

such that

- k = O(1/ε2)

- P[∃i such that |ci − ĝ(αi)| ≥ ε] ≤ δ

- P[∃α such that
∣∣∣f̂ (α)

∣∣∣ ≥ ε] ≤ δ
- Finding large Fourier coefficients has many applications.

Algorithmic version of the basic Fourier decomposition

Theorem (Goldreich-Levin 89)
There is a randomized algorithm, which given ε, δ > 0 and oracle access
to g : Fn

2 → [−1, 1], runs in time O
(
n2 log n · (1/ε2) · log(1/δ)

)
and

outputs a decomposition

g =
k∑

i=1
ci · χαi + f

such that

- k = O(1/ε2)

- P[∃i such that |ci − ĝ(αi)| ≥ ε] ≤ δ

- P[∃α such that
∣∣∣f̂ (α)

∣∣∣ ≥ ε] ≤ δ
- Finding large Fourier coefficients has many applications.

Algorithmic version of the basic Fourier decomposition

Theorem (Goldreich-Levin 89)
There is a randomized algorithm, which given ε, δ > 0 and oracle access
to g : Fn

2 → [−1, 1], runs in time O
(
n2 log n · (1/ε2) · log(1/δ)

)
and

outputs a decomposition

g =
k∑

i=1
ci · χαi + f

such that

- k = O(1/ε2)

- P[∃i such that |ci − ĝ(αi)| ≥ ε] ≤ δ

- P[∃α such that
∣∣∣f̂ (α)

∣∣∣ ≥ ε] ≤ δ
- Finding large Fourier coefficients has many applications.

What’s so different about quadratics?

- Set of quadratic phase functions ((−1)Q) is not an orthonormal
basis. No Parseval’s identity.

- Proof of decomposition by Gowers and Wolf is non-constructive
(using the Hahn-Banach theorem).

∑
ci (−1)Qi + f

s.t.
∑

i |ci | ≤ M(ε), ‖f ‖U3 ≤ ε

g

- Use inverse theorem for Gowers norm to get a contradiction.

What’s so different about quadratics?

- Set of quadratic phase functions ((−1)Q) is not an orthonormal
basis. No Parseval’s identity.

- Proof of decomposition by Gowers and Wolf is non-constructive
(using the Hahn-Banach theorem).

∑
ci (−1)Qi + f

s.t.
∑

i |ci | ≤ M(ε), ‖f ‖U3 ≤ ε

g

- Use inverse theorem for Gowers norm to get a contradiction.

What’s so different about quadratics?

- Set of quadratic phase functions ((−1)Q) is not an orthonormal
basis. No Parseval’s identity.

- Proof of decomposition by Gowers and Wolf is non-constructive
(using the Hahn-Banach theorem).

∑
ci (−1)Qi + f

s.t.
∑

i |ci | ≤ M(ε), ‖f ‖U3 ≤ ε

g

- Use inverse theorem for Gowers norm to get a contradiction.

What’s so different about quadratics?

- Set of quadratic phase functions ((−1)Q) is not an orthonormal
basis. No Parseval’s identity.

- Proof of decomposition by Gowers and Wolf is non-constructive
(using the Hahn-Banach theorem).

∑
ci (−1)Qi + f

s.t.
∑

i |ci | ≤ M(ε), ‖f ‖U3 ≤ ε

g

- Use inverse theorem for Gowers norm to get a contradiction.

What’s so different about quadratics?

- Set of quadratic phase functions ((−1)Q) is not an orthonormal
basis. No Parseval’s identity.

- Proof of decomposition by Gowers and Wolf is non-constructive
(using the Hahn-Banach theorem).

∑
ci (−1)Qi + f

s.t.
∑

i |ci | ≤ M(ε), ‖f ‖U3 ≤ ε

g

- Use inverse theorem for Gowers norm to get a contradiction.

What’s so different about quadratics?

- Set of quadratic phase functions ((−1)Q) is not an orthonormal
basis. No Parseval’s identity.

- Proof of decomposition by Gowers and Wolf is non-constructive
(using the Hahn-Banach theorem).

∑
ci (−1)Qi + f

s.t.
∑

i |ci | ≤ M(ε), ‖f ‖U3 ≤ ε

g

- Use inverse theorem for Gowers norm to get a contradiction.

A quadratic Goldreich-Levin Theorem

Theorem (T, Wolf 11)
For M(ε) = exp(1/εC), can compute in time poly(n,M(ε), log(1/δ)), a
decomposition

g =
k∑

i=1
ci (−1)Qi + f + e

such that

- with probability 1− δ, ‖f ‖U3 ≤ ε and ‖e‖1 ≤ ε.

-
∑

i |ci | ≤ M(ε) and k ≤ (M(ε))2.

Improved quadratic Goldreich-Levin Theorem

Theorem (BRTW 12)
For M(ε) = O(exp(log4(1/ε))), can compute in time
poly(n,M(ε), log(1/δ)), a decomposition

g =
k∑

i=1
ci (−1)Qi + f + e

such that

- with probability 1− δ, ‖f ‖U3 ≤ ε and ‖e‖1 ≤ ε.

-
∑

i |ci | ≤ M(ε) and k ≤ (M(ε))2.

A constructive proof of decomposition
Goal: Given g : Fn

2 → [−1, 1], find a decomposition
g =

∑
i ci (−1)Qi + f such that ‖f ‖U3 ≤ ε.

Algorithm:
- h0 = 0, f0 = g − h0, t = 1.
- while there is a quadratic function Qt such that〈

ft−1, (−1)Qt
〉
> η

- ht = ht−1 + η · (−1)Qt =
∑t

r=1 η · (−1)Qr

- ft = g − ht
- t = t + 1

- return ht

[TTV 09]: Terminates in at most 1/η2 steps.
[Samorodnitsky 07]: ∀Q

∣∣∣〈(−1)Q, f
〉∣∣∣ ≤ η(ε) =⇒ ‖f ‖U3 ≤ ε.

A constructive proof of decomposition
Goal: Given g : Fn

2 → [−1, 1], find a decomposition
g =

∑
i ci (−1)Qi + f such that ‖f ‖U3 ≤ ε.

Algorithm:
- h0 = 0, f0 = g − h0, t = 1.

- while there is a quadratic function Qt such that〈
ft−1, (−1)Qt

〉
> η

- ht = ht−1 + η · (−1)Qt =
∑t

r=1 η · (−1)Qr

- ft = g − ht
- t = t + 1

- return ht

[TTV 09]: Terminates in at most 1/η2 steps.
[Samorodnitsky 07]: ∀Q

∣∣∣〈(−1)Q, f
〉∣∣∣ ≤ η(ε) =⇒ ‖f ‖U3 ≤ ε.

A constructive proof of decomposition
Goal: Given g : Fn

2 → [−1, 1], find a decomposition
g =

∑
i ci (−1)Qi + f such that ‖f ‖U3 ≤ ε.

Algorithm:
- h0 = 0, f0 = g − h0, t = 1.
- while there is a quadratic function Qt such that〈

ft−1, (−1)Qt
〉
> η

- ht = ht−1 + η · (−1)Qt =
∑t

r=1 η · (−1)Qr

- ft = g − ht
- t = t + 1

- return ht

[TTV 09]: Terminates in at most 1/η2 steps.
[Samorodnitsky 07]: ∀Q

∣∣∣〈(−1)Q, f
〉∣∣∣ ≤ η(ε) =⇒ ‖f ‖U3 ≤ ε.

A constructive proof of decomposition
Goal: Given g : Fn

2 → [−1, 1], find a decomposition
g =

∑
i ci (−1)Qi + f such that ‖f ‖U3 ≤ ε.

Algorithm:
- h0 = 0, f0 = g − h0, t = 1.
- while there is a quadratic function Qt such that〈

ft−1, (−1)Qt
〉
> η

- ht = ht−1 + η · (−1)Qt =
∑t

r=1 η · (−1)Qr

- ft = g − ht
- t = t + 1

- return ht

[TTV 09]: Terminates in at most 1/η2 steps.
[Samorodnitsky 07]: ∀Q

∣∣∣〈(−1)Q, f
〉∣∣∣ ≤ η(ε) =⇒ ‖f ‖U3 ≤ ε.

A constructive proof of decomposition
Goal: Given g : Fn

2 → [−1, 1], find a decomposition
g =

∑
i ci (−1)Qi + f such that ‖f ‖U3 ≤ ε.

Algorithm:
- h0 = 0, f0 = g − h0, t = 1.
- while there is a quadratic function Qt such that〈

ft−1, (−1)Qt
〉
> η

- ht = ht−1 + η · (−1)Qt =
∑t

r=1 η · (−1)Qr

- ft = g − ht
- t = t + 1

- return ht

[TTV 09]: Terminates in at most 1/η2 steps.
[Samorodnitsky 07]: ∀Q

∣∣∣〈(−1)Q, f
〉∣∣∣ ≤ η(ε) =⇒ ‖f ‖U3 ≤ ε.

A constructive proof of decomposition
Goal: Given g : Fn

2 → [−1, 1], find a decomposition
g =

∑
i ci (−1)Qi + f such that ‖f ‖U3 ≤ ε.

Algorithm:
- h0 = 0, f0 = g − h0, t = 1.
- while there is a quadratic function Qt such that〈

ft−1, (−1)Qt
〉
> η

- ht = ht−1 + η · (−1)Qt =
∑t

r=1 η · (−1)Qr

- ft = g − ht
- t = t + 1

- return ht

[TTV 09]: Terminates in at most 1/η2 steps.

[Samorodnitsky 07]: ∀Q
∣∣∣〈(−1)Q, f

〉∣∣∣ ≤ η(ε) =⇒ ‖f ‖U3 ≤ ε.

A constructive proof of decomposition
Goal: Given g : Fn

2 → [−1, 1], find a decomposition
g =

∑
i ci (−1)Qi + f such that ‖f ‖U3 ≤ ε.

Algorithm:
- h0 = 0, f0 = g − h0, t = 1.
- while there is a quadratic function Qt such that〈

ft−1, (−1)Qt
〉
> η

- ht = ht−1 + η · (−1)Qt =
∑t

r=1 η · (−1)Qr

- ft = g − ht
- t = t + 1

- return ht

[TTV 09]: Terminates in at most 1/η2 steps.
[Samorodnitsky 07]: ∀Q

∣∣∣〈(−1)Q, f
〉∣∣∣ ≤ η(ε) =⇒ ‖f ‖U3 ≤ ε.

A constructive proof of decomposition
Goal: Given g : Fn

2 → [−1, 1], find a decomposition
g =

∑
i ci (−1)Qi + f such that ‖f ‖U3 ≤ ε.

Algorithm:
- h0 = 0, f0 = g − h0, t = 1.
- while there is a quadratic function Qt such that〈

ft−1, (−1)Qt
〉
> η

- ht = ht−1 + η · (−1)Qt =
∑t

r=1 η · (−1)Qr

- ft = g − ht
- t = t + 1

- return ht

[TTV 09]: Terminates in at most 1/η2 steps.
[Samorodnitsky 07]: ∀Q

∣∣∣〈(−1)Q, f
〉∣∣∣ ≤ η(ε) =⇒ ‖f ‖U3 ≤ ε.

The algorithmic problem

Question: Given f : Fn
2 → {−1, 1}, does there exist Q such that〈

f , (−1)Q〉 ≥ ε? If yes, find one.

Truth-tables of functions (−1)Q form the Reed-Muller code of order 2.
Want a codeword inside a ball of distance 1/2− ε/2 around f (if one
exists).

f

(−1)q

≤ 1
2 −

ε
2

The algorithmic problem

Question: Given f : Fn
2 → {−1, 1}, does there exist Q such that〈

f , (−1)Q〉 ≥ ε? If yes, find one.

Truth-tables of functions (−1)Q form the Reed-Muller code of order 2.

Want a codeword inside a ball of distance 1/2− ε/2 around f (if one
exists).

f

(−1)q

≤ 1
2 −

ε
2

The algorithmic problem

Question: Given f : Fn
2 → {−1, 1}, does there exist Q such that〈

f , (−1)Q〉 ≥ ε? If yes, find one.

Truth-tables of functions (−1)Q form the Reed-Muller code of order 2.
Want a codeword inside a ball of distance 1/2− ε/2 around f (if one
exists).

f

(−1)q

≤ 1
2 −

ε
2

Q2: Finding codewords at large distances

f

1
8

1
4 1

2 − ε

- List decoding radius is 1
4 .

[GKZ 08, Gopalan 10, BL 14]

- Number of codewords within
distance 1

2 − ε may be exponential.

- But we only need to find one
codeword! In time poly(n)
(polylogarithmic in code length).

Q2: Finding codewords at large distances

f1
8

1
4 1

2 − ε

- List decoding radius is 1
4 .

[GKZ 08, Gopalan 10, BL 14]

- Number of codewords within
distance 1

2 − ε may be exponential.

- But we only need to find one
codeword! In time poly(n)
(polylogarithmic in code length).

Q2: Finding codewords at large distances

f1
8

1
4

1
2 − ε

- List decoding radius is 1
4 .

[GKZ 08, Gopalan 10, BL 14]

- Number of codewords within
distance 1

2 − ε may be exponential.

- But we only need to find one
codeword! In time poly(n)
(polylogarithmic in code length).

Q2: Finding codewords at large distances

f1
8

1
4 1

2 − ε

- List decoding radius is 1
4 .

[GKZ 08, Gopalan 10, BL 14]

- Number of codewords within
distance 1

2 − ε may be exponential.

- But we only need to find one
codeword! In time poly(n)
(polylogarithmic in code length).

Q2: Finding codewords at large distances

f1
8

1
4 1

2 − ε

- List decoding radius is 1
4 .

[GKZ 08, Gopalan 10, BL 14]

- Number of codewords within
distance 1

2 − ε may be exponential.

- But we only need to find one
codeword! In time poly(n)
(polylogarithmic in code length).

Finding a single codeword

f

1
2 − ε

1
2 − η

- [Samorodnitsky 07]: Approximate solution
to testing problem using Gowers norm.

− ∃q
〈
f , (−1)Q〉 ≥ ε =⇒ ‖f ‖U3 ≥ ε

− ‖f ‖U3 ≥ ε =⇒ ∃Q
〈
f , (−1)Q〉 ≥ η(ε)

- Convert Samorodnitsky’s proof into an
algorithm. Find codeword within distance
1
2 − η if there is one within 1

2 − ε.

- Need to modify algorithm from [TTV 09]
to deal with approximate nature of test.

- First example of any kind of decoding
beyond the list decoding radius.

Finding a single codeword

f

1
2 − ε

1
2 − η

- [Samorodnitsky 07]: Approximate solution
to testing problem using Gowers norm.

− ∃q
〈
f , (−1)Q〉 ≥ ε =⇒ ‖f ‖U3 ≥ ε

− ‖f ‖U3 ≥ ε =⇒ ∃Q
〈
f , (−1)Q〉 ≥ η(ε)

- Convert Samorodnitsky’s proof into an
algorithm. Find codeword within distance
1
2 − η if there is one within 1

2 − ε.

- Need to modify algorithm from [TTV 09]
to deal with approximate nature of test.

- First example of any kind of decoding
beyond the list decoding radius.

Finding a single codeword

f

1
2 − ε

1
2 − η

- [Samorodnitsky 07]: Approximate solution
to testing problem using Gowers norm.
− ∃q

〈
f , (−1)Q〉 ≥ ε =⇒ ‖f ‖U3 ≥ ε

− ‖f ‖U3 ≥ ε =⇒ ∃Q
〈
f , (−1)Q〉 ≥ η(ε)

- Convert Samorodnitsky’s proof into an
algorithm. Find codeword within distance
1
2 − η if there is one within 1

2 − ε.

- Need to modify algorithm from [TTV 09]
to deal with approximate nature of test.

- First example of any kind of decoding
beyond the list decoding radius.

Finding a single codeword

f

1
2 − ε1

2 − η

- [Samorodnitsky 07]: Approximate solution
to testing problem using Gowers norm.
− ∃q

〈
f , (−1)Q〉 ≥ ε =⇒ ‖f ‖U3 ≥ ε

− ‖f ‖U3 ≥ ε =⇒ ∃Q
〈
f , (−1)Q〉 ≥ η(ε)

- Convert Samorodnitsky’s proof into an
algorithm. Find codeword within distance
1
2 − η if there is one within 1

2 − ε.

- Need to modify algorithm from [TTV 09]
to deal with approximate nature of test.

- First example of any kind of decoding
beyond the list decoding radius.

Finding a single codeword

f

1
2 − ε1

2 − η

- [Samorodnitsky 07]: Approximate solution
to testing problem using Gowers norm.
− ∃q

〈
f , (−1)Q〉 ≥ ε =⇒ ‖f ‖U3 ≥ ε

− ‖f ‖U3 ≥ ε =⇒ ∃Q
〈
f , (−1)Q〉 ≥ η(ε)

- Convert Samorodnitsky’s proof into an
algorithm. Find codeword within distance
1
2 − η if there is one within 1

2 − ε.

- Need to modify algorithm from [TTV 09]
to deal with approximate nature of test.

- First example of any kind of decoding
beyond the list decoding radius.

Finding a single codeword

f

1
2 − ε1

2 − η

- [Samorodnitsky 07]: Approximate solution
to testing problem using Gowers norm.
− ∃q

〈
f , (−1)Q〉 ≥ ε =⇒ ‖f ‖U3 ≥ ε

− ‖f ‖U3 ≥ ε =⇒ ∃Q
〈
f , (−1)Q〉 ≥ η(ε)

- Convert Samorodnitsky’s proof into an
algorithm. Find codeword within distance
1
2 − η if there is one within 1

2 − ε.

- Need to modify algorithm from [TTV 09]
to deal with approximate nature of test.

- First example of any kind of decoding
beyond the list decoding radius.

Finding a single codeword

f

1
2 − ε1

2 − η

- [Samorodnitsky 07]: Approximate solution
to testing problem using Gowers norm.
− ∃q

〈
f , (−1)Q〉 ≥ ε =⇒ ‖f ‖U3 ≥ ε

− ‖f ‖U3 ≥ ε =⇒ ∃Q
〈
f , (−1)Q〉 ≥ η(ε)

- Convert Samorodnitsky’s proof into an
algorithm. Find codeword within distance
1
2 − η if there is one within 1

2 − ε.

- Need to modify algorithm from [TTV 09]
to deal with approximate nature of test.

- First example of any kind of decoding
beyond the list decoding radius.

Algorithmic versions of combinatorial theorems

Fn
2S

A

- Samorodnitsky’s proof applies various combinatorial theorems (e.g.
Balog-Szemerédi-Gowers) to “nice” subsets of Fn

2.

- [BSG]: If S ⊆ Fn
2 satisfies Px ,y∈S [x + y ∈ S] ≥ ε, then there exists

A ⊆ S with certain additive properties.

- S and A are exponential in size. Need to work with randomized
membership oracles. Gives a noisy version of the set S.

Algorithmic versions of combinatorial theorems

Fn
2S

A

- Samorodnitsky’s proof applies various combinatorial theorems (e.g.
Balog-Szemerédi-Gowers) to “nice” subsets of Fn

2.

- [BSG]: If S ⊆ Fn
2 satisfies Px ,y∈S [x + y ∈ S] ≥ ε, then there exists

A ⊆ S with certain additive properties.

- S and A are exponential in size. Need to work with randomized
membership oracles. Gives a noisy version of the set S.

Algorithmic versions of combinatorial theorems

Fn
2S

A

- Samorodnitsky’s proof applies various combinatorial theorems (e.g.
Balog-Szemerédi-Gowers) to “nice” subsets of Fn

2.

- [BSG]: If S ⊆ Fn
2 satisfies Px ,y∈S [x + y ∈ S] ≥ ε, then there exists

A ⊆ S with certain additive properties.

- S and A are exponential in size. Need to work with randomized
membership oracles. Gives a noisy version of the set S.

Algorithmic versions of combinatorial theorems

Fn
2S

A

- Samorodnitsky’s proof applies various combinatorial theorems (e.g.
Balog-Szemerédi-Gowers) to “nice” subsets of Fn

2.

- [BSG]: If S ⊆ Fn
2 satisfies Px ,y∈S [x + y ∈ S] ≥ ε, then there exists

A ⊆ S with certain additive properties.

- S and A are exponential in size. Need to work with randomized
membership oracles. Gives a noisy version of the set S.

Algorithmic versions of combinatorial theorems

Fn
2S

A1

A2

- Modify proofs of combinatorial theorems to go from algorithms in
the hypothesis to algorithms in conclusion.

- Statements of the form: “Given (approximate) membership oracle
for S, it can be converted to an oracle A whose output is
sandwiched between A1 and A2 with certain additive properties.”

- May be useful for other applications.

Algorithmic versions of combinatorial theorems

Fn
2S

A1

A2

- Modify proofs of combinatorial theorems to go from algorithms in
the hypothesis to algorithms in conclusion.

- Statements of the form: “Given (approximate) membership oracle
for S, it can be converted to an oracle A whose output is
sandwiched between A1 and A2 with certain additive properties.”

- May be useful for other applications.

Algorithmic versions of combinatorial theorems

Fn
2S

A1

A2

- Modify proofs of combinatorial theorems to go from algorithms in
the hypothesis to algorithms in conclusion.

- Statements of the form: “Given (approximate) membership oracle
for S, it can be converted to an oracle A whose output is
sandwiched between A1 and A2 with certain additive properties.”

- May be useful for other applications.

Finding subspace structure
- Most combinatorial results used here find and refine subspace
structure in S ⊆ Fn

2.
- [BSG]: If Px ,y∈S [x + y ∈ S] ≥ ε then ∃A ⊆ S s.t.

|A| ≥ εO(1)|S| and |A + A| ≤ ε−O(1)|A|.

- [Freiman-Ruzsa]: |A + A| ≤ K · |A| =⇒ Span(A) ≤ 2O(K) · |A|.

- [CS 09]: If |A + A| ≤ K · |A|, then 1A ∗ 1A has a large set of “almost
periods” i.e., there is a large set X ⊆ Fn

2 s.t

1A ∗ 1A(·) ≈ 1A ∗ 1A(·+ x) ∀x ∈ X

- [Sanders 10]: Stronger inverse theorem for U3-norm using almost
periodicity.

- [BRTW 14]: Sampling-based proof of [CS 09]. Improved quadratic
Goldreich-Levin.

Finding subspace structure
- Most combinatorial results used here find and refine subspace
structure in S ⊆ Fn

2.
- [BSG]: If Px ,y∈S [x + y ∈ S] ≥ ε then ∃A ⊆ S s.t.

|A| ≥ εO(1)|S| and |A + A| ≤ ε−O(1)|A|.

- [Freiman-Ruzsa]: |A + A| ≤ K · |A| =⇒ Span(A) ≤ 2O(K) · |A|.

- [CS 09]: If |A + A| ≤ K · |A|, then 1A ∗ 1A has a large set of “almost
periods” i.e., there is a large set X ⊆ Fn

2 s.t

1A ∗ 1A(·) ≈ 1A ∗ 1A(·+ x) ∀x ∈ X

- [Sanders 10]: Stronger inverse theorem for U3-norm using almost
periodicity.

- [BRTW 14]: Sampling-based proof of [CS 09]. Improved quadratic
Goldreich-Levin.

Finding subspace structure
- Most combinatorial results used here find and refine subspace
structure in S ⊆ Fn

2.
- [BSG]: If Px ,y∈S [x + y ∈ S] ≥ ε then ∃A ⊆ S s.t.

|A| ≥ εO(1)|S| and |A + A| ≤ ε−O(1)|A|.

- [Freiman-Ruzsa]: |A + A| ≤ K · |A| =⇒ Span(A) ≤ 2O(K) · |A|.

- [CS 09]: If |A + A| ≤ K · |A|, then 1A ∗ 1A has a large set of “almost
periods” i.e., there is a large set X ⊆ Fn

2 s.t

1A ∗ 1A(·) ≈ 1A ∗ 1A(·+ x) ∀x ∈ X

- [Sanders 10]: Stronger inverse theorem for U3-norm using almost
periodicity.

- [BRTW 14]: Sampling-based proof of [CS 09]. Improved quadratic
Goldreich-Levin.

Finding subspace structure
- Most combinatorial results used here find and refine subspace
structure in S ⊆ Fn

2.
- [BSG]: If Px ,y∈S [x + y ∈ S] ≥ ε then ∃A ⊆ S s.t.

|A| ≥ εO(1)|S| and |A + A| ≤ ε−O(1)|A|.

- [Freiman-Ruzsa]: |A + A| ≤ K · |A| =⇒ Span(A) ≤ 2O(K) · |A|.

- [CS 09]: If |A + A| ≤ K · |A|, then 1A ∗ 1A has a large set of “almost
periods” i.e., there is a large set X ⊆ Fn

2 s.t

1A ∗ 1A(·) ≈ 1A ∗ 1A(·+ x) ∀x ∈ X

- [Sanders 10]: Stronger inverse theorem for U3-norm using almost
periodicity.

- [BRTW 14]: Sampling-based proof of [CS 09]. Improved quadratic
Goldreich-Levin.

Finding subspace structure
- Most combinatorial results used here find and refine subspace
structure in S ⊆ Fn

2.
- [BSG]: If Px ,y∈S [x + y ∈ S] ≥ ε then ∃A ⊆ S s.t.

|A| ≥ εO(1)|S| and |A + A| ≤ ε−O(1)|A|.

- [Freiman-Ruzsa]: |A + A| ≤ K · |A| =⇒ Span(A) ≤ 2O(K) · |A|.

- [CS 09]: If |A + A| ≤ K · |A|, then 1A ∗ 1A has a large set of “almost
periods” i.e., there is a large set X ⊆ Fn

2 s.t

1A ∗ 1A(·) ≈ 1A ∗ 1A(·+ x) ∀x ∈ X

- [Sanders 10]: Stronger inverse theorem for U3-norm using almost
periodicity.

- [BRTW 14]: Sampling-based proof of [CS 09]. Improved quadratic
Goldreich-Levin.

Decompositions for higher-degrees

- Question: Given F : Fn
p → Fp, does there exist a polynomial P ∈ Pd

such that
∣∣〈ωF , ωP〉∣∣ ≥ ε? If yes, find one.

f

P

≤ p−1
p − ε

- Can be solved for the special case when F ∈ Pk and p > k, inverse
theorem by [GT 09].

Decompositions for higher-degrees

- Question: Given F : Fn
p → Fp, does there exist a polynomial P ∈ Pd

such that
∣∣〈ωF , ωP〉∣∣ ≥ ε? If yes, find one.

f

P

≤ p−1
p − ε

- Can be solved for the special case when F ∈ Pk and p > k, inverse
theorem by [GT 09].

Decompositions for higher-degrees

- Question: Given F : Fn
p → Fp, does there exist a polynomial P ∈ Pd

such that
∣∣〈ωF , ωP〉∣∣ ≥ ε? If yes, find one.

f

P

≤ p−1
p − ε

- Can be solved for the special case when F ∈ Pk and p > k, inverse
theorem by [GT 09].

Decomposition Theorems and Regularity
- [GT 09]: Actually prove a decomposition theorem when F ∈ Pk :

ωF = Γ(P1, . . . ,Pm) + f2

where P1, . . . ,Pm ∈ Pd and ‖f2‖Ud+1 ≤ ε.

- Here, Γ : Fp → Fp. By (linear) Fourier analysis

Γ(P1, . . . ,Pm) =
∑

c1,...,cm

Γ̂(c1, . . . , cm) · ω
∑

i
ci Pi

which gives decomposition in the required form.

- Proof by [GT 09] and many other applications require the factor
B = {P1, . . . ,Pm} to satisfy certain “regularity” properties.
Obtaining regularity is the main challenge in converting their proof
to an algorithm.

Decomposition Theorems and Regularity
- [GT 09]: Actually prove a decomposition theorem when F ∈ Pk :

ωF = Γ(P1, . . . ,Pm) + f2

where P1, . . . ,Pm ∈ Pd and ‖f2‖Ud+1 ≤ ε.

- Here, Γ : Fp → Fp. By (linear) Fourier analysis

Γ(P1, . . . ,Pm) =
∑

c1,...,cm

Γ̂(c1, . . . , cm) · ω
∑

i
ci Pi

which gives decomposition in the required form.

- Proof by [GT 09] and many other applications require the factor
B = {P1, . . . ,Pm} to satisfy certain “regularity” properties.
Obtaining regularity is the main challenge in converting their proof
to an algorithm.

Decomposition Theorems and Regularity
- [GT 09]: Actually prove a decomposition theorem when F ∈ Pk :

ωF = Γ(P1, . . . ,Pm) + f2

where P1, . . . ,Pm ∈ Pd and ‖f2‖Ud+1 ≤ ε.

- Here, Γ : Fp → Fp. By (linear) Fourier analysis

Γ(P1, . . . ,Pm) =
∑

c1,...,cm

Γ̂(c1, . . . , cm) · ω
∑

i
ci Pi

which gives decomposition in the required form.

- Proof by [GT 09] and many other applications require the factor
B = {P1, . . . ,Pm} to satisfy certain “regularity” properties.
Obtaining regularity is the main challenge in converting their proof
to an algorithm.

Polynomial Regularity Lemmas

- Regulariy lemmas for polynomials are useful for several applications
of higher-order Fourier analysis.

- Analogues of Szemerédi regularity lemma. Regular partition a graph
is highly structured. So is a regular collection of polynomials.

- Different notions of regulariy for a factor B = {P1, . . . ,Pm}:

- [GT 09]: For all (c1, . . . , cm) ∈ Fm
p \ {0m},

rankd−1(c1P1 + · · ·+ cmPm) ≥ Λ(m).
- [KL 08]: For all (c1, . . . , cm) ∈ Fm

p \ {0m},
∑

ciPi and it’s
derivatiives have high-rank.

- Polynomial Regularity Lemmas: Given B = {P1, . . . ,Pm}, it can be
refined to B′ = {P ′1, . . . ,P ′m′} which is regular.

- Like Szemerédi’s regularity lemma, proofs find a certificate of
non-regularity and make progress by local modification.

Polynomial Regularity Lemmas

- Regulariy lemmas for polynomials are useful for several applications
of higher-order Fourier analysis.

- Analogues of Szemerédi regularity lemma. Regular partition a graph
is highly structured. So is a regular collection of polynomials.

- Different notions of regulariy for a factor B = {P1, . . . ,Pm}:

- [GT 09]: For all (c1, . . . , cm) ∈ Fm
p \ {0m},

rankd−1(c1P1 + · · ·+ cmPm) ≥ Λ(m).
- [KL 08]: For all (c1, . . . , cm) ∈ Fm

p \ {0m},
∑

ciPi and it’s
derivatiives have high-rank.

- Polynomial Regularity Lemmas: Given B = {P1, . . . ,Pm}, it can be
refined to B′ = {P ′1, . . . ,P ′m′} which is regular.

- Like Szemerédi’s regularity lemma, proofs find a certificate of
non-regularity and make progress by local modification.

Polynomial Regularity Lemmas

- Regulariy lemmas for polynomials are useful for several applications
of higher-order Fourier analysis.

- Analogues of Szemerédi regularity lemma. Regular partition a graph
is highly structured. So is a regular collection of polynomials.

- Different notions of regulariy for a factor B = {P1, . . . ,Pm}:
- [GT 09]: For all (c1, . . . , cm) ∈ Fm

p \ {0m},
rankd−1(c1P1 + · · ·+ cmPm) ≥ Λ(m).

- [KL 08]: For all (c1, . . . , cm) ∈ Fm
p \ {0m},

∑
ciPi and it’s

derivatiives have high-rank.

- Polynomial Regularity Lemmas: Given B = {P1, . . . ,Pm}, it can be
refined to B′ = {P ′1, . . . ,P ′m′} which is regular.

- Like Szemerédi’s regularity lemma, proofs find a certificate of
non-regularity and make progress by local modification.

Polynomial Regularity Lemmas

- Regulariy lemmas for polynomials are useful for several applications
of higher-order Fourier analysis.

- Analogues of Szemerédi regularity lemma. Regular partition a graph
is highly structured. So is a regular collection of polynomials.

- Different notions of regulariy for a factor B = {P1, . . . ,Pm}:
- [GT 09]: For all (c1, . . . , cm) ∈ Fm

p \ {0m},
rankd−1(c1P1 + · · ·+ cmPm) ≥ Λ(m).

- [KL 08]: For all (c1, . . . , cm) ∈ Fm
p \ {0m},

∑
ciPi and it’s

derivatiives have high-rank.

- Polynomial Regularity Lemmas: Given B = {P1, . . . ,Pm}, it can be
refined to B′ = {P ′1, . . . ,P ′m′} which is regular.

- Like Szemerédi’s regularity lemma, proofs find a certificate of
non-regularity and make progress by local modification.

Polynomial Regularity Lemmas

- Regulariy lemmas for polynomials are useful for several applications
of higher-order Fourier analysis.

- Analogues of Szemerédi regularity lemma. Regular partition a graph
is highly structured. So is a regular collection of polynomials.

- Different notions of regulariy for a factor B = {P1, . . . ,Pm}:
- [GT 09]: For all (c1, . . . , cm) ∈ Fm

p \ {0m},
rankd−1(c1P1 + · · ·+ cmPm) ≥ Λ(m).

- [KL 08]: For all (c1, . . . , cm) ∈ Fm
p \ {0m},

∑
ciPi and it’s

derivatiives have high-rank.

- Polynomial Regularity Lemmas: Given B = {P1, . . . ,Pm}, it can be
refined to B′ = {P ′1, . . . ,P ′m′} which is regular.

- Like Szemerédi’s regularity lemma, proofs find a certificate of
non-regularity and make progress by local modification.

Q3: Algorithmic Regularity Lemmas

- Algorithmic step in the regularity lemma is finding a certificate of
non-regularity.

- [BHT 15]: Slightly modified notions of regularity (equivalent up to
some loss of parameters) and corresponding algorithmic lemmas.

- [GT 09]: For all (c1, . . . , cm) ∈ Fm
p \ {0m},

‖c1P1 + · · ·+ cmPm‖Ud ≤ δ(m).

- [KL 08]: For all (c1, . . . , cm) ∈ Fm
p \ {0m},

∑
ciPi and it’s

derivatiives have small-bias.

- Show these notions provide required equidistribution for various
known applications.

Q3: Algorithmic Regularity Lemmas

- Algorithmic step in the regularity lemma is finding a certificate of
non-regularity.

- [BHT 15]: Slightly modified notions of regularity (equivalent up to
some loss of parameters) and corresponding algorithmic lemmas.

- [GT 09]: For all (c1, . . . , cm) ∈ Fm
p \ {0m},

‖c1P1 + · · ·+ cmPm‖Ud ≤ δ(m).

- [KL 08]: For all (c1, . . . , cm) ∈ Fm
p \ {0m},

∑
ciPi and it’s

derivatiives have small-bias.

- Show these notions provide required equidistribution for various
known applications.

Q3: Algorithmic Regularity Lemmas

- Algorithmic step in the regularity lemma is finding a certificate of
non-regularity.

- [BHT 15]: Slightly modified notions of regularity (equivalent up to
some loss of parameters) and corresponding algorithmic lemmas.

- [GT 09]: For all (c1, . . . , cm) ∈ Fm
p \ {0m},

‖c1P1 + · · ·+ cmPm‖Ud ≤ δ(m).

- [KL 08]: For all (c1, . . . , cm) ∈ Fm
p \ {0m},

∑
ciPi and it’s

derivatiives have small-bias.

- Show these notions provide required equidistribution for various
known applications.

Q3: Algorithmic Regularity Lemmas

- Algorithmic step in the regularity lemma is finding a certificate of
non-regularity.

- [BHT 15]: Slightly modified notions of regularity (equivalent up to
some loss of parameters) and corresponding algorithmic lemmas.

- [GT 09]: For all (c1, . . . , cm) ∈ Fm
p \ {0m},

‖c1P1 + · · ·+ cmPm‖Ud ≤ δ(m).

- [KL 08]: For all (c1, . . . , cm) ∈ Fm
p \ {0m},

∑
ciPi and it’s

derivatiives have small-bias.

- Show these notions provide required equidistribution for various
known applications.

Q3: Algorithmic Regularity Lemmas

- Algorithmic step in the regularity lemma is finding a certificate of
non-regularity.

- [BHT 15]: Slightly modified notions of regularity (equivalent up to
some loss of parameters) and corresponding algorithmic lemmas.

- [GT 09]: For all (c1, . . . , cm) ∈ Fm
p \ {0m},

‖c1P1 + · · ·+ cmPm‖Ud ≤ δ(m).

- [KL 08]: For all (c1, . . . , cm) ∈ Fm
p \ {0m},

∑
ciPi and it’s

derivatiives have small-bias.

- Show these notions provide required equidistribution for various
known applications.

Further questions

- Higher-degree decomposition theorems.

- (Approximate) Decoding beyond the list decoding radius for other
codes. Even for distances slightly beyond the list-decoding radius.

- Do algorithms really need to be derived from proofs of existence?
Can there be a simpler algorithm for which a solution is guaranteed
by the proof?

- Applications of algorithmic decomposition theorems.

Thank You

Questions?

