Algorithmic Questions in
Higher-Order Fourier Analysis

Madhur Tulsiani
TTI Chicago

Based on joint works with
Arnab Bhattacharyya, Eli

Ben-Sasson, Pooya Hatami,

Noga Ron-Zewi and Julia

Wolf

Decomposition Theorems

Decomposition Theorems

Object of study Family of
algorithms or

functions

Decomposition Theorems

4 N
= -
< _ J
Object of study Family of Structured No apparent
algorithms or structure

functions (Pseudorandom)

Decomposition Theorems

Q 77/‘
Object of study Family of
algorithms or

functions

f R
_ J
Structured

No apparent

structure
(Pseudorandom)

- Decompose an object in to structured and pseudorandom parts.

Decomposition Theorems

.)
= -
- J
Object of study Family of Structured No apparent
algorithms or structure
functions (Pseudorandom)

- Decompose an object in to structured and pseudorandom parts.

- Can often ignore the pseudorandom part for many applications.
Structured part easier to study.

A basic decomposition in Fourier analysis

«O>» «Fr «=»

« =)

DA

A basic decomposition in Fourier analysis

Xa(x) = (_1)a~x = (_1)22 ajx;

a €3

€& = Zg(a)Xa }
S

or 3 - = T 9Dae

A basic decomposition in Fourier analysis

Xa(x) = (-1)** = (_1)2,- X

aelFj
k
g =) B@)xa = Y E@xat Y B@Xa = D> CiXe+Ff
s ()| >e 2(a)<e i=1

DA

A basic decomposition in Fourier analysis

Xa(x) = (-1)** = (_1)2,- X

aelFj
k
g =) B@)xa = Y E@xat Y B@Xa = D> CiXe+Ff
s ()| >e 2(a)<e i=1
- k<1/é.

DA

A basic decomposition in Fourier analysis

Xa(x) = (-1)** = (_1)2,- yxj

g:IFg—)[—l,l] o € Fp

g =) B@)xa = Y E@xat Y B@Xa = D> CiXe+Ff
S

[g(a)|>e g(e)|<e =1

- k<1/é.

- f has small correlation with linear functions. For any «,
[(fsxa)| = [Ex [f(x)xa(¥)]| < €

A basic decomposition in Fourier analysis

Xa(x) = (-1)** = (_1)2, ajx;

g:IFg_)[_lal] ang

8 = Zg(a)Xa = Z g(a)xa + g(a)Xa = ZCiXa;+f

o~

e g(a)|>e [g(a)|<e =1

- k<1/e.
- f has small correlation with linear functions. For any «,
[(fsxa)| = [Ex [f(x)xa(¥)]| < €

- f is pseudorandom and can be ignored in many applications of
Fourier analysis.

Quadratic Fourier Analysis [Gowers 98, Green 07]

- “Fourier pseudorandomness” often insufficient for many applications
(e.g. counting 4-term APs in a set).

Quadratic Fourier Analysis [Gowers 98, Green 07]

- “Fourier pseudorandomness” often insufficient for many applications
(e.g. counting 4-term APs in a set).

- [Gowers 98]: Defined uniformity norms (Gowers norms). “Right”
notion of pseudorandomness for many applications.

f(x) f(x+y) f(x+z) f(x+y+z)

8 _
Fllgs = Bxy,zm f(x+w) f(x+y+w) f(x+z+w) f(x+y+z+w)

Quadratic Fourier Analysis [Gowers 98, Green 07]

- “Fourier pseudorandomness” often insufficient for many applications
(e.g. counting 4-term APs in a set).

- [Gowers 98]: Defined uniformity norms (Gowers norms). “Right”
notion of pseudorandomness for many applications.

f(x) f(x+y) f(x+z) f(x+y+z)

8 _
Fllgs = Bxy,zm f(x+w) f(x+y+w) f(x+z+w) f(x+y+z+w)

- [[fll,e £n & “Fourier pseudorandomness”. Measures
correlation with Fourier characters (linear phase functions).

Quadratic Fourier Analysis [Gowers 98, Green 07]

- “Fourier pseudorandomness” often insufficient for many applications
(e.g. counting 4-term APs in a set).

- [Gowers 98]: Defined uniformity norms (Gowers norms). “Right”
notion of pseudorandomness for many applications.

f(x) f(x+y) f(x+z) f(x+y+z)

8 _
Fllgs = Bxy,zm f(x+w) f(x+y+w) f(x+z+w) f(x+y+z+w)

- [[fll,e £n & “Fourier pseudorandomness”. Measures
correlation with Fourier characters (linear phase functions).

- [Green-Tao 05, Samorodnitsky 07]: Gowers U3 norm approximately
measures correlation with the set of quadratic phase functions.
((=1)9%) for Q(x) = xTAx + b"x +¢). For f : F§ — [-1,1],

- |[fllys <€ = forall Q,|<f,(—1)Q>| <e.

Quadratic Fourier Analysis [Gowers 98, Green 07]

- “Fourier pseudorandomness” often insufficient for many applications
(e.g. counting 4-term APs in a set).

- [Gowers 98]: Defined uniformity norms (Gowers norms). “Right”
notion of pseudorandomness for many applications.

f(x) f(x+y) f(x+z) f(x+y+z)

8 _
Fllgs = Bxy,zm f(x+w) f(x+y+w) f(x+z+w) f(x+y+z+w)

- [[fll,e £n & “Fourier pseudorandomness”. Measures
correlation with Fourier characters (linear phase functions).

- [Green-Tao 05, Samorodnitsky 07]: Gowers U3 norm approximately
measures correlation with the set of quadratic phase functions.
((=1)9%) for Q(x) = xTAx + b"x +¢). For f : F§ — [-1,1],

- |[fllys £ = forall Q, |<f,(—1)Q>| <e.
- |Ifllys =€ = forsome Q,|(f,(~=1)?)| > n(e).

Decompositions in Quadratic Fourier Analysis

Theorem (Gowers-Wolf 09)
Given ¢ > 0, any g : F3 — [—1,1] can be decomposed as

K
g = Zc,-(—l)o" +f+e

i=1
for quadratic functions @, ..., Qx such that

Decompositions in Quadratic Fourier Analysis

Theorem (Gowers-Wolf 09)
Given ¢ > 0, any g : F3 — [—1,1] can be decomposed as

k
g = Zc,-(—l)o" +f+e
i=1
for quadratic functions @, ..., Qx such that

- fllys <e

ell; <e

Decompositions in Quadratic Fourier Analysis

Theorem (Gowers-Wolf 09)

Given ¢ > 0, any g : F3 — [—1,1] can be decomposed as

k
g = Zc,-(—l)o" +f+e
i=1
for quadratic functions @, ..., Qx such that
Nl <€
- Yl < M(e) for M(e) = exp(1/€C).

ell; <e

Decompositions in Quadratic Fourier Analysis

Theorem (Gowers-Wolf 09)

Given ¢ > 0, any g : F3 — [—1,1] can be decomposed as

k
g = Zc,-(—l)o" +f+e
i=1
for quadratic functions @, ..., Qx such that
Nl <€
- Yl < M(e) for M(e) = exp(1/€C).

ell; <e

Similar to basic Fourier decomposition, where we get
k
g=) ciXa(x) +F,
i=1

with |[(f,xa)| < € for all v and k < 1/€? (also implies 3, |ci| < 1/e).

Decompositions in Higher-Order Fourier Analysis

Theorem (Gowers-Wolf 10)

Given e > 0 and p > d, there exists M(e, p) such that any
g : Fy — [~1,1] can be decomposed as

k
g = Zc,-~wp"+f—|—e

i=1
for P1, ..., Px € Py (polynomials of degree at most d) such that

- ||f||Ud+1 <e
- 2l < M(e, p).

ell; <e

Decompositions in Higher-Order Fourier Analysis

Theorem (Gowers-Wolf 10)

Given e > 0 and p > d, there exists M(e, p) such that any
g : Fp — [~1,1] can be decomposed as

g = Zk:c,-~wp"+f—|—e
for Py, ..., Py € Py (po/ynomiia:/s1 of degree at most d) such that
- [Ifllgan <€
- i lal < M(e, p).

ell; <e

- Stronger decomposition theorems proved by [HL 11] and
[BFL 12].

- Decomposition theorems for the case when p < d require
non-classical polynomials.

Q1: Can we compute these decompositions
efficiently?

Algorithmic version of the basic Fourier decomposition

Theorem (Goldreich-Levin 89)

There is a randomized algorithm, which given ¢, > 0 and oracle access
to g : F3 — [-1,1], runs in time O (n®logn - (1/€*) - log(1/4)) and
outputs a decomposition

k
g = Zci'Xa;+f
i=1

such that

Algorithmic version of the basic Fourier decomposition

Theorem (Goldreich-Levin 89)

There is a randomized algorithm, which given ¢, > 0 and oracle access
to g : F3 — [-1,1], runs in time O (n®logn - (1/€*) - log(1/4)) and
outputs a decomposition

k
g = Zci'Xa;+f
i=1

such that
- k= 0(1/¢)

Algorithmic version of the basic Fourier decomposition

Theorem (Goldreich-Levin 89)
There is a randomized algorithm, which given ¢, > 0 and oracle access
to g : F3 — [-1,1], runs in time O (n®logn - (1/€*) - log(1/4)) and
outputs a decomposition
k
g = Z Ci* Xoy T f
i=1
such that
- k=0(1/€%)
- P[3i such that |¢; — g(a;)| > €] <6

Algorithmic version of the basic Fourier decomposition

Theorem (Goldreich-Levin 89)

There is a randomized algorithm, which given ¢, > 0 and oracle access
to g : F3 — [-1,1], runs in time O (n®logn - (1/€*) - log(1/4)) and
outputs a decomposition

k
g = Zci'Xa;+f
i=1

such that
- k=0(1/€%)
- P[3i such that |¢; — g(a;)| > €] <6

P[Z« such that ‘/f:(a)’ >e <6

- Finding large Fourier coefficients has many applications.

What's so different about quadratics?

- Set of quadratic phase functions ((—1)?) is not an orthonormal
basis. No Parseval's identity.

What's so different about quadratics?

- Set of quadratic phase functions ((—1)®) is not an orthonormal
basis. No Parseval's identity.

- Proof of decomposition by Gowers and Wolf is non-constructive
(using the Hahn-Banach theorem).

What's so different about quadratics?

- Set of quadratic phase functions ((—1)?) is not an orthonormal
basis. No Parseval's identity.

- Proof of decomposition by Gowers and Wolf is non-constructive
(using the Hahn-Banach theorem).

DA

What's so different about quadratics?

- Set of quadratic phase functions ((—1)?) is not an orthonormal
basis. No Parseval's identity.

- Proof of decomposition by Gowers and Wolf is non-constructive
(using the Hahn-Banach theorem).

DA

What's so different about quadratics?

- Set of quadratic phase functions ((—1)?) is not an orthonormal
basis. No Parseval's identity.

- Proof of decomposition by Gowers and Wolf is non-constructive
(using the Hahn-Banach theorem).

DA

What's so different about quadratics?

- Set of quadratic phase functions ((—1)?) is not an orthonormal
basis. No Parseval's identity.

- Proof of decomposition by Gowers and Wolf is non-constructive
(using the Hahn-Banach theorem).

- Use inverse theorem for Gowers norm to get a contradiction.

DA

A quadratic Goldreich-Levin Theorem

Theorem (T, Wolf 11)

For M(e) = exp(1/€©), can compute in time poly(n, M(e), log(1/6)), a
decomposition K
g=> ca(-1)%+f+e

i=1

such that

- with probability 1 — 6,

fllys <€ and e, <e.

- Xilail < M(e) and k < (M(e)).

Improved quadratic Goldreich-Levin Theorem

Theorem (BRTW 12)

For M(e) = O(exp(log®(1/¢))), can compute in time
poly(n, M(e), log(1/4)), a decomposition
k
g= Zc;(—l)Q’ +f+e

i=1

such that

- with probability 1 — 6, ||f]| s < € and ||e||; < e.

- ¥, lail < M(e) and k < (M(e))2.

A constructive proof of decomposition

Goal: Given g : F5 — [—1,1], find a decomposition
g = ci(—1)9 + f such that |||z <e.

A constructive proof of decomposition

Goal: Given g : F5 — [—1,1], find a decomposition
g = ci(—1)9 + f such that |||z <e.

Algorithm:
-hg=0,fo=g—hy,t =1.

A constructive proof of decomposition

Goal: Given g : F5 — [—1,1], find a decomposition
g =Y c(—1)9 + f such that ||f|| s <e.

Algorithm:
-hg=0,fo=g—hy,t =1.
- while there is a quadratic function @Q; such that
(fr, (1)) >

A constructive proof of decomposition

Goal: Given g : F5 — [—1,1], find a decomposition
g =Y c(—1)9 + f such that ||f|| s <e.

Algorithm:
-hg=0,fo=g—hy,t =1.
- while there is a quadratic function @Q; such that
(fr, (1)) >
-h = he_1+1- (_I)Qt = 2:217}'(—1)0'

- £ g— ht
-t t+1

A constructive proof of decomposition

Goal: Given g : F5 — [—1,1], find a decomposition
g =Y c(—1)9 + f such that ||f|| s <e.

Algorithm:
-hg=0,fo=g—hy,t =1.
- while there is a quadratic function @Q; such that
(fr, (1)) >

= h_1+7- (_I)Qt = Z::1 n- (_1)0'

- h,
- f
-t

= g—h
= t+1

- return h;

A constructive proof of decomposition

Goal: Given g : F5 — [—1,1], find a decomposition
g =Y c(—1)9 + f such that ||f|| s <e.

Algorithm:
-hg=0,fo=g—hy,t =1.
- while there is a quadratic function @Q; such that
(fr, (1)) >

= h_1+7- (_I)Qt = Z::1 n- (_1)0'

- h,
- f
-t

=g—h
= t+1
- return h;
[TTV 09]: Terminates in at most 1/5? steps.

A constructive proof of decomposition

Goal: Given g : F5 — [—1,1], find a decomposition
g =Y c(—1)9 + f such that ||f|| s <e.

Algorithm:
-hg=0,fo=g—hy,t =1.

- while there is a quadratic function @Q; such that
(fin, (-1)%) >

b= bt ((D% = S (-)@
- f =

-t

g— ht
t+1

- return h;

[TTV 09]: Terminates in at most 1/5? steps.
[Samorodnitsky 07]: VQ‘<(—1)Q, f>‘ <nle) = |fllys <e

A constructive proof of decomposition

Goal: Given g : F5 — [—1,1], find a decomposition
g =Y c(—1)9 + f such that ||f|| s <e.

Algorithm:
-hg=0,fo=g—hy,t =1.

- while there is a quadratic function Q: such that
<ft—17(_1)Qt> > 7

b= heitns(CD)% = S (-)@
- f =

-t

g— ht
t+1

- return h;

[TTV 09]: Terminates in at most 1/5? steps.
[Samorodnitsky 07]: VQ‘<(—1)Q, f>‘ <nle) = |fllys <e

The algorithmic problem

Question: Given f :] — {—1,1}, does there exist Q such that
(f,(—1)?) > €? If yes, find one.

The algorithmic problem

Question: Given f :] — {—1,1}, does there exist Q such that
(f,(—1)?) > €? If yes, find one.

Truth-tables of functions (—1)® form the Reed-Muller code of order 2.

The algorithmic problem

Question: Given f : F§ — {—1,1}, does there exist Q such that
(f,(~1)?) > €? If yes, find one.

Truth-tables of functions (—1)® form the Reed-Muller code of order 2.

Want a codeword inside a ball of distance 1/2 — ¢/2 around f (if one
exists).

u}
o)
1
n
it

DA

Q2: Finding codewords at large distances

Q2: Finding codewords at large distances

Q2: Finding codewords at large distances

- List decoding radius is 1.
[GKZ 08, Gopalan 10, BL 14]

Q2: Finding codewords at large distances

- List decoding radius is 1.
[GKZ 08, Gopalan 10, BL 14]

- Number of codewords within
distance 3

— € may be exponential

DA

Q2: Finding codewords at large distances

- List decoding radius is 1.
[GKZ 08, Gopalan 10, BL 14]

- Number of codewords within
distance 3

— € may be exponential

- But we only need to find one
codeword! In time poly(n)
(polylogarithmic in code length).

DA

Finding a single codeword

=] 5 = = E DA

Finding a single codeword

- [Samorodnitsky 07]: Approximate solution
to testing problem using Gowers norm.

DA

Finding a single codeword

- [Samorodnitsky 07]: Approximate solution
to testing problem using Gowers norm.

=3 (f.(-1)9) 2 = |flly>e

DA

Finding a

single codeword

- [Samorodnitsky 07]: Approximate solution
to testing problem using Gowers norm.

=3 (f.(-1)9) 2 = |flly>e

= [Ifllys = e = 3Q (£,(-=1)¢) = n(e)

DA

Finding a single codeword

- [Samorodnitsky 07]: Approximate solution
to testing problem using Gowers norm.

=3 (f.(-1)9) 2 = |flly>e

= [Ifllys = e = 3Q (£,(-=1)¢) = n(e)

Convert Samorodnitsky's proof into an

algorithm. Find codeword within distance
1 — 1 if there is one within 1 — .

DA

Finding a single codeword

- [Samorodnitsky 07]: Approximate solution
to testing problem using Gowers norm.

~3g (DY 2e = [flp=>e
— flls > € = 3Q (£,(-1)9) > n(¢)

\

- Convert Samorodnitsky's proof into an

algorithm. Find codeword within distance
1 — 1 if there is one within 1 — .

1
1
1
1
1
1

1

- Need to modify algorithm from [TTV 09]
to deal with approximate nature of test.

DA

Finding a single codeword

- [Samorodnitsky 07]: Approximate solution
to testing problem using Gowers norm.

=3 (f.(-1)9) 2 = |flly>e

—fllys 2 e = 3Q (£,(=1)) = n(e)

Convert Samorodnitsky's proof into an

algorithm. Find codeword within distance
1 — 1 if there is one within 1 — .

Need to modify algorithm from [TTV 09]
to deal with approximate nature of test.

First example of any kind of decoding
beyond the list decoding radius.

DA

Algorithmic versions of combinatorial theorems
-

~

1\

J
- Samorodnitsky’s proof applies various combinatorial theorems (e.g.
Balog-Szemerédi-Gowers) to “nice” subsets of FJ.

Algorithmic versions of combinatorial theorems

r

~

1\

J

- Samorodnitsky’s proof applies various combinatorial theorems (e.g
Balog-Szemerédi-Gowers) to “nice” subsets of FJ.

- [BSG]: If S C IFf satisfies Py yes [x + ¥ € S] > ¢, then there exists
A C S with certain additive properties.

Algorithmic versions of combinatorial theorems

4)

. J

- Samorodnitsky’s proof applies various combinatorial theorems (e.g.
Balog-Szemerédi-Gowers) to “nice” subsets of F4.

- [BSG]: If S C IFf satisfies Py yes [x + ¥ € S] > ¢, then there exists
A C S with certain additive properties.

- S and A are exponential in size. Need to work with randomized
membership oracles. Gives a noisy version of the set S.

Algorithmic versions of combinatorial theorems

~

. J

- Samorodnitsky’s proof applies various combinatorial theorems (e.g.
Balog-Szemerédi-Gowers) to “nice” subsets of FJ.

- [BSG]: If S C IFf satisfies Py yes [x + ¥ € S] > ¢, then there exists
A C S with certain additive properties.

- S and A are exponential in size. Need to work with randomized
membership oracles. Gives a noisy version of the set S.

Algorithmic versions of combinatorial theorems

~

J
- Modify proofs of combinatorial theorems to go from algorithms in
the hypothesis to algorithms in conclusion.

Algorithmic versions of combinatorial theorems

4)

. J

- Modify proofs of combinatorial theorems to go from algorithms in
the hypothesis to algorithms in conclusion.

- Statements of the form: “Given (approximate) membership oracle
for S, it can be converted to an oracle A whose output is
sandwiched between A; and A, with certain additive properties.”

Algorithmic versions of combinatorial theorems

4)

. J

- Modify proofs of combinatorial theorems to go from algorithms in
the hypothesis to algorithms in conclusion.

- Statements of the form: “Given (approximate) membership oracle
for S, it can be converted to an oracle A whose output is
sandwiched between A; and A, with certain additive properties.”

- May be useful for other applications.

Finding subspace structure

- Most combinatorial results used here find and refine subspace
structure in S C 7.

- [BSG]: If Py yes[x+y € S] > ethen JAC S sit.

A > 9M)|S| and |A+ A] < e CD)A]

Finding subspace structure

- Most combinatorial results used here find and refine subspace
structure in S C 7.

- [BSG]: f Py yes[x+y € S] > € then JAC S s.t.
Y
A > 9M)|S| and |A+ A] < e CD)A]

- [Freiman-Ruzsa]: |A+A| < K-|A] = Span(A) < 2°0(K).|A].

Finding subspace structure

- Most combinatorial results used here find and refine subspace
structure in S C 7.

- [BSG]: f Py yes[x+y € S] > € then JAC S s.t.
Y
A > 9M)|S| and |A+ A] < e CD)A]

- [Freiman-Ruzsa]: |A+A| < K-|A] = Span(A) < 2°0(K).|A].

- [CS09]: If |[A+ Al < K -|A|, then 14 %14 has a large set of “almost
periods” i.e., there is a large set X C 7] s.t

1ax1a(-) = 1ax1a(- + x) Vx € X

Finding subspace structure

- Most combinatorial results used here find and refine subspace
structure in S C 7.

- [BSG]: If Py yes[x+y € S] > e then JAC S st
Al > D[] and |A+ A| < e CW)A]

- [Freiman-Ruzsa]: |A+A| < K-|A] = Span(A) < 2°0(K).|A].

- [CS09]: If |[A+ Al < K -|A|, then 14 %14 has a large set of “almost
periods” i.e., there is a large set X C 7] s.t

1ax1a(-) = 1ax1a(- + x) Vx € X

- [Sanders 10]: Stronger inverse theorem for U3-norm using almost
periodicity.

Finding subspace structure

- Most combinatorial results used here find and refine subspace
structure in S C 7.

- [BSG]: If Py yes[x+y € S] > e then JAC S st
Al > D[] and |A+ A| < e CW)A]

- [Freiman-Ruzsa]: |A+A| < K-|A] = Span(A) < 2°0(K).|A].

[CSQ9]: If [A+ A] < K- |A|, then 1414 has a large set of “almost
periods” i.e., there is a large set X C] s.t

1ax1a(-) = 1ax1a(- + x) Vx € X
[Sanders 10]: Stronger inverse theorem for U3-norm using almost
periodicity.

- [BRTW 14]: Sampling-based proof of [CS 09]. Improved quadratic
Goldreich-Levin.

Decompositions for higher-degrees

- Question: Given F : IF,’; — Fp,, does there exist a polynomial P € Py
such that ‘(wF,wP>| > €? If yes, find one.

Decompositions for higher-degrees

- Question: Given F : F} — Fp, does there exist a polynomial P € Py
such that |<wF,wP>| > €? If yes, find one.

DA

Decompositions for higher-degrees

- Question: Given F : F} — Fp, does there exist a polynomial P € Py
such that ‘(wF,wP>| > €? If yes, find one.

- Can be solved for the special case when F € Py and p > k,
theorem by [GT 09].

inverse

DA

Decomposition Theorems and Regularity

- [GT 09]: Actually prove a decomposition theorem when F € Py:
W =T(Py,...,Pn)+ £

where Py, ..., Py € Py and [|f| jass < €.

Decomposition Theorems and Regularity
- [GT 09]: Actually prove a decomposition theorem when F € Py:
wh =T(P1,....,Py) + £
where Py, ..., Py € Py and [|f| jass < €.

- Here, I : F, — F,. By (linear) Fourier analysis

(P Pm) = 3 Tla,... cm) w2

Clye-5Cm

which gives decomposition in the required form.

Decomposition Theorems and Regularity
- [GT 09]: Actually prove a decomposition theorem when F € Py:
wh =T(P1,....,Py) + £
where Py, ..., Py € Py and [|f| jass < €.

- Here, I : F, — F,. By (linear) Fourier analysis

(P Pm) = 3 Tla,... cm) w2

Clye-5Cm

which gives decomposition in the required form.

- Proof by [GT 09] and many other applications require the factor
B ={Py,...,Pn} to satisfy certain “regularity” properties.
Obtaining regularity is the main challenge in converting their proof
to an algorithm.

Polynomial Regularity Lemmas

- Regulariy lemmas for polynomials are useful for several applications
of higher-order Fourier analysis.

- Analogues of Szemerédi regularity lemma. Regular partition a graph
is highly structured. So is a regular collection of polynomials.

Polynomial Regularity Lemmas

- Regulariy lemmas for polynomials are useful for several applications
of higher-order Fourier analysis.

- Analogues of Szemerédi regularity lemma. Regular partition a graph
is highly structured. So is a regular collection of polynomials.

- Different notions of regulariy for a factor B={Py,...,Pn}:

Polynomial Regularity Lemmas

- Regulariy lemmas for polynomials are useful for several applications
of higher-order Fourier analysis.

- Analogues of Szemerédi regularity lemma. Regular partition a graph
is highly structured. So is a regular collection of polynomials.

- Different notions of regulariy for a factor B={Py,...,Pn}:

- [GT 09]: For all (c1,...,cm) € Fy'\ {07},
rankg—1(ciP1+ - -+ cmPm) > N(m).

Polynomial Regularity Lemmas

- Regulariy lemmas for polynomials are useful for several applications
of higher-order Fourier analysis.

- Analogues of Szemerédi regularity lemma. Regular partition a graph
is highly structured. So is a regular collection of polynomials.

- Different notions of regulariy for a factor B={Py,...,Pn}:
- [GT 09]: For all (c1,...,cm) € Fy'\ {07},
rankg—1(ciP1+ - -+ cmPm) > N(m).
- [KL 08]: For all (c1,...,cm) € F\{0™}, >_ciP; and it's
derivatiives have high-rank.

- Polynomial Regularity Lemmas: Given B = {Py,..., Py}, it can be
refined to B’ = {Pj, ..., P/, } which is regular.

Polynomial Regularity Lemmas

- Regulariy lemmas for polynomials are useful for several applications
of higher-order Fourier analysis.

- Analogues of Szemerédi regularity lemma. Regular partition a graph
is highly structured. So is a regular collection of polynomials.

- Different notions of regulariy for a factor B={Py,...,Pn}:
- [GT 09]: For all (c1,...,cm) € Fy'\ {07},
rankg—1(ciP1+ - -+ cmPm) > N(m).
- [KL 08]: For all (c1,...,cm) € F\{0™}, >_ciP; and it's
derivatiives have high-rank.

- Polynomial Regularity Lemmas: Given B = {Py,..., Py}, it can be
refined to B’ = {Pj, ..., P/, } which is regular.

- Like Szemerédi's regularity lemma, proofs find a certificate of
non-regularity and make progress by local modification.

Q3: Algorithmic Regularity Lemmas

- Algorithmic step in the regularity lemma is finding a certificate of
non-regularity.

Q3: Algorithmic Regularity Lemmas

- Algorithmic step in the regularity lemma is finding a certificate of
non-regularity.

- [BHT 15]: Slightly modified notions of regularity (equivalent up to
some loss of parameters) and corresponding algorithmic lemmas.

Q3: Algorithmic Regularity Lemmas

- Algorithmic step in the regularity lemma is finding a certificate of
non-regularity.

- [BHT 15]: Slightly modified notions of regularity (equivalent up to
some loss of parameters) and corresponding algorithmic lemmas.
- [GT 09]: For all (c1,...,cm) € Fy'\ {07},
lc1Pr+ -+ cmPumllys < d(m).

Q3: Algorithmic Regularity Lemmas

- Algorithmic step in the regularity lemma is finding a certificate of
non-regularity.

- [BHT 15]: Slightly modified notions of regularity (equivalent up to
some loss of parameters) and corresponding algorithmic lemmas.
- [GT 09]: For all (c1,...,cm) € Fy'\ {07},
lc1Pr+ -+ cmPumllys < d(m).
- [KL 08]: For all (c1,...,cm) € F\{0™}, >°ciP; and it's
derivatiives have small-bias.

Q3: Algorithmic Regularity Lemmas

- Algorithmic step in the regularity lemma is finding a certificate of
non-regularity.

- [BHT 15]: Slightly modified notions of regularity (equivalent up to
some loss of parameters) and corresponding algorithmic lemmas.
- [GT 09]: For all (c1,...,cm) € Fy'\ {07},
lc1Pr+ -+ cmPumllys < d(m).

- [KL 08]: For all (c1,...,cm) € F\{0™}, >°ciP; and it's
derivatiives have small-bias.

- Show these notions provide required equidistribution for various
known applications.

Further questions

- Higher-degree decomposition theorems.

- (Approximate) Decoding beyond the list decoding radius for other
codes. Even for distances slightly beyond the list-decoding radius.

- Do algorithms really need to be derived from proofs of existence?
Can there be a simpler algorithm for which a solution is guaranteed

by the proof?

- Applications of algorithmic decomposition theorems.

Thank You

Questions?

