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Setting

∗ f : Fn → R

I F = Fp.
I p is a fixed prime, and n is large

∗ e(x) := ep(x) := e2πix/p.

x , y , z ∈ Fn, X ,Y ,Z ∈ (Fn)k .
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Fourier Analysis and Higher-order Fourier Analysis
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Fourier Analysis
Study a function by looking at how it correlates with linear functions.

f : Fn → R,
f =

∑
σ∈Fn

f̂σχσ.

χσ = e(〈σ, x〉) = e(
∑

i σixi)

Applications
Useful in controling several expressions regarding a given function,
such as approximate Linearity, density of 3-term APs.
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Approximate Linearity (As seen in an analysis of BLR test)

f : Fn
2 → {0,1}, letting g(x) = (−1)f (x)

Prx ,y (f (x + y) = f (x) + f (y)) =
1
2

+
1
2
Ex ,y (g(x + y)g(x)g(y))

=
1
2

+
1
2

∑
σ1,σ2,σ3∈Fn

2

ĝσ1 ĝσ2 ĝσ3Ex ,ye2(σt
1x + σt

2y + σt
3(x + y))

=
1
2

+
1
2

∑
σ∈Fn

2

ĝ3
σ ≤ max

σ
ĝσ

Correlation with characters captures approximate linearity.
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ĝ3
σ ≤ max

σ
ĝσ
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3-term Arithmetic Progressions
A ⊂ Fn

p, let g(x) = 1A(x).

Prx ,d (x , x + d , x + 2d ∈ A) = Ex ,dg(x)g(x + d)g(x + 2d)

=
∑

σ1,σ2,σ3

ĝσ1 ĝσ2 ĝσ3Ex ,ye2(σt
1x + σt

2(x + d) + σt
3(x + 2d))

=
∑
σ

|ĝσ|2ĝ−2σ = ĝ3
0 +

∑
σ 6=0

|ĝσ|2ĝ−2σ

Correlation with characters can control density of 3-term APs.
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Higher-order Fourier Analysis
Introduce higher degree phase polynomials, e(P(x)) instead of
characters e(σtx).
Study a function by looking at how it correlates with these
higher-order terms.

More complex behavior, such as 4-APs.

Need approximation of functions by a linear combination of these
higher-order polynomials.
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Decomposition Theorems as a result of Inverse Theorems
[Bergelson, Green, Samorodnitsky, Szegedy, Tao, Ziegler]

f ≈Ud+1 Γ(P1, ...,PC),

where P1, ...,PC are degree ≤ d polynomials.

f ≈
∑
σ∈FC

Γ̂σe(
∑
i∈[C]

σiPi). (1)

No Orthogonality, unlike in classical Fourier analysis!
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Regularity [Green-Tao, Kaufman-Lovett]
High-rank polynomials are unbiased
|Exe(P(x))| < ε

Pr(P = a) ≈ 1/p

Near-Orthogonality: High-rank collection of polynomials provide
near-orthogonality.
Approximate Equidistribution: For high-rank collection of
polynomials, (P1(x), ...,PC(x)) is distributed close to uniform on
FC .

Regularization [Green-Tao, Kaufman-Lovett]
Any collection of polynomials can be refined to a high-rank collection.

Can assume P1, ...,PC in f ≈ Γ(P1, ...,PC) is a high-rank collection.
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Figure: f
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Figure: Approximation by polynomials: Γ(P1, ...,PC)
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Figure: Regular refinement: Γ′(Q1, ...,Qc)

Pooya Hatami (University of Chicago) Regularity for Polynomials and Linear Forms October 18, 2014 12 / 29



But is this sufficient for applications?

Developed in order to understand more complex averages.
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Density of Linear Patterns, such as APs

Ex ,y∈Fn f (x))f (x + y)) · · · f (x + (k − 1)y), (2)

EX∈(Fn)k f (L1(X ))f (L2(X )) · · · f (Lm(X )), (3)

Li = (λi,1, . . . , λi,k ) ∈ Fk is a linear form and Li(X ) =
∑k

j=1 λi,jxi .

Using f ≈
∑

σ∈FC Γ̂σe(
∑

i∈[C] σiPi) we have

(2) ≈
∑

σ1,...,σm∈FC

Cσ1,...,σme(
∑

i∈[m],j∈[C]

σj,iPi(Lj(X ))),

We need stronger near-orthogonality over sets of linear forms!
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Studying a function by Sampling a Subspace

Property Testing
[BFL, BFHHL] Every locally characterizable “algebraic” property is
testable.

Test “algebraic” properties of f by querying it over a random subspace.

Need to analyze the distribution of f |V .
Let L1, . . . ,Lpk be the points of a random V .
f ≈ Γ(P1(x), . . . ,PC(x)).

We need to understand the joint distribution
(
Pi(Lj(X ))

)
i∈[C],j∈[pk ]

.
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We need to understand the joint distribution of
P1(L1(X )) . . . PC(L1(X ))
P1(L2(X )) . . . PC(L2(X ))
...
P1(Lm(X )) . . . PC(Lm(X ))



[Kaufman-Lovett, Green-Tao]:
If P1, ...,PC are of “high rank”, then P1(X ), ...,PC(X ), are almost
independent,
The entries in each row are almost independent.

Cannot expect almost independence for all entries!
I e.g. deg(P) = 1, then P(x + y) + P(z) = P(x) + P(y + z).
I e.g. deg(P) < d , then

∑
ω∈{0,1}d+1 (−1)|ω|P(X +

∑
i∈ω Yi ) = 0.
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Theorem (Strong Regularity)
For a high-rank collection of polynomials, up to a controlable error,

These degree related dependencies are the only dependencies

Large values of p: [Hamed Hatami, Lovett 2011].
General p, but affine systems of linear forms: [Bhattacharyya,
Fischer, Hamed Hatami, P. H., and Lovett 2013].
General case: [H. Hatami, P.H., and Lovett, General systems of
linear forms].

Pooya Hatami (University of Chicago) Regularity for Polynomials and Linear Forms October 18, 2014 17 / 29



Theorem (Strong Regularity)
For a high-rank collection of polynomials, up to a controlable error,

These degree related dependencies are the only dependencies

Large values of p: [Hamed Hatami, Lovett 2011].

General p, but affine systems of linear forms: [Bhattacharyya,
Fischer, Hamed Hatami, P. H., and Lovett 2013].
General case: [H. Hatami, P.H., and Lovett, General systems of
linear forms].

Pooya Hatami (University of Chicago) Regularity for Polynomials and Linear Forms October 18, 2014 17 / 29



Theorem (Strong Regularity)
For a high-rank collection of polynomials, up to a controlable error,

These degree related dependencies are the only dependencies

Large values of p: [Hamed Hatami, Lovett 2011].
General p, but affine systems of linear forms: [Bhattacharyya,
Fischer, Hamed Hatami, P. H., and Lovett 2013].

General case: [H. Hatami, P.H., and Lovett, General systems of
linear forms].

Pooya Hatami (University of Chicago) Regularity for Polynomials and Linear Forms October 18, 2014 17 / 29



Theorem (Strong Regularity)
For a high-rank collection of polynomials, up to a controlable error,

These degree related dependencies are the only dependencies

Large values of p: [Hamed Hatami, Lovett 2011].
General p, but affine systems of linear forms: [Bhattacharyya,
Fischer, Hamed Hatami, P. H., and Lovett 2013].
General case: [H. Hatami, P.H., and Lovett, General systems of
linear forms].

Pooya Hatami (University of Chicago) Regularity for Polynomials and Linear Forms October 18, 2014 17 / 29




P1(L1(X )) . . . PC(L1(X ))
P1(L2(X )) . . . PC(L2(X ))
...
P1(Lm(X )) . . . PC(Lm(X ))



Columns are almost independently distributed.
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Theorem. (Near Orthogonality [Hamed Hatami, P.H., Lovett])
P1, . . . ,PC be a high-rank set of polynomials. Let

PΛ(X ) =
∑

i∈[C],j∈[m]

λi,jPi(Lj(X )).

Then
PΛ ≡ 0 or

∣∣∣EX∈(Fn)` [e(PΛ)]
∣∣∣ < ε

PΛ ≡ 0 if and only if the same is true for any collection of same degree
polynomials.
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PΛ(X ) =
∑

i∈[C],j∈[m]

λi,jPi(Lj(X ))

Proof Ideas.

Reduce to the case when |Lj | ≤ deg(Pi).
I e.g. Q(2x + z) = 2Q(x) + Q(z)− 2Q(x + z)−Q(2x).

Reduce to the case that the polynomials are homogeneous.
Applications of certain derivative operators Di s.t.

(|EX e(PΛ(X ))|)2d
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Technical Difficulties with |F| ≤ d
The inverse theorems for Gowers norm is no longer true with
polynomials [Lovett-Meshulam-Samorodnitsky, Green-Tao]

The inverse theorem holds with more complex “nonclassical
polynomials” [Tao-Ziegler].

I e.g. P(x1, x2) =
x2

1
p2 mod 1, deg(P) = p.

I Much more complex behavior.
I Cannot simply assume homogeneity.

[H.Hatami, P.H., Lovett]:
Define a notion of homogeneity for nonclassical polynomials,
P(cx) = λcP(x).
Show that every degree-d polynomial can be written as linear
combination of homogeneous polynomials.
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“Application”
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Do Gowers norms control density of linear patterns

EX f (L1(X )) · · · f (Lm(X ))?

Yes: seen in proofs of Szemerédi Theorem, Green-Tao Theorem
on APs in Primes.

[Green-Tao] Cauchy-Schwarz Complexity

|Ef (L1(X )) · · · f (Lm(X ))| ≤ min
i∈[m]
‖f‖Us+1 ,

where s is the Cauchy-Schwarz complexity of {L1, ...,Lm}.

Gowers-Wolf: There are cases where CS-Complexity s is not optimal.

‖f‖Us′ ≤ δ(ε)⇒ |Ef (M1(X )) · · · f (M`(X ))| ≤ ε with s′ < s + 1.
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True Complexity [Gowers-Wolf]
Define the true complexity of L1, ...,Lm to be the smallest d such that

‖f‖Ud+1 ≤ δ(ε)⇒ |Ef (L1(X )) · · · f (Lm(X ))| ≤ ε

Theorem (CS− Complexity < |F|, [Gowers-Wolf])
A characterization of true complexity for sets of linear forms.

Conjecture ([Gowers-Wolf])

Let d be the smallest such that Ld+1
1 is not in span(Ld+1

2 , ...,Ld+1
m ), then

‖f1‖Ud+1 ≤ δ(ε)⇒ |Ef1(L1(X )) · · · fm(Lm(X ))| ≤ ε

[H. Hatami-Lovett] When CS− Complexity < |F|.
[H. Hatami-P.H.-Lovett] Verify the conjecture in its full generality.
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A simple telescoping (hybrid) argument leads to:

Corollary.

Assume that Ld+1
1 , . . . ,Ld+1

m are linearly independent. Then
‖f − g‖Ud+1 ≤ δ(ε) implies∣∣∣∣∣EX

[
m∏

i=1

f (Li(X ))

]
− EX

[
m∏

i=1

g(Li(X ))

]∣∣∣∣∣ ≤ ε

‖1A − 1B‖Ud+1 ≤ δ implies that the number of d-APs in A and B are
similar.
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True Complexity

Theorem (H. Hatami-P.H.-Lovett)

Let L1, ...,Lm be such that Ld+1
1 is not in the span of Ld+1

2 , ...,Ld+1
m .

Then
‖f1‖Ud+1 ≤ δ(ε)⇒ |Ef1(L1(X )) · · · fm(Lm(X ))| ≤ ε.

Proof steps.
We may assume that d is less than the CS-Complexity.
Write fi = gi + hi , where

I gi = Γi (P1, ...,PC),
I P1...,PC is a regular (high-rank) set of degree≤ s polynomials.
I ‖hi‖Us+1 < ε.

E [(gi + hi)(L1(X )) · · · (gm + hm)(Lm(X ))] ≈ E [gi(L1(X )) · · · gm(Lm(X ))]
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True Complexity

( ∗ ) E [gi(L1(X )) · · · gm(Lm(X ))]

gi(x) = Λi(P1(x), ...,PC(x)) =
∑

Λ=(λ1,...,λC)

Γ̂i(Λ)e
(∑

λjPj(x)︸ ︷︷ ︸
PΛ

)

( ∗ ) =
∑

Λ1,...,Λm

(∏m
i=1 Γ̂i(Λi)

)
· EX

[
e
(∑m

i=1 PΛi (Li(X ))
)]

Two cases based on deg(PΛ1)

(i) deg(PΛ1) ≤ d : The coefficients will be small since Γ̂1(Λ1) is small.
(ii) deg(PΛ1) ≥ d + 1: The phase polynomials will be unbiased.
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True Complexity

( ∗ ) E [gi(L1(X )) · · · gm(Lm(X ))]≤ ε
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Thanks!
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